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Complex molecule synthesis
made easy

Nelli Elizarov, Pascal D. Giorgi,
Alexandra Yeromina, Sylvain Antoniotti

Abstract By the combination of suitable catalytic methodologies, the syn-
thesis of complex molecules could be performed with limited footprints
and energy consumption either in orthogonal multicatalysis, sequential one-
pot reactions or sequential reactions in continuous flow. In this account, we
present a selection of our recent results in this area of research where several
catalysts such as supported metal nanoparticles, supported metal salts, or
mineral and organic bases were combined. New and step-economical syn-
thetic methods were thus developed either in standard batch reactors or in
continuous flow using millifluidic technology.

1 Introduction

For most epistemologists and historians of science, organic synthesis was
born serendipitously in 1828 when Friedrich Wöhler obtained urea from am-
monium cyanide [1]. Since then, the art of synthesis has improved both in
terms of the complexity of molecules synthesized and the efficiency of the
synthetic methods used. In most instances, the chemical synthesis of a given
molecule starts with commercially available building blocks, mostly from
the petrochemical industry, but increasingly from bio-based resources [2].
The core structure of the building block is then modified following a series
of sequential operations to increase the number of atoms, the number of
covalent bonds and the degree of oxidation, like Nature does for example
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in the biosynthesis of complex terpenoids [3]. For larger molecules, two or
more syntheses can be performed in parallel and their products merged at
some point to converge towards the final structure [4]. In the light of the re-
cent shift towards more sustainable processes in chemical synthesis, it has
become desirable to discover and apply novel methodologies to fulfill the
need for complex molecules to be used in health or well-being applications
without compromising the quality of the environment and the level of re-
sources left to future generations [5].

To contribute to this effort, we have recently developed complex catalytic
systems simply hyphenated in the same reactor or synergistically assem-
bled to perform multiple elementary steps of synthesis in one operation,
thereby delivering complex molecules more easily. Catalysis is in itself a
premium approach to discover chemical transformations with low impact
in terms of waste generation and energy consumption by its intrinsic as-
sets [6–8]. Specifically, our strategy is based on the design of complex reac-
tions schemes triggered by a clean oxidation reaction of activated alcohols by
gold nanoparticles (Au NPs) solely requiring O2 as the terminal oxidant [9].
To achieve these one-pot/multi-step transformations, we needed an oxidiz-
ing system both specific of the allylic alcohol motif, and selective for the for-
mation of aldehydes. In addition, this ideal oxidative catalytic system had
to be compatible with the multicatalytic setting. These prerequisites were
found with Au NPs operating under O2 [10–14].

In this account, we present our recent results in this area of research
where the Au NPs-catalyzed allylic alcohol oxidation has been combined
with C-C bond forming tandem reactions such as Friedel-Crafts-type aldoli-
sation/cyclisation and oxa-Michael addition/aldolisation to yield valuable
bioactive molecules in one operation, making complex molecules synthesis
easy.

2 Oxidation by supported gold nanoparticles

Gold nanoparticles (Au NPs) have been successfully used in various cat-
alytic carbon-carbon and carbon-heteroatom bond-forming reactions and,
thanks to their ability to activate molecular oxygen, in oxidation reactions of
organic substrates [15–20].

Preliminary screening of catalysts and reaction conditions taught us that
small supported Au NPs (2-3 nm of diameter) were suitable as a catalyst
in toluene and THF for the oxidation of activated alcohols. Optimization
studies and control experiments were thus performed with these catalysts in
batch reactors on benzyl alcohol 1a, a benchmark substrate for this type of
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oxidation reaction [21]. To avoid both energy consumption and safety issues,
a fixed pressure of O2 of 1 atm was used.

These conditions were successfully applied to allylic alcohols such as cin-
namyl alcohol 2a, nerol 3a, geraniol 4a, and farnesol 5a delivering the cor-
responding aldehydes in 66-99% yields and 66-99% conversion (Figure 1).
With these results in hand, we started to study the reaction in continuous
flow. Heterogeneous catalysis is well suited for being used in flow since
catalytic reactors as simple as a column filled with the solid catalytic ma-
terial could be used. In the case of reactions occurring in gas-liquid biphasic
medium, the flow chemistry set up often outperforms batch reactors [22,23].
We therefore transposed our batch conditions with fixed-bed catalytic reac-
tors containing Au NPs supported on Al2O3 and a tube-in-tube gas/liquid
device for the O2 supply. The optimized protocol in continuous flow was
found to be more efficient for aliphatic substrates, the corresponding alde-
hydes 1-5b being obtained in 84-87% yield (vs 66-68% in batch) at a flow
rate of 0.444 mL.min-1 for a residence time of 3.7 minutes. A better relative
O2 concentration could probably account for this improvement, as well as
the limited residence time of the product in the reactor, thereby limiting the
risk of degradation at 80◦C [21].

