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Abstract

This paper deals with a fundamental subject that has seldom been addressed in recent
years, that of market impact in the options market. Our analysis is based on a proprietary
database of metaorders - large orders that are split into smaller pieces before being sent to
the market - on one of the main Asian markets. In line with our previous work on the equity
market [Said et al., 2018], we propose an algorithmic approach to identify metaorders, based
on some implied volatility parameters, the at the money forward volatility and at the money

forward skew. In both cases, we obtain results similar to the now well understood equity
market: Square-root law, Fair Pricing Condition and Market Impact Dynamics.

Keywords: Market microstructure, market impact, statistical �nance, fair pricing, auto-

mated trading, limit orders, options market, implied volatility, high frequency.

1 Introduction

In recent years market impact has become a topic of interest for most market participants. The
advent of algorithmic trading has signi�cantly increased the traded volumes and the number of
transactions. The whole point of electronic markets is to directly match participants that are
willing to sell an asset with participants that are willing to buy it. This is mainly done via
two types of orders: market orders and limit orders. Market orders are sent by participants
that are willing to either buy or sell the asset immediately. Limit orders, however, do not share
this urgency: these orders show the interest of the participant to buy or sell the asset at a
pre-assigned price. Market orders are generally not used by institutional investors because of
the lack of control they imply. On the contrary, limit orders, whether they are aggressive -
crossing the spread - or passive, form the vast majority of orders actually sent to the market
during the execution of an algorithmic trading strategy, for example a market making strategy
or an optimal execution strategy. Most strategies referred to as algorithmic trading fall into
the cost-reduction category. The basic idea is to break down a large order � a metaorder �
into small orders and send them to the market over time. The choice of the algorithm depends
on various factors, the most important ones being the volatility and liquidity of the �nancial
instrument.
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Many studies have been conducted to understand the in�uences of metaorders on the price
formation process. Most of them are concerned with the equity markets, see e.g. [Almgren et al., 2005],
[Moro et al., 2009], [Toth et al., 2011], [Bershova and Rakhlin, 2013], [Mastromatteo et al., 2014],
[Bacry et al., 2015], [Gomes and Waelbroeck, 2015], [Brokmann et al., 2015] and [Said et al., 2018].
All these studies have shown a common behavior during the execution of a metaorder, namely,
a concave and temporary impact followed by a convex and decreasing relaxation. More recently,
[Donier and Bonart, 2015] have observed similar e�ects in the bitcoin markets, and a short note
[Tóth et al., 2016] indicated that the Square root law seems to be hold for the options market.

This paper is intended as an analysis of market impact in the options market. To the best
of our knowledge, this is the �rst detailed, in-depth academic study of this phenomenon.

The paper is organized as follow: Section 2 recalls our algorithmic de�nition of an equity

metaorder, introduces that of an option meatorder and presents some market impact measures.
Section 3 introduces the data set of the study and presents our approach for options metaorders.
Sections 4, 5 and 6 present our �ndings and empirical results: They con�rm that the market
impacts law observed in the equity markets also hold true in the options markets. Section 7 is
a discussion of our results and their implications.

2 De�nitions, Algorithm and Market Impact measures

2.1 Basic De�nitions

Some basic concepts, and the algorithmic de�nition of an option metaorder, are introduced here.

De�nition 1. A limit order is an order that sets the maximum or minimum price at which

an agent is willing to buy or sell a given quantity of a particular stock.

De�nition 2. An aggressive limit order is one that instantaneously removes liquidity from

the order book by triggering a transaction. An aggressive order crosses the Bid�Ask spread. In

other words an aggressive buy order will be placed on the ask, and an aggressive sell order will

be placed on the bid.

A limit order that is not aggressive is termed passive. Passive orders sit in the order book
until they are executed or cancelled.

