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We investigate on the same footing the time-dependent electronic transport properties and vibra-
tional dynamics of a molecular junction. We show that fluctuations of both the molecular vibron
displacement and the electronic current across the junction undergo damped oscillations towards
the steady-state. We assign the former to the onset of electron tunneling events assisted by vibron-
emission. The time-dependent build-up of electron-hole correlations is revealed as a departure of the
charge-transfer statistics from the generalized-binomial one after a critical time tc. The phonon-back
action on the tunneling electrons is shown to amplify and accelerate this build-up mechanism.

PACS numbers: 72.10.-d, 72.10.Di, 85.65.+h, 72.70.+m

Introduction.–The scaling of electronic junctions down
to the molecule or single-atom size1–3 is known to suffer
from some limitations. To cite but a few of them: exper-
iments are poorly reproducible implying statistical av-
eraging on many samples4, transport characteristics are
highly dependent on geometry and chemical nature of
the tip or substrate5, and mechanical properties of the
junction are degraded by voltage-induced heating6, up
to reaching mechanical instability and final break-down7.
The previous limitations involve interaction between elec-
tronic and vibrational degrees of freedom of the molecular
junction. It is thus of both fundamental and practical im-
portance for molecular electronics to better understand
the impact of electron-phonon (e-ph) excitations on elec-
tronic transport at the nanoscale.

Typical signatures of e-ph interactions are measured in
the conductance G(V ) characteristics as peaks or dips8,
appearing each time the bias-voltage V crosses the in-
elastic threshold ~ω0/e, with ω0 the local-vibron fre-
quency, ~ the reduced Planck constant and e the elec-
tron charge. The analysis of the position and width
of these inelastic features8 contains information about
the e-ph matrix elements, the excited vibron frequen-
cies and lifetimes1. More recently, signatures of electron-
vibron excitations were also reported on shot-noise S(V )
characteristics9, revealing complementary information
about electronic correlations mediated by vibron excita-
tion. This extensive experimental activity has been sup-
ported by great theoretical efforts, the aim of which has
been to clarify the fundamental mechanism of electron-
tunneling assisted by vibron-emission and its impact on
quantum transport8,10–18. Despite all these efforts, the
understanding of electron-electron, electron-vibron in-
teractions and the role of electronic coherence at the
nanoscale remains mainly limited to the stationary (time-
independent) transport regime.

This topic has experienced a revival with the recent de-
velopment of single-electron sources19, which allow con-
trolled injection of well-defined single-electron excitations
in atomic point contacts. This has opened new avenues

for probing the short-time response of a nanojunction,
in the range 1-10 ns19. Further improvements in design-
ing broadband and low-noise detectors has been later re-
ported, with the first measurement of thermal decay of
current-fluctuations at ultrashort time scales 10-100 ps20.
It is thus timely to develop new theoretical tools bridg-
ing the gap between molecular electronics and ultrafast
quantum electronics21,22. Such approaches should en-
able the computation of the mean current23–25, current-
current noise and higher-order cumulants of the current
fluctuations26–28, including the non-Markovian character
of electronic tunneling at low-temperature. For those
reasons, the understanding of interaction effects on time-
dependent transport is still a challenging issue.
In this Rapid Communication, we develop a com-

pact methodology based on nonequilibrium Green func-
tions (NEGF)29–31 for probing on the same footing time-
dependent electronic current-fluctuations and vibron dy-
namics of a molecular junction. We follow the junction
dynamics from short time-scales given by the inverse elec-
tronic tunneling rate 1/Γ, to a longer time-window char-
acterized by the vibron-mode inverse damping rate 1/γd
and by electronic-current transient oscillations of period
2π~/ (eV ± ~ω0). We show the departure of the charge-
transfer statistics from the non-interacting generalized-
binomial distribution32, at a critical time associated to
the build-up of vibron-mediated electron correlations.
Microscopic model.–Our approach is based on a micro-

scopic Hamiltonian for the molecular junction H(t) =
HM +HR +HT (t)

10,11,33, with

HM = ε0nd + ~ω0a
†a+ λ

(

a+ a†
)

(

nd −
1

2

)

, (1)

HR =
∑

r,k

ξr,kc
†
r,kcr,k , (2)