Fig. 1 Au NPs-catalyzed oxidation of activated alcohols.

3 Oxidation / Friedel-Crafts Aldolisation / Cyclisation

With this oxidation protocol tailored for our applications in hand, we next
turned our attention to its combination with an aldol Friedel-Crafts-type re-
action, requiring an aldehyde as the electrophilic partner and aryl nucle-
ophiles.

Our study was initiated with benzyl alcohol derivatives and an electron-
rich aryl nucleophile, such as veratrol 6, in order to obtain unsymmetri-
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cal benzophenones upon oxidation/aldol Friedel-Crafts-type/oxidation. To
achieve this goal, we combined the Au NPs-catalyzed oxidation with a Bron-
sted acid-catalyzed reaction with the use of Amberlyst 15, a sulfonic organic
resin. In spite of several attempts, we found that if the first and second steps
occurred as expected with the oxidation of 1a to 1b and subsequent addition
of 6, the second oxidation to the corresponding benzophenone did not occur
and the addition of a second veratrol unit yielded triarylmethanes such as
1a6 together with oxidation products benzoic acid 1c and benzyl benzoate
1d and other secondary products (Figure 2).

Fig. 2 Combined oxidation/aldol Friedel-Crafts type reaction.

Considering the reactivity of aldol Friedel-Crafts products, we decided to
turn this reactivity to our favor using bifunctional substrates and aryl nu-
cleophiles likely to react intramolecularly in a second time to yield complex
cyclic structures. The aldehydic substrate would be generated in situ upon
Au NPs-catalyzed oxidation of allylic alcohols under O2.

We thus screened a series of Lewis and Bronsted acids in a test reaction
with citral (mixture of 3b and 4b) and 5-methylresorcinol (orcinol) 7, thereby
focusing on the second step. If conventional Lewis acids delivered mixtures
containing ∆9- and ∆8-tetrahydrocannabiorcol (THCC) 3aa, the use of mont-
morillonite doped with metal cations (M-MMT) enabled the selective for-
mation of ortho-THCC 3aa’. Under optimized conditions using Ti-MMT as
catalyst (10 mol%), a yield of up to 98% 3aa’ was obtained as a 83:17 mixture
of ∆9 and ∆8 isomers (entry 13). The cis/trans ratio was found to be 8:2 in
most cases. This result was rather unexpected since these compounds were
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typically observed as side products in various syntheses of natural cannabi-
noids. In the same reaction conditions, but using olivetol 8 instead of 7, or-
tho-∆9-THC 3ab’ was obtained in 77% isolated yield (Figure 3) [24].

Fig. 3 Formation of the ortho-∆9-THC 3ab’.

A series of experiments was then undertaken to gain a better understand-
ing of the regioselectivity of the reaction. First, the role of hydroxyl groups
of 7 was evaluated. Citral was thus treated with modified alkyl resorcinols,
in the presence of Ti-MMT (10 mol%) under our optimized conditions. Inter-
estingly, the blockage of both hydroxyl groups by methylation or acetylation
resulted in complete inhibition of the arylation reaction and the recovery of
unchanged citral. Surprisingly, the blockage of a single hydroxyl group also
completely inhibited the reaction. Based on these observations, and taking
the regioselectivity in favor of ortho- isomers into consideration, we reasoned
that Ti-MMT could influence the selectivity through a template effect where
both hydroxyl groups would coordinate the interlamellar surface, combined
with a Lewis-acid assisted Bronsted acid process (LBA process) allowed by
Ti(IV) species. The nucleophilic attack of the arene would thus proceed via
the most accessible position, in ortho relative to the alkyl substituent (Figure
4).

Considering our interest in the design of multicatalytic chemical pro-
cesses, we performed a preliminary series of tests to combine an Au NP-
catalyzed oxidation of allylic alcohols with the Ti-MMT-catalyzed cyclisa-
tion. Unfortunately, catalysts were not compatible in our conditions and the
oxidation step was quenched in the presence of Ti-MMT. We thus moved
towards continuous flow chemistry reactors.

