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Abstract

We study the fixed charge network design problem with shortest path con-
straints which is modeled as a bi-level program. We first review three one-
level formulations obtained by applying the complementarity slackness theo-
rem, Bellman’s optimality conditions and cycle elimination constraints. We
propose two new binary integer programming (BILP) formulations inspired
by path and cycle inequalities. The two formulations have exponential num-
bers of constraints. We incorporate the path and the cycle based formulations
in a branch-and-cut algorithm and in another cutting-plane based method.
Numerical experiments are performed on real instances, and random data
sets generated with different criteria to examine the difficulty of the instances.
The results show that the proposed cutting plane algorithms can solve up to
19% more instances than the classic branch-and-bound algorithms.

Keywords: Network design, Bi-level programming, Cutting plane,

Branch-and-cut

1. Introduction

The fixed charge network design problem (FCNDP) consists of selecting a
subset of edges from a given network, in such a way that a set of commodities
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can be transported from its origins to its destinations. The objective is to
minimize the sum of fixed costs (depending on selected edges) and variable5

costs (depending on the flow of commodities on the edges). In general, fixed
and variable costs can be represented by linear functions, and the arcs are
uncapacitated.

There are several variations of FCNDP in the literature, each of which
involves a particular objective function and, possibly, additional constraints.10

Among these variations, we can find the shortest path problem, minimum
spanning tree problem, vehicle routing problem, traveling salesman prob-
lem and Steiner problem in graph [1, 4, 15]. Numerous applications can be
found for network design problems, for instance in transportation systems
and telecommunication networks (see [15, 3]).15

We are interested in a specific variant of the FCNDP, called fixed charge
network design problem with shortest path constraints (FCNDP-SPC)[14,
11], which consists of adding multiple shortest path problems to the original
problem.

The FCNDP-SPC involves two distinct agents acting simultaneously rather20

than sequentially when making decisions. On the upper level, the leader (first
agent) is in charge of designing a transportation subnetwork (i.e., choosing
a subset of edges to be opened) in order to minimize the sum of fixed and
variable costs. In response, on the lower level, the follower (second agent)
must choose a set of shortest paths in the subnetwork designed in the upper25

level, through which the commodities will be sent.
The inclusion of the shortest path requirement makes the problem more

difficult to solve exactly. There are few works done for solving exactly the
general case of FCNDP-SPC [14, 16, 17, 11, 2], and most of the research
is dedicated to a particular application. In the literature, the FCNDP-SPC30

was investigated for the transportation of hazardous materials: the Hazmat
transport network design problem (HTNDP) [10, 12, 9, 5, 19, 13]. In this
application, a given set of hazardous materials is required to be transported
from an origin to a destination over a road network. The problem consists
of selecting road segments to be opened by the government (the leader) that35

aim, on the one hand, to minimize the total risk for the population. On the
other, the leader assumes that the carriers (the follower) choose the shortest
path in the resultant network. This is a particular case of FCNDP-SPC,
where the fixed cost of each edge is equal to zero.

Kara and Verter [13] were the first to pose the problem as a bi-level40

program. Then, in [10, 9, 13, 17] the problem is transformed into a single-
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level mixed integer programming and the researchers focus on exact methods.
More recently, Gzara [12] studied a combinatorial bi-level formulation for the
problem, and proposed a cutting plane algorithm.

In this paper, we are also interested at solving the FCNDP-SPC by exact45

algorithms. The contributions of our work are summarized as follows:

• We propose two new BILP formulations based, respectively on path
and cycle valid inequalities used to eliminate the infeasible bi-level so-
lutions. The cycle formulation is inspired from the contribution in [12].
The linear relaxations of the two BILP formulations are compared the-50

oretically.

• In order to solve the studied problem, we propose two ways of integrat-
ing the path and cycle formulations in a cutting plane method, using
either a branch-and-cut or an iterative cutting-plane strategy. In the
second strategy, at each iteration, a partial ILP formulation of FCNDP-55

SPC is solved exactly, and a set of shortest path inequalities is added
while returned solution is unfeasible.

