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Abstract—Multi-Modal Optimization problems are widespread
and can be solved using numerous methods, such as niching,
sharing or clearing. In this paper, we are interested in algorithms
based on restart strategies, where the searching point is restarted
at another initial position when an optimum is found. Previous
works show that the choice of these initial positions greatly
impacts the performance of the algorithm but is not easy to
make. In this paper, we propose a new restart strategy, based
on reinforcement learning. Our algorithm subdivides the search
space and uses a Multi-Armed Bandit technique to choose the
successive restart positions. We experiment this algorithm on
various functions and on a modified Hump function with more
complex local areas. Our results show significant improvements
over previous algorithms, such as the Quasi-Random restart with
Decreasing Step-size algorithm.

Index Terms—Multi-modal optimization, reinforcement learn-
ing, multi-armed bandit, evolution strategy.

I. INTRODUCTION

Multi-Modal Optimization (MMO) is a very important tool
for numerous applications in engineering or in machine learn-
ing. In this work, we are interested in finding all the global
optima (maxima) of a given but unknown function. More
precisely, we have a multi-dimensional continuous black-box
function f : [0, 1]D → R and we want to find all the points
x ∈ [0, 1]D such that f(x) = y∗ where y∗ is the maximum
value (fitness) of f . This kind of optimization is related to
classic mono-modal optimization when local optima are very
close to the global optimum: in this case, it is necessary to find
all the local maxima in order to determine the global one. To
analyze the performance of a MMO algorithm, we generally
consider the number of evaluations of f : a good algorithm
finds all the optima with few evaluations.

Numerous MMO algorithms have been proposed but many
of them use the derivative of the function (gradient-based
methods), which is not applicable in the context of black-box
functions. In this context, gradient-free methods are generally
based on Evolution Strategies (ES) [1], [2]. ES algorithms
consist in choosing an initial point (also called individual)
randomly then mutating this point to a better one. In the
context of MMO, ES algorithms are combined either with a
niching technique or a restart strategy in order to find all the
optima.

Amongst the various niching techniques, the sharing tech-
nique [3] states that all individuals of a same niche (i.e. a

group of individuals which are close to each other) share
a same fitness value. This tends to force the algorithm to
explore new areas of the search space. The crowding technique
[4] (including deterministic crowding [5] and probabilistic
crowding [6]) consists in replacing individuals of the current
population by similar candidate individuals of a new popula-
tion. The clustering technique [7] consists in analyzing and
grouping similar individuals. Finally, the clearing technique
[8] and more recently, the modified clearing technique [9],
are variants of the sharing technique where the best individuals
are preserved (dominant individuals) while the fitness of the
others is cleared (dominated individuals).

Another classic MMO technique is the restarting technique
[10]–[13]. The algorithm proposed in [14] uses a quasi-
random restart strategy with a decreasing step-size search.
This algorithm has good performances when the optima are
quite equally distributed over the search space or when the
function is locally simple. In this paper, we propose a more
flexible algorithm, where the restart strategy automatically
learns which areas of the search space are interesting.

The rest of this paper is organized as follows. Section II
and Section III, recall the quasi-random restart strategy and
the multi-armed bandit learning method. Then, we detail the
proposed method in Section IV and present experimental
results in Section V. Finally, we conclude in Section VI.

II. QRDS OPTIMIZATION

Quasi-random Restart with Decreasing Step-size (QRDS)
[14] is an Evolution-Strategy-based Multi-Modal Optimization
algorithm which uses the restarting technique. It consists in a
single-optimum local search (see Algorithm 1), controlled by
a restart strategy (see Algorithm 2).

The restart strategy (Algorithm 2) is very simple: at each
iteration, an initial point is chosen randomly in the search
space, then used as the starting point of a local search. Once
this local search is finished (and the set of found optima is
updated), a new iteration is started unless all optima are found.
As stated in [14], it is generally more efficient to sample
the initial points using a quasi-random method (SampleQR)
than using a purely-random method. In this paper, we note
the quasi-random method as QRDS and the purely-random
method as RDS.