The first stage of the batch/flow transposition was the optimization of the
Ti-MMT-catalyzed step. At a 0.05 M concentration, a conversion of 100% of
citral and 98% yield of cyclized products could be obtained with a column
charged with 400 mg of Ti-MMT within 5 min residence time. With the im-
plementation of a second catalytic column filled with Au NPs/Al2O3 (1 g)
and using the tube-in-tube technology for an efficient O2 supply, the flow
synthesis of ortho-THC and analogs was possible from 3a (2.5 mmol scale)
and enabled total conversion, and the formation of ortho-THCC 3aa’ (∆8/∆9
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Fig. 4 LBA mode of activation at the Ti-MMT surface and subsequent regioselectivity of
the reaction.

1:3.5) and ortho-THC 3ab’ (∆8/∆9 1:6) with a 81 and 72% yield, respectively,
from 7 and 8 (Figure 5). The first stage of the batch/flow transposition was
the optimization of the Ti-MMT-catalyzed step. At a 0.05 M concentration,
a conversion of 100% of citral and 98% yield of cyclized products could be
obtained with a column charged with 400 mg of Ti-MMT within 5 min resi-
dence time. With the implementation of a second catalytic column filled with
Au NPs/Al2O3 (1 g) and using the tube-in-tube technology for an efficient
O2 supply, the flow synthesis of ortho-THC and analogs was possible from
3a (2.5 mmol scale) and enabled total conversion, and the formation of or-
tho-THCC 3aa’ (∆8/∆9 1:3.5) and ortho-THC 3ab’ (∆8/∆9 1:6) with a 81 and
72% yield, respectively, from 7 and 8 (Figure 5).

Fig. 5 Continuous flow set up for the synthesis of ortho-THCs 3aa’-3ab’.
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4 Oxidation / Hetero-Michael Addition / Addition /
Crotonisation

Chromenes are motifs occurring in a large number of natural products ex-
hibiting bioactivity and several synthetic methods to access these structures
have been reported [25–33]. Our plan was to use the Au NPs/O2 catalytic
system to generate in situ α, β-unsaturated aldehydes further undergoing a
base-catalyzed oxa-Michael addition of salicylaldehydes to yield chromenes
substituted on positions 2, 3 and 5 in a bicatalytic one-pot/4-steps procedure
thereby shortening the access to these chromene structures. Initial testing
taught us that the two catalytic systems were not compatible, and a sequen-
tial one-pot process was thus developed.

Upon substrate-specific optimisation, we found that for aliphatic allylic
alcohols, a mineral base such as K2CO3 (1.1 equiv., added as a methano-
lic solution) was efficient enough and chromenes were obtained in 59-67%
yields. With cinnamyl alcohol derivatives, the use of an organic base such as
pyrrolidine (30 mol%) in THF in the presence of molecular sieves (3 Å) was
necessary for the reaction to proceed efficiently, and the expected chromenes
were obtained in 86-93% yields. By replacing salicylaldehyde 9 (R3=H, X=O)
by ortho-aminobenzaldehyde 10 (R3=H, X=NH), dihydroquinolines could be
obtained similarly in 79-93% yields. Variation on the salicylaldehyde partner
was also possible (Figure 6) [34].

In summary, we have developed a step- and atom-economical bicat-
alytic tandem process allowing a simplified access to biologically relevant
chromene and 1,2-dihydroquinoline scaffolds with a large space of substitu-
tion possibilities. We have shown that up to five reactions could proceed in
the same pot to convert simple starting materials into complex molecules by
combining nanocatalysis and base-catalysis.

5 Conclusion

It is possible to perform intensive synthesis by adapting existing protocols or
discovering new ones. To achieve these goals, the use of catalysis is the key
to success for both basic and practical reasons. Combined with flow chem-
istry technology, complex molecule synthesis could be achieved easily and
efficiently. These approaches could be further developed in the future to-
ward an ideal goal of one-pot total synthesis.
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Fig. 6 Bicatalytic one-pot/4-steps synthesis of substituted chromenes/dihydroquinolines
(Method A: triazabicyclodecene (TBD), Method B: K2CO3 Method C: pyrrolidine).
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