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The {−2,−1}-selfdual and decomposable

tournaments

Y. Boudabbous ∗ P. Ille †‡

January 27, 2017

Abstract

We only consider finite tournaments. The dual of a tournament is ob-
tained by reversing all the arcs. A tournament is selfdual if it is isomorphic
to its dual. Given a tournament T , a subset X of V (T ) is a module of T
if each vertex outside X dominates all the elements of X or is dominated
by all the elements of X. A tournament T is decomposable if it admits a
module X such that 1 < ∣X ∣ < ∣V (T )∣.

We characterize the decomposable tournaments whose subtournaments
obtained by removing one or two vertices are selfdual. We deduce the
following result. Let T be a non decomposable tournament. If the sub-
tournaments of T obtained by removing two or three vertices are selfdual,
then the subtournaments of T obtained by removing a single vertex are
not decomposable. Lastly, we provide two applications to tournaments
reconstruction.

Keywords: tournament, decomposable, selfdual.

MSC (2010): 05C20, 05C75, 05C60.

1 Introduction

We only consider finite structures. We are interested in the notions of selfduality
and decomposability for tournaments. The dual of a tournament is obtained by
reversing all the arcs. A tournament is selfdual if it is isomorphic to its dual.
The decomposabilty is introduced as follows. A module is a vertex subset whose
elements cannot be distinguished by a vertex outside. The notion of module is
a generalization of the usual notion of interval for linear orders. A tournament
is decomposable if it admits a proper module with at least two elements. A
tournament, with at least three vertices, is prime if it is not decomposable.

∗Department of Mathematics, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi
Arabia; youssef−boudabbous@yahoo.fr.
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Our main result consists in characterizing the decomposable tournaments
(with at least 7 vertices) whose subtournaments obtained by deleting one or
two vertices are selfdual (see Theorem 7). Except two degenerate classes, these
tournaments are very regular, and are decomposed into lexicographic products.
We use two new tools. The first one is a study of strongly connected subtour-
naments of a prime tournament (see Section 3). In the second one, we examine
the selfduality of a tournament by using the orbits of its automorphism group
(see Proposition 40). The proof of Theorem 7 is detailed. It is deduced from
six facts.

A first consequence of our main result follows (see Theorem 8). Let T be
a prime tournament (with at least 8 vertices). If the subtournaments of T ob-
tained by removing two or three vertices are selfdual, then the subtournaments
of T obtained by removing a single vertex are prime. The following result is an
immediate consequence of Theorem 8 (see Corollary 10). It is a nice result in
Pouzet’s reconstruction of prime tournaments. Let T be a prime tournament
(with at least 8 vertices). If T admits a vertex whose deletion yields a decom-
posable subtournament, then T satisfies the following assertion (we say that T
is {−3,−2}-reconstructible). Consider a tournament U with the same vertex set
as T . Suppose that for any vertices u, v and w of T such that ∣{u, v,w}∣ = 2
or 3, the subtournaments of T and U obtained by removing u, v and w are
isomorphic. Then, T and U are isomorphic.

Lastly, we obtain the following result in Pouzet’s reconstruction of decom-
posable tournaments (see Theorem 11). Its proof uses our main result. Let T
be a decomposable tournament (with at least 7 vertices). Consider a tourna-
ment U with the same vertex set as T . Suppose that for vertices u and v of T ,
the subtournaments of T and U obtained by removing u and v are isomorphic.
Suppose also that for distinct vertices u, v and w of T , the subtournaments of
T and U induced by {u, v,w} are isomorphic. Then, T and U are isomorphic.

At present, we formalize our presentation. For a tournament T , let V (T )
and A(T ) denote the vertex set and arc set (each arc is an ordered pair of
distinct vertices). The cardinality of V (T ) is denoted by v(T ). Given distinct
vertices v and w of T , v Ð→ w means vw ∈ A(T ). Given X ⊆ V (T ), T [X]
denotes the subtournament of T induced by X. For convenience, T [V (T ) ∖X]
is also denoted by T −X and by T − x when X = {x}.

For instance, the 3-cycle is the tournament C3 = ({0,1,2},{01,12,20}). A
tournament is a linear order if it does not contain C3 as a subtournament.
Given n ≥ 2, the usual linear order on {0, . . . , n − 1} is the tournament Ln =
({0, . . . , n − 1},{m(m + 1) ∶ 0 ≤ m < n − 1}). Given a tournament T such that
v(T ) ≥ 3, T is a circle if it is obtained from a linear order by reversing the arc
between its smallest vertex and its largest one.
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1.1 Decomposability

Let T be a tournament. A subset X of V (T ) is a module [31] of T if for any
x, y ∈X and v ∈ V (T ), we have

xv ∈ A(T )
and

vy ∈ A(T )

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⇒ v ∈X.

For linear orders, the notions of a module and of an interval coincide. They also
share the same properties.

Proposition 1. Given a tournament T , we have

1. ∅, V (T ) and {x}, where x ∈ V (T ), are modules of T ;

2. given W ⊆ V (T ), if X is a module of T , then X∩W is a module of T [W ];

3. if X and Y are modules of T , then X ∩ Y is a module of T ;

4. if X and Y are modules of T such that X ∩Y ≠ ∅, then X ∪Y is a module
of T ;

5. if X and Y are modules of T such that X ∖Y ≠ ∅, then Y ∖X is a module
of T ;

6. if X and Y are modules of T such that X ∩Y = ∅, then xy ∈ A(T ) for any
x ∈X and y ∈ Y or yx ∈ A(T ) for any x ∈X and y ∈ Y .

Following the first assertion of Proposition 1, ∅, V (T ) and {x}, where
x ∈ V (T ), are modules of a tournament T , called trivial. A tournament is
indecomposable if all its modules are trivial, otherwise it is decomposable. Since
every tournament with at most 2 vertices is indecomposable, we say that a
tournament T is prime if T is indecomposable and v(T ) ≥ 3.

We define the quotient of a tournament by considering a partition of its
vertex set in modules. Precisely, let T be a tournament. A partition P of V (T )
is a modular partition of T if all the elements of P are modules of T . The last
assertion of Proposition 1 justifies the following definition of the quotient. With
each modular partition P of T , associate the quotient T /P of T by P defined
on V (T /P ) = P as follows. Given X,Y ∈ P such that X ≠ Y , XY ∈ A(T /P )
if xy ∈ A(T ), where x ∈ X and y ∈ Y . The opposite operation of the quotient
is the lexicographic sum defined as follows. Given a tournament T , with each
vertex v ∈ V (T ) associate a tournament Tv. Suppose that the vertex sets V (Tv)
are nonempty and pairwise disjoint. Consider the function

p ∶ ⋃v∈V (T ) V (Tv) Ð→ V (T )
x z→ p(x), where x ∈ V (Tp(x)).

The lexicographic sum ∑T Tv of the tournaments Tv over the tournament T is
defined on

V (∑
T

Tv) = ⋃
v∈V (T )

V (Tv)
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as follows. Given x, y ∈ ⋃v∈V (T ) V (Tv),

xy ∈ A(∑
T

Tv) if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p(x) = p(y) and xy ∈ A(Tp(x))
or

p(x) ≠ p(y) and p(x)p(y) ∈ A(T ).

When all the tournaments Tv are isomorphic to a same tournament U , we
obtain the lexicographic product of U by T . Precisely, the lexicographic product
T ○ U of U by T is defined on V (T ○ U) = V (T ) × V (U) as follows. Given
(x, y), (u, v) ∈ V (T ○U) such that (x, y) ≠ (u, v),

(x, y)(u, v) ∈ A(T ○U) if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x = u and yv ∈ A(U)
or

x ≠ u and xu ∈ A(T ).

1.2 Selfduality

With each tournament T , associate its dual T ⋆ defined by V (T ⋆) = V (T ) and
A(T ⋆) = {uv ∶ vu ∈ A(T )}. A tournament is selfdual if it is isomorphic to its
dual. A tournament T such that v(T ) ≤ 3 is clearly selfdual. This is false when
v(T ) = 4. Consider the tournaments δ− = ({0,1,2,3},{01,12,20} ∪ {30,31,32})
and δ+ = ({0,1,2,3},{01,12,20} ∪ {03,13,23}). The dual of δ− is isomorphic to
δ+. Hence δ− and δ+ are not selfdual. It is easy to verify that a tournament T
such that v(T ) = 4 is selfdual if and only if T is isomorphic neither to δ− nor to
δ+. The tournaments δ− and δ+ are called diamonds.

A tournament T is strongly selfdual if for each X ⊆ V (T ), T [X] is selfdual.
The characterization of strongly selfdual tournaments follows.

Theorem 2 (Reid and Thomassen [28]). Given a tournament T such that
v(T ) ≥ 8, T is strongly selfdual if and only if T is a linear order or a circle.

Following Theorem 2, Boudabbous, Dammak and Ille [7] characterized the
prime tournaments, all of whose prime and proper subtournaments are selfdual.
We consider the following weakening of strong selfduality. Given a tournament
T and F ⊆ Z, T is F-selfdual if we have

1. for every X ⊆ V (T ), if ∣X ∣ ∈ F ∖ {0}, then T [X] is selfdual;

2. for every X ⊆ V (T ), if −∣X ∣ ∈ F ∖ {0}, then T −X is selfdual;

3. if 0 ∈ F , then T is selfdual.

As previously noted, δ− and δ+ are the only non-selfdual tournaments on 4
vertices. Thus, a tournament T is {4}-selfdual if and only if T does contain
neither δ− nor δ+ as subtournaments. The characterization of {4}-selfdual tour-
naments uses the following tournament. Given n ≥ 1, T2n+1 is the tournament
obtained from L2n+1 by reversing all the arcs between even and odd vertices
(see Figure 1). The characterization of {4}-selfdual tournaments follows.
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Figure 1: The tournament T2n+1.

Theorem 3 (Moon [26]). Given a tournament T , T is {4}-selfdual if and only
if T is a linear order or T is decomposed into a lexicographic sum of linear
orders over T2n+1, where n ≥ 1.

Let T be an {n}-selfdual tournament, where 0 < n < v(T ). As stated below
(see Lemma 9), T is {m}-selfdual for every m > 0 such that m ≤ min(n, v(T )−n).
Therefore, given F ⊆ Z, we can use Theorem 3 to characterize the F-selfdual
tournaments if there exists n ∈ F such that ∣n∣ ≥ 4. For instance, Bouchaala
and Boudabbous [6] obtained the following characterization of {−n}-selfdual
tournaments, when n ≥ 4 (compare with Theorem 2).

Theorem 4. Let n ≥ 4. Given a tournament T such that v(T ) ≥ n + 6, T is
{−n}-selfdual if and only if T is strongly selfdual.

Since every tournament is {1,2,3}-selfdual, it remains to study the F-
selfdual tournaments, when F ⊆ {−3,−2,−1,0}. Boussäıri [11] conjectured the
following.

Conjecture 5. The {−3}-selfduality and the strong selfduality are equivalent
for tournaments with enough vertices.

Achour, Boudabbous and Boussäıri [1] answered the conjecture positively in
the decomposable case.

Theorem 6. Given a tournament T such that v(T ) ≥ 9, T is decomposable and
{−3}-selfdual if and only if T is strongly selfdual.

1.3 Main results

Conjecture 5 admits a negative answer if we replace the {−3}-selfduality by the
{−2,−1}-selfduality. Indeed, for n ≥ 1, the tournament T2n+1 (see Figure 1) is
prime and {−2,−1}-selfdual. Following Theorem 6, our main theorem provides a
characterization of decomposable and {−2,−1}-selfdual tournaments. We need
the following notation and definitions. Given a tournament T , Aut(T ) denotes
the automorphism group of T . A tournament T is vertex-transitive if Aut(T )
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acts transitively on V (T ). More weakly, a tournament T is monomorphic [16] if
for any u, v ∈ V (T ), T −u and T − v are isomorphic. We introduce the following
strengthening of vertex-transitivity. A tournament T is vertex-selfdual if for
any u, v ∈ V (T ), there exists an isomorphism from T onto T ⋆ that exchanges
u and v. For instance, for n ≥ 1, the tournament T2n+1 is vertex-selfdual (see
Remark 52). The main result follows.

Theorem 7. Given a tournament T such that v(T ) ≥ 7, T is decomposable
and {−2,−1}-selfdual if and only if T is a linear order or T is a circle or T is
decomposed into a lexicographic product Q ○U , where Q is a prime and vertex-
selfdual tournament, and U is a monomorphic and {−2,0}-selfdual tournament,
with v(U) ≥ 2.

The second result follows from Theorem 7. It provides an important property
of {−3,−2}-selfdual and prime tournaments. Note that such tournaments might
not exist if Conjecture 5 admits a positive answer. We need the following
definition. Given a prime tournament T , a vertex v of T is critical (in terms of
primality) if T − v is decomposable. The second result follows.

Theorem 8. Given a prime tournament T such that v(T ) ≥ 8, if T is {−3,−2}-
selfdual, then T does not have any critical vertex.

Lastly, we obtain two consequences of Theorem 7 in tournaments reconstruc-
tion. We begin by defining hypomorphic tournaments. Let F ⊆ Z ∖ {0}. Given
tournaments T and U such that V (T ) = V (U), T and U are F-hypomorphic if
for every X ⊆ V (T ), we have

1. if ∣X ∣ ∈ F , then T [X] and U[X] are isomorphic;

2. if −∣X ∣ ∈ F , then T −X and U −X are isomorphic.

Given F ⊆ Z ∖ {0}, a tournament T is F-reconstructible provided that for
every tournament U such that V (U) = V (T ), we have: if T and U are F-
hypomorphic, then T and U are isomorphic. We say that the tournaments
are F-reconstructible if there exists n ≥ 1 such that every tournament T is F-
reconstructible whenever v(T ) ≥ n. If the tournaments are F-reconstructible,
then the smallest of such integers n is called the F-threshold and is denoted by
tF .

Ulam [33] introduced the problem of {−1}-reconstruction. Stockmeyer [32]
showed that the tournaments are not {−1}-reconstructible. Precisely, for n ≥ 3,
he built a tournament τ , with v(τ) = 2n + 2, such that τ is {−1}-selfdual and
prime, but τ is not selfdual. Afterwards, Fräıssé proposed the problem of the
{1, . . . , k}-reconstructibility of tournaments (and more generally of relations).
Lopez [22, 23] proved that the tournaments are {2, . . . ,6}-reconstructible, and
t{2,...,6} = 7. Reid and Thomassen [28] obtained independently the {2, . . . ,6}-
reconstructibility of tournaments. Lastly, Pouzet proposed the problem of the
{−k}-reconstructibility of tournaments (and more generally of relations) for k ≥
2 (see [4, Problem 24]). The following lemma is useful to translate results on
Fräıssé’s reconstruction in terms of Pouzet’s reconstruction.
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Lemma 9 (Pouzet [27]). Consider tournaments T and U such that V (T ) =
V (U). Given 0 < p < v(T ), if T and U are {p}-hypomorphic, then T and U are
{q}-hypomorphic for each q ≥ 1 such that q ≤ p and q ≤ v(T ) − p.

