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A B S T R A C T

The study of fatigue delamination growth in composite materials aims to develop a slow-growth
approach for composite materials that would provide conservative and reliable results. The
present work focuses on the study of the load ratio effect on fatigue crack growth at constant
amplitude and on the effect of variable amplitude loading on crack propagation. With this in
mind, a Crack Driving Force (CDF) is chosen to attempt to overlap delamination growth curves
obtained from different load ratio values for mode I and mode II. It is shown that the CDF collects
the effect of the load ratio on the crack growth curves and allows to build a crack growth master
curve for mode I and II. Variable amplitude loads are then considered for delamination propa-
gation in mode I. However, variable amplitude loads bring to light a load history effect during
fatigue crack growth that the CDF does not take into account.

1. Introduction

Within the context of damage tolerance in aircraft structures, the aircraft certification published by the Federal Aviation
Administration (FAA) specifies: “ The evaluation should demonstrate that the residual strength of the structure will reliably be equal
to or greater than the strength required for the specified design loads (considered as ultimate), including environmental effects ”[1].
Consequently, first, the critical size for delamination must be determined and second, the time required for the damage to reach its
critical size when subjected to aircraft load spectra must be predicted. This research focuses on the latter phase. Within the context of
damage tolerance in metallic structures, crack growth under spectrum loading is relatively well understood. The latter can be pre
dicted using the Rainflow counting method for example, and taking into account delays related to the development of overloads in
the load history [2]. However, concerning fatigue driven crack growth in carbon/epoxy composite materials, further study is re
quired to determine whether such approaches are applicable. In fact, it is not yet fully understood how the different spectrum loading
levels interact during growth. Due to their laminated, fibrous structure, the damage created at the delamination front of composite
materials appears to be more complex than for a metallic material given that phenomena are more varied. A damage zone develops
around the main crack front; it includes plastic deformation or micro cracking of matrix which extents lead to side cracks and fibre
bridgings [3]. Furthermore, the type of organic matrix at the inter ply and in the ply, play an important role in terms of the matrix
toughness of the laminate. For example, the polymeric nature of the matrix, thermoset or thermoplastic, modifies this property [4], as
does the presence of nodules in the matrix [5]. According to the FAA on composite materials, the evaluation of default growth should
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give conservative and reliable results.
To describe fatigue driven crack growth, the Paris relation often adopts a power law and is formulated for composites as follows

(Eq. (1)):

=da
dN

k G. max
n

(1)

where da dN/ is crack growth rate, Gmax is maximal strain energy release rate during a fatigue cycle and k and n are empirically
determined parameters of the Paris Relation. Note that the strain energy release rate G is proportional to the load squared, and that
this relation does not take into account either the effect of the average load, or load frequency. The average load can also be
represented by load ratio R, defined as the ratio of the minimum load divided by the maximum load of the cycle. In addition, for small
displacement assumption ( <d a/ 0.4max ), displacements remain linear to forces, and the load ratio can be written as the displacement
ratio =R d d/min max [6].

An aeronautics load spectrum is the result of an overlapping of loads from different flight phases such as takeoff, ascent and
landing. Moreover, flight conditions such as gusts, and aeroelastic loads such as flutter also come into play. The spectrum parameters
may vary greatly over time and the crack propagation may experience interaction between different load levels. Consequently, it is
essential to verify if there is a load history effect when studying crack growth. This paper focuses on the effect of the load ratio and the
average load, and their variation histories, on crack growth rate.

In the literature, several authors have described the effect of load ratio on fatigue crack growth and it has been shown that for a
given value of Gmax, the load ratio R significantly influences crack growth rate da dN/ [7 14]. More specifically, the fatigue crack
growth curves plotted for different load ratio values are parallel but shifted, and the shift direction depends on the quantity used as
the X axis parameter: Gmax or GΔ for example. These quantities can be seen as active principles which control the crack growth and
will be generically denominated as Crack Driving Force (CDF) for the rest of the article. In fact, the curves resulting from the different
load ratios are not overlapped for the same CDF. Consequently, a recurring problem is how to define a driving force of crack growth
which would allow to plot a fatigue crack growth curve that does not depend on R, in particular by adjusting the definition of the
CDF. Theoretically, this would enable to predict crack growth for a load spectrum in which the value of R varies, if the different load
levels do not interact during crack growth.

Unlike the definition = −K K KΔ eff max eff , used for metallic materials to describe the effect of load ratio [15 18], the definition
= −G G GΔ max min, created by analogy, does not correctly take into account the effect of the load ratio [19]. This is due to the fact that

the principle of similitude is not respected and the load ratio is defined as the coefficient of restitution =R G G/min max rather than a
force ratio, as is true for KΔ eff .

