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ABSTRACT
Coarse-grained programmable systolic architectures are designed

to meet hard time constraints and provide high-performance com-

puting. They consist of a set of programmable hardware resources

with directed interconnections between them. The level of complex-

ity of these architectures limits their re-usability. An automated

mapping methodology is required to add a re-usability value to

these architectures. In this work, we present a new list-scheduling

based mapping methodology for coarse-grained programmable sys-

tolic architectures. We use a Directed Acyclic Graph to express the

tasks and data dependency of the application as well as the hard-

ware resources organization. We demonstrate that our approach

can map different applications, provide a latency estimation and

generate the configuration context. This approach could be the base

for design space exploration and optimization tools for this family

of architectures.

CCS CONCEPTS
• Theory of computation → Scheduling algorithms; • Hard-
ware→ Operations scheduling;

KEYWORDS
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1 INTRODUCTION
Time-critical applications require computing resources comply-

ing with time constraints and providing deterministic and high-

performance support. Among the candidate hardware systems, we

can find arrays of homogeneous or heterogeneous processors [20],

Networks on Chip (NoC) [4] and mainly coarse-grained systolic
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programmable architectures [1, 5, 16, 18]. In this paper, we concen-

trate on the latter ones having the advantage to increase the overall

performance drastically while decreasing computing latency.

Figure 1: Automated mapping methodology principle.

Obviously, they are designed for a specific applicative field.

Coarse-grained programmable systolic architectures are used to

implement complex vision algorithms, that includes detection of

defects on manufactured surfaces [1], street scene understanding

[5], object tracking [18] and feature detection [16].

Generally speaking, this family of architectures consists of a

scalable structure, partially configurable before synthesis: number

and type of hardware resources, depth of pipelines, parallelism

degree; and specifically programmable on run-time: data paths,

type of tasks, operational parameters.

Therefore, the mapping and scheduling of various applications

require a broad understanding of the internal structure and con-

figuration parameters. It limits the hardware re-usability and their

deeper integration in complex heterogeneous systems. So, the need

for an automated mapping methodology becomes critical for their

practical utilization.

In the past, several application mapping approaches have been

explored, based on different task models, for example we can cite:

the fork-join model [9], synchronous parallel task model [19] and

the Directed Acyclic Graph (DAG) model [7, 11].

The DAG task model is commonly used to describe complex

applications. It allows outlining the internal structure of an appli-

cation, by decomposing it into atomic tasks and data dependence

interconnections. Among the DAG-based mapping algorithms, we

can find two important families [23], cluster-scheduling [10, 15]

and list-scheduling [8, 22]. The latter one produces the scheduling

based on a list that highlights a significant feature (topological

order, task priority) and is commonly used for architectures with

a limited number of resources. Many list-based mapping method-

ologies have been developed [6, 8, 12, 17, 22]. Nonetheless, these
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solutions do not consider the constraint structure of coarse-grained

programmable systolic architectures.

In this paper, we introduce a new approach, allowing to map an

application into a coarse-grained programmable systolic architec-

ture (Figure 1). We exploit the DAG task model allowing to describe

the inherent data dependency of the tasks and their parameters.

This methodology is able to provide the performance estimation and

generate the configuration context (parameters for the hardware).

The organization of the remaining sections of the paper is as

follows. Section 2 discusses briefly the related work. Section 3

introduces the proposed methodology principles. Section 4 outlines

the experimental set-up and the results. Section 5 summarizes the

main contributions and future work.

2 RELATEDWORK
A considerable amount of approaches brings numerous possibil-

ities for similar mapping problems. Lu et al. [12] present a map-

ping methodology for coarse-grained reconfigurable architectures

(CGRA). They use a directed graph as hardware model. This model

allows to represent the directed interconnection between resources.

Although, the methodology only consider homogeneous resources.

Chin et al. [3] introduce an integer linear programming based map-

ping algorithm. It uses the modulo routing resource graph (MRRG)

[14] as hardware model. The particularity of this model is that it

allows to represent heterogeneous resources. Though, it only con-

siders two types of nodes, functional units and routing resources.

Chen and Mitra [2] present a graph minor approach for CGRAs

mapping. They also use the MRRG as hardware model. They im-

proved the MRRG by integrating a special node representing a

register file. This node allows to model register allocation with

scheduling, increasing the accuracy of the hardware model. This

algorithm transforms the mapping problem into a graph minor

problem between the application model and the hardware model.

