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Abstract—The transportation sector is a major contributor to
both air pollution and greenhouse gas emissions. While opti-
mizing fuel consumption reduces CO2 emissions, it can increase
fuel-rich operation and cause higher HC and CO emissions. A
simplified emissions model is thus introduced in order to account
for the impact of air/fuel ratio on both the exhaust concentration
of regulated pollutants and the catalyst efficiency. This model is
used to solve the eco-driving problem with dynamic programming
and a weighted objective function. An emission-centered and a
consumption-centered scenario are compared on various driving
cycles and with several time constraints. The optimal driving style
in terms of emissions shows a substantial decrease in CO and
HC while consumption stays relatively stable and NOx emissions
slightly increase.

Index Terms—eco-driving, pollutant emissions, dynamic pro-
gramming, air/fuel ratio

I. INTRODUCTION

The transportation sector is a major contributor to both

air pollution and greenhouse gas emissions. Researchers and

manufacturers have thus been working on the design of vehicle

components to improve their aftertreatment capabilities and

energy efficiency. For a given design, emission levels and

fuel consumption still vary across the operating range [1].

Therefore, the vehicle’s performance strongly depends on the

driver’s choice of gears and speed trajectory [2]. Ecodriving

attempts to determine the optimal driving style for a specific

vehicle on a predefined trip.

Many publications on ecodriving focus on minimizing

fuel consumption, which is proportional to CO2 emissions.

However, previous work by Mensing [3] showed that such

strategies can increase other pollutant emissions because they

encourage the use of high engine loads. To address the trade-

off between emissions and consumption, Mensing reduced

operation in this unfavorable region by introducing an arbitrary

penalty factor. Johansson also recommended avoiding high-

load areas in an experimental study on ecodriving style [4].

The aim of our work is to provide a more systematic ap-

proach to this optimization problem by including a simplified

emissions model in an ecodriving method based on dynamic

programming.

The following section introduces the model used to evaluate

the impact of air/fuel ratio (AFR) on exhaust composition

and catalytic converter efficiency in high-load ranges. Next,

Fig. 1. Standard powertrain schematic

the optimal driving style for a given trip is determined with

dynamic programming. Finally, the resulting trade-off between

fuel consumption and emissions is discussed.

II. MODELS

A. Vehicle model

This work focuses on the behavior of spark ignition engines.

The engine is studied in the context of a standard powertrain,

which includes an internal combustion engine (ICE), followed

by a clutch, a gearbox, and a final drive reduction (FD), as

seen in Fig. 1.

The vehicle’s motion is modeled on the longitudinal axis,

where the projection of Newton’s second law (1) expresses

the relation between the powertrain’s traction force (Ft), the

aerodynamic drag (Faero), the rolling resistance (Froll) and

the acceleration force given by the mass of the vehicle (m),

the equivalent mass of the rotating parts (mrot), and the

acceleration (a).

Ft = (m+mrot) · a+ Faero + Froll (1)

The aerodynamic drag given by (2) is proportional to the

air density (ρ), the body’s cross sectional area (A) and drag

coefficient (CD) and the square speed of the vehicle (v).

Faero =
1

2
· ρ ·A · CD · v2 (2)

The rolling resistance is given by (3) where g is the

standard acceleration due to gravity, c0 the constant rolling

resistance coefficient, and c1 is the quadratic rolling resistance

coefficient.

Froll = m · g · (c0 + c1 · v
2) (3)



15%

33%

1.05
1.1

0 1000 2000 3000 4000 5000 6000

Speed (rpm)

0

20

40

60

80

100

120

140

160
T

or
qu

e 
(N

m
)

eng

CO
(g/s)

20%
25%

30%

1.15

0.1

0.2

0.3

0.4

Fig. 2. Engine efficiency and CO emissions (measures) - AFR (model)

The transmission is composed of a final drive (with a ratio

kFD and an efficiency ηFD) and a gearbox (with a ratio kGB

and an efficiency ηGB). Equation (4) expresses the engine’s

torque (Teng) as a function of the transmission parameters, the

traction force and the tire radius (Rtire).

Teng = Ft ·
Rtire

ηFDkFD · ηGBkGB

(4)

In order to identify the engine’s operating point, the engine

speed (ωeng) also has to be defined as given by (5).