The definition of Rans[19], used by Maillet[20], (Eq. (2)) re establishes this by setting this expression for =R G G/min max .

= −
= −

G G G
G R

(Δ ) ( )
(1 )

max min

max

2 2

2 (2)

A load ratio effect R on da dN/ cited in the literature can be related to the phenomenon of increased delamination resistance as a
function of crack growth, called R curve. For growth under mode I, in a unidirectional carbon/epoxy composite, Yao and his co
authors [13] observed that fracture surfaces formed during growth show more pronounced relief at high load ratio R. This increases
resistance to growth and hence decreases growth rate. According to the authors, this could favor the development of fibre bridging
and consequently help slow growth.

If a crack growth rate curve variation is plotted as a function of G(Δ )2 in the following manner: =Log da dN Log G( / ) ((Δ ) )2 , the
crack growth curve is a straight line, which means that the Paris relation (Eq. (1)) applies. However, straight lines resulting from the
different values of R are significantly shifted, while being nearly parallel. This means that the parameter n in the Paris relation (Eq.
(1)) should be identical. Hence, it is possible to produce a master propagation curve, independent from the load ratio, by introducing
a shift parameter, γ , according to the Eq. (3) [20].

Nomenclature

a crack length
b width of the specimen
C0 constant compliance parameter
d displacement
da dN/ crack growth rate
DCB Double Cantilever Beam
F force
G Strain Energy Release Rate (SERR)
Gmax maximal SERR during a fatigue cycle
Gmin minimal SERR during a fatigue cycle
GIc critical SERR in mode I

GΔ load amplitude (= −G Gmax min)
G(Δ )2 load amplitude with respect to the similitude with

= −K G G G, (Δ ) ( )max min
2 2

K stress intensity factor
Kmax maximum stress intensity factor during a fatigue

cycle
Kmin minimum stress intensity factor during a fatigue

cycle
k constant in the Paris crack growth equation
m exponent compliance parameter
n exponent in the Paris crack growth equation
R load ratio (= d d/min max)



= −
= −

−

−
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γ
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γ
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Unlike load ratio effect, there is relatively little in the literature on fatigue crack growth under variable amplitude loading on
epoxy/carbon composite. Yao [21] performed fatigue testing under variable amplitude loading. The load profile is composed of two
fatigue tests: the first one is carried out at =R 0 or =R 0.5 and the second at =R 0.5. Plotting the Fatigue Crack Growth Rate (FCGR)
as a function of the maximum strain energy release rate (SERR) for the second block shows in both cases a propagation curve parallel
to the first block. However, the growth rates of the second block of the load profile =R 0.5/ =R 0.5 are significantly lower than those
with the profile =R 0/ =R 0.5. This could be explained by the development of more fibre bridging during the first block at =R 0.5,
which would decrease the growth rates of the second block.

To assess the effect of load ratio on crack growth, the first section of this study focuses on constructing a master propagation curve
for fatigue crack growth in mode I and in mode II for the material under consideration. To this end, four load ratios are considered in
mode I, and respectively three load ratios in mode II, making it possible to identify the shift parameter γ . The second section of this
paper deals with fatigue crack growth under variable amplitude loads in mode I. The experimental results show the importance of the
load history effect. Using the linear Paris relation obtained in the first section of this study, an estimation of crack growth is obtained.
The purpose is to determine whether the definition GΔ eq is accurate enough to predict crack growth taking into account the potential
load history effect.

2. Experimental conditions

2.1. Materials and specimens

Tests are carried out on the T700/M21 epoxy/carbon composite, provided by HEXCEL. Specimens are cut from plates measuring
400 ×300 mm2, made from unidirectional stacking of 20 plies of T700/M21 pre pregs. The plates have then been autoclave poly
merized respecting the manufacturer recommended curing cycle. Specimens dimensions are 180 (×) 25 (×) 5 mm3 (length, width,
thickness). A Teflon insert with a thickness of 25 μm is placed in the median plane to create an initial size default equal to 40 mm.

In mode I, tests are performed using a DCB test device. The loading tabs, the dimensions of which comply with the standard ASTM
D5528 [22], are placed on the two edges of the crack to load the specimen in opening mode. An S100 crack gauge provided by
RUMUL is then fixed on the edge of the specimen and connected to a Fractomat which provides a measurement of the crack length in
real time. The fractomat resolution for a 100mm gauge is given as ± 10μm.