• We strengthen our formulations, through a set of valid inequalities that
apply to the case where different commodities have the same origin and
the same destination.60

• Numerical experiments were done on real data sets from the literature
as well as on random instances. The random instances generated in
this work are classified into three sets according to their difficult by
calculating the angle between the objective function vectors of the first
and the second levels.65

The paper is organized as follows. In Section 2, we start by presenting the
standard bi-level formulation for FCNDP-SPC and three one-level formula-
tions from the literature. We then propose a new path-based BILP formu-
lation to the FCNDP-SPC. In Section 3, we compare theoretically the cycle
and the path formulations and we propose a new cycle-based formulation. In70

Section 4, several algorithms based on the BILP formulations are proposed
to solve the studied problem, and a valid inequality is added to strengthen
the different formulations. Numerical results are given in Section 5. We
finish this paper with a conclusion in Section 6. Detailed statistics on the
algorithms are provided in an appendix.75
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2. Mathematical models

We consider a transportation network, which can be modeled by an undi-
rected graph G = (V,E), where V represents the set of facilities and E
represents the connections between them. The connection edges are unca-
pacitated and undirected. Furthermore, we consider a set K of commodi-80

ties to be transported over the network (these commodities may represent
physical goods as raw material for industry or hazardous material). Each
commodity k ∈ K, has a flow φk to be delivered through a shortest path
between its origin o(k) and its destination d(k). Let us define the set of arcs
A = {(i, j), (j, i) : {i, j} ∈ E}. A length cij and variable costs gkij, k ∈ K, are85

associated to each arc a = (i, j) ∈ A. Also, for each edge e = {i, j} ∈ E, a
fixed cost fe is associated and we assume that cij = cji. The sets of all arcs
leaving and arriving at node i are denoted by δ+(i) and δ−(i), respectively.

The FCNDP-SPC amounts to design a subnetwork (i.e., select a set of
edges in E to be opened), and to find for each commodity k ∈ K a shortest90

path in the resultant network such that the sum of the fixed and variable
costs is minimized.

To formulate the FCNDP-SPC, two types of variables are defined. We
use binary variables y ∈ {0, 1}|E| for the network construction such that:

ye =

{
1, if the edge e is chosen as a part of the subnetwork,

0, otherwise.

Besides, we use variables x ∈ {0, 1}|A|×K where xkij denotes if commodity95

k is sent (xkij = 1) through the directed arc a = (i, j) ∈ A or not (xkij =
0). In the rest of this section, we will present five different formulations
for the FCNDP-SPC problem. The first one (Subsection 2.1) is a bi-level
integer programming model [13]. This formulation is then transformed into
two one-level models using optimality conditions of the second level problem100

(Subsections 2.2 and 2.3). Two binary integer programming formulations
(BILP) are also presented: the cycle (Subsection 2.4) and the proposed path
(Subsection 2.5) based formulations.

2.1. Bi-level formulation

In the FCNDP-SPC, each commodity k ∈ K has to be transported105

through a shortest path between its origin o(k) and its destination d(k),
forcing the addition of shortest path constraints to the general problem. Be-
sides selecting a subset of E with the minimum sum of fixed and variable
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costs (leader problem), we also need to guarantee that the shortest path is
used for each commodity k ∈ K (follower problem).110

The FCNDP-SPC can be modeled as a bi-level mixed integer program-
ming problem [13], as follows:

min
∑
e∈E

feye +
∑
k∈K

∑
(i,j)∈A

φkgkijx
k
ij (1a)

s.t. ye ∈ {0, 1} , ∀e ∈ E, (1b)

min
∑
k∈K

∑
(i,j)∈A

cijx
k
ij (1c)

s.t.
∑

(i,j)∈δ+(i)

xkij −
∑

(i,j)∈δ−(i)

xkji = bki , ∀i ∈ V,∀k ∈ K, (1d)

xkij + xkji ≤ ye, ∀e = {i, j} ∈ E,∀k ∈ K, (1e)

xkij ∈ {0, 1}, ∀(i, j) ∈ A, ∀k ∈ K (1f)

where, for i ∈ V and k ∈ K

bki =


1, if i = o(k),

−1, if i = d(k),

0, otherwise.

The objective functions of the first and the second levels are presented on (1a)
and (1c). In (1d), we have the flow conservation constraints while constraints
(1e) do not allow a flow to use arcs whose corresponding edges are closed.
Finally, the constraints (1f) and (1b) require the variables xkij and ye to be115

binary. As constraints (1d) and (1e) are defined by a totally unimodular
matrix, the integrality of x can be replaced by a non-negativity constraint.

Notice that, solving the follower problem is equivalent to solving |K|
shortest path problems independently.