Loosely speaking, a metaorder is a large trading order that is split into small pieces and
executed incrementally. In order to perform rigorous statistical analyses, a more speci�c and
precise de�nition of a metaorder is required, and given in De�nition 3 below:

De�nition 3. A metaorder is a series of orders sequentially executed during the same day and

having those same attributes:

• agent i.e. a participant on the market (an algorithm, a trader...);

• product id i.e. a �nancial instrument (a share, an option...);

• direction (buy or sell);

Clearly, De�nition 3 must be adapted to �t the options market.
Options are a bit more complex than equities. Traders buy and sell volatility and deal directly

with the implied volatility surface, and therefore, with their implicit volatility parameters. As
such, an option metaorder can naturally be de�ned as a sequence of transactions that generate
some speci�c deformations of the volatility surface.
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De�nition 4. An option metaorder with respect to an implied volatility parameter θ is a

series of orders sequentially executed during the same day and having those same attributes:

• agent i.e. a participant on the market (an algorithm, a trader...);

• underlying product id i.e. the underlying �nancial instrument;

• direction regarding the sign of Sθ := s×Q× ∂O
∂θ

where s the sign of the trade, Q and O
the quantity and the price of the option traded;

Note that in De�nition 4, the product id condition introduced in de�nition 3 is dropped. As
a matter of fact, trading an option with a given strike K and maturity T also a�ects those with
nearby strikes and maturities, so that trades on options with di�erent strikes and maturity can
very well belong to the same metaorder.

This approach is in line with what is presented in [Said et al., 2018], and leads to a systematic
study of market impact studies.

2.2 Market Impact de�nitions

The framework is similar to that introduced in [Said et al., 2018]. Let Ω be the set of metaorders
under scrutiny, that is, metaorders that are fully executed during a single market session, and
pick ω ∈ Ω executed on (possibly) several options with the same underlying and during a
given day d. Its execution starts at some time t0(ω) and ends the same day at time t0(ω) +
T (ω). Thus T (ω) represents the duration of the metaorder. Denote by N(ω) the number of
orders that have been executed during the life cycle of the metaorder ω: N(ω) is the length
of ω. Let t0(ω), t1(ω), ..., tN(ω)−1(ω) be the transaction times of the metaorder ω, we de�ne

Vθ(ω) :=

N(ω)−1∑
i=0

Sθti(ω) as the sensitivity of the metaorder ω regarding to the parameter θ. Let

V θ :=
∑

t∈Tmarket

∣∣∣Sθt ∣∣∣ be the sensitivity traded the same day d on all the options of the universe,

which means all the options traded by the algorithms summed over all market transactions
Tmarket occurred in the day d. Hence V θ can be viewed as the absolute sensitivity traded by
the market. Note that this quantity depends only on the universe the day d. Therefore all the
θ−metaorders executed the same day will share the same absolute sensitivity. Hence we de�ne∣∣Vθ(ω)

∣∣
V θ

as the θ−daily participation rate. The sign of ω will be noted ε(ω) (i.e. ε = 1 for a

positive sensitivity option metaorder and ε = −1 for a sensitive negative one), the sign of ε(ω) is
also the sign of Sθt0(ω),S

θ
t1(ω), ...,S

θ
tN(ω)−1(ω) which is invariant during the life of ω. Clearly, most

of the quantities introduced in this section depend on ω. For the sake of simplicity, we chose to
omit this dependence whenever there is no ambiguity and will often write T , N , Vθ, ε instead
of T (ω), N(ω), Vθ(ω), ε(ω).

The market impact curve of a metaorder ω quanti�es the magnitude of the relative
θ−variation between the starting time of the metaorder t0 and the current time t > t0, θ being
a parameter of the implied volatility model. Let It(ω) be a proxy for the realized θ−parameter
variation between time t0 and time t0 + t. We use the variation proxy de�ned by

It = θt − θt0 , (1)

This estimation relies on the assumption that the exogenous market moves Wt will cancel out
once averaged, i.e. as a random variable, Wt should have �nite variance and basically satisfy
E(ε(ω)Wt(ω)) = 0.
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One can thus write
ε(ω)It(ω) = ηt(ω) + ε(ω)Wt(ω), (2)

where ηt(ω) represents the market impact curve andWt(ω), the exogenous variation correspond-
ing to the relative move that would have occurred if the metaorder had not been sent to the
market.