Algorithm 1: SearchDS

{Search an optimum using a Decreasing Step-size }
Input:
f : function to optimize
σ0: initial step-size
εσ: threshold value of the step-size
y∗: maximum fitness of the function
εy: threshold value of the fitness
x: initial position for the search
εx: threshold value of the position
X̂: set of previously found optima

Output:
X̂: updated set of optima
y: value of the newly found optimum

1 begin
2 y ← f(x)
3 σ ← σ0
4 repeat

{mutation}
5 x′ ← N (x, σ)
6 y′ ← f(x′)

{selection with 1/5th adaptation}
7 if y′ > y then
8 x← x′

9 σ ← 2σ

10 else
11 σ ← 2−1/4σ

{discard search if optimum already known}
12 if ∃x̂ ∈ X̂, ‖x− x̂‖ < εx then
13 break

{store found optimum}
14 if ‖y − y∗‖ < εy then
15 X̂← X̂ ∪ {x}
16 break
17 until σ < εσ

Algorithm 2: QRDS
{Quasi-random Restarts with Decreasing Step-size}
Input: f, σ0, εσ, y

∗, εy,x, εx
Output: X̂

1 begin
2 X̂← ∅
3 while all optima not found do
4 x← SampleQR()
5 X̂, y ← SearchDS(f, σ0, εσ, y∗, εy,x, εx, X̂)

For the local search, a simple (1+1)-ES with the 1/5th
adaptation rule can be used (Algorithm 1), as stated in [14].
This algorithm iteratively mutates the current point (using a
normal distribution with standard deviation σ) and selects the
best of these two points. If the current point is better, the
search step-size σ is decreased (the current point is interesting
so the search should continue in a more local area). If the
mutated point is better, σ is increased (the current point is not
interesting so the search should continue in another area). The
search is terminated when the current point has converged to
a new optimum (in this case, the optimum is added to the set
of found optima), to an already known optimum or to a local
optimum.

The QRDS algorithm is known to give good results when
the optima are quite regularly distributed or when the function
is locally simple. In this paper, we are interested in optimizing
more complex functions (with basins or with complex local
areas) by modelling the restart strategy as a multi-armed bandit
problem.

III. MULTI-ARMED BANDIT

Multi-Armed Bandit (MAB) [15] is a classic reinforcement
learning problem, where a player should successively select
one bandit arm, with unknown reward, in order to maximize
the total cumulated reward.

More precisely, N bandit arms with unknown reward prob-
abilities pn are available. At each time step k, the player
selects an arm and receives a reward rk = 1 with probability
pn or rk = 0 otherwise. The goal is to maximize the total
reward gathered over all the K time steps. In other words, the
player has to find the best policy in order to minimize the loss
compared to the best arm. This regret is defined as:

Kp∗ −
K∑
k=1

rk, (1)

where p∗ = max{p1, . . . , pN} is the maximal reward proba-
bility among the bandit arms.

The Upper Confidence Bound (UCB) algorithm [16] is a
state of the art method to deal with the MAB problem, since
it provides an optimal asymptotic bound on the regret in
O(ln(K)). At each time step k, the UCB algorithm selects
the arm j which maximizes:

p̂j,k +

√√√√√√2 ln

(
N∑
n=1

An,k

)
Aj,k

, (2)

where p̂j,k is the average reward for the arm j and Aj,k is the
number of times the arm j has already been selected.

This formula deals with the well-known trade-off between
exploitation and exploration. Exploitation (the first part of the
formula) tends to select the arm with the optimal average
reward. Exploration (the second part of the formula) tends
to select the arm which has been selected the most rarely.



IV. PROPOSED METHOD

Restart-based MMO algorithms, such as QRDS, select new
starting points in the whole search space, using a (purely-
random or quasi-random) uniform sampling method. This ap-
proach suits to locally simple functions and to functions where
the optima are regularly distributed. However, in many real-
world applications, the function to optimize is more complex
(locally complex, basins. . . ). Therefore, some areas of the
search space are more important to consider than others.

In this paper, we propose to use the UCB method to consider
interesting areas more frequently, for searching the optima.
We partition the search space using a regular grid with M
subdivisions along each dimension, resulting in N = MD

areas. These areas are then considered as arms in a MAB
problem, which let us use UCB to efficiently select the area
of a new starting point.

This kind of approach proved to be efficient for numerical
integration problems [17]. For MMO, its implementation is
more complicated since it combines a restart strategy (using
UCB) for dealing with the multiple optima, and a local search
(with decreasing step-size) for estimating the rewards. Here,
we propose the Algorithm 3, called Ucb Random-restarts with
Decreasing Step-size (URDS).