Possa et al. [18] present a MATLAB-based function library for

mapping applications to its targeted hardware, the Programmable

Pipeline Image Processor (P2IP ). The P2IP is a coarse-grained pro-

grammable systolic hardware designed specifically for real-time

image and video processing. The library consists of a list of possible

configurations of the P2IP . It accepts mnemonics as inputs, and

creates an interface object for the configuration of the hardware.

This approach is specific to the targeted hardware and can not

directly apply to other platforms. To our knowledge, this is the only

work in the literature which target a coarse-grained programmable

systolic architecture.

Regardless of the extensive work in this field, most methodolo-

gies rely on hardware models that do not directly apply to coarse-

grained programmable systolic architectures. Thus, the application

mapping to coarse-grained programmable systolic architectures is

still an open problem. In this paper, we propose a new mapping

methodology for coarse-grained programmable systolic architec-

tures. It is based on three dag-based models and a new mapping

algorithm. Finally, it is able to generate a performance estimation

and the configuration context.

3 METHODOLOGY
Our approach is based on an Application graph (GAPP ) and an

Architecture graph (GHW ) as inputs, and an Implementation graph

(GMAP ) as output, each characterized by DAG formalism

3.1 Basic notions
3.1.1 Application Model. Let GAPP (T ,D) be a DAG representing

a model of an application. The nodes represent the atomic tasks

that compose the application and the edges the data dependence

between them. Consider T as a set of tasks such asT = {t1, t2, ..., tn },
wheren is equal to the number of tasks inGAPP . Consider D as a set

of edges. Let (ti , tj ) ∈ D represent a data dependence between tasks,

where ti is executed before tj . Let ti be further described as (typei ,
pi ), where typei corresponds to the transformation applied to the

data within the task and pi is a vector of the input parameters. We

assume that, at least one ti , can be implemented on the resources

of the targeted hardware architecture.

3.1.2 Hardware model. Let GHW (R,K) be a DAG representing a

model of a hardware architecture. Consider K as a set of edges,

where the edge (ri , r j ) ∈ K represents a directed interconnection

from ri to r j . Let R be a set of resources such as R = {r1, r2, ..., rm },
wherem is the number of resources in GHW . We consider that the

resources set R is a union of the three main resources classes: R =
RP ∪ RM ∪ RC . RP is a subset of resources dedicated to processing

tasks, RM is a subset of memory access resources and RC is a subset

of data-path control resources. In general principle, resource ri is
characterized by ri = (Ti ,Πi ,Li ). Ti is a set of tasks being possible

to execute on ri . Πi is a set of corresponding working parameters

for the hardware and Li is a function representing the latency of a

node ri , such that Li : ri → R
+
.

3.1.3 Time slot. Since the number of resources provided by the

hardware architecture may be insufficient, we need to split the ap-

plication graph into time slots. A time slot is a subset of configured

resources in order to execute a subset of tasks in separated time in-

tervals. Each time slot contains a sub-mapping and a sub-scheduling

of the application. In order to execute the whole application, we

execute the time slots sequentially.

3.1.4 Implementation graph. LetGMAP (R,K) be the DAG obtained

by graph transformations ofGAPP andGHW . As inGHW , R model

the resources. Consider ri ∈ R be characterized by the fixed prop-

erties ri = (τk , πk , lk ). Let τk ∈ Ti , πk ∈ Πi and lk be an estimated

value of the latency according to lk = Li (τk , πk ). We define the

value of τ = idle for a not used node.

3.2 Proposed methodology
Figure 2 depicts our method which consists of the 4 following steps.

3.2.1 Topological sorting. The first step of our mapping method-

ology is a topological sorting of GHW and GAPP . We use Kahn’s

Algorithm [13]. The complexity is O(|T | + |D |). This step produces

two lists, LHW and LAPP . Each of them contains ordered num-

bers (indexes) of R and T node sets. The first, LHW represents

the resources organization. The second, LAPP represents the data

dependence between tasks defined by the application model.
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Figure 2: Proposed topological mapping methodology flow.

3.2.2 Mapping algorithm. Algorithm 1, give here under, describes

the processing flow. The main part of this algorithm is the function

Assigning. It aims to find a matching between a current applica-

tion task ti and a resource element from RP . The function verifies

the compatibility between the number of edges (input degree and

output degree) of nodes as well as the precedence constraints. Also,

it verifies, if any of the successors of the resource element can be

used to map the successor of the current task.