For instance, given k ≥ 6, since the tournaments are {2, . . . ,6}-reconstructible
and t{2,...,6} = 7 (see Lopez [23]), it follows from Lemma 9 that for every k ≥ 6,
the tournaments are {−k}-reconstructible and t{−k} ≤ k+6. Afterwards, Ille [19]
proved that the tournaments are {−5}-reconstructible and t{−5} ≤ 11. Lastly,
Lopez and Rauzy [24] showed that the tournaments are {−4}-reconstructible
and t{−4} ≤ 10. Following these results, we are interested in the study of the
F-reconstruction of tournaments when F ⊆ {−3,−2,−1}. Achour, Boudabbous
and Boussäıri [1] proved that a decomposable tournament T (with at least 9
vertices) is {−3}-reconstructible when it does not admit a module M such that
∣V (T ) ∖M ∣ = 1 or 2, and T [M] is prime. The third result follows. It is an
immediate consequence of Theorem 8 and [12, Corollary 1].

Corollary 10. Given a prime tournament T such that v(T ) ≥ 8, if T possesses
a critical vertex, then T is {−3,−2}-reconstructible.

Corollary 10 is the first positive result on F-reconstruction of prime tour-
naments when F ⊆ {−3,−2,−1}. If Conjecture 5 admits a positive answer, then
it follows directly from Theorem 20 that a prime tournament (with enough
vertices) is {−3}-reconstructible. Finally, we obtain the following result.

Theorem 11. Given a decomposable tournament T , if v(T ) ≥ 7, then T is
{−2,−1,3}-reconstructible.

We do not know if the decomposable tournaments are {−2,3}-reconstructible
or {−1,3}-reconstructible.

2 Preliminaries

2.1 Gallai’s decomposition of tournaments

We need the following strengthening of the notion of module to obtain an uni-
form decomposition theorem. Given a tournament T , a subset X of V (T ) is a
strong module [13] of T provided that X is a module of T , and for every module
Y of T , we have: if X ∩ Y ≠ ∅, then X ⊆ Y or Y ⊆ X. With each tournament
T , with v(T ) ≥ 2, associate the set Π(T ) of the maximal strong modules of
T under inclusion amongst all the proper and strong modules of T . Gallai’s
decomposition follows.

Theorem 12 (Gallai [17, 25]). Given a tournament T such that v(T ) ≥ 2,
Π(T ) is a modular partition of T , and T /Π(T ) is a linear order or a prime
tournament.

The next remark provides observations on Theorem 12 that are very useful
in the sequel.
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Remark 13. Given a tournament T such that v(T ) ≥ 2, the following assertions
hold

1. T is strongly connected if and only if T /Π(T ) is prime;

2. if T is not strongly connected, then T /Π(T ) is a linear order, and Π(T )
is the set of the vertex sets of the strongly connected components of T ;

3. if P is a modular partition of T such that T /P is prime, then P = Π(T );

4. if T is strongly connected, then Π(T ) is the set of the maximal proper
modules of T ;

5. if T is vertex-transitive, then T /Π(T ) is prime, and T is isomorphic to the
lexicographic product (T /Π(T )) ○ T [X], where X ∈ Π(T ).

The next two remarks follow from Remark 13.

Remark 14. Let T be a strongly connected tournament such that v(T ) ≥ 3.
Consider W ⊆ V (T ) such that for every X ∈ Π(T ), X ∖W ≠ ∅. Set

Π(T ) −W = {X ∖W ∶X ∈ Π(T )}.

By Proposition 1, Π(T )−W is a modular partition of T −W . Furthermore, the
bijection

πW ∶ Π(T ) Ð→ Π(T ) −W
X z→ X ∖W

is an isomorphism from T /Π(T ) onto (T −W )/(Π(T )−W ). Since T is strongly
connected, it follows from the first assertion of Remark 13 that T /Π(T ) is prime.
Thus (T −W )/(Π(T ) −W ) is prime. By the third assertion of Remark 13, we
obtain

Π(T −W ) = Π(T ) −W.

Moreover, by the first assertion of Remark 13, T −W is strongly connected.

Remark 15. Let T be a tournament such that v(T ) ≥ 2. Consider P ⊆ Π(T )
such that ∣P ∣ ≥ 3 and (T /Π(T ))[P ] is strongly connected. For convenience, set

τ = T /Π(T ).

Moreover, for each Q ⊆ Π(T ), set

∪Q = ⋃
X∈Q

X. (1)

Note that if Q = {X}, where X ∈ Π(T ), then ∪Q =X. We verify that

T [∪P ] is strongly connected and Π(T [∪P ]) = {∪ξ ∶ ξ ∈ Π(τ[P ])}.

Indeed, for each ξ ∈ Π(τ[P ]), ∪ξ is a module of T [∪P ]. It follows that

{∪ξ ∶ ξ ∈ Π(τ[P ])}
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is a modular partition of T [∪P ]. Furthermore, the bijection

Π(τ[P ]) Ð→ {∪ξ ∶ ξ ∈ Π(τ[P ])}
ξ z→ ∪ξ,

is an isomorphism from τ[P ]/Π(τ[P ]) onto (T [∪P ])/{∪ξ ∶ ξ ∈ Π(τ[P ])}. By
the first assertion of Remark 13, τ[P ]/Π(τ[P ]) is prime. Thus (T [∪P ])/{∪ξ ∶
ξ ∈ Π(τ[P ])} is prime. By the third assertion of Remark 13,

Π(T [∪P ]) = {∪ξ ∶ ξ ∈ Π(τ[P ])}. (2)

By the first assertion of Remark 13, T [∪P ] is strongly connected.
Lastly, suppose that (T /Π(T ))[P ], that is, τ[P ] is prime. We clearly obtain

that Π(τ[P ]) = {{X} ∶X ∈ P}. Therefore

Π(T [∪P ]) = {∪ξ ∶ ξ ∈ Π(τ[P ])} (by (2))

= {∪{X} ∶X ∈ P} = {X ∶X ∈ P} = P.

2.2 Prime tournaments

We begin with an obvious remark. Let T be a strongly connected tournament
(with v(T ) ≥ 3). For every v ∈ V (T ), there exists X ⊆ V (T ) such that v ∈ X
and T [X] is isomorphic to C3. Since C3 is prime, we obtain:

for every v ∈ V (T ), there exists X ⊆ V (T ) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v ∈X,
∣X ∣ = 3

and

T [X] is prime.

(3)

Of course, (3) holds for prime tournaments. To construct prime subtournaments
of a larger size in a prime tournament, we use the partition p(T,X) defined below.
Let T be a tournament. Given X ⊊ V (T ) such that T [X] is prime, consider the
following subsets of V (T ) ∖X

• ExtT (X) denotes the set of v ∈ V (T ) ∖X such that T [X ∪ {v}] is prime;

• ⟨X⟩T denotes the set of v ∈ V (T )∖X such thatX is a module of T [X∪{v}];

• for each a ∈X, XT (a) denotes the set of v ∈ V (T ) ∖X such that {a, v} is
a module of T [X ∪ {v}].

The set {ExtT (X), ⟨X⟩T }∪{XT (a) ∶ a ∈X} is denoted by p(T,X). The next
lemma is basic and its proof is easy.

Lemma 16. Given a tournament T , consider X ⊊ V (T ) such that T [X] is
prime. The set p(T,X) is a partition of V (T ) ∖ X. Moreover, the following
assertions hold.
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1. For x ∈ ⟨X⟩T and y ∈ V (T )∖(X∪⟨X⟩T ), if T [X∪{x, y}] is decomposable,
then X ∪ {y} is a module of T [X ∪ {x, y}].

2. Given a ∈X, for x ∈XT (a) and y ∈ V (T ) ∖ (X ∪XT (a)), if T [X ∪{x, y}]
is decomposable, then {a, x} is a module of T [X ∪ {x, y}].

3. For x, y ∈ ExtT (X) such that x ≠ y, if T [X ∪{x, y}] is decomposable, then
{x, y} is a module of T [X ∪ {x, y}].

The next result follows from Lemma 16.

Proposition 17. Given a prime tournament T , consider X ⊆ V (T ) such that
T [X] is prime. The following assertions hold.

1. If ⟨X⟩T ≠ ∅, then there exist x ∈ ⟨X⟩T and y ∈ V (T ) ∖ (X ∪ ⟨X⟩T ) such
that T [X ∪ {x, y}] is prime.

2. Given a ∈ X, if XT (a) ≠ ∅, then there exist x ∈ XT (a) and y ∈ V (T ) ∖
(X ∪XT (a)) such that T [X ∪ {x, y}] is prime.

3. If ∣V (T )∖X ∣ ≥ 2 and V (T )∖X = ExtT (X), then there exist x, y ∈ ExtT (X)
such that x ≠ y and T [X ∪ {x, y}] is prime.

The next result is a simple consequence of Proposition 17.

Corollary 18 (Theorem 6.5 [14]). Given a prime tournament T , consider X ⊆
V (T ) such that T [X] is prime. If ∣V (T )∖X ∣ ≥ 2, then there exist v,w ∈ V (T )∖X
such that v ≠ w and T [X ∪ {v,w}] is prime.

The next result follows from (3) by applying several times Corollary 18.

Corollary 19. Given a prime tournament T such that v(T ) ≥ 5, the following
assertions hold.

1. If v(T ) is odd, then for each x ∈ V (T ), there exist v,w ∈ V (T ) ∖ {x} such
that v ≠ w and T − {v,w} is prime.

2. If v(T ) is even, then for each x ∈ V (T ), there exists v ∈ V (T ) ∖ {x} such
that T − v is prime.

2.3 Primality and {3}-hypomorphy

The following theorem is fundamental in the study of prime and {3}-hypomorphic
tournaments. It is a major tool in duality and reconstruction problems.

Theorem 20 (Boussäıri et al. [12]). For a prime tournament T , T and T ⋆ are
the only tournaments that are {3}-hypomorphic to T .

The next result follows from Remark 13 and Theorem 20.

Corollary 21 (Boussäıri et al. [12]). Let T and U be {3}-hypomorphic tourna-
ments with v(T ) ≥ 3.
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1. T is strongly connected if and only if U is strongly connected.

2. Π(T ) = Π(U).

3. If T is strongly connected, then U/Π(U) = T /Π(T ) or (T /Π(T ))⋆.

2.4 Criticality

We use the following notation.

Notation 22. Given a prime tournament T , recall that a vertex v of T is
critical if T − v is decomposable. The set of critical vertices of T is denoted by
C (T ).

A prime tournament T is critical if C (T ) = V (T ). Schmerl and Trotter [30]
characterized the critical tournaments. They obtained the tournament T2n+1

(see Figure 1), and the tournaments U2n+1 and W2n+1 defined on {0, . . . ,2n},
where n ≥ 1, as follows. The tournament U2n+1 is obtained from L2n+1 by
reversing all the arcs between even vertices (see Figure 2). The tournament

●
0

��
�
��

�
��

�
��*

●
2i

�
�
�
�
���

●
2i + 2

●
2n

�

●
1

-●
2i + 1

A
A
A
A
AAU

HHH
HHH

HHH
HHj

●
2n − 1

Figure 2: The tournament U2n+1.

W2n+1 is obtained from L2n+1 by reversing all the arcs between 2n and the even
elements of {0, . . . ,2n − 1} (see Figure 3).
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HH
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���

���
���

@
@
@
@
@@R

Figure 3: The tournament W2n+1.
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Theorem 23 (Schmerl and Trotter [30]). Given a tournament τ , with v(τ) ≥ 5,
τ is critical if and only if v(τ) is odd, and τ is isomorphic to Tv(τ), Uv(τ) or
Wv(τ).

The following result is obtained from the characterization of critical tourna-
ments.

Theorem 24 (Schmerl and Trotter [30]). Given a prime tournament T , if
v(T ) ≥ 7, then there exist v,w ∈ V (T ) such that v ≠ w and T − {v,w} is prime.

Theorem 24 is improved as follows.

Theorem 25 (Sayar [29]). Given a prime tournament T , consider X ⊆ V (T )
such that T [X] is prime. If ∣ V (T ) ∖X ∣≥ 4, then there exist v,w ∈ V (T ) ∖X
such that v ≠ w and T − {v,w} is prime.

Theorem 24 leads Ille [20] to associate a graph with a prime tournament.

Definition 26. Let T be a prime tournament. The primality graph P(T ) of
T is defined on V (T ) as follows. Given distinct v,w ∈ V (T ),

vw ∈ E(P(T )) if T − {v,w} is prime.

The basic properties of the primality graph follow. The next lemma is stated
in [20] without a proof. For a proof, see [9, Lemma 10].

Lemma 27 (Ille [20]). Let T be a prime tournament with v(T ) ≥ 5. For every
v ∈ C (T ), dP(T )(v) ≤ 2. Moreover, the next two assertions hold.

1. Given v ∈ C (T ), if dP(T )(v) = 1, then V (T ) ∖ ({v} ∪ NP(T )(v)) is a
module of T − v.

2. Given v ∈ C (T ), if dP(T )(v) = 2, then NP(T )(v) is a module of T − v.

Given a critical tournament T , it follows from Lemma 27 that the connected
components of P(T ) are paths or cycles. The next result is important in the
study of non-critical and prime tournaments.

Theorem 28 (Boudabbous and Ille [9]). Let T be a non-critical and prime
tournament with v(T ) ≥ 7. For every connected component C of P(T ), with
v(C) ≥ 2, we have V (C) ∖C (T ) ≠ ∅.

Belkhechine et al. [3] characterized the prime tournaments admitting a single
non-critical vertex. The next result follows from their characterization (see [3,
Remark 2]).

Proposition 29. Let T be a prime tournament. If T possesses a unique non-
critical vertex u, then v(T ) ≥ 7 and P(T ) admits a connected component C
satisfying the following two assertions

1. v(T ) − v(C) ≤ 2, and each element of V (T ) ∖ V (C) is an isolated vertex
of P(T );

12



2. u ∈ V (C), C is a path and dP(T )(u) = 2.

The next result is an easy consequence of Lemma 27 and Proposition 29.

Corollary 30. Let T be a prime tournament. If T possesses a unique non-
critical vertex u, then there exist v,w ∈ V (T ) ∖ {u} such that v ≠ w, vw ∈
E(P(T )) and V (T ) ∖ {v,w} is a module of T − v.

3 The strongly connected subtournaments of a
prime tournament

Let T be a tournament. Consider X ⊊ V (T ) such that T [X] is strongly con-
nected and ∣X ∣ ≥ 3. As in Subsection 2.2 when T [X] is prime, we consider the
following subsets of V (T ) ∖X

• ExtT (X) is the set of v ∈ V (T ) ∖ X such that T [X ∪ {v}] is strongly
connected and {v} ∈ Π(T [X ∪ {v}]);

• ⟨X⟩T is the set of v ∈ V (T ) ∖X such that X is a module of T [X ∪ {v}];

• for each M ∈ Π(T [X]), XT (M) is the set of v ∈ V (T ) ∖ X such that
T [X ∪ {v}] is strongly connected and M ∪ {v} ∈ Π(T [X ∪ {v}]).

The next remark develops the last item above.

Remark 31. Given a tournament T , consider X ⊊ V (T ) such that T [X] is
strongly connected and ∣X ∣ ≥ 3. Let M ∈ Π(T [X]). For each v ∈ XT (M), we
have Π(T [X ∪ {v}]) = (Π(T [X]) ∖ {M}) ∪ {M ∪ {v}}.