Algorithm 3: URDS
{Ucb Random-restarts with Decreasing Step-size}
Input: f, σ0, εσ, y

∗, εy,x, εx
Output: X̂

1 begin
2 X̂← ∅
3 k ← 0
4 { initialization step }
5 foreach j do
6 k ← k + 1
7 x← SampleArea(j)
8 X̂, y ← SearchDS(f, σ0, εσ, y∗, εy,x, εx, X̂)
9 S[j]← 1

y∗−y+0.1

10 A[j]← 1

11 { UCB step }
12 while all optima not found do
13 k ← k + 1

14 j∗ ← arg max
j

S[j]
A[j] +R

√
ln k
A[j]

15 x← SampleArea(j∗)
16 X̂′, y ← SearchDS(f, σ0, εσ, y∗, εy,x, εx, X̂)

17 if X̂′ 6= X̂ then
18 X̂← X̂′

19 S[j∗]← S[j∗] + 1
y∗−y+0.1

20 A[j∗]← A[j∗] + 1

The URDS algorithm is basically composed of two steps:
the initialization step and the UCB step. The first step com-
putes a local search in each of the N areas, for initializing

the reward estimations: the initial rewards are stored in S and
the numbers of selections are stored in A. The optimum found
during this step are also stored, in X̂. Then, the second step is
the restart strategy. It selects the most interesting area, using
the UCB method (see equation 2), samples a new starting point
in this area, computes a local search from this point and finally
updates the corresponding reward (S and A). The UCB step
terminates when all the optima are found (X̂).

The reward is defined as 1
y∗−y+0.1 . The idea behind this

formula is to give higher rewards to the points which are close
to the real optimum y∗ of the function. The algorithm can
be modified quite easily for handling the case where y∗ is
unknown. For example, we can define the reward as the fitness
of the optimum found, i.e. replace, in Algorithm 3, line 9 by
S[j]← y and line 19 by S[j∗]← S[j∗] + y.

The URDS algorithm requires setting two parameters. The
parameter R is very classic in UCB methods; it tunes the trade-
off between exploitation and exploration: a small value favors
exploitation, a high value favors exploration. The parameter
M is the number of subdivisions per dimension and gives
the total number of areas to consider (N = MD); it should
be high enough to match the shape of the function but small
enough to limit memory usage and to avoid a huge number of
evaluations for initializing the estimations of the rewards.

V. SIMULATION RESULTS

A. Functions

To evaluate the proposed algorithm, we use several classic
functions [9], [14]. We also use some modified functions
which model more complex problems (see Fig. 1).

The function fSin is a multi-dimensional sine-based function
[0, 1]D → [0, 1] defined as:

fSin(x) =
1

D

D∑
d=1

sin2s(pπxd). (3)

This function has two parameters: p is the number of peaks
per dimension and s defines the sharpness of the peaks. This
function is used in [9] and in [14], with s = 3 and p = 5. It
has pD optima which are regularly distributed (see Fig. 1a).

The function fSinBasin is similar to fSin but with a large
plateau (see Fig. 1b):

fSinBasin(x) =

{
fSin(x) if ‖x‖∞ < 0.5

0 otherwise
(4)

The function fHump is a simplified version of the Hump
function presented in [9], where the random peaks have the
same shape (see Fig. 1c):

fHump(x) = max

[
0, 1−

(
minq‖x− xq‖

r

)α ]
(5)

Here, α defines the (inverse) sharpness of the peaks, r the
radius of the peaks and Q the number of peaks (and therefore
the number of optima). The points xq define the centers the
peaks and are randomly drawn in [0, 1]D. This randomness
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(a) fSin with s = 3 and p = 3 (see [9] and equation 3).

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

(b) fSinBasin with s = 3 and p = 4 (see equation 4)
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(c) fHump with α = 2, Q = 4 and r = 0.1 (see [9] and equation 5).
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(d) fHumpSin with s = 4, p = 2, z = 2 and r = 0.2 (see equation 6).

Fig. 1: Multi-modal functions used in our experiments (represented in a 2D search space).

makes the function more difficult to optimize but the peaks
are still locally simple.

Finally, the function fHumpSin combines the randomness of
fHump with a local complexity from fSin (see Fig. 1d):

fHumpSin(x) =

{
fSin(

x−xz+r
2r ) if ‖x− xz‖∞ < r

0 otherwise
(6)

Here, z is the number of zones and r the radius of the zones.
The points xz define the centers of the zones and are randomly
drawn such that the zones do not overlap and are inside the
search space. The number of optima is then z × pD.

B. Experiments and results

Using the previous functions, we compare the proposed al-
gorithm (URDS) with the classic restart algorithms (RDS and
QRDS) presented in Section II. We run each experiment 30

times and compute average values and 95% level confidence
intervals.

In a first set of experiments, we measure the numbers of
function evaluations that the algorithms need in order to find
all the optima (see Table I). We notice that QRDS and URDS
always perform better than RDS. This confirms the results
found in [14], namely the superiority of QRDS over RDS.
We also notice that QRDS and URDS have a quite similar
performance on simple problems but URDS becomes better
for higher dimension (d = 3 or d = 5) and for more complex
functions (in particular fHumpSin which is the most difficult
function experimented here).