During themappingwe have to deal with the following problems:

a) Sub-optimal correspondence between LHW and LAPP . This issue
comes from the multiplicity of the topological sorting results and

appears as a false lack of resources. b) Availability of the Hardware
resources. The application mapping requires more resources than

the available in the hardware model. These two problems are solved

by the Function Partition (lines 9 and 17 for the first problem,

and 13 and 15 for the second problem). The function will verify if

any data-path is available. For this purpose, the function verifies if

there is any datapath without a task mapped. If there is a data-path

available, the function re-add its nodes to LHW and continues with

the mapping. If the function is not able to find available datapaths,

it will proceed to split GAPP into sub-graphs. Next, the mapping

algorithm will try to schedule them into time slots.

c)Matching fails. We observe this issue by an unsuccessful search

of a resource for a particular task. We solve this issue using the

function Reallocation. The function Reallocation is a modifica-

tion of the backtracking algorithm presented by Lu et al. [12]. The

function removes the mapping of the predecessor of the conflicting

task, re-add the task and the resource to their respective list and

restart the mapping algorithm. After a second attempt of the real-

location, the algorithm will split the remaining part of GAPP into

sub-graphs, each sub-graph represents a unique simple path (see

function Reallocation and lines 2 to 8 of Function Partition).

Algorithm 1 Mapping algorithm

Input: LAPP , GAPP , LHW , GHW
Output: LMAP
1: Initialize:

Ltmp = [l1, l2, · · · , lm ]
//List o f temporal results, where l1 = l2 =
...lm = 0

cnt_v_rea = 0 //Reallocation calls
cnt_f ails = 0 //Failed attempts
mapped = False //Flaд o f task mapped
var_attempts=number o f datapaths in GHW

2: while LAPP , {∅} do
3: ti ← pop(LAPP )
4: mapped ← True
5: whilemapped do
6: if cnt_v_rea > var_attempts then
7: exit(1) // Fail to map the application
8: else
9: if cnt_f ails == |GHW | then
10: cnt_v_rea, LMAP , LHW , Ltmp , LAPP =

Reallocation (ti , cnt_v_rea, LAPP ,GAPP , LHW ,

GHW , Ltmp , var_attempts , LMAP )

11: else
12: if LHW == {∅} then
13: LMAP , LHW , Ltmp , LAPP = Partition

(LMAP , cnt_v_rea, LAPP , GAPP , LHW ,

GHW , Ltmp , var_attempts)
14: else
15: cnt_v_rea, cnt_f ails ,mapped , LHW , Ltmp

= Assiдninд ( ti , cnt_v_rea, cnt_f ails ,
mapped , LAPP , GAPP , LHW , GHW , Ltmp )

16: LMAP ← Ltmp

1: function Assigning(ti , cnt_v_rea, cnt_f ails ,mapped , LAPP ,
GAPP , LHW , GHW , Ltmp )

2: r j ← pop(LHW )
3: s_succe_HW ← successors(r j )
4: s_succe_APP ← successors(ti )
5: if type(ti ) ∈ {T (r j )} then
6: if p(ti ) ∈ {Π(r j )} then
7: if input_deдree(ti ) >= input_deдree(r j ) and

output_deдree(r j ) >= output_deдree(ti ) then
8: if predecessors(ti ) ∈ Ltmp and

simple_path(predecessors(ti ), ti ) , {∅} then
9: if type({s_succe_APP}) ∈

type({s_succe_HW }) then
10: Ltmp (r j ) ← ti , cnt_f ails ← 0

11: cnt_v_rea ← 0,mapped ← False

12: cnt_f ails ← cnt_f ails + 1
13: return cnt_v_rea, cnt_f ails ,mapped ,LHW ,Ltmp
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The partial results of the mapping (creation of a time slot, see

function Partition from line 13 to line 15) and the overall mapping

are stored in a list called LMAP . This list contains the parameters

assigned to each resource during the mapping. We divide LMAP by

time slots. The elements of each time slot is equal to the resources

available (|R |). The final step of the methodology is the creation of

GMAP , which is obtained by parsing LMAP . GMAP will collect all

the information contained in LMAP .