3 Data

3.1 Description

The data set we use for this analysis contains trade orders executed by the BNP Paribas options
trading desk for the 2-year period from June 2016 through June 2018 on the KOSPI 200 options.
The KOSPI 200 Index is a capitalization-weighted index of 200 Korean stocks which make up
93% of the total market value of the Korea Stock Exchange. In order to perform rigorous
statistical analyses we need to be able to calibrate the parameters of the implied volatility
model as often as possible. This is necessary to observe the variations of the parameters at a
frequency similar to that of the transactions. To make this possible with su�cient accuracy, we
have only considered executions trading mostly short maturities options.

3.2 Filters

Because of the high frequency in the execution of the orders, we only consider option
metaorders with at least 5 completed transactions. This underlines the fact that we
want keep only metaorders that reasonably act as liquidity takers and could impact signi�cantly
the market. Indeed, while the equity metaorders studied in [Said et al., 2018] had an
average time life of several hours, the option metaorders presented here last a few
tenths of seconds on average.

3.3 Option Market Impact - The Liquidity Taker Mode (Aggressive Orders)

Let us now focus on the market impact generated by a series of aggressive executions on the
options market. More speci�cally, we consider the two kinds of metaorders: namely the at

the money forward volatility and the at the money forward skew metaorders. We recall that
aggressive limit orders are limit orders that cross the spread in order to trigger an immediate
transaction.

It is important to understand the fundamental di�erence between these two types of metaorders.
For example, if someone wants to buy at the money forward volatility (Fig. 1), the simplest strat-
egy is to buy options with strikes close to the money forward. Whereas if one wants to buy
at the money forward skew, a simple way to do so consists in buying out of the money options
while at the same time, selling in the money options (Fig. 2).

A simple way to check that the previous intuitions presented in Figures 1 and 2 are not totally
irrelevant is to study for the two kinds of metaorders the relation of the θ−market impact curve
as a function of the (unbiased) standard deviation (weighted by the θ-sensitivity) of the strikes
of the child orders pertaining for each metaorder denoted by σK/F (Fig. 3 and 4).

A careful scrutiny of Figures 3 and 4 shows that in the case of the at the money forward

volatility metaorders, the less diversi�ed the strikes are, the more important the market impact.
It is the opposite in the case of the at the money forward skew metaorders: the metaorders
with the higher values of σK/F match those which present the most important market impacts.
Those observations are in line with the intuitive predictions presented in Figures 1 and 2. The
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Figure 1: Market impact on the implied volatility surface for a given maturity T under the e�ect
of buying options with strikes near the money forward. One can notice how this could increase
the at the money forward volatility parameter.

Figure 2: Market impact on the implied volatility surface for a given maturity T under the e�ect
of buying options with strikes at the right of the money forward and sell options with strikes at
the left of the money forward at the same time. One can see how this could increase the at the
money forward skew parameter.
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Figure 3: Market impact as a function of σK/F in the case of the at the money forward volatility

metaorders.

Figure 4: Market impact as a function of σK/F in the case of the at the money forward skew

metaorders.

6



�rst points appearing on the Figures 1 and 2 actually correspond to the shortest metaorders in
length and duration, so they are just noisy points.

3.3.1 The ATMF volatility metaorders

In this section we focus on metaorders impacting the at the money forward volatility parameter
of the implied volatility model.

3.3.1.1 Data

• Study period : 1st July 2016 � 30th June 2018

• Order types : Aggressive Limit Orders

• Filters : metaorders ω ∈ Ω

• Number of orders : 1,026,197

• Number of metaorders : 149,441

3.3.1.2 Duration distribution

Figure 5: Duration distribution of the at the money forward volatility metaorders

One can observe that, in agreement with the intuition, metaorders with shorter durations are
more frequent (Fig. 5). This histogram is quite similar to the one of presented for the equity
aggressive metaorders in [Said et al., 2018].
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3.3.1.3 Daily participation rate distribution

Figure 6: Daily participation rate distribution of the at the money forward volatility metaorders

On can note in Figure 6 that metaorders with very low participation rates and very high ones
are evenly represented.