2.2. One-level formulation120

The FCNDP-SPC can be formulated as a one-level integer programming
problem through replacing the follower problem by optimality conditions
[7, 13]. This can be done by applying the fundamental theorem of duality
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and complementarity slackness theorem [4], as follows:

min
∑
e∈E

feye +
∑
k∈K

∑
(i,j)∈A

φkgkijx
k
ij (2a)

s.t.
∑

(i,j)∈δ+(i)

xkij −
∑

(i,j)∈δ−(i)

xkji = bki ∀i ∈ V,∀k ∈ K, (2b)

xkij + xkji ≤ ye, ∀e = {i, j} ∈ E,∀k ∈ K, (2c)

πki − πkj − λke(a) ≤ ca, ∀a = (i, j) ∈ A, ∀k ∈ K, (2d)

(ye − xkij − xkji)λke = 0, ∀e = {i, j} ∈ E,∀k ∈ K, (2e)

(ca − πki + πkj + λke(a))x
k
ij = 0, ∀a = (i, j) ∈ A,∀k ∈ K, (2f)

λke ≥ 0, ∀e = {i, j} ∈ E,∀k ∈ K, (2g)

πki ∈ R, ∀i ∈ V,∀k ∈ K, (2h)

xkij ∈ {0, 1}, ∀(i, j) ∈ A,∀k ∈ K, (2i)

ye ∈ {0, 1} , ∀e ∈ E. (2j)

Constraints (2b), (2c) and (2i) are the follower’s constraints, and (2j) are
the leader constraints. Considering an arc a = (i, j) ∈ A, we define the
edge associated to a by: e(a) = {i, j}. Constraints (2d)-(2f) represent the
optimality conditions associated to the follower problem which ensures the
shortest path requirement.125

This new formulation is no more linear since constraints (2e) and (2f)
contain product of variables. To bypass this problem, a big-M linearization
is applied. After this modification, we can write the model as a one-level
mixed integer programming problem, as follows:

min
∑
e∈E

feye +
∑
k∈K

∑
(i,j)∈A

φkgkijx
k
ij (3a)

s.t. (2b), (2c), (2d), (2j)

Mye −Mxkij −Mxkji + λke ≤M, ∀e = {i, j} ∈ E,∀k ∈ K, (3b)

Mxkij − πki + πkj + λke ≤M − ca, ∀a = (i, j) ∈ A, ∀k ∈ K, (3c)

λke ≥ 0, ∀e = {i, j} ∈ E,∀k ∈ K, (3d)

πki ∈ R, ∀i ∈ V,∀k ∈ K, (3e)

xkij ∈ {0, 1} , ∀(i, j) ∈ A, ∀k ∈ K, (3f)
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Since the integrality of variables x is assumed in the linearization, the con-130

straints (3f) are added to the formulation. The parameter M is a precom-
puted large number.

2.3. Bellman’s Model

As we have mentioned before, optimality conditions for the lower level
problem are, in fact, the optimality conditions of a set of shortest path prob-
lems. Hence, the FCNDP-SPC can be expressed in a more compact way
[17], if we consider the Bellman’s optimality conditions for the shortest path
problem [1].

min
∑
e∈E

feye +
∑
k∈K

∑
(i,j)∈A

φkgkijx
k
ij (4a)

s.t. (1d), (1e), (1b), (1f)

πki − πkj ≤M − ye(a)(M − ca)− 2cax
k
ji, ∀a = (i, j) ∈ A, ∀k ∈ K, (4b)

πki ≥ 0, ∀i ∈ V,∀k ∈ K, (4c)

πkd(k) = 0, ∀k ∈ K. (4d)

Non-negative variables πki represent the shortest path distance between
the node i and d(k) for each commodity k. Then, πkd(k), k ∈ K, are set to135

be equal to zero in Constraints (4d). Constraints (4b) are the lifted version
of Belman’s optimality conditions, that guarantee the shortest path require-
ment. As in the previous formulation, the parameter M is a precomputed
large value. To improve the quality of the formulation, we want to define
the smallest possible value of M (in order to strengthen the associated con-140

straint). Let us take the constraint (4b), M can take each value with:

πki − πkj ≤M, ∀a = (i, j) ∈ A,∀k ∈ K,

A bound that can be used as a value for M is:

M =
∑
i∈V

(
max

j:(i,j)∈A
cij

)
− min

(i,j)∈A
cij.