Given a tournament T , consider X ⊊ V (T ) such that T [X] is strongly con-
nected and ∣X ∣ ≥ 3. The set {ExtT (X), ⟨X⟩T } ∪ {XT (M) ∶ M ∈ Π(T [X])} is
denoted by q(T,X).

Proposition 32 (Boudabbous and Ille [10]). Given a tournament T , consider
X ⊊ V (T ) such that T [X] is strongly connected and ∣X ∣ ≥ 3. The set q(T,X) is
a partition of V (T ) ∖X.

An analogue of Proposition 17 and Corollary 18 follows.

Theorem 33 (Boudabbous and Ille [10]). Given a prime tournament T , con-
sider X ⊊ V (T ) such that T [X] is strongly connected and ∣X ∣ ≥ 3. Then,
there exist v,w ∈ V (T ) ∖X such that T [X ∪ {v,w}] is strongly connected and
{v},{w} ∈ Π(T [X ∪ {v,w}]). More precisely, the following two assertions hold.

1. If ⟨X⟩T ≠ ∅, then there exist v ∈ ⟨X⟩T and w ∈ V (T ) ∖ (X ∪ ⟨X⟩T ) such
that T [X ∪{v,w}] is strongly connected and {v},{w} ∈ Π(T [X ∪{v,w}]).

2. Suppose that ExtT (X) = ∅. For each M ∈ Π(T [X]), if ∣M ∪XT (M)∣ ≥ 2,
then there exist v ∈ XT (M) and w ∈ V (T ) ∖ (X ∪ XT (M)) such that
T [X ∪ {v,w}] is strongly connected and {v},{w} ∈ Π(T [X ∪ {v,w}]).
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The next remark enlarges on Theorem 33.

Remark 34. Given a prime tournament T , consider X ⊊ V (T ) such that T [X]
is strongly connected and ∣X ∣ ≥ 3. Let Y be a nonempty subset of V (T )∖X such
that T [X ∪ Y ] is strongly connected, and for each y ∈ Y , {y} ∈ Π(T [X ∪ Y ]).
For each x ∈X,

if {x} ∈ Π(T [X]), then {x} ∈ Π(T [X ∪ Y ]).

Indeed, let x ∈X such that {x} ∈ Π(T [X]). There exists M ∈ Π(T [X∪Y ]) such
that x ∈M . Since {y} ∈ Π(T [X ∪Y ]) for each y ∈ Y , we obtain that M ∩Y = ∅.
By the second assertion of Proposition 1, M is a module of T [X]. Since T [X]
is strongly connected, it follows from the fourth assertion of Remark 13 that
there exists N ∈ Π(T [X]) such that M ⊆ N . Since {x} ∈ Π(T [X]), we have
{x} = N , and hence {x} =M . Therefore {x} ∈ Π(T [X ∪ Y ]).

4 Selfdual tournaments

Let T be a tournament. As T and T ⋆ share the same modules, they also share
the same strong modules. It follows that Π(T ) = Π(T ⋆). We obtain

T ⋆/Π(T ⋆) = T ⋆/Π(T ) = (T /Π(T ))⋆.

Given a selfdual tournament T , consider an isomorphism f from T onto T ⋆.
For every X ∈ Π(T ), f(X) ∈ Π(T ⋆) and hence f(X) ∈ Π(T ). Furthermore, the
permutation f/Π(T ) of Π(T ) defined by

Π(T ) Ð→ Π(T )
X z→ f(X), (4)

is an isomorphism from T /Π(T ) onto (T /Π(T ))⋆. Thus, T /Π(T ) is selfdual.
We use the following notation. Given a permutation group Γ of a set S, the

set of the orbits of Γ is denoted by S/Γ. When Γ is generated by a permutation
f , S/Γ is also denoted by S/f .

The next lemma follows from simple observations made in [15, Section 1].

Lemma 35. Given a selfdual tournament T , every isomorphism f from T onto
T ⋆ satisfies the following three assertions.

1. For each O ∈ V (T )/f such that ∣O ∣≥ 2, ∣O ∣ is even and ∣O ∣ /2 is odd.

2. There exists a vertex x of T such that f(x) = x if and only if v(T ) is odd.
(Such a vertex is unique.)

3. There exists an odd integer k ≥ 1 such that fk is an involutive isomorphism
from T onto T ⋆.

In the following remark, we consider the case of selfdual and non strongly
connected tournaments.
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Remark 36. Let T be a selfdual and non strongly connected tournament (with
v(T ) ≥ 2). By the second assertion of Remark 13, T /Π(T ) is a linear order, and
Π(T ) is the family of the vertex sets of the strongly connected components of
T . The strongly connected components of T can be indexed as C0, . . . ,Cn so
that for any i, j ∈ {0, . . . , n}, we have V (Ci)V (Cj) ∈ A(T /Π(T )) if and only if
i < j. For every isomorphism f from T onto T ⋆, we obtain that

(f/Π(T ))(V (Ci)) = V (Cn−i)

for each i ∈ {0, . . . , n}.

We use the following notation.

Notation 37. Let T be a tournament such that v(T ) ≥ 2. Given i > 0, we
consider Πi(T ) = {X ∈ Π(T ) ∶ ∣X ∣ = i}, and νi(T ) = ∣Πi(T )∣. Set Υ(T ) =
{i > 0 ∶ νi(T ) ≠ 0} and µ(T ) = max(Υ(T )). Furthermore, suppose that T is
strongly connected. Civen i > 0, we consider Πi,c(T ) = Πi(T ) ∩ C (T /Π(T ))
(see Notation 22), Πi,¬c(T ) = Πi(T ) ∖ C (T /Π(T )), νi,c(T ) =∣ Πi,c(T ) ∣ and
νi,¬c(T ) =∣Πi,¬c(T )∣.

In the next remark, we examine the selfduality in terms of Gallai’s decom-
position.

Remark 38. Let T be a selfdual tournament such that v(T ) ≥ 3. Given an
isomorphism f from T onto T ⋆, consider the isomorphism f/Π(T ) from T /Π(T )
onto (T /Π(T ))⋆ induced by f . The following assertions hold.

1. For each i > 0, we have (f/Π(T ))(Πi(T )) = Πi(T ). By Lemma 35, if
νi(T ) is odd, then there is X ∈ Πi(T ) such that (f/Π(T ))(X) =X. Con-
sequently

∣{i ∈ Υ(T ) ∶ νi(T ) is odd}∣ ≤ 1.

2. Suppose that T is strongly connected. For each i > 0,

(f/Π(T ))(Πi,c(T )) = Πi,c(T ) and (f/Π(T ))(Pi,¬c(T )) = Πi,¬c(T ).

By Lemma 35, if νi,c(T ) (respectively, νi,¬c(T ) ) is odd, then there exists
X ∈ Πi,c(T ) (respectively, X ∈ Πi,¬c(T )) such that (f/Π(T ))(X) = X.
Consequently

∣{i ∈ Υ(T ) ∶ νi,c(T ) is odd} ∪ {i ∈ Υ(T ) ∶ νi,¬c(T ) is odd}∣ ≤ 1.

The arguments presented in Remark 38 are well known in the study of self-
dual and decomposable tournaments. Unfortunately, they lead to long and
technical proofs. In the following proposition, we provide a new tool that allows
us to synthesize our approach. We use the following notation.

Notation 39. Let T be a tournament. Recall that Aut(T ) denotes the auto-
morphism group of T . For each v ∈ V (T ), OT (v) denotes the orbit of v under
Aut(T ). Furthermore, suppose that T is selfdual. We denote by Fix(T ) the set
of vertices v of T for which there exists an isomorphism f from T onto T ⋆ such
that f(v) = v.
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Proposition 40. Let T be a selfdual tournament.

1. Let f be an isomorphism from T onto T ⋆. For every v ∈ V (T ), we
have f(OT (v)) = OT (f(v)). Thus f induces a permutation fAut(T ) of
V (T )/Aut(T ) defined by fAut(T )(O) = f(O) for every O ∈ V (T )/Aut(T ).

2. The following three assertions are equivalent

• v(T ) is odd;

• Fix(T ) ≠ ∅;

• Fix(T ) ∈ V (T )/Aut(T ).

Furthermore, for each isomorphism f from T onto T ⋆, we have

• if v(T ) is odd, then fAut(T )(Fix(T )) = Fix(T );

• for every O ∈ V (T )/Aut(T ), if fAut(T )(O) = O, then O = Fix(T ).

3. For every isomorphism f from T onto T ⋆, fAut(T ) is involutive.

4. For any isomorphisms f and g from T onto T ⋆, we have

fAut(T ) = gAut(T ).

Proof. For the first assertion, consider an isomorphism f from T onto T ⋆. Let
v ∈ V (T ). For every w ∈ OT (v), there exists ϕ ∈ Aut(T ) such that ϕ(v) = w. We
have (f ○ϕ○f−1)(f(v)) = f(w). Since f ○ϕ○f−1 ∈ Aut(T ), f(w) ∈ OT (f(v)). It
follows that f(OT (v)) ⊆ OT (f(v)). Similarly, since f−1 is an isomorphism from
T onto T ⋆, we obtain f−1(OT (f(v))) ⊆ OT (v). Thus OT (f(v)) ⊆ f(OT (v)).
Therefore, for every v ∈ V (T ), f(OT (v)) = OT (f(v)). Consequently, the func-
tion

f/Aut(T ) ∶ V (T )/Aut(T ) Ð→ V (T )/Aut(T )
O z→ f(O)

is a permutation of V /Aut(T ).
For the first part of the second assertion, it follows from the second assertion

of Lemma 35 that v(T ) is odd if and only if Fix(T ) ≠ ∅. Moreover, if Fix(T ) ∈
V (T )/Aut(T ), then Fix(T ) ≠ ∅. It remains to prove that if Fix(T ) ≠ ∅, then
Fix(T ) ∈ V (T )/Aut(T ). Suppose that Fix(T ) ≠ ∅, and consider v ∈ Fix(T ).
Thus, there exists an isomorphism f from T onto T ⋆ such that f(v) = v. For
each w ∈ OT (v), there exists ϕ ∈ Aut(T ) such that ϕ(v) = w. Since ϕ ○ f ○ ϕ−1

is an isomorphism from T onto T ⋆ and (ϕ ○ f ○ ϕ−1)(w) = w, we have w ∈
Fix(T ). It follows that OT (v) ⊆ Fix(T ). Now, we show that Fix(T ) ⊆ OT (v).
Consider w ∈ Fix(T ). There exists an isomorphism g from T onto T ⋆ such
that g(w) = w. By the first assertion above, g(OT (v)) is the orbit of g(v)
under Aut(T ). Since f ○g−1 ∈ Aut(T ) and g(OT (v)) ∈ V (T )/Aut(T ), we obtain
(f ○ g−1)(g(OT (v))) = g(OT (v)). Clearly (f ○ g−1)(g(OT (v))) = f(OT (v)). By
the first assertion above, f(OT (v)) = OT (v) because f(v) = v. Therefore

g(OT (v)) = OT (v).
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Since T [OT (v)] is vertex-transitive, T [OT (v)] is regular, and hence ∣OT (v)∣
is odd. By the second assertion of Lemma 35 applied to g↾OT (v), there exists
u ∈ OT (v) such that g(u) = u. Since g(w) = w, we get w = u, so w ∈ OT (v).
Thus Fix(T ) ⊆ OT (v). Consequently, Fix(T ) = OT (v).

To complete the proof of the second assertion, consider an isomorphism f
from T onto T ⋆. First, suppose that v(T ) is odd. By the second assertion of
Lemma 35, there exists v ∈ V (T ) such that f(v) = v. Hence v ∈ Fix(T ). By
what precedes, Fix(T ) ∈ V (T )/Aut(T ) because v(T ) is odd. Thus Fix(T ) =
OT (v). By the first assertion above, we have fAut(T )(OT (v)) = OT (f(v)).
Since f(v) = v, we obtain fAut(T )(OT (v)) = OT (v), that is, fAut(T )(Fix(T )) =
Fix(T ). Second, consider O ∈ V (T )/Aut(T ) such that fAut(T )(O) = O. We get
f(O) = O. As previously observed, ∣O∣ is odd because T [O] is vertex-transitive.
By the second assertion of Lemma 35 applied to f↾O, there exists v ∈ O such
that f(v) = v. By the second assertion of Lemma 35 applied to f , v(T ) is
odd. By what precedes, Fix(T ) ∈ V (T )/Aut(T ). Therefore O = Fix(T ) because
v ∈ O ∩ Fix(T ).

For the third assertion, consider an isomorphism f from T onto T ⋆. Let
O ∈ V (T )/Aut(T ). Since f ○ f ∈ Aut(T ), we obtain (f ○ f)(O) = O. It follows
that (fAut(T ) ○ fAut(T ))(O) = O for each O ∈ V (T )/Aut(T ). Hence fAut(T ) is
involutive.

For the fourth assertion, consider isomorphisms f and g from T onto T ⋆.
Since f−1○g ∈ Aut(T ), we obtain that for every O ∈ V (T )/Aut(T ), (f−1○g)(O) =
O, that is, f(O) = g(O). It follows that fAut(T ) = gAut(T ).

Notation 41. Following the last assertion of Proposition 40, we associate with
each selfdual tournament T the permutation ϕAut(T ) of V (T )/Aut(T ) satisfying

ϕAut(T ) = fAut(T ) for every isomorphism f from T onto T ⋆. (5)

This permutation plays a crucial role in the proof of Theorem 7.

5 Proof of Theorem 7

We use the following result to prove Theorem 7 in the non strongly connected
case.

Lemma 42 (Boudabbous and Boussäıri [8]). Let T be a non strongly connected
tournament T such that v(T ) ≥ 5. If T is {−1}-selfdual, then T is a linear
order.

To prove Theorem 7 for tournaments T such that T /Π(T ) is a 3-cycle or
a critical tournament, we use the next result. It is an easy consequence of
the characterization of the critical tournaments (see Theorem 23), and of [6,
Theorem 1], [6, Theorem 2] and [6, Proposition 7].

Corollary 43 (Bouchaala and Boudabbous [6]). Let T be a tournament, with
v(T ) ≥ 7, such that T /Π(T ) is a 3-cycle or a critical tournament. The tourna-
ment T is decomposable and {−2,−1}-selfdual if and only if T is a circle or T
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is decomposed into a lexicographic product T2h+1 ○ U , where h ≥ 1, and U is a
monomorphic and {−2,0}-selfdual tournament, with v(U) ≥ 2.

By Lemma 42 and Corollary 43, it remains to prove Theorem 7 for the
tournaments T satisfying

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T /Π(T ) is prime

and

there exists X¬c ∈ Π(T ) such that (T /Π(T )) −X¬c is prime.

(6)

In the next facts, T denotes a tournament, with v(T ) ≥ 7, such that T satis-
fies (6), and T is decomposable and {−2,−1}-selfdual. Since T is decomposable,
µ(T ) ≥ 2 (see Notation 37). Furthermore, since all the tournaments of cardinal-
ity 4 are decomposable, all the prime tournaments of cardinality 5 are critical.
Hence

∣Π(T )∣ ≥ 6. (7)

For convenience, set
τ = T /Π(T ).

We use the following notation. Let W ⊆ V (T ) such that ∣W ∣ = 1 or 2. Since T
is {−2,−1}-selfdual, T −W is selfdual. Thus there exists an isomorphism from
T −W onto T ⋆ −W that is denoted by fW .