3.3.2 The ATMF skew metaorders

In this section we focus on metaorders whose at the money forward skew parameter is the interest
parameter of the implied volatility model.

3.3.2.1 Data

• Study period : 1st July 2016 � 30th June 2018

• Order types : Aggressive Limit Orders

• Filters : metaorders ω ∈ Ω

• Number of orders : 1,304,714

• Number of metaorders : 174,091
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3.3.2.2 Duration distribution

Figure 7: Duration distribution of the at the money forward skew metaorders

The distribution of the durations of the at the money forward skew metaorders (Fig. 7) is quite
similar to the distribution observed in Figure 5 for the at the money forward volatility metaorders.
One more time we notice that metaorders with shorter durations are more frequent.
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3.3.2.3 Daily participation rate distribution

Figure 8: Daily participation rate distribution of the at the money forward skew metaorders

On can note in Figure 8 that metaorders with very low participation rates and very high ones
are evenly represented. As already observed in Sec. 3.3.1.3 there is a maximum frequency for
metaorders around a certain value closed to the maximum observed in Figure 6.

3.4 Notations

Notation De�nition

ω A metaorder
O(ω) Option of the metaorder ω
d(ω) Execution day of the metaorder ω
t0(ω) Start time of the metaorder ω
T (ω) Duration of the metaorder ω
N(ω) Length of the metaorder ω
Vθ(ω) θ−Sensitivity of the metaorder ω
V θ(ω) θ−Sensitivity traded the day d(ω) on all the options of the universe
εθ(ω) Sign of Vθ(ω)
O(ω) Price of O(ω)
Ω Set of all the metaorders identi�ed by the algorithm
Ωn∗ ⊂ Ω Subset of the metaorders with N ≥ n∗

Table 1: Notations and de�nitions

Remark 1. As we only consider metaorders that have at least 5 executed transactions, Ω = Ω5.
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4 Market Impact Dynamics

4.1 Market impact curves

The main results of Sec. 3.3.1 are now given, namely, the market impact curves for the at the

money forward volatility and the at the money forward skew metaorders. In order to plot the
market impact dynamics, a similar bucketing method as the one presented in [Said et al., 2018]
is used: Let x, y being two arrays of data and consider for example that one wants to plot y as
a function x. First one starts by ordering the couple of values (xi, yi) according to the values
of x and then divides the sorted (by x) distribution (x, y)sorted into Nbucket. This procedure
yields Nbucket subsets of the distribution (x, y)sorted, (xi, yi)i∈I1 , (xi, yi)i∈I2 , ..., (xi, yi)i∈INbucket

,
and for each bucket Ik the means values (xk, yk) is computed. The last step of this bucketing
method is to plot the points (x1, y1), (x2, y2), ..., (xNbucket

, yNbucket
).

To study the dynamics of the market impact, one plots (ε(ω)It(ω))ω∈Ω,t0(ω)≤ t≤t0(ω)+2T (ω).
The �rst sub-interval t0(ω) ≤ t ≤ t0(ω) + T (ω) corresponds to the execution of the metaorder,
whereas the second t0(ω) + T (ω) ≤ t ≤ t0(ω) + 2T (ω) corresponds to the relaxation. The
study of relaxation presents a degree of arbitrariness, since a choice has to be made as to the
elapsed time after the metaorder is completed. For the sake of homogeneity, the relaxation is
measured over the same duration as the execution. This choice seems to be a good compromise
to cope with two antagonistic requirements, one being to minimize this elapsed time because of
the di�usive nature of prices � which a�ect also the parameters �, the other being to maximize
it so as to make sure that the relaxation is achieved.