HT (t) =
∑

r,k

{

tr,k(t)c
†
r,kd+ t∗r,k(t)d

†cr,k

}

. (3)

Eq. (1) describes a single electronic level of energy ε0 and
a local vibration mode of frequency ω0, with d† (a†) the
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creation operator of an electronic (vibrational) excita-
tion on the molecule. Electron-phonon interactions cou-
ple the position operator of the phonon mode (in units
of its zero-point motion) x = a + a† to the charge op-
erator of the molecule nd ≡ d†d, with coupling strength
λ. Eq. (2) models the metallic left (L) and right (R)

leads, with c†r,k the creation operator of an electronic ex-
citation in the r = L,R reservoir with energy ξr,k and
quasi-momentum k. The leads are supposed to be in ther-
mal equilibrium at temperature T , and their respective
chemical potentials to be maintained under a symmetric
voltage-drop µL(R) = ±eV/2. Finally, Eq. (3) describes
the tunneling of electrons from lead r to the molecular
level, with the rate Γr (ω) = π/~

∑

k |tr,k|
2δ (ω − ξr,k).

Within the wide-band approximation, the rates are eval-
uated at the Fermi energy Γr (ω) ≈ Γr (EF ) ≡ Γr, thus
resulting in a total tunneling rate Γ = ΓL+ΓR. In order
to probe the transient dynamics of charge-transfer across
the junction, the tunneling hoppings tr,k(t) = tr,kθ(t)
are switched-on at the initial time t = 0, where θ(t) is
the Heavyside step-function. Typical experimental pa-
rameters for molecular junctions are4,9,34 : ~Γ ≈ 1 eV,
~ω0 ≈ 10 meV − 100 meV, (λ/~Γ)2 ≈ 1 − 5% and
T ≈ 4.2 K. In the following, we adopt units such that
e = 1, ~ = 1 and the Boltzmann constant kB = 1.
The e-ph coupling (λ/Γ)

2
≈ 20% and phonon frequency

ω0/Γ ≈ 0.5 are taken a bit larger than in usual experi-
ments in order to achieve fast-enough relaxation.
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FIG. 1. Top panel: Time-dependent phonon population
nph(t) for two different initial conditions nph(0) = 0 (solid
lines) and nph(0) = nst

ph (dashed lines). Lower panel: Vi-
bron displacement fluctuations Sxx(t) for the initial condi-
tion nph(0) = 0 (plain curves), compared to the relaxation of
a classical harmonic oscillator (dashed-blue line) in the case
V = 0.5ω0 and nph(0) = nst

ph ≈ 0. Common to both panels:
Γ = 1, ΓL = ΓR, ǫ0 = 0, ω0 = 0.5, λ = 0.45, T = 0, nd(0) = 0
and V = 0.5, 1.5, 2.5, 3.5ω0.

NEGF approach.–We are interested in the full-counting

statistics (FCS) of electron tunneling35–38, which pro-
vides complete information about current-fluctuations.
The central quantity in a FCS analysis is the quasi-
probability distribution Pq(t) that q charges are trans-
ferred across the molecular junction between the ini-
tial and final measurement times 0 and t. The re-
lated moment generating function (MGF) Z(χ, t) =
∑

q∈Z
Pq(t)e

iqχ and cumulant generating function (CGF)

F(χ, t) = lnZ(χ, t), generate upon n-successive deriva-
tions with respect to the counting-field χ, the nth mo-
ment Mn and cumulant Cn of the distribution Pq(t) re-
spectively. The CGF is expressed as26,27

∂

∂χ
F(χ, t) = −tr

{

∂ΣT,χ

∂χ
Gχ

}

, (4)

which recovers the stationary limit31,39. Eq. (4) involves
the time-dependent tunneling self-energy ΣT,χ(1, 2), and
the nonequilibrium Green functions (NEGFs)29–31 of the
molecular levelGχ(1, 2) = −i

〈

TKd(1)d†(2)
〉

χ
and vibron

mode Dχ(1, 2) = −i 〈TKx(1)x(2)〉χ. We adopt the short-

hand notations for the time t1(2) ≡ 1(2), and the time-
ordering operator TK , on the Keldysh contour CK . We
write in bold symbol any matrix in the discretized con-
tour. Notice that the dimension of the bold matrices
increases linearly with time t. The NEGFs are evaluated
with the counting-field χ(t) included into the hopping
terms tr,k(t) ≡ tr,ke

iχr(t)37,39, with χr(t) = ±srχ/2 for t
on the forward (backward) branch of CK and sr = 1(−1)
for r = L(R).
We evaluate Eq. (4) within the Random Phase Ap-

proximation (RPA)40–42, for which the molecular level
and vibron NEGFs fulfill the following equations

