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ABSTRACT

We investigate the behaviour of attention in neural models of visually
grounded speech trained on two languages: English and Japanese.
Experimental results show that attention focuses on nouns and this
behaviour holds true for two very typologically different languages.
We also draw parallels between artificial neural attention and human
attention and show that neural attention focuses on word endings as
it has been theorised for human attention. Finally, we investigate
how two visually grounded monolingual models can be used to per-
form cross-lingual speech-to-speech retrieval. For both languages,
the enriched bilingual (speech-image) corpora with part-of-speech
tags and forced alignments are distributed to the community for re-
producible research.

Index Terms— grounded language learning, attention mecha-
nism, cross-lingual speech retrieval, recurrent neural networks.

1. INTRODUCTION

Over the past few years, there has been an increasing interest in
research gathering the Language and Vision (LaVi) communities.
Multimodal corpora such as Flickr30k [1] or MSCOCO [2] contain-
ing images along with natural language captions were made avail-
able for research. They were soon extended with speech modality:
speech recordings for the captions of Flickr8k were collected by [3]
via crowdsourcing; spoken captions for MSCOCO were generated
using Google Text-To-Speech (TTS) by [4] and using Voxygen TTS
by [5]; extensions of these corpora to other languages than English,
such as Japanese, were also introduced by [6]. These corpora, as
well as deep learning models, lead to contributions in multilingual
language grounding and learning of shared and multimodal repre-
sentations with neural networks [4, 7, 8, 9, 10, 11, 12, 13].

This paper focuses on computational models of visually grounded
speech that were introduced by [14, 4]. Learned representations of
such models were analyzed by [11, 7, 4]: [11] introduced novel
methods for interpreting the activation patterns of recurrent neural
networks (RNN) in a model of visually grounded meaning repre-
sentation from textual and visual input and showed that RNN pay
attention to word tokens belonging to specific lexical categories. [4]
found that final layers tend to encode semantic information whereas
lower layers tend to encode form-related information. [7] showed
that a non trivial amount of phonological information is preserved
in higher layers, and suggested that the attention layer focuses on
semantic information.

Such computational models can be used to emulate child lan-
guage acquisition and could shed light on the inner cognitive pro-

This work was supported by grants from NeuroCoG IDEX UGA as part
of of the ”Investissements d’avenir” program (ANR-15-IDEX-02)

cesses at work in humans as suggested by [15]. While [11, 7, 4]
focused on analyzing speech representations learnt by speech-image
neural models from a phonological and semantic point of view, the
present work focuses on lexical acquisition and the way speech ut-
terances are segmented into lexical units and processed by a com-
putational model of visually grounded speech. We analyze a key
component of the neural model – the attention mechanism – and we
observe its behaviour and draw parallels between artificial neural at-
tention and human attention. Attention indeed plays a key role in
human perceptual learning, as stated by [16].

Contributions. We enrich an existing speech-image corpus
in English with forced alignments and part-of-speech (POS) tags
and analyse which parts of the spoken utterances the neural model
attends to. In order to put these experiments in a cross-lingual
perspective, we also experiment on a similar corpus in Japanese.1

We show that the attention mechanism mostly focuses on nouns for
both languages. We also show that our Japanese model developed a
language-specific behaviour to detect relevant information by pay-
ing attention to particles, as Japanese toddlers do. Moreover, the
bilingual corpus allows us to demonstrate that images can be used as
pivots to automatically align spoken utterances in two different lan-
guages (English and Japanese) without using any transcripts. This
preliminary result, in line with previous findings of [8], confirms that
neural speech-image models can capture a cross-lingual semantic
signal, a first step in the perspective of learning speech-to-speech
translation systems without text supervision.

Fig. 1: Neural model of visually grounded speech used in our exper-
iments.