The following lemma is only used at the end of the proof of the next fact,
when v(T ) = 7 and ∣Π(T )∣ = 6.

Lemma 44 (Bouchaala [5]). Let t be a tournament. If t contains a diamond as
a subtournament, then for each v ∈ V (t), there exists D ⊆ V (t) such that v ∈ D
and t[D] is a diamond.

Fact 45. We have

∑
i∈Υ(T )∖{1}

νi(T ) ≥ 2 (see Notation 37). (8)

Proof. Suppose, to the contrary, that

∑
i∈Υ(T )∖{1}

νT (i) = 1.

Denote by X the unique element of Π(T ) such that ∣X ∣ ≥ 2. We have

Π1(T ) = {{w} ∶ w ∈ V (T ) ∖X}.

Since T satisfies (6), we have Π(T ) ∖C (T /Π(T )) ≠ ∅ (see Notation 22).
To begin, suppose that

Π(T ) ∖C (T /Π(T )) = {X}.

By Corollary 30 applied to T /Π(T ), there exist Y,Z ∈ Π(T ) ∖ {X} such that
Y ≠ Z, Y Z ∈ E(P(T /Π(T ))) (see Definition 26) and Π(T )∖{Y,Z} is a module
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of (T /Π(T ))−Y . Since Π1(T ) = {{w} ∶ w ∈ V (T )∖X}, there exist y, z ∈ V (T )∖X
such that Y = {y} and Z = {z}. Since Y Z ∈ E(P(T /Π(T ))), (T /Π(T ))[Π(T )∖
{Y,Z}] is prime. By Remark 15, T [∪(Π(T ) ∖ {Y,Z})], that is, T − {y, z} is
strongly connected. Moreover, V (T ) ∖ {y, z} is a module of T − y because
Π(T ) ∖ {Y,Z} is a module of (T /Π(T )) − Y . It follows that T − {y, z} and
T [{z}] are the only strongly connected components of T − y. By Remark 36,
T − y is not selfdual, which contradicts the {−1}-selfduality of T .

Now, suppose that Π(T )∖C (T /Π(T )) ≠ {X}. Since Π(T )∖C (T /Π(T )) ≠ ∅
and Π1(T ) = {{w} ∶ w ∈ V (T ) ∖X}, there exists v ∈ V (T ) ∖X such that

{v} ∈ Π(T ) ∖C (T /Π(T )).

We have (T /Π(T ))[Π(T )∖{{v}}] is prime. By Remark 15, T [∪(Π(T )∖{{v}})],
that is, T−v is strongly connected, and Π(T−v) = Π(T )∖{{v}}. Thus Π1(T−v) =
{{w} ∶ w ∈ V (T ) ∖ (X ∪ {v})} and Π(T − v) ∖Π1(T − v) = {X}. It follows that
(f{v}/Π(T − v))(X) = X. By the second assertion of Lemma 35, ∣Π(T − v)∣ is
odd, so ∣Π(T )∣ is even. We verify that ∣X ∣ = 2. Otherwise, suppose that ∣X ∣ ≥ 3
and consider x ∈ X. By Remark 14, Π(T − x) = (Π(T ) ∖ {X}) ∪ {X ∖ {x}}.
Thus Π1(T − x) = Π1(T ) and Π(T − x) ∖ Π1(T − x) = {X ∖ {x}}. Therefore
(f{x}/Π(T − x))(X ∖ {x}) = X ∖ {x}, which contradicts the second assertion of
Lemma 35 because ∣Π(T − x)∣ is even. We verify that ∣Π(T )∣ = 6. Otherwise,
suppose that ∣Π(T )∣ ≥ 7. By (3), there exists P ⊆ Π(T ) such that X ∈ P , ∣P ∣ = 3
and (T /Π(T ))[P ] is prime. By Theorem 25, there exist Y,Z ∈ Π(T ) ∖ P such
that Y ≠ Z and (T /Π(T ))−{Y,Z} is prime. Since Π1(T ) = {{w} ∶ w ∈ V (T )∖X},
there exist y, z ∈ V (T ) ∖ X such that Y = {y} and Z = {z}. It follows from
Remark 15 that Π(T − {y, z}) = Π(T ) ∖ {{y},{z}}. Hence ∣Π(T − {y, z})∣ is
even. Moreover, we obtain (f{y,z}/Π(T −{y, z}))(X) =X, which contradicts the
second assertion of Lemma 35 because ∣Π(T − {y, z})∣ is even. Lastly, suppose
that ∣Π(T )∣ = 6 and ∣X ∣ = 2. Since T /Π(T ) is prime and ∣Π(T )∣ is even, it
follows from Theorem 3 that T /Π(T ) contains a diamond as a subtournament.
By Lemma 44, there exists D ⊆ Π(T ) such that X ∈ D and (T /Π(T ))[D] is a
diamond. We obtain that T [∪D] has only two strongly connected components
that are of sizes 1 and 4 or of sizes 2 and 3. By Remark 36, T [∪D] is not
selfdual, which contradicts the {−2}-selfduality of T because ∣V (T )∖ (∪D)∣ = 2.

It follows that (8) holds.

Fact 46. We have

( ⋃
i∈Υ(T )∖{1}

Πi(T )) ⊆ Fix(τ) (see Notation 39). (9)

Proof. Suppose, to the contrary, that there exists X ∈ Πi(T ) ∖ Fix(τ), where
i ∈ Υ(T ) ∖ {1}.

Consider any Y ∈ Π(T ) such that ∣Y ∣ ≥ 2. Let y ∈ Y . We obtain that
f{y}/Π(T −y) is an isomorphism from (T −y)/Π(T −y) onto ((T −y)/Π(T −y))⋆
(see (4)). Set

Π(T ) − {y} = {Z ∖ {y} ∶ Z ∈ Π(T )},
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and consider the bijection

π{y} ∶ Π(T ) Ð→ Π(T ) − {y}
Z z→ Z ∖ {y} (See Remark 14).

By Remark 14, Π(T − y) = Π(T ) − {y}, and π{y} is an isomorphism from τ onto
(T −y)/Π(T −y). Therefore, (π{y})−1 ○(f{y}/Π(T −y))○π{y} is an isomorphism
from τ onto τ⋆. Set

g{y} = (π{y})−1 ○ (f{y}/Π(T − y)) ○ π{y}.

The next assertions follow from Proposition 40.

• g{y} induces a permutation (g{y})Aut(τ) of Π(T )/Aut(τ). Precisely, for
every Z ∈ Π(T ),

(g{y})Aut(τ)(Oτ(Z)) = g{y}(Oτ(Z))) = Oτ(g{y}(Z)).

• (g{y})Aut(τ) = ϕAut(τ) (see Notation 41).

• Since X /∈ Fix(τ), we have Oτ(X) ≠ Fix(τ). Thus

ϕAut(τ)(Oτ(X)) ≠ Oτ(X).

Therefore Oτ(X) ∩ ϕAut(τ)(Oτ(X)) = ∅, and

ϕAut(τ) exchanges Oτ(X) and ϕAut(τ)(Oτ(X)).

We have

(f{y}/Π(T − y))(π{y}(Oτ(X))) = ((f{y}/Π(T − y)) ○ π{y})(Oτ(X))
= (π{y} ○ g{y})(Oτ(X))
= (π{y} ○ ϕAut(τ))(Oτ(X))
= π{y}(ϕAut(τ)(Oτ(X))).

Moreover, consider j > 0. Since f{y} is an isomorphism from T −y onto (T −y)⋆,
we obtain

(f{y}/Π(T − y))(Πj(T − y)) = Πj(T − y).

It follows that

(f{y}/Π(T − y))(π{y}(Oτ(X)) ∩Πj(T − y))
= π{y}(ϕAut(τ)(Oτ(X))) ∩Πj(T − y).

Since f{y}/Π(T −y) is an isomorphism from (T −y)/Π(T −y) onto ((T −y)/Π(T −
y))⋆, we obtain

∣π{y}(Oτ(X)) ∩Πj(T − y)∣ = ∣π{y}(ϕAut(τ)(Oτ(X))) ∩Πj(T − y)∣. (10)
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Choose X for Y , and i for j. Hence y ∈X. We get

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

π{y}(Oτ(X)) ∩Πi(T − y) = (Oτ(X) ∩Πi(T )) ∖ {X}
and

π{y}(ϕAut(τ)(Oτ(X))) ∩Πi(T − y) = ϕAut(τ)(Oτ(X)) ∩Πi(T ).

It follows from (10) that

∣Oτ(X) ∩Πi(T )∣ − 1 = ∣ϕAut(τ)(Oτ(X)) ∩Πi(T )∣. (11)

By using (10) with suitable choices for Y and j, we obtain Υ(T ) ∖ {1} = {i}
and νi(T ) = 1, which contradicts Fact 45.

To begin, suppose that ϕAut(τ)(Oτ(X)) ∩ Πi(T ) ≠ ∅. Choose for Y an
element of ϕAut(τ)(Oτ(X)) ∩Πi(T ). Furthermore, choose i for j. We get

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

π{y}(Oτ(X)) ∩Πi(T − y) = Oτ(X) ∩Πi(T )
and

π{y}(ϕAut(τ)(Oτ(X))) ∩Πi(T − y) = (ϕAut(τ)(Oτ(X)) ∩Πi(T )) ∖ {Y }.

It follows from (10) that

∣Oτ(X) ∩Πi(T )∣ = ∣ϕAut(τ)(Oτ(X)) ∩Πi(T )∣ − 1,

which contradicts (11). Therefore

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣ϕAut(τ)(Oτ(X)) ∩Πi(T )∣ = 0

and

∣Oτ(X) ∩Πi(T )∣ = 1.

(12)

Now, suppose that there exists

Y ∈ Πj(T ) ∖ (Oτ(X) ∪ ϕAut(τ)(Oτ(X))),

where j ∈ Υ(T ) ∖ {1}. We get

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

π{y}(Oτ(X)) ∩Πi(T − y) = Oτ(X) ∩Πi(T )
and

π{y}(ϕAut(τ)(Oτ(X))) ∩Πi(T − y) = ϕAut(τ)(Oτ(X)) ∩Πi(T ).

It follows from (10) applied with j = i that

∣Oτ(X) ∩Πi(T )∣ = ∣ϕAut(τ)(Oτ(X)) ∩Πi(T )∣, (13)

which contradicts (12). Therefore

( ⋃
j∈Υ(T )∖{1}

Πj(T )) ⊆ (Oτ(X) ∪ ϕAut(τ)(Oτ(X))). (14)
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In the same manner, we obtain (13) from (10) if there exists Y ∈ Πj(T ), where
j ∈ Υ(T ) ∖ {1}, and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

j ≥ i + 2

or

2 ≤ j ≤ i − 1 (when i ≥ 3).

Thus Υ(T ) ∖ {1} ⊆ {i, i + 1}, and it follows from (14) that

Πi(T ) ∪Πi+1(T ) ⊆ (Oτ(X) ∪ ϕAut(τ)(Oτ(X))). (15)

To continue, suppose that there exists Y ∈ Πi+1(T ) ∩Oτ(X). We get

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

π{y}(Oτ(X)) ∩Πi(T − y) = Oτ(X) ∩Πi(T )) ∪ {Y ∖ {y}}
and

π{y}(ϕAut(τ)(Oτ(X))) ∩Πi(T − y) = ϕAut(τ)(Oτ(X)) ∩Πi(T ).

It follows from (10) applied with j = i that

∣Oτ(X) ∩Πi(T )∣ + 1 = ∣ϕAut(τ)(Oτ(X)) ∩Πi(T )∣,

which contradicts (12). Hence

Πi+1(T ) ∩Oτ(X) = ∅. (16)

Lastly, suppose that Πi+1(T ) ∩ ϕAut(τ)(Oτ(X)) ≠ ∅. Choose X for Y , and
i + 1 for j. We get

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

π{y}(Oτ(X)) ∩Πi+1(T − y) = Oτ(X) ∩Πi+1(T ))
and

π{y}(ϕAut(τ)(Oτ(X))) ∩Πi+1(T − y) = ϕAut(τ)(Oτ(X)) ∩Πi+1(T ).

Since Πi+1(T ) ∩ ϕAut(τ)(Oτ(X)) ≠ ∅, it follows from (10) that

Πi+1(T ) ∩Oτ(X) ≠ ∅,

which contradicts (16). Thus Πi+1(T ) ∩ ϕAut(τ)(Oτ(X)) = ∅. It follows from
(15) and (16) that νi+1(T ) = 0. Since Υ(T ) ∖ {1} ⊆ {i, i + 1}, we obtain
Υ(T )∖{1} = {i}. Furthermore, it follows from (14) and (12) that Πi(T ) = {X}.
Therefore, Υ(T ) ∖ {1} = {i} and νi(T ) = 1, which contradicts Fact 45. In
consequence, (9) holds.

Fact 47. We have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(⋃i∈Υ(T )∖{1} Πi(T )) = Fix(τ)
and

Fix(τ) = Π(T ) ∖C (τ) (see Notation 22).

(17)
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Proof. By Fact 46, Fix(τ) ≠ ∅. By the second assertion of Proposition 40,
∣Π(T )∣ is odd. We show that

Π1(T ) ⊆ C (τ). (18)

Suppose, to the contrary, that there exists v ∈ V (T ) such that {v} ∈ Π(T )∖C (τ).
By Remark 15, Π(T −v) = Π(T )∖{{v}}. Since ∣Π(T −v)∣ is even, it follows from
the second assertion of Lemma 35 that f{v}/Π(T − v) does not admit a fixed
point. By Remark 38, νi(T − v) is even for each i ∈ Υ(T − v) (see Notation 37).
Since Π(T − v) = Π(T ) ∖ {{v}}, we obtain that ν1(T ) is odd, and νi(T ) is even
for every i ∈ Υ(T ) ∖ {1}.

Now, suppose that there exists i ∈ Υ(T ) such that i ≥ 3. Let X ∈ Πi(T ) and
v ∈ X. By Remark 14, Π(T − v) = (Π(T ) ∖ {X}) ∪ {X ∖ {v}}. Since νi−1(T )
and νi(T ) are even, we obtain that νi−1(T − v) and νi(T − v) are odd, which
contradicts Remark 38. Consequently, µ(T ) = 2. Consider again v ∈ V (T ) such
that {v} ∈ Π(T ) ∖C (τ). Let X ∈ Π2(T ) and w ∈X. By Remark 15, Π(T − v) =
Π(T ) ∖ {{v}}. Furthermore, by Remark 14 applied to T − v, Π(T − {v,w}) =
(Π(T )∖{{v},X})∪{X∖{v}}. Hence ν2(T −{v,w}) = ν2(T )−1, so ν2(T −{v,w})
is odd. Since X ∖ {w} ∈ Π1(T − {v,w}), we have ν1(T − {v,w}) = ν1(T ), so
ν1(T − {v,w}) is odd. Therefore ν2(T − {v,w}) and ν1(T − {v,w}) are odd,
which contradicts Remark 38. It follows that (18) holds.