Gχ ≈ G0χ +G0χΣeph,χG0χ , (5)

Dχ =
{

d−1
0 −Πχ

}−1
, (6)

with G0χ =
{

g−1 −ΣT,χ

}−1
the NEGF of the molec-

ular level coupled to the leads but not interacting with
the vibron mode, g the NEGF of the isolated level, and
d0 the bare vibron propagator. The electron self-energy
Σeph,χ in Eq. (5) is the sum of an Hartree (H) term ΣH,χ,
plus an exchange (XC) contribution ΣXC,χ, while Πχ in
Eq. (6) is the vibron self-energy, given by

ΣH,χ(1, 2) = λ2δK(1, 2)

∫

CK

dt3nd,χ(3)d0(1, 3) , (7)

ΣXC,χ(1, 2) = iλ2G0χ(1, 2)Dχ(1, 2) , (8)

Πχ(1, 2) = −iλ2G0χ(1, 2)G0χ(2, 1) , (9)

where δK(1, 2) is the delta-function defined on the
Keldysh contour, and nd,χ(3) the counting-field depen-
dent population of the molecular level. Consistently
with the RPA, the electronic NEGF is truncated at
second-order in the e-ph coupling strength (λ/Γ)

243–45,
while the vibron propagator is obtained after resummat-
ing a whole class of dominant ring-diagrams42. Eq. (4)
to (9) are the basis of our approach. We solve them
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FIG. 2. Top panel : Time-dependence of the excess current
δI(t) = I(t)−I0(t) with respect to the current I0(t) in the non-
interacting case (λ = 0), for two different initial conditions
nph(0) = 0 (solid lines) and nph(0) = nst

ph (dashed lines).
Parameters and legends are the same as in Fig.1.

numerically, after discretizing the Keldysh contour28,46.
Within RPA, taking into account only ΣXC,χ in Eq. (5)
(ΣH,χ gives a smaller contribution associated to dis-
placement currents), Eq. (4) can be integrated exactly
and provides the following expression for the MGF:

Z(χ, t) ≈ det
{

G̃χ=0G̃
−1
χ

}

/
√

det
{

Dχ=0D
−1
χ

}

42. We

have checked numerically that within RPA and for our
range of parameters, the continuity equation for the elec-
tronic current is fulfilled.
Vibron dynamics.–We focus first on the average

phonon population nph(t) ≡
〈

a†(t)a(t)
〉

. We show in
Fig.1 (top panel) the time-evolution of nph(t) for a sym-
metric junction ΓL = ΓR with a resonant molecular
level ε0 = 0, corresponding to a perfectly transmitting
junction. At the initial time, the molecular level is un-
occupied, nd(0) = 0, while the vibron mode is in its
ground state, i.e. nph(0) = 0 (plain-curves). Consis-
tently with a rate equation description12,13, we find that
the vibron occupation slowly relaxes towards the steady-
state value nst

ph = (V − ω̃0) θ (V − ω̃0) /4ω̃0, with a dis-

sipation rate γd = 2λ2ω̃0/πΓ
2 and renormalized (soft-

ened) phonon frequency ω̃0 = ω0− 2λ2/πΓ. We estimate
ω̃0 ≈ 76%ω0 and γd ≈ 5.4%Γ, implying a relaxation time
1/γd ≈ 18/Γ which is consistent with the low-voltage nu-
merical curves. For higher voltages (V ≥ 2.5ω0), inelastic
electron-tunneling events heat up the phonon mode8,13,
while the dissipation rate becomes voltage-dependent. As
expected, the relaxation is faster for the initial condition
nph(0) = nst

ph closer to the steady-state (dashed-curves).