1Both enriched corpora are available on https://github.com/
William-N-Havard/VGS-dataset-metadata.
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Fig. 2: Attention weights over an English (2a) and Japanese caption (2c), both describing the same picture (2b). Attention peaks in the
English caption are located above “AIRPORT” and “JETS”. Attention peaks in the Japanese caption are located above “NI” (particle indicating
location) and “GA” (particule indicating the subject of the sentence). Red dotted lines show token boundaries. Large orange markers show
automatically detected peaks. Japanese caption reads: “Several planes are stopped at the airport”

2. MODEL OF VISUALLY GROUNDED SPEECH

The model we use for our experiments is based on that of [4]. It is
trained to solve an image retrieval task: given a spoken description
it retrieves the closest image that matches the description. To do so,
the model projects an image and its spoken description in a common
representation space, so that matching image/utterance pairs lie near
while mismatching image/utterance pairs lie apart.

2.1. General architecture

The model (see figure 1) has two components: an image encoder,
and a speech encoder. At training time, the network is presented
with images and their corresponding spoken descriptions and tries to
minimise the following loss function:

∑
u,i

(∑
u′

max[0, α+ d(u, i)− d(u′, i)]

+
∑
i′

max[0, α+ d(u, i)− d(u, i′)]

) (1)

This loss function encourages the network to minimise by a mar-
gin α the distance d(u, i) between the encoded image i and the
encoded utterance u belonging to matching image/utterance pairs
while making the distance greater for mismatching image/utterance
pairs.

2.2. Encoders

The image encoder takes VGG-16 ([17]) pre-calculated vectors as
input2 instead of raw images. It only consists of a dense layer that
learns how to shrink the 4096 dimensional VGG-16 input vector to
a 512 dimensional vector, which is then L2 normalised. The speech
encoder (input is 13 MFCC vectors instead of raw speech) consists
of a convolutional layer followed by 5 stacked recurrent layers. Con-
trary to the original model ([4]), we used GRU units instead of RHN
units.3 Results are still acceptable (see Table 1) even if GRU archi-
tecture scores worse than original RHN one.

2.3. Attention mechanism

One of the key component of the model is its attention mechanism.
The model computes a weighted sum of the GRU activations at all

2VGG networks are trained to label images with a set of 1000 object cat-
egories from ImageNet.

3In fact, we aim at having a simpler model whose internal representations
would be easier to understand as we also intend to study the gating mecha-
nism in the future.

timesteps as following:
∑

t αtht. Knowing by how much a given
vector has been weighted gives us an insight on which portions of
the speech signal the network relies to make its predictions (see Fig-
ure 2). In the original architecture ([4]), attention follows the last
recurrent layer. To have more insight on the representation learnt
by the network, we added an attention mechanism after the first re-
current layer. Final vector produced by the speech encoder is a dot
product of the vectors produced by both attentions. However, for the
sake of clarity, we will only report in this paper results on the atten-
tion weights of the top attention mechanism GRU5 (after the fifth
recurrent layer).4

3. ENGLISH AND JAPANESE CORPORA

The corpora we use for our experiments are based on MSCOCO
[2]. MSCOCO is a dataset initially thought for computer vision pur-
poses, mainly automatic image captioning. The dataset consists of
a set of images, each paired with 5 written captions describing the
image. All captions were written in English by humans and faith-
fully describe the content of the image. The Japanese corpus we use
is based on the newly created STAIR dataset [6]. Using the same
methodology as [2], [6] collected 5 Japanese captions for each im-
age of the original MSCOCO dataset. As for the original MSCOCO
dataset, Japanese captions were written by native Japanese speak-
ers. It is worth insisting on the fact that these Japanese captions are
original captions and not plain translations of their English equiv-
alents. MSCOCO and STAIR are thus comparable corpora. We
trained our model on extended versions of MSCOCO and STAIR.
Spoken COCO dataset was introduced by [4] for English. We fol-
lowed the same methodology as [4] and generated synthetic speech
for each caption in the Japanese STAIR dataset. We created the spo-
ken STAIR dataset so it would follow the exact same train/val/test5

split as [4]. We thus have two comparable corpora: one featuring
images and spoken captions in English, and another one featuring
the same images and spoken captions in Japanese. This allowed us
to compare the behaviour of the same architecture on two typologi-
cally different languages.