1: function Partition (LMAP , cnt_v_rea,LAPP , GAPP , LHW ,

GHW , Ltmp , var_attempts )
2: Initialize:

nodes_available ← ∅
paths_app← unmapped datapaths in GAPP
paths_hw ← datapaths in GHW

3: if cnt_v_rea > var_attempts − 1 then
4: if ∀{paths_app} == simple paths then

/∗Function to cut a дraph into a subдraphs ∗ /
5: RemaininдNodes ← cut_дraph(paths_app)
6: LAPP ← topoloдical(RemainingNodes)

7: else
8: exit(1) //Fail to map the application

9: else
10: for ∀ path ∈ paths_hw do
11: if available(path) then

/∗I f no node mapped in path, copy
nodes to nodes_available ∗ /

12: nodes_available ← nodes ∈ path

13: if nodes_available == {∅} then
/∗New time slot ∗ /

14: LMAP .append(Ltmp )

15: Ltmp = {∅}, LHW = {∅}
16: else
17: LHW ← topoloдical(nodes_available)

18: return LMAP ,LHW ,Ltmp ,LAPP

1: function Reallocation(ti , cnt_v_rea,LAPP , GAPP , LHW ,

GHW , Ltmp ,LMAP )

/*ti is the conflicted node of GAPP being mapped*/

2: if cnt_v_rea > var_attempts − 1 then
3: LMAP , LHW , Ltmp , LAPP = Partition (LMAP ,

cnt_v_rea,LAPP , GAPP , LHW , GHW , Ltmp )

4: else
5: nodes ← predecessors(ti )

/∗Mappinд removal o f ti predecessors ∗ /
6: LHW .append(nodes), LAPP .append(nodes)
7: Ltmp .remove(nodes)

/∗End of the mappinд removal ∗ /

8: cnt_v_rea + 1
9: return cnt_v_rea,LMAP ,LHW ,Ltmp ,LAPP

3.2.3 Performance estimation . Q represents an estimated value of

the total latency of the final mapping. It is obtained from GMAP

using the following formula:

Q =

Ns∑
t=1

qt , qt =max(d1,d2, ...,de ) (1)

with de =

NKi∑
i=1
Li (τk , πk ) (2)

where Ns is the number of time slots scheduled by the mapping

process, qt is the critical path of the time slot. Notice that e is the
number of paths P of each time slot of GMAP , and each Ki ∈ P

represents a path from a source node to a sink node. Furthermore,

NKi is the number of nodes in a path Ki , τk is the transforma-

tion implemented on the resource ri . The purpose of equation 2 is

compute the latency of each data-path, this latency is a function

of the task assigned and its parameters. Next, the higher value is

considered as the critical latency of the time slot. We perform the

summation of the critical latency from each time slot and produce

the value of the performance estimation.

3.2.4 Configuration context. The configuration context is obtained

from LMAP . It contains the necessary information for the imple-

mentation. In this step, we define the parameters for RM , such as

write and read address, and also the size of data, depending on the

final mapping and the input of the user respectively. Also, we add

the parameters for RC depending on the data-paths used in the

final mapping. We divide the configuration context into sections,

each section representing a time slot.

4 VALIDATION AND EXPERIMENTAL
RESULTS

The evaluation of the methodology is twofold. First, we compare

our mapping algorithm against the state of the art mapping al-

gorithm presented in [12]. Then, we consider the morphological

co-processing unit (MCPU) [1] as a candidate for the use of our

mapping methodology, on which we experiment two different ap-

plications.

4.1 First evaluation and validation
For the evaluation of our approach, we used a modified version of

the algorithm presented by Lu et al. [12]. We modify the priority list

of the resources, used in their work, to comply with the structure of

a coarse-grained programmable systolic architecture. We consider

a set of interesting tasks and hardware graphs, highlighting aspects

such as parallelism and complex structures. We only consider ho-

mogeneous tasks and resources to satisfy the characteristics of the

considered algorithm. The purpose of this evaluation is to validate

our approach in terms of scheduling length and optimal mapping.

From the set of use case examples, we select three that represent

special features. In the first example (Figure 3), the application

graph represents a linear pipeline of tasks and the hardware graph

is composed of two independent data-paths. In the second example

(Figure 4), we use the same application graph of the first example

and a hardware graph that represents an architecture with two

non-independent data-paths and one independent data-path. In the

third example (Figure 5) the application graph illustrates a complex

algorithm with two different outputs, while the hardware graph
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represents an architecture composed of three non-independent

data-paths. We consider that the hardware model examples allow

re-computation through the system memory block. That is, the

sink and sources nodes are connected through the system memory

block.