This value of M is used in the implementation of all formulations in this
paper including big-M constraints.
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2.4. BILP formulation based on cycle constraints145

A one-level cycle based BILP formulation is proposed in [12] for the
FCNDP-SPC. Before presenting this formulation, we first introduce some
notations. Let Φ be the set of pairs (x, y) satisfying the constraints of the
first and the second level problems of the bi-level formulation:

Φ = {(x, y) : (1b), (1d), (1e), (1f)}.

Let ȳ be a decision of the leader and define the restricted graph G(ȳ) =150

(V,E(ȳ)) with E(ȳ) = {e ∈ E : ȳe = 1}. The feasible region of the follower,
denoted by Φ(ȳ), is given by the set of all paths on G(ȳ), i.e.,

Φ(ȳ) = {x : (1d), (1f), xkij + xkji ≤ ȳe,∀e = {i, j} ∈ E,∀k ∈ K}.

The followers’ reaction set Ω(ȳ) is defined as the set of shortest paths, for
all commodities in K, when the leader decision is ȳ:

Ω(ȳ) = arg min
x∈Φ(ȳ)

{
∑
k∈K

∑
(i,j)∈A

cijx
k
ij}.

We consider the fixed charge network design problem (FCNDP) defined
as:

min
∑
e∈E

feye +
∑
k∈K

∑
(i,j)∈A

φkgkijx
k
ij

s.t. (x, y) ∈ Φ.

Given a feasible solution (x̄, ȳ) ∈ Φ of FCNDP, if x̄ /∈ Ω(ȳ) then, clearly,155

it is not feasible for the FCNDP-SPC. As a consequence, there exists at least
one commodity k ∈ K with alternative paths P and P ′ from o(k) to d(k)
in the restricted graph G(ȳ) and these alternative paths have unequal costs
(wrt the lengths cij). The alternative paths P and P ′ form at least one cycle
defined by sub-paths p ⊆ P and p′ ⊆ P ′ such that c(p) > c(p′).160

In this case, the commodity k will use the cheapest sub-path p′. The
example in Figure 1 presents the case when a commodity with o = 1 and
d = 5 has two paths in the restricted graph with different costs. The two
paths form the cycle (2 − 3 − 5 − 4 − 2). In this example, the commodity
takes the shortest sub-path p′.165
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Figure 1: A restricted graph containing two alternative paths for a commodity to be sent
from 1 to 5.

Let P(k) denote the set of all paths in the original graph G = (V,E)
for the commodity k, i.e. all paths from o(k) to d(k). Let |p| represent the
number of arcs in a given path p. Using additional binary variables zkp , for
each k ∈ K and for each p ∈ P(k), the FCNDP-SPC is formulated in [12] as
follows.170

min
∑
e∈E

feye +
∑
k∈K

∑
(i,j)∈A

φkgkijx
k
ij (5a)

s.t. (1b), (1d), (1e), (1f) (5b)∑
(i,j)∈p

xkij ≤ |p| − 1 + zkp , ∀k ∈ K,∀p ∈ P(k), (5c)

zkp ≤ xkij , ∀k ∈ K,∀p ∈ P(k),∀(i, j) ∈ p,
(5d)∑

e∈p′
ye ≤

∣∣p′∣∣− zkp , ∀k ∈ K,∀p, p′ ∈ P(k), s.t. c(p′) < c(p) (5e)

zkp ∈ {0, 1} , ∀k ∈ K,∀p ∈ P(k). (5f)

The binary variable zkp is equal to 1 if p is the path used by commodity
k, and 0 otherwise. Hence, a constraint in (5c) forces zkp to take value 1 if∑
(i,j)∈p

xkij = |p|. Likewise, a constraint in (5d) imposes zkp = 0 whenever there

exists an arc (i, j) ∈ p such that xkij = 0. Then, constraints (5e) eliminate
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any solution (x̄, ȳ) that has alternative sub-paths with unequal costs. Notice175

that this formulation has a number of constraints and variables which depend
on the number of paths for each commodity k ∈ K.