We forced aligned each spoken caption to its transcription (using
the Montreal Forced Aligner [18] and Maus Forced Aligner [19] for
English and Japanese respectively), resulting in alignments at word
and phone level. We also tagged each dataset using TreeTagger [20]
for English and KyTea [21] for Japanese. As the tagset of both tag-
gers differs, we mapped each POS to its Universal POS equivalent
[22] enabling us to compare the POS distribution of each corpus.6

4Adding a second attention mechanism improves our results by -3 r̃.
5566 435, 25 000, and 25 000 captions in each set respectively.
6We decided to map KyTea’s TAIL tags – word conjugation – to Univer-



Model R@1 R@5 R@10 r̃
English 0.060 0.195 0.301 25
Japanese 0.054 0.180 0.283 28

Table 1: Recall at 1, 5, and 10 results as well as median rank r̃
on a speech-image retrieval task (test part of our datasets with 5k
images). Original implementation by [4] with RHN reports median
rank r̃ = 13 on English dataset. Chance for median rank r̃ is 2500.5.

4. WHAT DO MODELS PAY ATTENTION TO?

We first train two monolingual models for English and Japanese on
the train set (566 435 spoken captions) of the corpora for 15 epochs.
Baseline results are similar for English and Japanese (see Table 1).

To analyse the behaviour of the attention mechanism of our
model, we encoded each caption of the test set and extracted the
attention weights αt, resulting in an array of t weights. We then
used a peak detection algorithm7 to detect local maxima in the atten-
tion weights and thus know which timesteps were given the highest
weights (large orange markers in Fig. 2). We only considered peaks
that were at least 60% as high as the highest detected peak in the
utterance.

English Japanese
word peak freq. ref. freq word gloss peak freq. ref. freq
toilet 2.16 0.17 ga subject part. 17.83 5.25

baseball 1.84 0.22 no topic part. 9.53 6.24
train 1.71 0.25 o direct object part. 6.6 0.59

giraffe 1.6 0.11 ni location part. 6.55 3.58
skateboard 1.57 0.14 de location part. 1.81 1.72

sign 1.33 0.19 piza “pizza” 1.47 0.13
kitchen 1.17 0.18 to “with” part. 1.04 1.37

with 1.13 2.09 ke:ki “cake” 1.02 0.1
frisbee 1.11 0.11 shimauma “zebra” 0.99 0.09
cake 1.03 0.11 suke:tobo:do “skateboard” 0.98 0.13

Table 2: Top 10 focused words for English and Japanese. “Peak
freq.” refers the number of attention peaks (in %) above a given
word. “ref. freq.” refers to the frequency of the same word token
in the training set.

4.1. Which morpho-syntactic categories are highlighted by at-
tention?

Having a timestep aligned speech signal for each language enables
us to see above which words (and thus POS) attention focuses on.
Table 2 shows the top ten words located under peaks for both lan-
guages (and their corresponding frequency in the training corpus).
In order to see if the attention mechanism does any better than learn-
ing corpus statistics, we need a baseline POS distribution for com-
parison. One possibility would be to simply compare the proportion
of peaks under a given POS to the frequency of the same POS com-
puted on tokens (as provided in Table 2). However, by doing so,
we would assume that all tokens have the same length in the speech
signal, which is not the case (verbs are longer than determiners for
instance). Thus, for each spoken utterance of the test set, we sampled
50 ∗ p random peak positions (p number of true detected peaks per
utterance), and computed the POS distribution over such peaks (see
3a). We consider this as our baseline corpus distribution if attention
peaks were to occur randomly.

sal VERB tag, thus the high proportion of verbs in the Japanese dataset.
7Uses the first order difference of the input array - see https://github.com/

lucashn/peakutils.