The fluctuations of the vibron displacement Sxx(t) ≡
Re 〈x(t)x(0)〉 are shown for nph(0) = 0 in Fig.1
(lower panel). In the case V = 0.5ω0 (blue
curve), Sxx(t) exhibits damped-oscillations with pe-
riod 2π/ω̃0, and decoherence time 1/γx ≈ 2/γd,
in good agreement with the relaxation of a classi-
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FIG. 3. Top panel: Time-dependence of the excess conduc-
tance δG(t) (plain-curves) at the inelastic threshold V ≃ ω0,
in units of the quantum of conductance G0 = e2/h. Lower
panel: Voltage-derivative of the excess current-fluctuations
δS′(t) at the inelastic threshold. The dashed-curves are ob-
tained by evaluating Eq. (8) with the bare phonon propa-
gator d0(1, 2). Common to both panels: Γ = 1, ǫ0 = 0,
ω0 = 0.5, V = ω0, λ = 0.45, T = 0, nd(0) = 0, nph(0) = 0
and α ≡ ΓL/ΓR = 1, 0.8, 0.6, 0.4, 0.2.

cal harmonic oscillator (dashed-blue curve): Sxx(t) ≈
(

1 + 2nst
ph

)

e−γxt
{

cos (ω̃0t) +
γx

ω̃0

sin (ω̃0t)
}

47. We notice

a phase-shift between the plain and dashed curves due to
the retardation of the vibron in responding to the tunnel-
ing electrons. The value of γx is found larger than half
the dissipation rate as a result of additional dephasing
induced by elastic tunneling of electrons48.

Electronic transport.–We consider now the average
symmetrized current across the junction I(t) ≡ d

dt
C1(t),

and time-derivative of the related symmetrized charge-
fluctuations S(t) = d

dt
C2(t). We define the excess

current δI(t) = I(t) − I0(t) and excess current-
fluctuations δS(t) = S(t) − S0(t) with respect to the
current I0(t) and current-fluctuations S0(t) in the
non-interacting case (λ = 0). We show in Fig.2, the
time-evolution of δI(t), for the same parameters as
in Fig.1. We find that δI(t) oscillates and relaxes
toward the steady-state inelastic current: δIst ≈

− (λ/Γ)
2
{

2nst
phV + (V − ω̃0) θ (V − ω̃0)

}

/2π13,15,45.

The transient oscillations with period ≈ 2π/ (V ± ω̃0),
are associated to the maintained phase-coherence dur-
ing vibron-assisted inelastic tunneling events. When
approaching the steady-state, the gradual loss of co-
herence results in a power-law decay of the oscillation
amplitude. We also probe the dependence with the
junction transmission τ = 4α/ (1 + α)

2
, by changing

the ratio between the tunneling rates α = ΓL/ΓR.
We show in Fig.3 (top-panel) the excess conductance
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FIG. 4. Top panel: Discriminant ∆(t) = P 2
0 (t) −

4P1(t)P−1(t) of the short-time approximation to the MGF
Z(z, t) = P1(t)z + P0(0) + P−1(t)z

−1, with z = eiχ. The
lower panels show the position of the zeros of the MGF for
α = 1 (upper red row), α = 0.6 (middle green row) and
α = 0.2 (lower blue row), with increasing times from left to
right columns. Other parameters are the same as in Fig.3.

δG(t) = ∂
∂V

δI(t) evaluated at V ≈ ω0 (plain curves). As

predicted by bare second-order perturbation theory49,
δG(t) is negative for arbitrary values of α (with fixed
ε0 = 0). The difference between plain (RPA) and dashed
(bare second-order) curves measures the impact of the
vibron-heating mechanism. We find that the onset of a
non-equilibrium vibron population in the junction tends
to lower the stationary conductance while amplifying
the transient oscillations of δG(t). A similar conclusion
is drawn in Fig.3 (lower-panel) for the voltage-derivative
of the excess current-noise δS′(t) = ∂

∂V
δS(t) at V ≈ ω0.

We remark an over-amplification of δS′(t) at τ = 1, due
to phonon back-action40–42. A quench of the transient
oscillations and a change of sign of δS′(t) is observed
at τ = 1/2 (α ≈ 0.17), as the dominant scattering
channel changes from inelastic tunneling of electrons
to elastic tunneling with emission-reabsorption of a
vibron49. We have checked that Fig.3 is qualitatively
unchanged for the initial condition nd(0) = 1, except for
small differences at very short times t ≤ 10/Γ where the
transient dynamics is slowed-down by the suppressed
charge-fluctuations of the occupied dot.