2.5. BILP formulation based on path constraints

In this subsection, we propose an alternative path based formulation to
avoid the additional variables zkp , for each k ∈ K and each p ∈ P(k). We
replace the set of constraints (5c)-(5e) by one set of constraints in charge
of avoiding the commodities to use any path p whenever a path p′ with
c(p′) < c(p) is opened by the leader. The FCNDP-SPC is modeled as follows.

min
∑
e∈E

feye +
∑
k∈K

∑
(i,j)∈A

φkgkijx
k
ij (6a)

s.t. (1d), (1e)∑
(i,j)∈A

cijx
k
ij ≤ c(p) + (|p| −

∑
e∈p

ye)M, ∀k ∈ K,∀p ∈ P(k), (6b)

xkij ∈ {0, 1} , ∀(i, j) ∈ A,∀k ∈ K, (6c)

ye ∈ {0, 1} , ∀e ∈ E. (6d)

Parameter M is a precomputed large value (see Subsection 2.3). The
above formulation contains a polynomial number of variables but a number180

of constraints that depends on the number of paths for each commodity
k ∈ K.

3. Theoretical comparison and improvements

This section is devoted to compare the formulations (5a)-(5f) and (6a)-
(6d) of FCNDP-SPC. As shown in the previous section, we have presented a185

cycle-based and a path-based formulations for the FCNDP-SPC. To compare
the two BILP formulations, we will study the relation between their sets of
feasible points. First, let us rewrite the set of inequalities (5c)-(5e) as a single
inequality that does not involve the variable zkp .

Theorem 1. For each p, p′ ∈ P(k), such that o(p) = o(p′), d(p) = d(p′) and190

c(p′) < c(p), we can rewrite (5c)-(5e) as one set of inequalities:∑
(i,j)∈p

xkij − |p|+ 1 ≤ |p′| −
∑
e∈p′

ye, ∀p, p′ ∈ P(k),∀k ∈ K. (7)
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Proof. Let (P1) and (P2) be the sets of points defined respectively by (5c)-
(5e) and (7) associated with p, p′ ∈ P(k), i.e.,

(P1)



∑
(i,j)∈p

xkij ≤ |p| − 1 + zkp ,

zkp ≤ xkij, ∀(i, j) ∈ A, ∀k ∈ K,∑
e∈p′

ye ≤ |p′| − zkp ,

0 ≤ xkij ≤ 1, ∀(i, j) ∈ A, ∀k ∈ K,
0 ≤ ye ≤ 1, ∀e ∈ E,∀k ∈ K,
0 ≤ zkp ≤ 1.

and

(P2)


∑

(i,j)∈p
xkij − |p|+ 1 ≤ |p′| −

∑
e∈p′

ye,

0 ≤ xkij ≤ 1, ∀(i, j) ∈ A,∀k ∈ K,
0 ≤ ye ≤ 1, ∀e ∈ E.

The inequalities are equivalent if and only if (P1) = (P2). By using the195

Fourier-Motzkin elimination method, we can eliminate variables zkp from
(P1), and show that (P1) is equivalent to the following system of inequalities:

∑
(i,j)∈p

xkij − |p|+ 1 ≤ |p′| −
∑

(i,j)∈p′
yij, (8a)

∑
(i,j)∈p

xkij − |p|+ 1 ≤ xkij, ∀(i, j) ∈ p, (8b)

0 ≤ xkij ≤ 1, ∀(i, j) ∈ A, ∀k ∈ K, (8c)

0 ≤ ye ≤ 1, ∀e ∈ E. (8d)

We can easily check that the inequality (8b) is trivial. Therefore, the set
of constraints of (P1) is equivalent to the set of points defining (P2) and
(P2) = (P1).200

Based on the result of Theorem 1, we investigate if a relation between
the polytopes of the linear relaxation of formulations (5) and (6) can be
established.

Theorem 2. Let us define:
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P1 =


(xkijye) ∈ [0, 1],
x ∈ Φ(y),∑
(i,j)∈p

xkij − |p|+ 1 ≤ |p′| −
∑
e∈p′

ye, ∀p, p′ ∈ P(k).
205

and

P2 =


(xkij, ye) ∈ [0, 1],
x ∈ Φ(y),∑
(i,j)∈E

cijx
k
ij ≤ C(p′) + (|p′| −

∑
(i,j)∈p′

yij)M, ∀p′ ∈ P(k).

then we have P1 6⊆ P2 and P2 6⊆ P1.

Proof. We define an instance of the FCNDP-SPC problem with one com-
modity that is sent from an origin s ∈ V to a destination node t ∈ V via two210

alternative paths p and p′ which form a cycle.
To show P1 6⊆ P2 (resp. P2 6⊆ P1), it is sufficient to find a fractional

vector which is included in P1\P2 (resp. P2\P1).