(a)

(b)

Fig. 3: (a) Baseline POS distribution if attention peaks were to occur
randomly. (b) POS distribution of words under detected attention
peaks. English (blue) and Japanese (red).

4.1.1. English

We notice (Fig. 3b) that the attention mechanism of the English
model primarily focuses on NOUNS: 82% of the peaks are located
above nouns. This is far above corpus frequency, which is 47%. The
attention mechanism considers neither determiners (DET) nor ad-
positions (ADP) nor adjectives (ADJ) as relevant as only 0.6%, 3%,
and 2.85% are highlighted, where corpus frequencies would predict
7%, 8%, and 8% respectively. Verbs (VERB) are half as often high-
lighted as corpus frequency would predict, meaning attention barely
relies on such words to make its prediction.

4.1.2. Japanese

The Japanese attention mechanism clearly makes use of particles8

(PRT): 45.77% of the peaks are located above such words where
corpus frequency would predict 16.9%. In fact, 6 of the top ten
words are particles (see Table 2). Moreover, 17.83% of the peak
highlight speech segments corresponding to the GA particle, well
before nouns: GA is a particle that is used to indicate that the pre-
ceding word is the subject of the sentence. Thus, detecting such
a particle is most useful, as the preceding word surely is the main
object of the target image. The Japanese attention mechanism also
seems to rely on nouns as 47.79% of peaks are located above nouns.
One could argue this value is not very different from corpus fre-
quency: 47.42%. However, if such POS were to hinder prediction,
we would expect the attention mechanism to lower the number of
peaks above such words, such as the model did for verbs or adjec-
tives, which is not the case here, meaning NOUNS are useful for the
model’s prediction.

4.1.3. Child language acquisition and noun-bias

When learning their native language, it has been theorised that chil-
dren exhibit a noun-bias [23]:9 that is, in most languages children
learn nouns before any other catagory. We notice that both mod-
els exhibit such language-general behaviour and favour nouns over
other categories. Also, we showed that our Japanese model develops

8Particles are small suffixed grammatical words.
9[23] states that “words that refer to concepts are easy to learn because

the child has already formed object concepts, and need only match words
and concepts”.

https://github.com/lucashn/peakutils
https://github.com/lucashn/peakutils


a language-specific behaviour when mainly focusing on GA parti-
cles. [24] demonstrated that Japanese toddlers also make use of GA
to segment speech before any other particle. The noun-bias phe-
nomenon in our corpus can be explained by two factors: first, im-
ages in our corpus display many objects, thus prompting annotator
to use more nouns than verbs; second, VGG vectors (used to encode
images) are only trained to detect objects and not actions.

4.2. Attention above word beginnings or word endings?

Beginning Middle-Beg. Middle-End End
EN 6.19 9.14 39.24 45.42
JA 27.90 18.70 17.58 35.80

Table 3: Position of attention peaks above words for English (EN)
and Japanese (JA).

We analysed above which part of words peaks are located. We
divided each word beneath a peak into 4 equal parts and counted the
percentage of peaks located above a given category (see Table 3).
We notice that peaks in our English model are mainly located on the
second half of the words. This phenomenon is coherent with Slobin’s
[25] Operating Principles favoring language acquisition stating that
children “pay attention to the ends of words”. Peaks in Japanese are
located at word endings but also at word beginnings. It seems the
very beginning of some particles is able to trigger an attention peak.

5. IMAGES AS PIVOTS FOR CROSS-LINGUAL SPEECH
RETRIEVAL?

We have seen in previous section that attention focuses on nouns and
Table 2 suggests that these nouns correspond to the main concept of
the paired image. To confirm this trend, we experiment on a cross-
lingual speech-to-speech retrieval task using images as pivots.