Since T satisfies (6), there exists X ∈ Π(T ) ∖ C (τ). Since Π1(T ) ⊆ C (τ),
X ∈ Πi(T ), where i ∈ Υ(T ) ∖ {1}. By Fact 46, X ∈ Fix(τ). Since Fix(τ) ∈
Π(T )/Aut(τ) by the second assertion of Proposition 40, we obtain Fix(τ) ⊆
Π(T ) ∖C (τ). It follows from Fact 46 that

( ⋃
i∈Υ(T )∖{1}

Πi(T )) ⊆ Fix(τ) ⊆ Π(T ) ∖C (τ).

Consequently, (17) holds.

Fact 48. We have Fix(τ) = Πµ(T )(T ) (see Notation 37).

Proof. Set
α = min(Υ(T ) ∖ {1}).

Let i ∈ Υ(T ) ∖ {1}, X ∈ Πi(T ), and x ∈ X. We obtain that f{x}/Π(T − x) is an
isomorphism from (T − x)/Π(T − x) onto ((T − x)/Π(T − x))⋆. Set

Π(T ) − {x} = {Y ∖ {x} ∶ Y ∈ Π(T )},

and consider the bijection

π{x} ∶ Π(T ) Ð→ Π(T ) − {x}
Y z→ Y ∖ {x} (See Remark 14).

By Remark 14, Π(T −x) = Π(T )−{x} and π{x} is an isomorphism from T /Π(T )
onto (T −x)/Π(T −x). By Fact 47, Π(T ) ∖Π1(T ) = Π(T ) ∖C (τ). Since π{x} is
an isomorphism from τ onto (T − x)/Π(T − x), we have

Π(T − x) ∖C ((T − x)/Π(T − x)) = π{x}(Π(T ) ∖Π1(T )).
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Since π{x}(Π(T ) ∖Π1(T )) = (Π(T ) ∖ (Π1(T ) ∪ {X})) ∪ {X ∖ {x}}, we obtain

Π(T − x) ∖C ((T − x)/Π(T − x)) = (Π(T ) ∖ (Π1(T ) ∪ {X})) ∪ {X ∖ {x}}.

Since f{x}/Π(T −x) is an isomorphism from (T −x)/Π(T −x) onto ((T −x)/Π(T −
x))⋆ and (f{x}/Π(T −x))(Y ) = f{x}(Y ) for every Y ∈ (T −x)/Π(T −x), we obtain
that

f{x}(Y ) ∈ (Π(T ) ∖ (Π1(T ) ∪ {X})) ∪ {X ∖ {x}} (19)

for every Y ∈ (Π(T ) ∖ (Π1(T ) ∪ {X})) ∪ {X ∖ {x}}. Consider i = α, X ∈ Πα(T )
and x ∈X. We obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{Y ∈ (Π(T ) ∖ (Π1(T ) ∪ {X})) ∪ {X ∖ {x}} ∶ ∣Y ∣ = α − 1} = {X ∖ {x}},
{Y ∈ (Π(T ) ∖ (Π1(T ) ∪ {X})) ∪ {X ∖ {x}} ∶ ∣Y ∣ = α} = Πα(T ) ∖ {X},
and

for j > α, {Y ∈ (Π(T ) ∖ (Π1(T ) ∪ {X})) ∪ {X ∖ {x}} ∶ ∣Y ∣ = j} = Πj(T ).

Hence
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

να−1,¬c(T − x) = 1,

να,¬c(T − x) = να(T ) − 1,

and

for j > α, νj,¬c(T − x) = νj(T ).

It follows from Remark 38 that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

να(T ) is odd

and

for j > α, νj(T ) is even.

(20)

Now, suppose that there exists i ∈ Υ(T ) such that i > α+1. Consider X ∈ Πi(T )
and x ∈X. We obtain

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{Y ∈ (Π(T ) ∖ (Π1(T ) ∪ {X})) ∪ {X ∖ {x}} ∶ ∣Y ∣ = α} = Πα(T ),
and

{Y ∈ (Π(T ) ∖ (Π1(T ) ∪ {X})) ∪ {X ∖ {x}} ∶ ∣Y ∣ = i − 1} = Πi−1(T ) ∪ {X ∖ {x}}.

It follows from (20) that να,¬c(T−x) and νi−1,¬c(T−x) are odd, which contradicts
Remark 38. It follows that µ(T ) ≤ α + 1. Lastly, suppose that µ(T ) = α + 1.
Consider X ∈ Πα(T ), Y ∈ Πα+1(T ), x ∈X and y ∈ Y . We have

Π(T − {x, y})∖C ((T − {x, y})/Π(T − {x, y}))
= (Π(T ) ∖ (Π1(T ) ∪ {X,Y })) ∪ {X ∖ {x}, Y ∖ {y}}.

Therefore, (19) becomes

f{x,y}(Z) ∈ (Π(T ) ∖ (Π1(T ) ∪ {X,Y })) ∪ {X ∖ {x}, Y ∖ {y}}
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for every Z ∈ (Π(T ) ∖ (Π1(T ) ∪ {X,Y })) ∪ {X ∖ {x}, Y ∖ {y}}. We obtain

{Z ∈ (Π(T ) ∖ (Π1(T ) ∪ {X,Y }))∪{X ∖ {x}, Y ∖ {y}} ∶ ∣Z ∣ = α}
= (Πα(T ) ∖ {X}) ∪ {Y ∖ {y}}
and

{Z ∈ (Π(T ) ∖ (Π1(T ) ∪ {X,Y }))∪{X ∖ {x}, Y ∖ {y}} ∶ ∣Z ∣ = α + 1}
= Πα+1(T ) ∖ {Y }.

It follows from (20) that να,¬c(T − {x, y}) and να+1,¬c(T − {x, y}) are odd,
which contradicts Remark 38. Consequently µ(T ) = α. By Fact 47, Fix(τ) =
Πµ(T )(T ).

Fact 49. We have Fix(τ) = Π(T ) (see Notation 39).

Proof. Suppose, to the contrary, that

Fix(τ) ⊊ Π(T ). (21)

Since Fix(τ) ≠ ∅, it follows from the second assertion of Proposition 40 that
∣Π(T )∣ is odd and Fix(τ) ∈ Π(T )/Aut(τ). Since Fix(τ) ∈ Π(T )/Aut(τ), τ[Fix(τ)]
is vertex-transitive. Thus ∣Fix(τ)∣ is odd and τ[Fix(τ)] is strongly connected.
Furthermore, it follows from Fact 45 that ∣Fix(τ)∣ ≥ 3.

We show that for each v ∈ V (T ),

if {v} ∈ Π1(T ), then dP(τ)({v}) = 0 (see Definition 26). (22)

Suppose, to the contrary, that there exist v ∈ V (T ), with {v} ∈ Π1(T ), and
X ∈ Π(T ) such that X ∈ NP(τ)({v}). Denote by Γ the connected component of
P(τ) such that {v},X ∈ V (Γ). By Fact 47, {v} ∈ V (Γ)∩C (τ) (see Notation 22).
Moreover, ∣Π(T )∣ ≥ 6 by (7). Recall that all the tournaments of cardinality 4
are decomposable. Hence, since P(τ) admits an edge, we have ∣Π(T )∣ ≥ 7.
By Theorem 28, V (Γ) ∩ (Π(T ) ∖ C (τ)) ≠ ∅. Thus, V (Γ) ∩ C (τ) ≠ ∅ and
V (Γ) ∩ (Π(T ) ∖ C (τ)) ≠ ∅. Consequently, there exist Y ∈ V (Γ) ∩ C (τ) and
Z ∈ V (Γ) ∩ (Π(T ) ∖ C (τ)) such that Y Z ∈ E(P(τ)). It follows from Facts 47
and 48 that Z ∈ Πµ(T )(T ) (see Notation 37) and there exists w ∈ V (T ) such that
Y = {w}. Since {w} ∈ C (τ) and Z ∈ NP(τ)({w}), it follows from Lemma 27
that dP(τ)({w}) = 1 or 2. We distinguish the following two cases, obtaining a
contradiction in each case.

• Suppose that NP(τ)({w}) = {Z}. Set P = Π(T )∖{{w}, Z}. Since {w}Z ∈
E(P(τ)), we have τ[P ] is prime. By Remark 15, T [∪P ] is strongly
connected and Π(T [∪P ]) = P . By the first assertion of Lemma 27, P is
a module of τ − {w}. Thus, Z and ∪P are modules of T − w and hence
T −w is not strongly connected. Since T [∪P ] is strongly connected, it is
a strongly connected component of T − w. Moreover, since ∣Fix(τ)∣ ≥ 3,
that is, νµ(T )(T ) ≥ 3, we have ∣ ∪ P ∣ ≥ 2µ(T ), so ∣ ∪ P ∣ > ∣Z ∣. Therefore,
T [∪P ] is not isomorphic to any of the strongly connected components of
T [Z]. It follows from Remark 36 that T −w is not selfdual, contradicting
the {−1}-selfduality of T .
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• Suppose that there exists Z ′ ∈ Π(T ) ∖ {{w}, Z} such that NP(τ)({w}) =
{Z,Z ′}. By the second assertion of Lemma 27, {Z,Z ′} is a module of
τ − {w}. Since {w}Z ∈ E(P(τ)), we have τ − {{w}, Z} is prime. Thus
{{Z,Z ′}} ∪ {{Z ′′} ∶ Z ′′ ∈ Π(T ) ∖ {{w}, Z,Z ′}} is a modular partition of
τ − {w}. Moreover, the function

Π(T ) ∖ {{w}, Z} Ð→ {{Z,Z ′}}∪
{{Z ′′} ∶ Z ′′ ∈ Π(T ) ∖ {{w}, Z,Z ′}}

Z ′ z→ {Z,Z ′}
Z ′′ ∈ Π(T ) ∖ {{w}, Z,Z ′} z→ {Z ′′},

is an isomorphism from τ − {{w}, Z} onto (τ − {w})/({{Z,Z ′}} ∪ {{Z ′′} ∶
Z ′′ ∈ Π(T ) ∖ {{w}, Z,Z ′}}). Hence, (τ − {w})/({{Z,Z ′}} ∪ {{Z ′′} ∶ Z ′′ ∈
Π(T ) ∖ {{w}, Z,Z ′}}) is prime. It follows from the third assertion of Re-
mark 13 that Π(τ −{w}) = {{Z,Z ′}}∪{{Z ′′} ∶ Z ′′ ∈ Π(T )∖{{w}, Z,Z ′}}.
By the first assertion of Remark 13, τ − {w} is strongly connected. By
Remark 15, T −w is strongly connected and

Π(T −w) = {Z ∪Z ′} ∪ (Π(T ) ∖ {{w}, Z,Z ′}).

Thus νµ(T )+∣Z′∣(T − w) = 1. Recall that ∣Π(T )∣ and νµ(T )(T ) are odd.
It follows that ν1(T ) is even. Suppose that Z ′ ∈ Πµ(T )(T ). We obtain
νµ(T )(T−w) = νµ(T )(T )−2, so νµ(T )(T−w) is odd. Since ν2µ(T )(T−w) = 1,
it follows from Remark 38 that T − w is not selfdual, contradicting the
{−1}-selfduality of T . Suppose that Z ′ ∈ Π1(T ). Consider x ∈ X, where
X ∈ Πµ(T )(T ) ∖ {Z}. We obtain that Π(T − {x,w}) = {X ∖ {x}, Z ∪Z ′} ∪
(Π(T )∖{{w},X,Z,Z ′}). Therefore, νµ(T )+1(T −{x,w}) = 1 and νµ(T )(T −
{x,w}) = νµ(T )(T ) − 2. Hence νµ(T )+1(T − {x,w}) and νµ(T )(T − {x,w})
are odd, contradicting the {−2}-selfduality of T .

It follows that (22) holds. By Fact 47, Π1(T ) = C (τ). Consequently, it follows
from (22) that

for any v,w ∈ V (T ) such that {v},{w} ∈ Π1(T ),
τ − {{v},{w}} is decomposable. (23)

Let P be a subset of Π(T ) such that Fix(τ) ⊆ P ⊊ Π(T ). Suppose that τ[P ] is
prime. Using Corollary 18 several times from τ[P ], we obtain Q ⊆ Π(T ) such
that τ[Q] is prime and ∣Π(T ) ∖ Q∣ = 1 or 2, which contradicts (23) because
Π(T ) ∖Q ⊆ Π(T ) ∖ P ⊆ Π(T ) ∖ Fix(τ), and Π(T ) ∖ Fix(τ) = Π1(T ) by Fact 47.

It follows that for every subset P of Π(T ),

if Fix(τ) ⊆ P ⊊ Π(T ), then τ[P ] is decomposable. (24)

Consider the set P of P ⊆ Π(T ) satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Fix(τ) ⊆ P ⊊ Π(T )
τ[P ] is strongly connected,

and

for every v ∈ V (T ) such that {v} ∈ P ∖ Fix(τ), {{v}} ∈ Π1(τ[P ]).

26



Since Fix(τ) ⊊ Π(T ) by (21), we have Fix(τ) ∈ P. Hence P ≠ ∅, and P
admits a maximal element Q under inclusion. Suppose that ∣Π(T ) ∖ Q∣ ≥ 3.
By Theorem 33 applied to τ and τ[Q], there exist {v},{w} ∈ Π(T ) ∖ Q such
that τ[Q ∪ {{v},{w}}] is strongly connected and {{v}},{{w}} ∈ Π1(τ[Q ∪
{{v},{w}}]). Since Q ∈ P, we have {{{u}} ∶ {u} ∈ Q ∖ Fix(τ)} ⊆ Π1(τ[Q]).
By Remark 34, {{{u}} ∶ {u} ∈ Q ∖ Fix(τ)} ⊆ Π1(τ[Q ∪ {{v},{w}}]). Since
{{v}},{{w}} ∈ Π1(τ[Q ∪ {{v},{w}}]), we obtain

{{{u}} ∶ {u} ∈ (Q ∪ {{v},{w}}) ∖ Fix(τ)} ⊆ Π1(τ[Q ∪ {{v},{w}}]).

Therefore Q∪{{v},{w}} ∈ P, which contradicts the maximality of Q. It follows
that ∣Π(T ) ∖Q∣ = 1 or 2. For convenience, set

Π≥2(τ[Q]) = ⋃
i≥2

Πi(τ[Q]).

Since {{{v}} ∶ {v} ∈ Q ∖ Fix(τ)} ⊆ Π1(τ[Q]), we have

for every M ∈ Π≥2(τ[Q]), M ⊆ Fix(τ). (25)

By (24), τ[Q] is decomposable. Thus Π≥2(τ[Q]) ≠ ∅. Finally, we distinguish
the following two cases.