We can notice in Fig. 3 and 4 that our approach achieves a shorter

scheduling length (one time slot) than the resulting mapping of

[12]. We achieve this result thanks to the function Partition. This

function searches for any available resource that can be used to

map the remaining tasks before the creation of a new time slot. In

Fig. 5, we can see that bothGMAP andGHW are complex structures.

Our approach is able to map correctly the application thanks to the

verification of precedence made in the Assigning function.

4.2 Real target
The MCPU is a coarse-grained programmable architecture imple-

mented on an FPGA. It is dedicated to morphological operators such

as erosion (ϵ) and dilation (δ ) [21], and their deep concatenation and
combinations. Figure 6 illustrates the general architecture of the

MCPU. The main components of this system are several processing

pipelines. Each pipeline is scalable by means of the number of basic

stages (Figure 7). The basic stage consists of several processing

and data-path control resources. The principal module is the large

structuring element (SE) erosion/dilation which is the module that

performs the erosion/dilation operations.

MPMC

Input

FIFO buffer

VFBC read control

VFBC read control

Input

FIFO buffer
vfbc_rd

PLB

VFBC1

VFBC3

vfbc_rd

vfbc_cmd

vfbc_cmd

PLB interface

Large SE

pipeline

Geodesic

pipeline

C
o

n
fi

g
u

ra
ti

o
n

re
g

is
te

rs

Image output

Image input

Geodesic Bank 1- m Control

Mux_in_1

Mux_in_2

Mux_geo_1

Mux_out_1

Mux_out_2Mux_geo_2

Large SE Bank 1-n

REG 1

REG 2

REG n

REG 1

REG 2

REG n

REG 1

REG 2

REG n

REG 1

REG 2

REG n

Start

Reset
Ready
State

......

Output

FIFO buffer

VFBC write control

VFBC write control

Output

FIFO buffer
vfbc_wr

VFBC2

VFBC4

vfbc_wr

vfbc_cmd

vfbc_cmd

Figure 6: Morphological co-processor unit [1].
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Figure 8: GHW of the morphological co-processor unit.

4.2.1 Application examples. We use two example applications, an

Alternated Sequential Filter (ASF) and a road line orientation detec-

tion. These applications are considered in the development of the

MCPU.

The ASF is extensively used to smooth objects in images, pre-

serving the topology characteristics. In our context, it represents

a long linear pipeline of tasks with the possibility to overpass the

length of the computing resources (Fig. 9).

ASFλ(f ) = γ λφλ . . .γ 1φ1(f ) (3)

where f denotes the input image, λ the SE size, γ and φ are the

operators of opening and closing defined in [21]. The opening is

composed of two elementary operations, erosion (ϵ) and dilation

(δ ). The input parameters for both, erosion and dilation, are: size,

shape and angle of the SE.

Figure 9: GAPP of the ASF 4 application.

The second (road line orientation detection) application rep-

resents a highly parallel task organization. The principle is the

computing of oriented linear openings of the input (Figure 11).

ζlenдth (f ) = arд max

α ∈[0,180)
γαlenдth (f ) (4)

(a) Original Image. (b) Local orientation of the road.

Figure 10: Road line orientation detection.
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Figure 3: Use case example 1: a) application graph, b) hardware graph, c) and d) resulting mapping according to [12] and the
proposed algorithm.
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Figure 4: Use case example 2: a) application graph, b) hardware graph, c) and d) resulting mapping according to [12] and the
proposed algorithm.
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Figure 5: Use case example 3: a) application graph, b) hardware graph, c) and d) resulting mapping according to [12] and the
proposed algorithm.

Figure 11: GAPP of the road line orientation application.

4.2.2 Special considerations for the mapping. In the case study,

from section 3.1.1, we consider the following. For the GAPP of

the ASF filter application, type {0,2,4,6,8} = δ , type {1,3,5,7} = ϵ . For
the GAPP of the road line application, we are only interested in

the tasks, denoted by ti , able to be implemented in the large SE

pipeline basic stage of the MCPU. We consider type {1,3,5,7,9,11}
= δ , type {0,2,4,6,8,10} = ϵ . For both applications and all the nodes,

p = [ angle, size of structuring element, shape of structuring element,
image resolution].