ωeng = v ·
kFD · kGB

Rtire

(5)

B. Spark ignition engine

1) Fuel consumption: knowing the engine’s operating point

(see vehicle models) and assuming a quasi-static relationship,

the fuel consumption (ṁf ) can be computed from a lookup

table, as expressed in (6). The table is obtained from test-bench

measurements on a 1.6-liter gasoline indirect injection engine

and the corresponding engine efficiency is shown as map of

speed and torque (Fig. 2).

ṁf = ṁf (ωeng , Teng) (6)

It can be observed on the map (Fig. 2) that in the low-load

ranges, efficiency increases with torque as the relative weight

of friction decreases. However, efficiency decreases again in

high-load ranges (contour lines closing on themselves). This

phenomenon coincides with the high emissions measured by

Mensing on an ecodriving cycle in [3], which appear as red

dots in Fig. 2. This can be attributed to a change in the

chemical composition of the air/fuel mixture.

In gasoline engines, fuel can be injected in excess with

respect to the stoichiometric combustion ratio in high-load

ranges [5]. This has several advantages: as fuel vaporization

lowers the gas temperature at intake, it increases its density
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Fig. 3. Data input for the emissions model

and draws a higher mass of mixture in the cylinder. Fuel-

rich conditions also decrease the exhaust temperature, low-

ering stress on the engine [6]. However, this strategy causes

incomplete combustions, which are detrimental to the overall

energy efficiency and lead to unburned hydrocarbons (HC) and

CO emissions.

2) AFR and pollutant emissions: in this paper, we assume

that the mixture is stoichiometric up to 85% of the maximum

torque, as it is the limit of the high-emissions zone identified

in [3]. The relative AFR (φ) then increases with the load. It can

be expressed as a static function of the engine speed and torque

(7). The corresponding map for the relative AFR is shown in

dashed lines in Fig. 2. The quasi-static approach assumes that

the engine’s AFR control compensates for transients due to

fuel pooling in the intake manifold.

φ = φ(ωeng , Teng) (7)

The pollutant concentrations ([S] with S = CO, HC, NOx)

before the catalyst are then interpolated based on typical values

of the AFR for spark ignition engines as in [6] (see Fig. 3).

Each pollutant’s mass flow (ṁS) is given by (8). It depends

on the concentration of the respective species and the flow of

gas out of the engine (ṁg). As the composition of the mixture

is given by the AFR, the flow of gas can be determined from

the fuel consumption, the relative AFR and the stoichiometric

AFR (ψS).

ṁS = ṁg · [S](φ) = ṁf · (1 +
ψS

φ
) · [S](φ) (8)

Finally, tailpipe emissions strongly depend on the three-

way catalyst, which removes more than 90% of the regulated

pollutants in its nominal working conditions: stoichiometric

AFR and above light-off temperature [7]. Since our study

focuses on the influence of the AFR in high-load ranges, we

assume perfect thermal efficiency. The capacity of the catalyst

to store oxygen in order to maintain stoichiometric AFR in

the short term is also neglected. The catalyst efficiency (ηcata)



can thus expressed as a Wiebe function of AFR according to

Shaw’s approach in [8] (see Fig. 3). The tailpipe mass flow

for each pollutant is then given by (9).

ṁS = ṁf · (1 +
ψS

φ
) · [S](φ) · (1− ηcata(φ)) (9)

III. OPTIMIZATION METHOD

A. Optimal control problem

Ecodriving consists in optimizing gear choice and velocity

trajectory for a given trip. We have applied the algorithm

developed by Mensing during her PhD studies [9]. Gear choice

is the result of an instantaneous optimization: the gear which

results in the lowest cost is chosen for each time-step. On the

other hand, acceleration is the controllable input to be opti-

mized. This can be formulated as an optimal control problem

where acceleration is the control variable (u(t) = a(t)).

The state vector of the system (x) can be described by two

variables: speed and distance (x(t) = [v(t), d(t)]) which are

submitted to the dynamics given by (10).

[

v̇(t)

ḋ(t)

]

=

[

0 0
1 0

] [

v(t)
d(t)

]

+

[

1
0

]

a(t) (10)

In order to study pollutant emissions and fuel consumption,

the cost function to be minimized is a weighted sum of

both during a time window (T ). Equations (1) to (9) define

consumption and pollutant mass flows as a function of the

control variable and state vector, the objective function can

thus be written as (11). In order to compare the various

pollutants, the corresponding Euro 4 emission limit (Slim) are

introduced as a scaling factor.

J =

∫ T

0

(

ṁf (u(t), x(t)) + α
∑

S

ṁS(u(t), x(t))

Slim

)

dt (11)

The problem’s constraints describe the predetermined trip.