1. Suppose that ∣Π(T ) ∖ Q∣ = 2. We verify that Extτ(Q) = ∅. Otherwise,
there exists x ∈ V (T ) such that {x} ∈ Extτ(Q). By definition of Extτ(Q),
τ[Q ∪ {{x}}] is strongly connected and {{x}} ∈ Π1(τ[Q ∪ {{x}}]). Since
Q ∈ P, we have {{{u}} ∶ {u} ∈ Q ∖ Fix(τ)} ⊆ Π1(τ[Q]). It follows from
Remark 34 that Q ∪ {{x}} ∈ P, which contradicts the maximality of Q.
Consequently

Extτ(Q) = ∅. (26)

Since Extτ(Q) = ∅, it follows from Theorem 33 that

for every M ∈ Π≥2(τ[Q]), Qτ(M) ≠ ∅. (27)

Since q(τ,Q) is a partition of Π(T ) ∖Q by Proposition 32, it follows from
(27) that ∣Π≥2(τ[Q])∣ ≤ ∣Π(T )∖Q∣. Since ∣Π≥2(τ[Q])∣ ≠ ∅ and ∣Π(T )∖Q∣ =
2, we obtain

∣Π≥2(τ[Q])∣ = 1 or 2. (28)

Now, consider M ∈ Π≥2(τ[Q]) ≠ ∅. By (27), there exists v ∈ V (T ) such
that {v} ∈ Qτ(M). Since ∣Π(T ) ∖Q∣ = 2, set Π(T ) ∖Q = {{v},{w}}. If
{w} ∈ Qτ(M), thenM∪Qτ(M) is a module of τ , which contradicts the fact
that τ is prime. By (26), Extτ(Q) = ∅. Since q(τ,Q) is a partition of Π(T )∖
Q by Proposition 32, we get {w} ∈ ⟨Q⟩τ or there exists N ∈ Π(τ[Q])∖{M}
such that {w} ∈ Qτ(N). Furthermore, suppose that ∣Π≥2(τ[Q])∣ = 2. Since
q(τ,Q) is a partition of Π(T ) ∖Q by Proposition 32, it follows from (27)
that {w} ∈ Qτ(N), where N is the unique element of Π≥2(τ[Q]) ∖ {M}.
Hence,

if ∣Π≥2(τ[Q])∣ = 2, then {w} ∈ Qτ(N), where Π≥2(τ[Q]) = {M,N}. (29)
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We distinguish the following two subcases. In each of them, we obtain a
contradiction.

(a) Suppose that {w} ∈ Qτ(N), where N ∈ Π(τ[Q])∖{M}. We can have

N ∈ Π≥2(τ[Q]) (and hence N ⊆ Fix(τ) by (25))

or N ∈ Π1(τ[Q]) and N ⊆ Fix(τ) (30)

or N ∈ Π1(τ[Q]) and N ⊆ Q ∖ Fix(τ).

By Remark 31, Π(τ[Q ∪ {{w}}]) = (Π(τ[Q]) ∖ {N}) ∪ {N ∪ {{w}}}.
It follows from (28) and (29) that

Π(τ[Q ∪ {{w}}]) = (Π1(τ[Q]) ∖ {N}) ∪ {N ∪ {{w}},M}.

Since {{{u}} ∶ {u} ∈ Q ∖ Fix(τ)} ⊆ Π1(τ[Q]), it follows from (30)
that

Π1(τ[Q] ∪ {{w}}) ={{{u}} ∶ {u} ∈ (Q ∖ Fix(τ)) ∖N}
∪ {{X} ∶X ∈ Fix(τ) ∖ (M ∪N)}.

Therefore

Π(τ[Q ∪ {{w}}]) ={{{u}} ∶ {u} ∈ (Q ∖ Fix(τ)) ∖N}
∪ {{X} ∶X ∈ Fix(τ) ∖ (M ∪N)} (31)

∪ {N ∪ {{w}},M}.

Since {w} ∈ Qτ(N), τ[Q ∪ {{w}}] is strongly connected. By Re-
mark 15, T [∪(Q ∪ {{w}})], that is, T − v is strongly connected, and
Π(T − v) = {∪ξ ∶ ξ ∈ Π(τ[Q ∪ {{w}}])}. It follows from (31) that

Π(T − v) =((Q ∖ Fix(τ)) ∖ {∪N})
∪ (Πµ(T )(T ) ∖ (M ∪N)) ∪ {(∪N) ∪ {w},∪M}. (32)

Therefore

Υ(T − v) ⊆ {1, µ(T ), ∣ ∪M ∣, ∣(∪N) ∪ {w}∣}. (33)

Recall that Fix(τ) = Πµ(T )(T ) by Fact 48, and M ⊆ Fix(τ) by (25).
Hence ∣ ∪M ∣ = µ(T )∣M ∣. Furthermore, it follows from (30) that

∣(∪N) ∪ {w}∣ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ(T )∣N ∣ + 1 if N ∈ Π≥2(τ[Q]),
µ(T ) + 1 if N ∈ Π1(τ[Q]) and N ⊆ Fix(τ),
2 if N ∈ Π1(τ[Q]) and N ⊆ Q ∖ Fix(τ).

(34)

Therefore
∣ ∪M ∣ ≠ ∣(∪N) ∪ {w}∣. (35)

It follows from (33) that

ν∣∪M ∣(T − v) = 1. (36)

We conclude as follows.
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• Suppose that ∣(∪N)∪{w}∣ ≠ µ(T ). It follows from (33), (34) and
(35) that ν∣(∪N)∪{w}∣(T − v) = 1. By (36), ν∣∪M ∣(T − v) = 1. It
follows from Remark 38 that T − v is not selfdual, contradicting
the {−1}-selfduality of T .

• Suppose that ∣(∪N) ∪ {w}∣ = µ(T ). It follows from (34) that
N ∈ Π1(τ[Q]) and N ⊆ Q ∖ Fix(τ). Hence µ(T ) = 2. Moreover,
it follows from (32) that Π1(T −v) = (Q∖Fix(τ))∖{∪N}. Recall
that ∣Π(T )∣ and ∣Fix(τ)∣ are odd. Since ∣Π(T ) ∖ Q∣ = 2, ∣Q∣
is odd. Hence ∣Q ∖ Fix(τ)∣ is even, so ∣Π1(T − v)∣ is odd. By
(36), ν∣∪M ∣(T − v) = 1. By Remark 38, T − v is not selfdual,
contradicting the {−1}-selfduality of T .

(b) Suppose that {w} ∈ ⟨Q⟩τ . Since Q ∈ P, τ[Q] is strongly connected.
By Remark 15, T [∪Q], that is, T −{v,w} is strongly connected. Fur-
thermore, Q is a module of τ − {v} because {w} ∈ ⟨Q⟩τ . It follows
that ∪Q is a module of T − v. Therefore, T − v is not strongly con-
nected, and its only strongly connected components are T [{w}] and
T − {v,w}. By Remark 36, T − v is not selfdual, contradicting the
{−1}-selfduality of T .

2. Suppose that ∣Π(T ) ∖ Q∣ = 1. Set Π(T ) ∖ Q = {{v}}. As previously
seen, T [∪Q], that is, T − v is strongly connected. Since {{{u}} ∶ {u} ∈
Q ∖ Fix(τ)} ⊆ Π1(τ[Q]), we have

Π(τ[Q]) ={{{u}} ∶ {u} ∈ Q ∖ Fix(τ)}
∪ {{X} ∶X ∈ Fix(τ) ∖ ⋃

M∈Π≥2(τ[Q])

M} (37)

∪Π≥2(τ[Q]).

By Remark 15, Π(T − v) = {∪ξ ∶ ξ ∈ Π(τ[Q])}. It follows from (37) that

Υ(T − v) ⊆ {1, µ(T )} ∪ {iµ(T ) ∶ i ∈ Υ(τ[Q]) ∖ {1}} (38)

and
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ν1(T − v) = ∣Q ∖ Fix(τ)∣,
νµ(T )(T − v) = ∣Fix(τ) ∖ ⋃M∈Π≥2(τ[Q])M ∣,
and

νiµ(T )(T − v) = νi(τ[Q]) for every i ∈ Υ(τ[Q]) ∖ {1}.

(39)

Recall that ∣Π(T )∣ and ∣Fix(τ)∣ are odd. Thus ∣Π(T ) ∖ Fix(τ)∣ is even.
Since ∣Π(T )∖Q∣ = 1, we obtain that ∣Q∖Fix(τ)∣ is odd. By (39), ν1(T−v) is
odd. Lastly, consider M ∈ Π≥2(τ[Q]). We have ∪M ∈ Π(T −v). Let Y ∈M
and y ∈ Y . By Remark 14, Π(T − {y, v}) = (Π(T − v) ∖ {∪M}) ∪ {(∪M) ∖
{y}}. Therefore, ν1(T −{y, v}) = ν1(T −v) and hence ν1(T −{y, v}) is odd.
Moreover, it follows from (38) and (39) that νµ(T )∣M ∣−1(T −{y, v}) = 1. By
Remark 38, T −{y, v} is not selfdual, contradicting the {−2}-selfduality of
T .

29



Fact 50. We have Υ(T ) = {µ(T )} (see Notation 37).

Proof. By Fact 48, Fix(τ) = Πµ(T )(T ). Furthermore, Fix(τ) = Π(T ) by Fact 49.
Therefore Υ(T ) = {µ(T )}.

Using the facts above, we prove Theorem 7 as follows.

Proof of Theorem 7. Let T be a tournament such that v(T ) ≥ 7. If T is a linear
order or a circle, then T is clearly decomposable and {−2,−1}-selfdual. Now,
suppose that T is decomposed into a lexicographic product Q ○ U , where Q is
a prime and vertex-selfdual tournament, and U is a monomorphic and {−2,0}-
selfdual tournament, with v(U) ≥ 2. For every q ∈ V (Q), {q} × V (U) is a
module of T . Thus T is decomposable. We verify that T is {−2,−1}-selfdual.
Let q, q′ ∈ V (Q) and u,u′ ∈ V (U). Since Q is vertex-selfdual, there exists an
isomorphism f from Q onto Q⋆ such that f exchanges q and q′. Since U is
selfdual, there exists an isomorphism g from U onto U⋆. Furthermore, there
exists an isomorphism hu from U −u onto U −g(u′) because U is monomorphic.
Similarly, there exists an isomorphism hu′ from U − u′ onto U − g(u). If q ≠ q′,
then the function

(V (Q) × V (U)) ∖ {(q, u), (q′, u′)} Ð→ (V (Q × V (U)) ∖ {(q, u), (q′, u′)}
for r /∈ {q, q′}, (r, v) z→ (f(r), g(v))

for v ≠ u, (q, v) z→ (q′, ((hu′)−1 ○ g)(v))
for v ≠ u′, (q′, v), z→ (q, ((hu)−1 ○ g)(v)),

is an isomorphism from (Q○U)−{(q, u), (q′, u′)} onto ((Q○U)−{(q, u), (q′, u′)})⋆.
Suppose that q = q′. Since U is monomorphic and selfdual, U is {−1}-selfdual.
Hence U is {−2,−1}-selfdual. Thus, there exists an isomorphism h from U −
{u,u′} onto (U − {u,u′})⋆. The function

(V (Q) × V (U)) ∖ {(q, u), (q, u′)} Ð→ (V (Q × V (U)) ∖ {(q, u), (q, u′)}
for r ≠ q, (r, v) z→ (f(r), g(v))

for v /∈ {u,u′}, (q, v) z→ (q, h(v)),

is an isomorphism from (Q○U)−{(q, u), (q, u′)} onto ((Q○U)−{(q, u), (q, u′)})⋆.
Conversely, suppose that T is decomposable and {−2,−1}-selfdual. If T is

not strongly connected, then T is a linear order by Lemma 42.
Now, suppose that T is strongly connected. By the first assertion of Re-

mark 13, T /Π(T ) is prime. If T /Π(T ) is a 3-cycle or a critical tournament,
then it follows from Corollary 43 that T is a circle or T is decomposed into
a lexicographic product T2h+1 ○ U , where h ≥ 1, and U is a monomorphic and
{−2,0}-selfdual tournament, with v(U) ≥ 2. As noted before the statement
of Theorem 7, T2n+1 is vertex-selfdual. Furthermore, T2n+1 is prime by Theo-
rem 23.

Lastly, suppose that T /Π(T ) is prime and non-critical, with ∣Π(T )∣ ≥ 4.
We obtain that T satisfies (6). By (7), ∣Π(T )∣ ≥ 6. By Fact 49, Fix(τ) = Π(T )
(see Notation 39). Thus ∣Π(T )∣ is odd by the second assertion of Proposition 40.
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Furthermore, it follows from Fact 50 that for any X,Y ∈ Π(T ), we have ∣X ∣ = ∣Y ∣.
We show that

that for any X,Y ∈ Π(T ), T [X] and T [Y ] are isomorphic. (40)

Suppose, to the contrary, that (40) does not hold. For each X ∈ Π(T ), consider
the set ΠX(T ) of Y ∈ Π(T ) such that T [Y ] is isomorphic to T [X]. Since
(40) does not hold, we have ∣ΠX(T )∣ < ∣Π(T )∣ for every X ∈ Π(T ). Since
∣Π(T )∣ is odd, there exists X ∈ Π(T ) such that ∣ΠX(T )∣ is odd. Consider Y ∈
Π(T )∖ΠX(T ) and y ∈ Y . By Remark 14, Π(T −y) = (Π(T )∖{Y })∪{Y ∖{y}}.
Since ∣Z ∣ = ∣Y ∣ for every Z ∈ Π(T ), we have Π∣Y ∣−1(T − y) = {Y ∖ {y}} (see
Notation 37) and hence f{y}(Y ∖ {y}) = Y ∖ {y}. Moreover, we have

{Z ∈ Π(T − y) ∶ T [Z] is isomorphic to T [X]} = ΠX(T ).

Thus f{y}(ΠX(T )) = ΠX(T ). Since ∣ΠX(T )∣ is odd, it follows from the second
assertion of Lemma 35 that there exists X ′ ∈ ΠX(T ) such that f{y}(X ′) = X ′,
which is impossible because f{y}(Y ∖ {y}) = Y ∖ {y}. Consequently, (40) holds.
It follows that

T is isomorphic to (T /Π(T )) ○ T [X],

where X ∈ Π(T ). We verify that T /Π(T ) is vertex-selfdual. Let Y,Z ∈ Π(T ).
Consider y ∈ Y and z ∈ Z. If Y = Z, then we require that y = z. By Remark 14,
Π(T − {y, z}) = (Π(T ) ∖ {Y,Z}) ∪ {Y ∖ {y}, Z ∖ {z}}. Therefore,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f{y,z}(Y ∖ {y}) = Y ∖ {y} when Y = Z,

and

f{y,z} exchanges Y ∖ {y} and Z ∖ {z} when Y ≠ Z.

(41)

Recall that the permutation f{y,z}/Π(T − {y, z}) of Π(T − {y, z}) defined by

Π(T − {y, z}) Ð→ Π(T − {y, z})
X ′ z→ f{y,z}(X ′),

is an isomorphism from (T − {y, z})/Π(T − {y, z}) onto ((T − {y, z})/Π(T −
{y, z}))⋆. Moreover, it follows from Remark 14 that

π{y,z} ∶ Π(T ) Ð→ Π(T − {y, z})
X ′ z→ X ′ ∖ {y, z}

is an isomorphism from T /Π(T ) onto (T −{y, z})/Π(T −{y, z}). We obtain that

g{y,z} = (π{y,z})−1 ○ (f{y,z}/Π(T − {y, z})) ○ π{y,z}

is an isomorphism from T /Π(T ) onto (T /Π(T ))⋆. Furthermore, it follows from
(41) that g{y,z}(Y ) = Y when Y = Z, and g{y,z} exchanges Y and Z when Y ≠ Z.
Thus, T /Π(T ) is vertex-selfdual. We complete the proof as follows.
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• We verify that T [X] is monomorphic. Consider again Y,Z ∈ Π(T ), with
Y ≠ Z. Let y, y′ ∈ Y and z ∈ Z. As previously seen, f{y,z} exchanges
Y ∖ {y} and Z ∖ {z}. Hence T [Y ∖ {y}] is isomorphic to (T [Z ∖ {z}])⋆.
Similarly, T [Y ∖ {y′}] is isomorphic to (T [Z ∖ {z}])⋆. Thus T [Y ∖ {y}]
and T [Y ∖{y′}] are isomorphic. It follows that T [Y ] and hence T [X] are
monomorphic.