In mode II, tests are performed using an ELS test device. Clamping of the specimen is insured by 2 screws tightened with a
calibrated lever arm as specified in the Standard ISO 15114:2014 [23]. The load head is specifically designed to enable fatigue tests
at negative load ratios. Specimens are graduated every millimeter on the edge to monitor the growth by observation during tests. The
measurement incertainty is evaluated to 0.5 mm.

All specimens are pre cracked in mode I under static loading at a displacement rate of 0.1 mm/min to initiate the crack over a
minimum of 2 mm. No specific conditioning was performed on specimens before tests. Tests were performed at Room temperature
and Room humidity ratio.

2.2. Test devices

In mode I, fatigue tests are performed on a hydraulic machine at a frequency of 10 Hz, equipped with a load cell with a capacity of
200 N (Fig. 1). Required displacement Tests are performed. For these tests, force, displacement and length of the crack are constantly
recorded.

In mode II, fatigue tests are performed on a hydraulic machine at frequency 1.5 Hz, equipped with a load cell with a capacity of
500 N (Fig. 2(a)). Imposed displacement tests are performed. For these tests, force and displacement are recorded. The size of the
crack is monitored by dye penetrant: an ultraviolet reagent solution is introduced in the crack and spreads by capillary action along
the crack. The test is interrupted every 200 cycles in maximum displacement position and a picture of the specimen section is taken.

Fig. 1. DCB test device for fatigue in mode I.



This enables to determine the development of the crack length during the test. The crack front is identified on each picture (Fig. 2(b)).
Initial and final crack length are always checked directly on the specimen before and after tests.

2.3. Data processing

2.3.1. Mode I
The maximum SERR is calculated using the compliance law. It is expressed by the Berry law = ∗C C am

0 for each specimen. Gmax is
then calculated using the Irwin Kies formula (Eq. (4)):

= ∂
∂

= +G
P

b
C
a

md
bC a2

.
2max

max max
m

2 2

0
1 (4)

where dmax is the maximum displacement reached during the cycle, b is the specimen width, a the crack length and m and C0 the
formerly defined compliance parameters. Crack growth rate da dN/ is calculated using the 7 points polynomial method in the
Standard ASTM E647 05 [24]. When the crack growth rate is low (< −10 6 mm/cycles), a smoothing is performed by averaging the
crack length within a sliding window of 200 cycles. The acquisition frequency is defined at 300 Hz to have 30 measurement points
per cycle which allows to measure the different required quantities: a P d, ,max max .

2.3.2. Mode II
Experimental Compliance Method as presented in the Standard ISO 15114:2014 [23] has been used to calculate the value of the

SERR. The crack length must be known at each cycle, while acquisition occurs every 200 cycles. Using the compliance expression in
mode II = +C ma C3

0, it is possible to determine the crack length. To do so, specimen compliance at cycle N,

Fig. 2. (a) ELS test device (b) example of picture taken during fatigue test and used to measure the crack extension.

Fig. 3. Fatigue crack growth reference curves in mode I for =R {0.1;0.25;0.4;0.6}.

175













identified in the first section (Fig. 9(a)).

3.4.1. Loads at constant R and two levels of dmax
The load ratio is set at =R 0.1. Two levels of maximum displacement dmax,1 et dmax,2 are considered. They are determined such that

dmax,1 and dmax,2 correspond to a given percentage of the critical energy restitution rate considering the size of the initial crack.
Respectively here, at a maximum initial energy restitution rate =G G0, 6initial Ic1, and =G G0, 4initial Ic2, , where GIc is the static SERR of
the material in mode I. Then >d dmax max,1 ,2.

Two blocks tests First, tests at two blocks were performed: the totality of cycles is divided into two blocks, one at dmax,1, the other
at dmax,2. Two specimens are tested so as to obtain a block at maximum displacement dmax,1 first and another one so as to obtain a
block at maximum displacement dmax,2 first (see legend). The results of these tests are shown in Fig. 10.

The red line copied from Fig. 8 represents the tests performed under constant loading at =R 0.1. It serves as a reference to situate
the crack growth curves per block relative to tests under constant amplitude loading.

Whether the first block is at high dmax,1 or low dmax,2, the crack growth rates observed for the block at low level are much higher
than the crack growth rates which would have been expected by using the constant amplitude linear Paris relation obtained before for

=R 0.1 (red line). This difference might be due to a difference in the damage state extent at the delamination tip resulting from the
progression of the delamination crack under either constant amplitude loading or variable amplitude loading.

Table 2
Overview of variable amplitude loads for n blocks, at R constant and dmax variable.