In order to perform an extensive statistical analysis involving metaorders of varying lengths in
physical and θ−sensitivity time, a rescaling in time is necessary, see e.g. [Bacry et al., 2015] and
[Said et al., 2018]. With this convention, all orders are executed on the time interval [0, 1] and
parameter relaxation occurs in the time interval [1, 2]. For each metaorder ω, one considers [0, 1]

instead of [t0(ω), t0(ω)+T (ω)]

(
[0, 1] =

[t0(ω), t0(ω) + T (ω)]− t0(ω)

T (ω)

)
for the execution part of

ω and [1, 2] instead of [t0(ω)+T (ω), t0(ω)+2T (ω)] for the relaxation part of ω, and then averages
using the bucketing method previously described on the time-rescaled θ−sensitivity quantities.
In fact the θ−sensitivity time here plays the same role as the volume time in [Said et al., 2018].
Indeed, in the options world traders buy and sell more sensitivities than the products themselves
in order to reduce the expositions of their portfolio.

The time variable t ∈ [0, 1] in the Figures of Sec. 4 is actually the θ−sensitivity time, i.e., the
ratio between the θ−sensitivity of the metaorder already executed at the time of the observation
and the total θ−sensitivity of the metaorder - of course, at the end of the execution part this
quantity is always equal to 1.

4.2 The ATMF volatility market impact dynamics

The blue points correspond to execution θ−values, θ being the at the money forward volatility

parameter, and the red points correspond to θ−values observed at identical times starting from
the end of the metaorder.
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Figure 9: Market impact dynamics in the case of the at the money forward volatility metaorders
(set : Ω, 1,026,197 orders, 149,441 metaorders, temporary impact: 0.34, permanent impact:
0.17)

The analysis clearly yields an increasing, concave market impact curve. However, on can
observe that the curve has a linear behavior at the beginning and becomes more concave towards
the end. This is explained in particular by the fact that the duration of the metaorders is quite
short. The decay observed in the last points (in t = 1.0 and t = 2.0) of the curve is an artifact,
already discussed in [Said et al., 2018], inducing a bias towards the end of the curve. It can be
explained by the larger number of metaorders of smaller lengths and with lower impact. Also
note that on the three �gures 9, 10 and 11, the larger the metaorders, the higher the impacts:
0.34, 0.60 and then 0.86 for the temporary market impact.
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Figure 10: Market impact dynamics in the case of the at the money forward volatility metaorders
(set : Ω10, 215,274 orders, 17,286 metaorders, temporary impact: 0.60, permanent impact: 0.39)

Figure 11: Market impact dynamics in the case of the at the money forward volatility metaorders
(set : Ω15, 54,203 orders, 2,958 metaorders, temporary impact: 0.86, permanent impact: 0.57)

Figures 9, 10 and 11 clearly exhibit the concave shape of market impact during the execution
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part, followed by a convex and decreasing relaxation. Simply by eyeballing Figures 9, 10 and
11, one can safely assume that relaxation is complete and stable at a level around respectively
0.17, 0.39 and 0.57. However, on Figure 11, relaxation does not seem to be quite smooth. This
behaviour for those larger metaorders is essentially due to the fact that the set Ω15 contains
much less metaorders.

A conclusion to this section is that the concave shape of the temporary impact and the
convex relaxation curve concerning the at the money forward volatility metaorders are in line
with the empirical results observed on the equity markets and higlighted in [Bacry et al., 2015],
[Bershova and Rakhlin, 2013] and [Said et al., 2018]. Also, and more interestingly, the market
impact and relaxation curves con�rm the theoretical �ndings of [Farmer et al., 2013] that the
impact should be concave and increasing, and that the �nal impact after the execution is per-
formed should relax to about two-thirds of the peak impact. Indeed while on the Figure 9 the
ratio between the permanent market impact and the temporary market impact seems to be much
closer to 1/2, one can observe in Figures 10 and 11 � which correspond to larger metaorders and
therefore more signi�cant �, how this ratio gets close to 2/3.

4.3 The ATMF skew market impact dynamics

The main results of Sec. 3.3.2 are now given, namely, the market impact curves for the at the

money forward skew metaorders. To this purpose we use the same bucketting method introduced
in Sec. 4.1.