This possibility was introduced in [8], but required training
jointly or alternatively two speech encoders within the same archi-
tecture and a parallel bilingual speech dataset while we experiment
with separately trained models for both languages. In [8], a parallel
corpus was needed as the loss functions adopted try to minimise
either the distance between captions in two languages or the dis-
tance between captions in two languages and the associated image
as pivot. As our approach uses two monolingual models, we do
not need a parallel corpus. Each monolingual model can be trained
on its own dataset featuring images and their spoken description.
The approach is the following: we first select a set of pivot images
never seen by any of the monolingual models before. We encode
these images with the image encoder of each language.10 Then,
for each speech utterance query in a source language usrc (English
for instance), we find the nearest speech utterance in the target lan-
guage utgt (Japanese for instance) which minimises the cumulated
distance d(usrc, i) + d(i, utgt) among all pivot images i.

To make sure no parallel dataset is used, we trained a new En-
glish model on the first half of the train set, and a new Japanese
model on the second half. We evaluated our approach on 1k cap-
tions of our test corpus to be comparable with [8].11 At the time of
the evaluation, given a speech query in language srcwhich we know

10Since both image encoders (from English and Japanese) are trained sep-
arately, they do not lead to the same representation of an image.

11We did not perform evaluation on the full 25000EN × 25000JP dis-
tance matrices where each source query is associated with 5 target captions.
Instead, we randomly sub-sampled ten 1000EN × 1000JP distance matri-

Query R@1 R@5 R@10 r̃
EN→ JP 0.087 0.327 0.519 9.94
JP→ EN 0.087 0.326 0.521 9.84

[8] EN→ HI 0.034 0.114 0.182 –
[8] HI→ EN 0.033 0.121 0.203 –

Table 4: Results on English (EN) to Japanese (JP) and Japanese to
English speech-to-speech retrieval (subset of 1k captions). For com-
parison, we report [8]’s results on English to Hindi (HI) and Hindi
to English speech-to-speech retrieval. Chance scores are R@1=.001,
R@5=.005, and R@10=.01. Chance for median rank r̃ is 500.5.

is paired with image I , we assess the ability of our approach to rank
the matching spoken caption in language tgt paired with image I in
the top 1, 5, and 10 results and give its median rank r̃. We report our
results in Table 4 as well as results from [8] who performed speech-
to-speech retrieval using crowd-sourced spoken captions in English
and Hindi.
Our results are surprisingly high given the fact we did not train
a bilingual model but used the output of two monolingual models
never trained to solve such a task. Nevertheless, it is also impor-
tant to mention that [8] experimented on real speech with multiple
speakers while we used synthetic speech with only one voice. Ta-
ble 5 shows an example of top-1 retrieved Japanese sentences for 2
English queries.

EN this is a display of donuts on a couple shelves
JA いろいろな種類のドーナツが並べられている
Trans. Different kinds of donuts are lined up
EN a living room with some brick walls and a fireplace
JA ソファーやテーブルや暖炉のある西洋風の部屋
Trans. Western-style room with sofa, table and fireplace

Table 5: Example of semantically related captions. English
(EN) query and retrieved Japanese caption (JA) and its translation
(TRANS).

6. CONCLUSION

In this paper we showed that attention in a neural model of visu-
ally grounded speech mainly focuses on nouns. We also showed that
this behaviour holds true for two very typologically different lan-
guages such as English and Japanese and that attention could also
develop language-specifc mechanisms to detect relevant information
in one of the languages. We also provided evidence that it is possi-
ble to perform speech-to-speech retrieval with images as pivots using
the output of two independently trained monolingual models. In fu-
ture work, we would like to validate our methodology on a bilingual
dataset featuring real voices and try to extract a bilingual speech-to-
speech dictionary using attention peaks as anchor points.
Ultimatly, we would like to emphasise the paramount importance of
using other languages than English when trying to analyse the lin-
guistic representations learnt by neural networks so as to understand
if the models encode language specific or language general infor-
mation, and thus better understand their strengths and weaknesses.
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