They consist of speed limits, initial and final velocity, as well

as total trip distance and time. The maximum allowable speed

is given as a function of distance.

This optimization is usually performed using dynamic pro-

gramming or the Pontryagin Minimum Principle [10]. We used

dynamic programming, which can be computation intensive

but allows an easier integration of constraints.

This ecodriving method was introduced by Hooker in [11]

and it is based on the iterative solving of a graph built by

discretizing the vehicle’s state variables. In order to account

for the constraints in time, distance and speed, Hooker used

a 3-dimensional approach with time as one of the three state

variables. However, further developments in [12], [9], and [10]

chose only two state variables (distance and velocity) and

included the time constraint in the objective function in order

to speed up calculation. As we chose the same approach, the

discrete-time objective function is given by (12) where ∆tk is

a variable time-step.
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Fig. 4. Speed constraints extrapolated form ARTEMIS urban cycle

J =
∑

k

ṁf,k∆tk

+ α ·

∑

k

(
ṁCO,k

COlim

+
ṁHC,k

HClim

+
ṁNOx,k

NOxlim
)∆tk

+ β ·

∑

k

∆tk

(12)

The trade-off between fuel consumption and pollution is

investigated by varying the weighting factor α. For each value

of α, the parameter β is determined with a bisection method

in order to fulfill the time constraint.

B. Simulation parameters

Our vehicle model is based on a Peugeot 308, with typical

values for a compact car :

TABLE I
VEHICLE SPECIFICATIONS

Mass 1470 kg

Gearbox 5-speed (38/11 28/15 40/31 39/41 35/47)

Final drive 81/17

Catalyst three-way catalytic converter (EURO 4)

Engine 1.6L naturally aspired gasoline indirect injection

The main results of this study are presented with speed

constraints extrapolated from the urban driving cycle of the

ARTEMIS program (see Fig. 4). The total trip time for the

optimization is only 710 seconds as idle periods have been

cut (their speed profile is already fixed). The corresponding

fuel consumption and emissions are added after the graph has

been solved.

As highlighted in [10], the results of dynamic programming

depend on the state variables’ discretization step. We have

chosen a distance step of 2 meters and a speed step of 0.01

meters per second, as further refining didn’t have a significant

impact on the results.
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Fig. 5. Emission ratios as a function of weighting factor α

IV. RESULTS AND DISCUSSION

A. Simulated emissions

While the simulated speed profile does not match the stan-

dard (New European Driving Cycle), we could have expected

emissions similar or higher than the limit as our cycle is

quite dynamic. However, for all the tested scenarios (pollutant

weighting factor α ∈ [0, 0.5]), simulated HC are lower than

the limit and NOx emissions are significantly lower than

the associated standard (see Fig. 5). This is consistent with

the fact that our emissions model does not account for the

coldstart period where the catalyst efficiency is close to null.

The impact of this phase can be great in the case of HC,

as mentioned in [13]. On the other hand, CO levels are the

closest to the limit, which suggests that the model offers a

better description of CO formation mechanisms. This matches

with Andrianov’s observations [14] that CO concentrations are

weakly dependent on all tested variables other than AFR.

CO and HC are mainly emitted during short acceleration

bursts as a series of spikes (see Fig. 6) which correspond

to high-load fuel-rich operation. In our model, these phases

have a very adverse effect on CO and HC as high exhaust

concentrations coincide with low catalyst efficiency. Recent

measurements by Zhu [15] show that while AFR has a lesser

effect on HC emissions, CO is indeed emitted in short spikes

which match fuel-rich operation.

B. Emissions vs consumption

In our emissions model, the choice of a weighted objective

function has a significant impact on emissions. While fuel

consumption stays stable (see table II), HC and CO sharply

decrease and reach an asymptotic value with the increase of the

weighting factor α (see Fig. 5). The NOx emissions slightly

increase as their behavior is antagonistic with regards to the

AFR but they stay significantly below the standard value. We

can compare two extreme scenarios.

TABLE II
FUEL-CENTERED AND POLL.-CENTERED SCENARIOS COMPARED

Fuel (L/100km) CO (g/km) HC (g/km) NOx (g/km)

Fuel-cent. 5.8 1.1 0.07 0.03

Poll-cent. + 0.1% - 55% - 17% + 3%
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Fig. 6. Ecodriving cycles and CO emissions for the identified scenarios

• In the fuel-centered scenario, the objective function only

considers the fuel consumption (α = 0).