Zeros of the MGF.–In order to characterize charge
fluctuations beyond the first two cumulants, we inves-
tigate the analytical properties of the MGF Z(z, t) =
∑

q∈Z
Pq(t)z

q ≡
∏

j (z − zj) / (1− zj) as a function of

z ≡ eiχ, extended to the full complex plane. The ze-
ros zj of the MGF are either real or come in complex-
conjugate pairs. For a non-interacting fermionic system,

the MGF factorizes to Z(z, t) ≡
∏

j {1 + pj (z − 1)}50,51

with pj ∈ [0, 1] being the probability of the binomial
tunneling process, so that the zeros zj ≡ 1 − 1/pj lie
on the negative real axis. Any departure of the zeros
from the real axis is thus a direct signature of elec-
tron correlations42,52,53. Similar studies were reported
in the context of dynamical phase transitions, for the
real-time evolution of bulk systems54 or in relation to
full-counting statistics55, for which the zeros of the MGF
were later determined experimentally56. At short-times
(t < 15/Γ), the MGF is dominated by single-electron tun-
neling events, i.e. Z(z, t) ≈ P1(t)z + P0(0) + P−1(t)z

−1,
where P1(t) and P−1(t) are the respective probabilities
of forward and backward tunneling. The sign of the dis-
criminant ∆(t) = P 2

0 (t) − 4P1(t)P−1(t) controls the lo-
cation of the zeros of Z(z, t) with respect to the real
axis. We present in Fig.4 the computed zeros of the
full MGF as a function of time (lower-panel) and the
corresponding behavior of the discriminant ∆(t) (upper-
panel), for the same parameters as in Fig.3. At short
times (t / 1/Γ), the zeros lie on the negative real axis, for
arbitrary α, as expected for non-interacting systems50,51.
After some time (t > 1/Γ), the electrons have tunneled
on the molecule and emitted a vibron. The onset of e-
ph interactions results into a merging of the zeros of the
MGF at a critical time tc, and their later splitting off the
real axis for t > tc. The time tc coincides with the change
of sign of the discriminant ∆(t) from positive to nega-
tive, thus proving that the splitting of the zeros is due
to a departure from the generalized binomial distribution
of non-interacting electrons32. We interpret this behav-
ior as arising from correlations between single-electron
inelastic tunneling events and inelastic back-scattering
ones (single-hole transmission). For our available time-
window and range of parameters, the phonon back-action
mechanism leads to an amplification of the electron-hole
correlations, and thus to a shorter tc compared to the
case of bare second-order perturbation theory. At half
transmission τ ≈ 0.5 (α ≈ 0.2), the zeros first split,
then merge again at time t ≈ 6.2/Γ, and finally stay
on the negative real axis. This quench of electron-hole
correlations happens as the dominant scattering process
changes from vibron-mediated inelastic to elastic tunnel-
ing of electrons, thus resulting in a FCS closer to the one
of a non-interacting junction.

Conclusion.–In this Rapid Communication, we have
investigated on the same footing the time-dependent
transport properties and vibrational dynamics of a
molecular junction. We have shown that the fluctuations
of the vibron displacement exhibit damped oscillations
toward the steady state similar to the relaxation of a
classical harmonic oscillator. The short-time dynamics
of current and current-fluctuations exhibit voltage-
dependent oscillations, due to both the mean-field
reorganization of molecular charges and to the onset
of inelastic scattering. This short-time dynamics is
mainly due the building-up of vibron-mediated electron-
hole correlations, the signature of which is revealed
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as a splitting of the zeros of the MGF off the real
axis, at a critical time tc. The phonon back-action
mechanism tends to amplify the electron-hole correla-
tions, as well as the transient oscillations of electronic
current-fluctuations. We believe that our work provides
a first step to investigate the onset of many-body
correlations in electronic transport, including the pos-
sibility to analyze vibron-mediated dynamical phase
transitions42, when reaching the stationary regime.
Recent progress in the THz spectroscopy of photo-
currents in molecular junctions57 and of photon-assisted
shot-noise in graphene58, constitute an alternative and
promising route to investigate the subtle interplay be-

tween electrons and vibron dynamics at ultrashort time
scales ∼ 1−10 ps, along the lines proposed in this paper.
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