Test Block 1 Block 2 Repetitions

Test 1 10k cycles at dmax,1 50k cycles at dmax,2 13
Test 2 10k cycles at dmax,2 5k cycles at dmax,1 120

Fig. 11. Crack growth curves for an alternating load of blocks at dmax,1 and blocks at dmax,2 as a function of G G/max Ic with the reference curve =R 0.1.

Fig. 12. Estimation of crack growth under load at constant load ratio and variable maximum displacement for the two cases considered: 2∗13 blocks
(left) and 2∗120 blocks (right).







G G/max Ic but also as a function of G GΔ /eq Ic since the crack growth master curve is assumed to reflect the effect of the load ratio. The
resulting growth curves are represented on the figure below (Fig. 13), where the marker change (crosses and circles) indicates the
block change in the load. The red and blue lines are respectively the reference curves at =R 0.1 constant and =R 0.4 constant of the
first part (Fig. 8).

The crack growth curves obtained for loading at two blocks show clearly a load history effect (Fig. 13(a)). When the first block is
at =R 0.1, the second block at =R 0.4 shows much higher crack growth rates than the reference curve at =R 0.4. If there were no
load history effects, the latter block should be on the reference curve at =R 0.4. An effect when the first block is at =R 0.4 can also be
observed: the crack growth rates of the second block are lower than those of the reference curve at =R 0.1. This is more visible on the
Fig. 13(b), where the growth data are plotted as a function of GΔ eq. The first blocks are clearly situated on the crack growth master
curve as they are not impacted by a load history. However, the second blocks are both shifted from this curve: towards higher rates
for the block at =R 0.4 and towards lower rates for the block at =R 0.1.

It may be supposed that the block at load ratio =R 0.4 builds more resistance to crack propagation. This would explain the crack
propagation rates decrease at the transition for a = − =R R0.1 0.4 load program. Similarly, the crack growth rate is increased at the
transition for a = − =R R0.4 0.1 load program.

In the same way as previously described, fatigue tests at several blocks of each load ratio are performed (Table 3). The crack
growth curves obtained are shown in Fig. 14.

For the two tests, the effect previously observed for two blocks can be seen again. The transition from one block =R 0.1 to a block
=R 0.4 decreases the crack growth rate while the inverse transition increases it (Fig. 14). However, the interest of these two tests lies

in the position of the crack growth curves obtained. If the load ratio of the first block is =R 0.1, then the crack growth curve “will
follow” the reference curve of this load ratio. The same scenario occurs in the case when the first block is at =R 0.4.

It is possible to simulate the crack growth (Fig. 15). This uses again the crack growth rates of reference curves =R 0.1 and =R 0.4
for the associated blocks.

Both for the test starting with a block at =R 0.1 or the test starting by a block at =R 0.4, the estimations are skewed by the load
history effect. In the first case, the growth is under estimated since the blocks at =R 0.4 present crack growth rates much higher than
those of the reference curve at =R 0.4. In the second case, the growth is overestimated since this time, the blocks are at =R 0.1 which
present lower crack growth rates than those of the reference curve at =R 0.1. In view of the crack growth curves, the crack growth
estimation is potentially better if it is performed with the load ratio reference curves of the first block, in other words that it is
considered that the blocks are all carried out at the load ratio of the first block. In this case, the crack growth estimations become
those shown in Fig. 16.

The estimation of the crack growth is effectively better when a single load ratio is considered. However, the estimations are not
conservative when the load ratio of the first block is the lowest.

4. Conclusions and perspectives

First, the effect of the load ratio has been demonstrated for the material used, and shows that at a given Gmax, an increase in R
results in a decrease in crack growth rate. The Paris slope identified is however similar from one load ratio to another. SEM ob
servations show that the damage develops with the crack propagation and thus decreases the crack growth rate. Using the definition

GΔ eq, a crack growth master curve independent from the load ratio was plotted. In case of constant amplitude loading, this curve can
be used to simulate the crack propagation. The question remains if it can be used in the case of variable amplitude loading.

To verify this assumption, tests were performed for loads alternating blocks either at variable dmax and constant R or at dmax

Fig. 16. Estimation of crack growth under variable load ratio and constant maximum displacement considering a single load ratio.



constant and R variable. The tests highlighted the effect of load history. In the first case, the load history effect is weak, where blocks
made at the weaker dmax show faster rates than those of the reference curve. In the second case, it was shown that the crack growth
curve followed the load ratio reference curve of the first block, which reflects the important effect of the load history. This shows that
the obtained crack growth master curve cannot simulate the crack propagation for variable amplitude loading.

FAA requires conservative and reliable results for the slow growth characterization for composite structures. The question re
mains to include correctly the effect of variable amplitude loading in the determination of a conservative and reliable crack growth
curve for low crack growth rates.
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