• In the pollutant-centered scenario, the emission term has

a high weighting factor (α > 0.3).

It can be observed in Fig. 6 that both scenarios have almost

overlapping speed profiles. They both implement the same

strategy in order to reduce the fuel consumption as illustrated

on Fig. 7 where we zoom on a sequence between two

stops. The optimal solution alternates between acceleration

phases (P1 in white), stabilized speed (P2 in yellow), slow

deceleration (P3 in blue) and fast deceleration (P4 in green).

In the acceleration phases (P1), high gears are chosen in

order to increase the torque (and lower the engine speed) to

take advantage of the increase in efficiency of the engine in

higher torque regions. In the slow deceleration phases (P2),

the engine is disconnected from the wheels and the vehicle’s

speed is a result of its inertia. The engine consumes some fuel

to maintain its slowest speed but the ratio between average

velocity and fuel consumption is still advantageous. In the

fast deceleration phases (P3), the engine is connected to the

wheels and functions as a brake. The injection is then cut-

off and there is no fuel consumption. Finally, the stabilized

speed phases (P4) actually show an oscillating behavior around

a mean speed by alternating between acceleration and slow

deceleration. The resulting fuel consumption is lower than

maintaining the equivalent cruising speed by taking full ad-

vantage of the engine efficiency and of the vehicle’s inertia.

This last strategy leads to very frequent disengaging of the

engine which is not very realistic and the oscillating behavior

might be uncomfortable for the user. A more realistic driving

style could be proposed by grouping all the decelerating phases

and all the accelerating phases together. The optimality of this

solution could be investigated by introducing a penalty for

frequent gear change in the current algorithm.
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While excursions in the fuel-rich zone still occur for the

pollutant-centered scenario in the dynamic phases in order

to meet the time constraint, the decrease in CO and HC is

obtained by reducing the load. In the fuel-centered scenario,

the maximum load is very close to 100% (99.9%). In the

pollutant-centered scenario, the load does not exceed 87% of

the highest torque (85% being the start of the fuel-rich zone).

This is achieved thanks to a change in acceleration and gear

shifting strategy for the acceleration phases. Such a behavior

is shown in Fig. 8 where we zoom on a dynamic phase.

The pollutant-centered scenario displays a lower acceleration

(lower resulting speed) and the choice of a higher gear is

delayed in order to keep the torque within acceptable bounds.

This strategy successfully reduces the CO spike.

While the CO and HC emissions are significantly reduced,

the fuel consumption stays stable. This suggest that several

paths lead to a similar fuel consumption with different accel-

eration strategies, which introduces a degree of freedom to

optimize the emissions.

Finally, NOx emissions increase by 3% in the pollutant-

centered scenario. This is not surprising as NOx formation

mechanisms requires high temperatures [6] and fuel in excess

lowers it. Furthermore, while CO and HC oxidation in the

catalyst is less efficient in rich conditions, NOx reduction is

improved. The effect of AFR on NOx is thus inconsistent with

the one it has on the other species.

TABLE III
FUEL CONSUMPTION AND EMISSIONS FOR VARIOUS ARRIVAL TIMES

T 0.9T 0.8T

Fuel (L/100km) 5.8 6.4 8.2

CO (g/km) 0.5 0.6 0.8

HC (g/km) 0.06 0.06 0.08

NOx (g/km) 0.03 0.02 0.03

TABLE IV
RELATIVE DIFF. BETWEEN SCENARIOS FOR VARIOUS ARRIVAL TIMES

T 0.9T 0.8T

Fuel (L/100km) +0.1% +0.3% +1.6%

CO (g/km) -55% -18% -96%

HC (g/km) -16% -2% -79%

NOx (g/km) +3% -25% +44%

C. Effect of trip constraints

In order to validate the previous results on several missions,

we will study the impact of the trip’s arrival time and the

chosen cycle on fuel consumption and pollutant emissions in

the following sections.

Table III shows the emissions and pollution results for the

pollutant-centered scenario, when the total trip time is reduced

by 10% and by 20%. Table IV corresponds to the relative

difference between the pollutant-centered and the fuel-centered

scenario for each arrival time.

In table III, we observe that the consumption increases when

the trip time is shorter, as expected. This trade-off between

arrival time and consumption has already been studied in

literature [16] [9]. Table IV shows that for all trip times, the

consumption increases for the pollutant-centered scenario. The

increase is more substantial for a reduced trip time as there

is less freedom to choose the speed profile. However, the

maximum fuel consumption increase that we have observed

is still less than 2% which is relatively stable.