Figure 12: Market impact dynamics in the case of the at the money forward skew metaorders
(set : Ω, 1,304,714 orders, 174,091 metaorders, temporary impact: 0.26, permanent impact:
0.10)

The green points correspond to execution θ−values, θ being the at the money forward skew

parameter, and the red points correspond to θ−values observed at identical times starting from
the end of the metaorder.
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The results show an increasing, concave market impact curve, with a linear behavior at the
beginning. The curve becomes more concave towards the end. As mentioned in Sec. 4.2, this
is due to the fact that the durations of the metaorders are quite short. The decay observed
in the last points (in t = 1.0 and t = 2.0) is the same e�ect observed in the at the money

forward volatility metaorders. Also note that on the three �gures 12, 13 and 14, the larger the
metaorders, the higher the impacts: 0.26, 0.48 and then 0.77 for the temporary market impact.

Figures 12, 13 and 14 clearly exhibit the concave shape of market impact during the execution
part, followed by a convex and decreasing relaxation. Simply by eyeballing Figures 12, 13 and
14, one can safely assume that relaxation is complete and stable at a level around respectively
0.10, 0.32 and 0.51. However, on Figure 14, relaxation does not seem to be quite smooth. This
behaviour for those larger metaorders is essentially due to the fact that the set Ω15 contains
much less metaorders.

Figure 13: Market impact dynamics in the case of the at the money forward skew metaorders
(set : Ω10, 405,918 orders, 30,932 metaorders, temporary impact: 0.48, permanent impact: 0.32)
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Figure 14: Market impact dynamics in the case of the at the money forward volatility metaorders
(set : Ω15, 136,410 orders, 7,260 metaorders, temporary impact: 0.77, permanent impact: 0.51)

A conclusion to this section is that the concave shape of the temporary impact and the
convex relaxation curve concerning the at the money forward skew metaorders are in line with
the empirical results observed on the at the money forward volatility metaorders studied in
Sec. 3.3.1. Also, and more interestingly, the market impact and relaxation curves con�rm the
theoretical �ndings of [Farmer et al., 2013] that the impact should be concave and increasing,
and that the �nal impact after the execution is performed should relax to about two-thirds of
the peak impact. Indeed while on the Figure 12 the ratio between the permanent market impact

and the temporary market impact seems to be much closer to 0.4, one can observe in Figures 10
and 11 � which correspond to larger metaorders and therefore more signi�cant �, how this ratio
gets close to 2/3.

5 Square-Root Law

The results presented in this section are certainly the most important of the article. They con�rm
the consistency of the Square-Root Law already observed in the equity market [Almgren et al., 2005],
[Bershova and Rakhlin, 2013], [Gomes and Waelbroeck, 2015], [Mastromatteo et al., 2014],
[Moro et al., 2009] and [Toth et al., 2011], the bitcoin market [Donier and Bonart, 2015] and
more recently in a short note [Tóth et al., 2016] the authors highlighted that the Square-Root

Law also holds for option markets according to their de�nition of the implied volatility metaorders
which is more global. The method presented here which relies on the de�nition 4 tends to be more
local focusing on the local deformations of the implied volatility surface through the variations
of the parameters of the model which are in fact the projections of those local deformations.

The Square-Root Law is the fact that the impact curve should not depend on the duration of
the metaorder. Indeed, almost all studies now agree on the fact that the impact is more or less
close to be proportional to the square root of the volume executed. Considering options market,
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which plays the role of an executed volume is in fact the θ−sensitivity executed regarding to a
θ−metaorder. However, the so-called Square-Root Law states much more than that. It basically
claims that the market impact does not depend on the metaorder duration.

In what follows one plots the θ−market impact normalized by a volatility factor εθ × I
θ

σθ
as

a function of the θ−daily participation rate

∣∣Vθ∣∣
V θ

for both the at the money forward volatility

(Fig. 15) and the at the money forward skew (Fig. 16) metaorders, σθ being the daily standard
deviation of the parameter θ. One observes that a power-law �t gives exponents for the θ−daily
participation rate close to 0.5 (≈ 0.56 for the at the money forward volatility metaorders and
≈ 0.53 for the at the money forward skew metaorders). In both cases, the analysis shows that
our option metaorders, present a market impact following a theoretical curve of the form σ

√
R

with σ a volatility factor and R a participation rate factor. Those �ndings support the idea for
a universal underlying mechanism in market microstructure.