• We verify that T [X] is selfdual. Let Y,Z ∈ Π(T ), with Y ≠ Z. Consider
y ∈ Y and z ∈ Z. By Remark 14, Π(T − {y, z}) = (Π(T ) ∖ {Y,Z}) ∪ {Y ∖
{y}, Z ∖ {z}}. It follows from (41) that f{y,z} exchanges Y ∖ {y} and
Z ∖{z}. Recall that the permutation f{y,z}/Π(T −{y, z}) of Π(T −{y, z})
defined by

Π(T − {y, z}) Ð→ Π(T − {y, z})
X ′ z→ f{y,z}(X ′),

is an isomorphism from (T −{y, z})/Π(T −{y, z}) onto ((T −{y, z})/Π(T −
{y, z}))⋆. Since Π(T − {y, z}) = (Π(T ) ∖ {Y,Z}) ∪ {Y ∖ {y}, Z ∖ {z}}, and
∣Π(T )∣ is odd, we get ∣Π(T − {y, z})∣ is odd. By Lemma 35, there exists
X ′ ∈ Π(T − {y, z}) such that (f{y,z}/Π(T − {y, z}))(X ′) = X ′. Hence
f{y,z}(X ′) = X ′. Thus X ′ ∈ Π(T ) ∖ {Y,Z} because f{y,z} exchanges Y ∖
{y} and Z ∖ {z}. Since f{y,z} is an isomorphism from T − {y, z} onto
(T − {y, z})⋆, (f{y,z})↾X′ is an isomorphism from T [X ′] onto T [X ′]⋆.
Therefore T [X ′] and hence T [X] are selfdual.

• Suppose that ∣X ∣ > 2. We verify that T [X] is {−2}-seldual. Given Y ∈
Π(T ), consider y, z ∈ Y , with y ≠ z. By Remark 14, Π(T−{y, z}) = (Π(T )∖
{Y,Z}) ∪ {Y ∖ {y, z}}. Therefore f{y,z}(Y ∖ {y, z}) = Y ∖ {y, z}. Since
f{y,z} is an isomorphism from T − {y, z} onto (T − {y, z})⋆, T [Y ∖ {y, z}]
is isomorphic to (T [Y ∖ {y, z}])⋆. Consequently, T [Y ] and hence T [X]
are {−2}-selfdual.

The threshold 7 of Theorem 7 is sharp. Indeed, T7 − 0 is decomposable
and {−2,−1}-seldual. We have Π(T7 − 0) = {{1},{2},{3,4},{5},{6}} and (T7 −
0)/Π(T7 − 0) is isomorphic to T5. Thus T7 − 0 does not satisfy the conclusion of
Theorem 7. The next result is obtained by using Theorem 7 iteratively.

Corollary 51. Given a tournament such that v(T ) ≥ 7, the following two as-
sertions are equivalent

1. T is decomposable and {−2,−1}-selfdual, and T is neither a linear order
nor a circle;

2. T is decomposed into
Q0 ○ ⋯ ○Qk ○R,

where Q0, . . . ,Qk are prime and vertex-selfdual tournaments, and R is a
linear order, with v(R) ≥ 2, or a prime, monomorphic, and {−2,0}-selfdual
tournament.
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Proof. To begin, suppose that T is decomposed as in the second assertion.
Since v(R) ≥ 2, T is decomposable. Furthermore, it is easy to verify that
a lexicographic product of two vertex-selfdual tournaments is vertex-selfdual.
Thus Q0 ○ ⋯ ○ Qk is vertex-selfdual. As in the proof of Theorem 7, we verify
that T is {−2,−1}-selfdual by using the fact that Q0 ○⋯ ○Qk is vertex-selfdual,
and R is monomorphic and {−2,0}-selfdual.

Conversely, suppose that the first assertion holds. By Theorem 7, T is
decomposed onto Q0 ○U0, where Q0 is a prime and vertex-selfdual tournament,
and U0 is a monomorphic and {−2,0}-selfdual tournament, with v(U0) ≥ 2. If
v(U0) ≥ 4, then U0 is not a circle, because a circle on at least 4 vertices is
not monomorphic. Furthermore, if U0 is a circle, with v(U0) = 3, then U0 is
isomorphic to the 3-cycle, and hence U0 is prime. Therefore, if U0 is a circle,
then U0 is prime or U0 is a linear order. Moreover, if U0 is a linear order or a
prime tournament, then we obtain that T = Q0 ○R, where R = U0, and we can
stop here. Hence suppose that U0 is decomposable, and U0 is neither a linear
order nor a circle. Since U0 is monomorphic and {−2,0}-selfdual, it is {−2,−1}-
selfdual. Suppose that v(U0) ≤ 6. It is easy to verify that U0 = T3 ○R, where
v(R) = 2. Thus T = Q0 ○Q1 ○R, where Q1 = T3. Lastly, suppose that v(U0) ≥ 7.
By Theorem 7 applied to U0, we obtain U0 = Q1 ○ U1, where Q1 is a prime
and vertex-selfdual tournament, and U1 is a monomorphic and {−2,0}-selfdual
tournament, with v(U1) ≥ 2. Consequently T = Q0 ○Q1 ○ U1. To complete the
proof, we continue the decomposition process above from U1.

We end the section with remarks on vertex-selfdual tournaments.

Remark 52. As previously noted, the tournament T2n+1 (where n ≥ 1, see Fig-
ure 1) is vertex-selfdual. Furthermore, T2n+1 is the Cayley tournament defined
on (Z2n+1,+) by

N+
T2n+1(0) = {2p ∶ p ∈ {1, . . . , n}}.

It is easy to verify that a Cayley tournament defined from an odd and abelian
group is vertex-selfdual. In particular, every Paley tournament is vertex-selfdual.

Clearly, a vertex-selfdual tournament is {−2,−1}-selfdual. Furthermore, a
vertex-selfdual tournament is vertex-transitive. Therefore, given a tournament
T with v(T ) ≥ 3, T is decomposable and vertex-selfdual if and only if T is
decomposed into

Q0 ○ ⋯ ○Qk,

where k ≥ 1, Q0, . . . ,Qk are prime and vertex-selfdual tournaments (see Corol-
lary 51).

Now, consider a prime and vertex-selfdual tournament T with v(T ) ≥ 5.
Since T is vertex-transitive, T is critical or C (T ) = ∅ (see Notation 22). If
T is critical, then T is isomorphic to T2n+1 because T2n+1 is the single critical
tournament which is vertex-transitive (see Theorem 23).

Lastly, consider a Paley tournament T . By [21, Proposition 3.1], T is arc-
transitive. It follows that T is prime. Furthermore, as previously mentioned, T
is vertex-selfdual. Since T2n+1 is not arc-transitive, we obtain C (T ) = ∅. We
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do not know if there exist prime and vertex-selfdual tournaments that are not
Cayley tournaments.

6 Proof of Theorem 8

To prove Theorem 8, we use the following consequence of Theorem 7.

Corollary 53. Let T be a prime tournament, with v(T ) ≥ 8, such that C (T ) ≠ ∅
(see Notation 22). If T is {−3,−2}-selfdual, then there exists x ∈ C (T ) such
that T −x is decomposed into a lexicographic product Q ○U , where Q is a prime
and vertex-selfdual tournament, and U is a monomorphic and {−2,0}-selfdual
tournament, with v(U) ≥ 2.

Proof. To begin, suppose that there exists x ∈ C (T ) such that T − x is a linear
order. Since T is prime, we obtain that v(T ) is odd and T is isomorphic to
Wv(T ) (see Figure 3). It is easy to verify that Wv(T ) − {0,2} is not seldual,
which contradicts the {−2}-selfduality of T . Therefore,

for every x ∈ C (T ), T − x is not a linear order. (42)

Now, we prove that there exists x ∈ C (T ) such that

T − x is neither a linear order nor a circle. (43)

Let x ∈ C (T ). By (42), T − x is not a linear order. Suppose that T − x is a
circle. We show that there exists y ∈ C (T ) such that T − y is not a circle. Since
T − x is a circle, there exist distinct u, v ∈ V (T ) ∖ {x} such that Π(T − x) =
{{u},{v}, V (T ) ∖ {x,u, v}}, (T − x)/Π(T − x) is a 3-cycle, and T − {x,u, v}
is a linear order. Hence we can denote the elements of V (T ) ∖ {x,u, v} by
w0, . . . ,wv(T )−4 in such a way that wi Ð→ wj for any i, j ∈ {0, . . . , v(T )−4} with
i < j. For each i ∈ {0, . . . , v(T ) − 5}, {wi,wi+1} is a module of T − x. Since T is
prime, we obtain wi Ð→ x Ð→ wi+1 or wi+1 Ð→ x Ð→ wi. Therefore, for i = 0
or 1, T [{x,wi,wi+1}] is a 3-cycle. Furthermore, {w2,w4} is a module of T −w3.
Hence w3 ∈ C (T ). Moreover, T [{x,wi,wi+1}] and T [{u, v,w0}] are 3-cycles of
T − w3 such that ∣{x,wi,wi+1} ∩ {u, v,w0}∣ ≤ 1. It follows that T − w3 is not a
circle. By (42), T −w3 is not a linear order. Consequently, (43) holds.

By (43), there exists x ∈ C (T ) such that T − x is neither a linear order
nor a circle. Since x ∈ C (T ), T − x is decomposable. Furthermore T − x is
{−2,−1}-selfdual because T is {−3,−2}-selfdual. To conclude, it suffices to apply
Theorem 7 to T − x.

We prove Theorem 8 after showing the next result.

Lemma 54. Let T be a prime tournament with v(T ) ≥ 8. If T is {−3,−2}-
selfdual, then ∣C (T )∣ ≤ 1 (see Notation 22).

Proof. Suppose, to the contrary, that ∣C (T )∣ ≥ 2. It follows from Corollary 53
that there exists x ∈ C (T ) such that (T −x)/Π(T −x) is prime, and there exists
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k ≥ 2 such that ∣X ∣ = k for eachX ∈ Π(T−x). By the first assertion of Remark 13,
T−x is strongly connected. Since ∣C (T )∣ ≥ 2, there exists y ∈ C (T )∖{x}. Denote
by Xy the element of Π(T − x) containing y. By Remark 14,

Π(T − {x, y}) = (Π(T − x) ∖ {Xy}) ∪ {Xy ∖ {y}}. (44)

Since Π(T − x) ∖ {Xy} ⊆ Πk(T − x) (see Notation 37), there exist W,W ′ ⊆
V (T ) ∖ {x, y} satisfying

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

for every X ′ ∈ Π(T − {x, y}), ∣X ′ ∩W ∣ = ∣X ′ ∩W ′∣ = 1

and

for every X ′ ∈ Π(T − {x, y}) ∖ {Xy ∖ {y}}, X ′ ∩W ≠X ′ ∩W ′.

Clearly, T [W ] and T [W ′] are prime, and ∣W ∩W ′∣ ≤ 1. Thus T − y is neither
a linear order nor a circle. As seen at the end of the proof of Corollary 53, it
follows from Theorem 7 applied to T − y that (T − y)/Π(T − y) is prime, and
there exists l ≥ 2 such that ∣X ∣ = l for each X ∈ Π(T − y). By denoting by Yx
the element of Π(T − y) containing x, we have again

Π(T − {x, y}) = (Π(T − y) ∖ {Yx}) ∪ {Yx ∖ {x}}. (45)

Since ∣Π(T − {x, y})∣ = ∣Π(T − x)∣ and ∣Π(T − x)∣ ≥ 3, there exists Z ∈ Π(T −
{x, y}) ∖ {Xy ∖ {y}, Yx ∖ {x}}. It follows from (44) and (45) that

Z ∈ Π(T − x) ∩Π(T − y).

Hence Z is a module of T − x and T − y. Thus Z is a module of T , which
contradicts the primality of T . Consequently, ∣C (T )∣ ≤ 1.

Proof of Theorem 8. Consider a {−3,−2}-selfdual and prime tournament T with
v(T ) ≥ 8. Suppose, to the contrary, that C (T ) ≠ ∅ (see Notation 22). By
Lemma 54, ∣C (T )∣ = 1. Furthermore, it follows from Corollary 53 that there
exists x ∈ C (T ) such that (T − x)/Π(T − x) is prime and vertex-seldual, and
there exists k ≥ 2 such that ∣X ∣ = k for each X ∈ Π(T −x). Since (T −x)/Π(T −x)
is vertex-seldual, (T − x)/Π(T − x) is vertex-transitive and hence regular. Thus

∣Π(T − x)∣ is odd.

Let X ∈ Π(T −x). Since T is prime and ∣X ∣ ≥ 2, X is not a module of T . Hence
N+
T (x) ∩X ≠ ∅ and N−

T (x) ∩X ≠ ∅. Suppose that N+
T (x) ∩X is a singleton,

and denote by u+ its unique element. We obtain that N−
T (x) ∩X is a module

of T − u+. Since ∣C (T )∣ = 1 and x ∈ C (T ), u+ /∈ C (T ), that is, T − u+ is prime.
It follows that N−

T (x) ∩X is a singleton as well. In particular, we get k = 2.
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Similarly, if ∣N−
T (x) ∩X ∣ = 1, then ∣N+

T (x) ∩X ∣ = 1. Consequently,

either

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k = 2

and

for every X ∈ Π(T − x), ∣N+
T (x) ∩X ∣ = ∣N−

T (x) ∩X ∣ = 1

or

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k ≥ 4

and

for every X ∈ Π(T − x), ∣N+
T (x) ∩X ∣ ≥ 2 and ∣N−

T (x) ∩X ∣ ≥ 2.

(46)

This leads us to distinguish the following two cases. In each of them, we obtain
a contradiction.

1. Suppose that k = 2. Since v(T − x) ≥ 7 and ∣Π(T − x)∣ is odd, we have
∣Π(T − x)∣ ≥ 5. By the first assertion of Corollary 19, there exist X,Y ∈
Π(T − x) such that X ≠ Y and ((T − x)/Π(T − x)) − {X,Y } is prime.
Consider u−, v− ∈ V (T ) such that N−

T (x)∩X = {u−} and N−
T (x)∩Y = {v−}.

Set
t = T − {u−, v−}.

Since T is {−2}-seldual, there exists an isomorphism f{u−,v−} from t onto
t⋆. We show that

f{u−,v−}(x) = x.
We have t[N+

t (x)] = T [N+
T (x)]. Since ∣N+

T (x)∩Z ∣ = 1 for each Z ∈ Π(T−x),
we obtain that T [N+

T (x)] is isomorphic to (T − x)/Π(T − x). It follows
that t[N+

t (x)] is prime. We have t[N−
t (x)] = T [N−

T (x)] − {u−, v−}. Since
∣N−
T (x)∩Z ∣ = 1 for each Z ∈ Π(T −x), we obtain that T [N−

T (x)]−{u−, v−}
is isomorphic to ((T − x)/Π(T − x) − {X,Y }. It follows that t[N−

t (x)] is
prime. Now, we prove that

for each w ∈ (V (T ) ∖ {x,u−, v−}) ∩N+
T (x), t[N+

t (w)] is not prime. (47)

We distinguish the following two subcases.