Table III displays an increase in CO as the travel time

decreases. This is due to increasingly dynamic phases which

require high loads and fuel in excess. The impact of travel

time on HC is less pronounced but the same trends still

hold. A trade-off between emissions and travel time is thus

revealed, as previously described with fuel consumption. In

table IV, there is always a significant decrease in CO between

the pollutant-centered scenario and the fuel-centered scenario.

This is expected as CO emissions are the closest to the

standard limit and thus have the largest impact on the sum

of normalized emissions. Minimizing the pollution term is

thus closely related to the minimization of CO emissions. As

mentioned earlier, HC emissions present a behavior similar to

that of CO, with a less pronounced impact as the decrease in

catalyst efficiency for CO is significantly steeper (Fig. 3).

The response of NOx emissions to AFR is inconsistent with

the one it has on CO and HC. Furthermore, the modeled

emissions for this pollutant are low, which makes the relative

differences quite sensitive to even small changes in values.



TABLE V
FUEL CONSUMPTION AND EMISSIONS FOR VARIOUS DRIVING CYCLES

ARTURB ARTROUT HYZURB

Fuel (L/100km) 5.8 3.9 5.1

CO (g/km) 0.5 0.2 0.4

HC (g/km) 0.06 0.03 0.05

NOx (g/km) 0.03 0.01 0.02

TABLE VI
RELATIVE DIFF. BETWEEN SCENARIOS FOR VARIOUS DRIVING CYCLES

ARTURB ARTROUT HYZURB

Fuel (L/100km) +0.1% +0.1% +0.2%

CO (g/km) -55% -40% -34%

HC (g/km) -16% -10% -8%

NOx (g/km) +3% -0.2% +3%

A trade-off between emissions and consumption for this par-

ticular pollutant is not observed for the arrival times that we

studied (see table III). A more complete model would need to

be built in order to conclude as to the trends for this pollutant

as it depends on a large number of other parameters, such as

spark timing, engine speed, and intake conditions [14].

Table V shows the emissions and pollution results for

the pollutant-centered scenario, for the previously introduced

urban ARTEMIS cycle (ARTURB), the extra-urban ARTEMIS

cycle (ARTROUT) and the urban hyzem cycle (HYZURB).

Table VI corresponds to the relative difference between the

pollutant-centered and the fuel-centered scenario for each

driving cycle. It can be observed that the results are very

similar for each driving cycle, with a significant impact on HC

and CO while consumption and NOx stay relatively stable.

V. CONCLUSION

This paper discusses the trade-off between pollutant emis-

sions and fuel consumption in ecodriving for gasoline engines,

which is affected by the torque management.

Ecodriving cycles can involve high loads as they allow the

driver to satisfy the travel time constraint with little decrease in

the engine efficiency. However, they can lead to higher CO and

HC emissions as they are associated to fuel-rich combustion.

In order to predict and minimize pollutant emissions, we

introduced a simplified model describing the effect of air/fuel

ratio on tailpipe emissions.

Its use in a weighted objective function to solve the eco-

driving problem with dynamic programming allowed us to

identify a fuel-centered and a pollutant-centered scenario. The

latter showed great potential for emissions reduction with a

relative decrease as high as 55% for CO and 16% for HC while

fuel consumption stayed stable. Pollutant emissions decreased

thanks to a change in acceleration and gear shifting strategy

in the dynamic phases which resulted in lower engine torques.

Small excursions in the fuel-rich zone still occurred especially

in the case of shorter travel times, resulting in a trade-off

between trip time and pollutant emissions.

Further work will focus on refining the emissions model to

account for the influence of other parameters such as power

demand, spark timing and intake conditions on HC and NOx

concentrations. The dynamics of the air/fuel ratio can also

be studied by modeling the oxygen storage in the catalyst or

fuel pooling in the intake manifold (indirect injection). This

work could also be extended to take the cold start period

into account in order to optimize the light-off of the catalytic

converter in the context of pollutant-centered ecodriving.

This approach could also be applied to hybrid electric

vehicles, with an additional degree of freedom concerning

the torque split between the electric machine and the inter-

nal combustion engine. This involves adding an additional

dimension in the dynamic programing graph, leading to a

complex and computation intensive resolution. In this context,

a Hamiltonian formulation might be more appropriate, as long

as the expression of the various adjoint states can be derived.
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