Figure 15: The square-root law in the case of the at the money forward volatility metaorders,
power law �t: y ∝ x0.56.
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Figure 16: The square-root law in the case of the at the money forward skew metaorders, power
law �t: y ∝ x0.53.

6 Fair Pricing

In this section we deal with the fair pricing condition of our option metaorders. First of all let
us de�ne the S-WAP (S weighted average parameter) of a metaorder ω as the quantity de�ned
by

θS−WAP (ω) =

N(ω)−1∑
i=0

Sθi (ω)θti(ω)(ω)

Vθ(ω)

where t0(ω), ..., tN(ω)−1(ω) represents the times of the transactions of the metaorder ω and

Vθ(ω) =

N(ω)−1∑
i=0

Sθi (ω). Hence we want to compare θS−WAP − θt0 with θt0+2T − θt0 (Fig. 17 and

18). The red line represents the perfect fair pricing condition as it corresponds to θS−WAP−θt0 =
θt0+2T − θt0 .

It appears from Figures 17 and 18 that the fair pricing condition can reasonably be assumed
to hold. This is in line with what has already been observed in the equity market and mentioned
in [Said et al., 2018]. One observes also that the greater the absolute θ−variations, the more
one moves away from the perfect fair pricing condition. In agreement with the intuition high
variations are generally associated to longer and larger metaorders that are therefore more
a�ected by the di�usive nature of the prices.

One can note that the fair pricing condition is more e�ective for the at the money forward

volatility metaorders. One reason for this is that trading volatility is more common than trading
skew on the options market.
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Figure 17: Fair pricing of the at the money forward volatility parameter in the case of the at the
money forward volatility metaorders.

Figure 18: Fair pricing of the at the money forward skew parameter in the case of the at the

money forward skew metaorders.

For now, we have considered the fair pricing condition by studying the variations of the
parameters of the metaorders in question. However, it is more relevant to examine the fair
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pricing condition by considering the portfolio generated during a metaorder. Let us de�ne the
portfolio value of a metaorder ω as the quantity de�ned by

P(ω) =

N(ω)−1∑
i=0

Qi(ω)Oti(ω)(ω)

where t0(ω), ..., tN(ω)−1(ω) represent the instants, Q0(ω), ..., QN(ω)−1(ω) the quantity (positive)
and O0(ω), ...,ON(ω)−1(ω) the prices of the transactions of the metaorder ω. Hence we want to

compare
P − Pt0
Pt0

with
Pt0+2T − Pt0

Pt0
(Fig. 19 and 20) where Pt0 and Pt0+2T are respectively

the prices of the same portfolio at t0 and t0 +2T . The red line represents the perfect fair pricing

condition as it corresponds to
P − Pt0
Pt0

=
Pt0+2T − Pt0

Pt0
.

To conclude this section, we observe that the fair pricing seems to be also hold on the
options market. This con�rms the fair pricing hypothesis introduced in [Farmer et al., 2013] as
a universal mechanism concerning the metaorders and their interaction with the price formation
process.

Figure 19: Fair pricing of the portfolio value in the case of the at the money forward volatility

metaorders.
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Figure 20: Fair pricing of the portfolio value in the case of the at the money forward skew

metaorders.

7 Conclusion

This work is an empirical study of a large set of metaorders in one of the main Asian index options
market. A new algorithmic de�nition of an option metaorder has been proposed. Our study
contains two distinct groups of metaorders using aggressive limit orders: a set of at the money

forward volatility metaorders, and a database of at the money forward skew metaorders. The
statistical results based on this de�nition show a pretty good agreement with some observations
already highlighted in the stock markets: Square-root law, Fair Pricing and Market Impact

Dynamics. In both cases, the analysis shows that the temporary impact is increasing and
concave, with a convex decreasing relaxation phase. More precisely, the price reversion after the
completion of a trade yields a permanent impact such that its ratio to the maximum impact
observed at the last �ll is roughly two-third, as predicted in the paper of [Farmer et al., 2013]
and already highlighted empirically on equity markets.
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