From section 3.1.2, for GHW , T{0,1,7,6} = {ϵ, δ , idle}, T{2,9} =
{+,−,min,max, idle},T{3,4,10,11} = {0, 1},T{5,8,12,13} = {intensity, idle},
T{15,14,17,16} = {read,write, idle}.

Let Π{0,1,7,6} = [ angle, SE size, SE shape, image resolution] and
Π{15,16,17,18} = [ address, size of data] for nodes r {15,14,17,16} . Fig-
ure 8 depicts the GHW model of the MCPU. The total hardware re-

sources of the basic stage of the MCPU are 10 processing resources,

4 data-path control resources and 4 memory access resources. These

resources are available per time slot.

4.2.3 Mapping. The optimal implementation of the ASF filter re-

quires the use of the two available data-paths. This implementation

creates a data hazard. The output data of one data-path needs to be

recomputed in the second data-path.
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Figure 12: Mapping result and resource occupation per time slots of the ASF application.

Figure 13: Mapping result and resource occupation per time slots of the road line application.

The mapping methodology handles this situation specifying

the necessary parameters in the configuration context file. In the

memory access section of the configuration context file, the writing

direction for first data-path is the same as the reading direction

of second data-path. With this action, we assure the correct re-

computation of the data and preserve the data dependence. Figure

14 depicts the state diagram of the ASF filter application, it shows

that the beginning of data-path 2 is slightly after the beginning

of data-path 1. Figure 12 illustrates the use of resources per time

slot. The enabled resources are in light blue for the resources of the

subset RP and grey for the resources of subset RM . The edges of

data-path 1 are in blue. The edges of data-path 2 are in green.

Datapaths

Time slots

Datapath 1 Datapath 3 Datapath 5 

Datapath 2 Datapath 4 

Time slot 1 Time slot 2 Time slot 3

Datapath 6 

Figure 14: Time slots scheduling of the ASF filter applica-
tion.

For the road line detection, the optimal implementation requires,

also, the use of both data-paths. Figure 15 depicts the timing diagram

of the time slots. Figure 13 illustrates the state diagram of the use

of resources per time slot.

Datapaths

Time slots

Datapath 1 

Datapath 3 

Datapath 5 

Datapath 2 

Datapath 4 

Time slot 1 Time slot 2 Time slot 3

Datapath 6 

Figure 15: Time slots scheduling of the road line application.

For resources with τ ∈ {ϵ, δ }, the worst case of computing

latency is defined as three clock cycles per pixel, and the input

latency is a function of the size and shape of the SE. The sum

of the computing latency and the input latency gives the overall

computing latency of one image process. The computing latency for

the resources with τ ∈ {+,−,min,max, 1, 0, intensity} is described
as one clock cycle per pixel. For illustration purposes, we fix the

value of τ of the memory access resources to one clock per pixel.

Also, we fix the value of the parameters configuration to one clock

cycle. Table 1 summarizes the resulting timings.

Table 1: Latency estimation per time slot

Clocks per pixel

Input latency

(Images lines)

Time slot Time slot

1 2 3 1 2 3

ASF Filter 9 9 3 7 11 4

Road line 6 6 6 7 15 12

For both applications, the results were equal to manual mapping.

Table 2 summarizes the use of resources after the mapping. The

application requirements represent the number of tasks per appli-

cation. The subset RP is used to map these tasks. Notice that only

four resources of this subset are able to perform δ/ϵ operations.

The subset RM represents the memory access resources required

for each data-path. Each data-path needs two rM . In addition, the

performance evaluation provides an estimate of the time consumed

in processing the entire application. Finally, the methodology was

able to generate the set of configuration parameters correctly. The

results of the mapping algorithm are promising and provide a proof

of concept of the proposed methodology.
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Table 2: Resources utilization

Application

requirements

Used resources per time slot Scheduled

time slots

|T | |RP | |RC | |RM |

ASF Filter 9 4/4/1 0/0/0 4/4/2 3

Road Line 12 4/4/4 0/0/0 4/4/4 3

5 CONCLUSIONS
In this paper, we presented a new mapping methodology for coarse-

grained programmable systolic architectures. It adds reuse possibili-

ties for this family of high-performance architectures. We validated

this work for two real applications. Our approach is able to take

into account the heterogeneity of the hardware resources and their

interconnection. The methodology is suitable for both offline and

run-time mapping as it can provide the configuration context set.

Our future work will focus on test this methodology in a wider set

of architectures and develop an optimization algorithm in order to

decrease the execution time of the application.
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