In a second set of experiments, we consider more complex
problems and measure the number of optima found by the
three algorithms after 106 evaluations (see Table II). URDS is
clearly better than QRDS and RDS for the function fHumpSin.



Function D RDS QRDS URDS # Optima
fSin [s = 3, p = 5]

2

8723 ± 972 5361 ± 396 5203 ± 438 [R = 100,M = 5] 25
fSinBasin [s = 3, p = 5] 12251 ± 2306 5312 ± 639 4675 ± 589 [R = 1,M = 2] 9
fHump [α = 1,K = 5, r = 0.1] 6296 ± 1399 4067 ± 485 4663 ± 903 [R = 50,M = 7] 5
fHumpSin [s = 4, p = 8, z = 2, r = 0.1] 235579 ± 17139 164244 ± 6037 164340 ± 21293 [R = 2,M = 3] 128
fSin [s = 3, p = 5]

3

114298 ± 25678 78124 ± 16430 81771 ± 13131 [R = 100,M = 5] 125
fSin [s = 3, p = 6] 206403 ± 21129 143094 ± 12954 155076 ± 10033 [R = 100,M = 9] 216
fSinBasin [s = 3, p = 5] 98940 ± 41683 59311 ± 12260 43959 ± 16772 [R = 0.1,M = 2] 27
fSinBasin [s = 3, p = 6] 70355 ± 8959 57721 ± 7195 62957 ± 15797 [R = 5,M = 7] 27
fHump [α = 1,K = 5, r = 0.1] 81840 ± 15005 71421 ± 14414 68762 ± 14225 [R = 100,M = 5] 5
fHumpSin [s = 4, p = 4, z = 2, r = 0.01] 683312 ± 23255 561314 ± 21614 458303 ± 43231 [R = 2,M = 5] 128
fSinBasin [s = 3, p = 4] 5 359394 ± 25454 277184 ± 24792 254704 ± 34479 [R = 2,M = 3] 32
fHump [α = 1,K = 5, r = 0.1] 54612 ± 7034 50451 ± 7455 38566 ± 7390 [R = 2,M = 3] 5

TABLE I: Average number of evaluations needed by each algorithm to find all the optima (with 95% level confidence intervals).

This shows the relevance of the area selection implemented in
URDS: the algorithm automatically learns the areas where the
optima are concentrated. As expected, the three algorithms
have quite similar results for fSin, since this function has
regularly distributed optima.

In the two previous tables, the URDS results are the best
results we obtain among the experimented parameter sets. The
parameter R (trade-off between exploitation and exploration)
is particularly interesting to consider, since we clearly see the
influence of the function. Indeed, with functions where the
optima are regularly distributed (such as fSin and fHump in
low dimensions), the best results are obtained with a high
value of R (exploration). With functions where the optima are
concentrated in small areas (such as fSinBasin and fHumpSin), the
best results are obtained with a small value of R (exploitation).

To illustrate the impact of the URDS parameters (R and M )
more deeply, we plot the result of URDS for several functions
and parameter sets (see Fig. 2). These plots show that the
influence of R is related to the regularity of the distribution
of the optima whereas M is related to the “shape” of non-
regular distributions. For example, the fSin function presented
in Fig. 2a has regularly distributed optima. Therefore, the
best results are obtained for high R (exploration) and high
M (which forces a regular distribution of the restart points).
Similarly, the fHump function presented in Fig. 2b has also
regularly distributed optima, hence the best results for high R
and high M . The fHumpSin function presented in Fig. 2c has
its optima concentrated in two zones. The best results are thus
obtained for low R (exploitation) and high M (which enables
the algorithm to better fit these zones). Finally, the fSinBasin
function presented in Fig. 2d has regularly distributed optima
but only in the first quadrant of the search space. Here, the
most important parameter is M , since M = 2 perfectly fits
the interesting area.

VI. CONCLUSION

In this paper, we propose a new restart strategy for multi-
modal optimization. Our algorithm can handle complex func-
tions, for example locally complex functions or functions
where the optima are non-uniformly distributed over the search
space. It partitions the search space and models the successive
selections of a restart area as a multi-armed bandit problem,

solved using the UCB method. This enables the algorithm to
restart the local search in interesting areas.

Our algorithm outperforms classic restart-based algorithms,
such as the quasi-random restarts with decreasing step-size
algorithm, especially when the function to optimize is complex
(locally complex, basins. . . ).

As a drawback, this approach is limited to moderate dimen-
sions since the regular partition of the search space makes the
number of areas grows exponentially with the dimension. As a
perspective, we would consider using a dimension-independent
partition scheme.

Another drawback is the necessity to tune the two parame-
ters of the URDS algorithm. As another perspective, we would
remove the R parameter by using the UCB-TUNED method
proposed in [18].
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