• Suppose that ∣Π(T − x)∣ = 5. Hence (T − x)/Π(T − x) is critical. By
Theorem 23, (T − x)/Π(T − x) is isomorphic to T5, U5 or W5. Since
(T −x)/Π(T −x) is vertex-selfdual, (T −x)/Π(T −x) is isomorphic to
T5. It follows that T [N+

T−x(w)] is a linear order on at least 4 vertices.
Hence t[N+

t (w)] is a linear order on at least 2 vertices, so t[N+
t (w)]

is not prime.

• Suppose that ∣Π(T−x)∣ ≥ 7. Denote by Z the element of Π(T−x) con-
taining w. Since (T−x)/Π(T−x) is regular, we have d+

(T−x)/Π(T−x)(Z) =
(∣Π(T −x)∣−1)/2, and hence d+

(T−x)/Π(T−x)(Z) ≥ 3. Thus, there exists

Z+ ∈ N+
(T−x)/Π(T−x)(Z) ∖ {X,Y }. We obtain

Z+ ⊆ N+
T (w) ∖ (X ∪ Y ) ⊆ N+

t (w).

Since Z+ is a module of T − x and x /∈ N+
t (w), Z+ is a module of

t[N+
t (w)]. Therefore, t[N+

t (w)] is not prime.
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It follows that (47) holds. Similarly, we obtain that for each w ∈ (V (T ) ∖
{x,u−, v−})∩N−

T (x), t[N−
t (w)] is not prime. It follows that f{u−,v−}(x) = x,

which is impossible because

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d+t (x) = ∣Π(T − x)∣
and

d−t (x) = ∣Π(T − x)∣ − 2.

2. Suppose that k ≥ 4. Let X and Y be distinct elements of Π(T − x).
Consider u− ∈ N−

T (x) ∩X, u+ ∈ N+
T (x) ∩X and v− ∈ N−

T (x) ∩ Y . Set

t = T − {u−, u+, v−}.

Since T is {−3}-selfdual, there exists an isomorphism f{u−,u+,v−} from t
onto t⋆. We prove that

f{u−,u+,v−}(x) = x. (48)

To determine Π(t[N−
t (x)]) and t[N−

t (x)]/Π(t[N−
t (x)]), we use Remark 14

as follows. Set W = N+
T (x) ∪ {u−, v−}. For each Z ∈ Π(T − x), we have

Z ∖W = (N−
T (x) ∩Z) ∖ {u−, v−}. Since ∣N−

T (x) ∩Z ∣ ≥ 2 by (46), we obtain
Z ∖W ≠ ∅. Set

Q−
x = {(N−

T (x) ∩X) ∖ {u−},(N−
T (x) ∩ Y ) ∖ {v−}}

∪ {N−
T (x) ∩Z ∶ Z ∈ Π(T − x) ∖ {X,Y }}.

By (46),
∣Q−
x∣ = ∣Π(T − x)∣. (49)

Moreover, it follows from Remark 14 that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Q−
x = Π(t[N−

t (x)])
and

t[N−
t (x)]/Q−

x is prime.

(50)

Analagously, by denoting {(N+
T (x) ∩X) ∖ {u+}}∪ {N+

T (x) ∩Z ∶ Z ∈ Π(T −
x) ∖ {X}} by Q+

x, we obtain that Q+
x = Π(t[N+

t (x)]) and t[N+
t (x)]/Q+

x

is prime. Now, suppose that (48) does not hold. For instance, sup-
pose that x ∈ N−

T (f{u−,u+,v−}(x)). We look for a modular partition of
t[N+

t (f{u−,u+,v−}(x))]. Denote by Z the unique element of Π(T − x) con-
taining f{u−,u+,v−}(x). Consider

Q+
f{u−,u+,v−}(x)

= {Z ′ ∖ {u−, u+, v−} ∶ Z ′ ∈ N+
(T−x)/Π(T−x)(Z)}

if N+
T [Z]

(f{u−,u+,v−}(x)) ⊆ {u−, u+, v−}, and

Q+
f{u−,u+,v−}(x)

= {Z ′ ∖ {u−, u+, v−} ∶Z ′ ∈ N+
(T−x)/Π(T−x)(Z)}

∪ {N+
T [Z](f{u−,u+,v−}(x)) ∖ {u−, u+, v−}}
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if N+
T [Z]

(f{u−,u+,v−}(x)) ∖ {u−, u+, v−} ≠ ∅. It follows from (46) that

∣Q+
f{u−,u+,v−}(x)

∣ = d+(T−x)/Π(T−x)(Z) or d+(T−x)/Π(T−x)(Z) + 1.

Since (T − x)/Π(T − x) is regular, we obtain

∣Q+
f{u−,u+,v−}(x)

∣ = ∣Π(T − x)∣ − 1

2
or

∣Π(T − x)∣ − 1

2
+ 1.

Since Π(T −x) is a modular partition of T −x and x /∈ N+
T (f{u−,u+,v−}(x)),

Q+
f{u−,u+,v−}(x)

is a modular partition of t[N+
t (f{u−,u+,v−}(x))]. Thus,

(f{u−,u+,v−})−1(Q+
f{u−,u+,v−}(x)

)

is a modular partition of t[N−
t (x)]. Since t[N−

t (x)]/Q−
x is prime by (50),

t[N−
t (x)] is strongly connected by the first assertion of Remark 13. It

follows from the fourth assertion of Remark 13 that

for each X ′ ∈ (f{u−,u+,v−})−1(Q+
f{u−,u+,v−}(x)

),

there exists Y ′ ∈ Q−
x such that Y ′ ⊇X ′.

Therefore
∣(f{u−,u+,v−})−1(Q+

f{u−,u+,v−}(x)
)∣ ≥ ∣Q−

x∣,

which is impossible because

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣(f{u−,u+,v−})−1(Q+
f{u−,u+,v−}(x)

)∣ = ∣Q+
f{u−,u+,v−}(x)

∣ ≤ ∣Π(T−x)∣−1
2

+ 1

and, by (49),

∣Q−
x∣ = ∣Π(T − x)∣.

It follows that (48) holds. Thus f{u−,u+,v−}(x)↾V (t)∖{x} is an isomorphism
from t − x onto (t − x)⋆. Therefore (f{u−,u+,v−}(x)↾V (t)∖{x})/Π(t − x) is
an isomorphism from (t − x)/Π(t − x) onto ((t − x)/Π(t − x))⋆. Lastly,
by Remark 14 applied to T − x, Π(t − x) = (Π(T − x) ∖ {X,Y }) ∪ {X ∖
{u−, u+}, Y ∖ {v−}}. Consequently, Πk−2(t − x) = {X ∖ {u−, u+}} and
Πk−1(t−x) = {Y ∖{v−}}, which contradicts the selfduality of (t−x)/Π(t−x)
by Remark 38.

Consequently, C (T ) = ∅.

The threshold 8 of Theorem 8 is sharp because T7 is a {−3,−2}-selfdual and
prime tournament that is critical (by Theorem 23).

7 Applications to Pouzet’s reconstruction

In this section, we prove Corollary 10 and Theorem 11. Corollary 10 is an easy
consequence of Lemma 9, Theorem 20 and Theorem 8.
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Proof of Corollary 10. Let T be a prime tournament such that v(T ) ≥ 8 and
C (T ) ≠ ∅ (see Notation 22). To show that T is {−3,−2}-reconstructible, con-
sider a tournament U that is {−3,−2}-hypomorphic to T . By Lemma 9, T
and U are {3}-hypomorphic. It follows from Theorem 20 that U = T or T ⋆. If
U = T ⋆, then T is a {−3,−2}-selfdual and prime tournament such that C (T ) ≠ ∅,
which contradicts Theorem 8. It follows that U = T . Therefore T is {−3,−2}-
reconstructible.

It is easily verified that Corollary 10 is also satisfied by prime tournaments
T such that C (T ) ≠ ∅, when v(T ) ≤ 7. We use the next two results to prove
Theorem 11.

Proposition 55 (Harary and Palmer [18]). Let T be a tournament such that
v(T ) ≥ 5. If T is not strongly connected, then T is {−1}-reconstructible.

Lemma 56 (Basso-Gerbelli and Ille [2]). Let T ant U be strongly connected
tournaments such that Π(T ) = Π(U). Suppose that ∣Π(T ) ∖ Π1(T )∣ ≥ 2. If T
and U are {−1}-hypomorphic, then for each X ∈ Π(T ), T [X] and U[X] are
isomorphic.

Proof of Theorem 11. Consider a decomposable tournament T such that v(T ) ≥
7. By Proposition 55, if T is not strongly connected, then

T is {−1}-reconstructible,

so T is {−2,−1,3}-reconstructible. Thus suppose that T is strongly connected.
By the first assertion of Remark 13,

T /Π(T ) is prime. (51)

Consider a tournament U such that T and U are {−2,−1,3}-hypomorphic. We
have to prove that T and U are isomorphic. Since T and U are {3}-hypomorphic,
it follows from Corollary 21 that U is strongly connected,

Π(T ) = Π(U), (52)

and
T /Π(T ) = U/Π(U) or (U/Π(U))⋆. (53)

We prove that for each X ∈ Π(T ),

there exists an isomorphism ϕX from T [X] onto U[X]. (54)

By Lemma 56, (54) holds when ∣Π(T ) ∖ Π1(T )∣ ≥ 2 (see Notation 37). Hence
suppose that Π(T ) admits a unique element X such that ∣X ∣ ≥ 2. If ∣Π(T )∣ = 3,
then T [X] and U[X] are isomorphic because T and U are {−2}-hypomorphic,
and ∣V (T ) ∖X ∣ = 2. Thus suppose that ∣Π(T )∣ ≥ 5. It follows from Corollary 19
that there exist Y,Z ∈ Π(T )∖{X} such that (T /Π(T ))−{Y,Z} is prime. Since
Π(T )∖Π1(T ) = {X}, there exist u, v ∈ V (T )∖X such that Y = {u} and Z = {v}.
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By Remark 15, Π(T −{u, v}) = Π(T )∖{{u},{v}}. It follows from (52) and (53)
that Π(U − {u, v}) = Π(T − {u, v}). Therefore

Π(T − {u, v}) ∖Π1(T − {u, v}) = Π(U − {u, v}) ∖Π1(U − {u, v}) = {X}. (55)

Since T and U are {−2,−1}-hypomorphic, there exists an isomorphism g{u,v}
from T − {u, v} onto U − {u, v}. It follows from (55) that g{u,v}(X) = X, so
T [X] and U[X] are isomorphic. Consequently, (54) holds.

If T /Π(T ) = U/Π(U) (see (53)), then the common extension of the ϕX ’s

V (T ) Ð→ V (U)
v z→ ϕX(v), where X ∈ Π(T ) and v ∈X,

is an isomorphism from T onto U . Now, by (53), we can suppose that

T /Π(T ) = (U/Π(U))⋆.

We show that

there exists i ∈ Υ(T ) such that i ≥ 2 and i − 1 /∈ Υ(T ). (56)

Seeking a contradiction, suppose that (56) does not hold. We obtain

Υ(T ) = {1, . . . , µ(T )}.

We distinguish the following two cases. In both cases, we obtain a contradiction.

1. Suppose that µ(T ) ≤ 3. We have µ(T ) = 2 or 3 because T is decompos-
able. Since T and U are {3}-hypomorphic, we obtain that T ⋆[W ] and
U[W ] are isomorphic for each W ⊆ V (T ). It follows that T and T ⋆ are
{−2,−1}-hypomorphic, that is, T is {−2,−1}-selfdual, which contradicts
Theorem 7 because T is neither a linear order nor a circle nor a lexico-
graphic product. Indeed, T is not a linear order because T is strongly
connected. Furthermore, T is not a circle because Υ(T ) = {1, . . . , µ(T )}
and v(T ) ≥ 7. Lastly, since 1,2 ∈ Υ(T ), T is not a lexicographic product.

2. Suppose that µ(T ) ≥ 4. To begin, suppose that ν2(T ) is even and ν3(T )
is odd. Consider X ∈ Π2(T ) and v ∈ X. Since T and U are {−1}-
hypomorphic, there exists an isomorphism g{v} from T − v onto U − v.
By (52), Π(T ) = Π(U). It follows from Remark 14 that

Π(T − v) = Π(U − v) = (Π(T ) ∖ {X}) ∪ {X ∖ {v}}. (57)

Since g{v} is an isomorphism from T − v onto U − v, g{v} induces an iso-
morphism

g{v}/Π(T − v) ∶ Π(T − v) Ð→ Π(U − v)
X ′ z→ g{v}(X ′), (58)

from (T −v)/Π(T −v) onto (U −v)/Π(U −v), that is, ((T −v)/Π(T −v))⋆,
which is impossible because of Lemma 35. Indeed, it follows from (57) that
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Π2(T −v) = Π2(T )∖{X}. Since ν2(T ) is even, we obtain that ∣Π2(T −v)∣ is
odd. Moreover, g{v}(Π2(T −v)) = Π2(T −v) by definition of g{v}/Π(T −v).
By the second assertion of Lemma 35, there exists Y ∈ Π2(T −v) such that
(g{v}/Π(T − v))(Y ) = Y . Similarly, it follows from (57) that Π3(T − v) =
Π3(T ). Since ν3(T ) is odd, ∣Π3(T − v)∣ is odd. Thus, there also exists
Z ∈ Π3(T − v) such that (g{v}/Π(T − v))(Z) = Z, which contradicts the
fact that g{v}/Π(T − v) is an isomorphism from (T − v)/Π(T − v) onto
((T − v)/Π(T − v))⋆. We get an analogous contradiction when ν2(T ) and
ν3(T ) are even, by considering X ∈ Π3(T ) and v ∈X. Lastly, suppose that
ν2(T ) is odd. The contradiction is obtained in the following manner. If
ν3(T ) is even or ν4(T ) is even, then it suffices to consider X ∈ Π4(T ) and
v ∈X. If ν3(T ) and ν4(T ) are odd, then it suffices to consider X ∈ Π2(T )
and v ∈X.

It follows that (56) holds. Hence, there exists i ∈ Υ(T ) such that i ≥ 2 and
i − 1 /∈ Υ(T ). Consider X ∈ Πi(T ) and v ∈ X. Since T and U are {−1}-
hypomorphic, there exists an isomorphism g{v} from T − v onto U − v. By
Remark 14,

Π(T − v) = Π(U − v) = (Π(T ) ∖ {X}) ∪ {X ∖ {v}}.

As previously (see (58)), g{v} induces an isomorphism

g{v}/Π(T − v) ∶ Π(T − v) Ð→ Π(U − v)
X ′ z→ g{v}(X ′), (59)

from (T −v)/Π(T −v) onto ((T −v)/Π(T −v))⋆. Since Πi−1(T −v) = {X ∖{v}},
we obtain (g{v}/Π(T − v))(X ∖{v}) =X ∖{v}, that is, g{v}(X ∖{v}) =X ∖{v}.
It follows that

V (T ) Ð→ V (U)

x z→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

g{v}(x) if x ∈ V (T ) ∖X
or

ϕX(x) if x ∈X (see (54)),

is an isomorphism from T onto U .
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