• We define the fractional vector:

y∗e = 1− ε ∀e ∈ E
x∗ij = 1− ε ∀(i, j) ∈ p
x∗ij = ε ∀(i, j) ∈ p′
|p| = 2 |p′| = 2
c(p′) = c′ ≤ c = c(p)

The path constraint (6b) for this vector is:215

(1− ε)c+ εc′ ≤ c′ + εM

Hence, the constraint is satisfied for many values of ε,M (we can take
for instance: ε = 1

4
and M = 4c). However, the cycle constraint in P1

for this vector becomes:
10

4
≤ 2

then, (y∗, x∗) 6∈ P1.

Hence, (x∗, y∗) ∈ P2\P1.220
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• We define the fractional vector:

y∗e = 1− ε ∀e ∈ E
x∗ij = 1− ε ∀(i, j) ∈ p
x∗ij = ε ∀(i, j) ∈ p′
|p′| = 1
c(p′) = c′ = 1
M = c(p) = c = 4

We can easily check that (x∗, y∗) ∈ P1, for all ε > 1
1+|p| . Furthermore,

choosing ε = 2
5

and |p| = 4, the path constraint cannot be satisfied.

Hence, we obtain: (x∗, y∗) ∈ P1\P2.

225

Theorem 2 proves that the two BILP formulations (5) and (6) are not
comparable.

In Theorem 1, we proved that the inequalities (7) can eliminate any path
violating the shortest path requirement, thus, the FCNDP-SPC can be for-
mulated as a new cycle-based formulation:

min
∑
e∈E

feye +
∑
k∈K

∑
(i,j)∈A

φkgkijx
k
ij , (9a)

s.t.
∑

(i,j)∈δ+(i)

xkij −
∑

(i,j)∈δ−(i)

xkji = bki , ∀i ∈ V,∀k ∈ K,

(9b)

xkij + xkji ≤ ye, ∀e ∈ E,∀k ∈ K,
(9c)∑

(i,j)∈p

xkij +
∑
e∈p′

ye ≤ |p|+
∣∣p′∣∣− 1, ∀k ∈ K,∀p, p′ ∈ P(k) : c(p′) < c(p),

(9d)

xkij ∈ {0, 1} , ∀(i, j) ∈ A,∀k ∈ K,
(9e)

ye ∈ {0, 1} , ∀e ∈ E.
(9f)
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4. Proposed algorithms for FCNDP-SPC

In Sections 2 and 3, we presented five different formulations to this prob-
lem. Table 1 compares them according to the number of variables and con-230

straints.

Formulations Number of binary variables Number of constraints

One-level formulation K |A|+ |E| K(|V |+ 2 |A|+ 2 |E|)
Bellman formulation K |A|+ |E| K(|V |+ |A|+ |E|)
Cycle-based formulation K(|A|+ |P(k)|) + |E| K(|V |+ |E|+ 3 |P(k)|)
Path-based formulation K |A|+ |E| K(|V |+ |E|+ |P(k)|)
New cycle-based formulation K |A|+ |E| K(|V |+ |E|+ |P(k)|)

Table 1: Number of constraints and binary variables of each formulation

Formulations (3) and (4) are compact ones. On the other hand, formula-
tions (5),(6) and (9) may have exponential numbers of constraints. Formu-
lation (5) may also have an exponential number of variables.

In this section, we focus on presenting different exact methods to solve235

the FCNDP-SPC.

4.1. Compact formulations

The first way to solve the FCNDP-SPC is to feed the models (3) and (4)
to Gurobi solver with default parameters. The two formulations are solved
by branch-and-bound algorithms, let B&B1 and B&B2 denote the branch-240

and-bound algorithms for the formulations (3) and (4), respectively.

4.2. Iterative cutting plane algorithms

Our iterative cutting plane algorithms are based on formulations (5),(6)
and (9). Algorithm 1 gives the pseudo-code of these algorithms.
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Algorithm 1 Cutting plane algorithms

Step 0: (BILP )0 is the fixed charge network design problem defined by the
set of constraints (1b),(1d),(1e), and (1f).

l = 0.

Step 1: Solve (BILP )l to obtain the solution (xl, yl). Let N l be the network
induced by yl, and (P k)l be the obtained path for the commodity k ∈
K. We denote by cl(P k) the total cost of (P k)l.

Step 2: On N l, find (P ′k)l the shortest path for each commodity k with cost
cl(P ′k).

Step 3: If cl(P k) = cl(P ′k) for each commodity k, thenN l defines an optimal
solution for FCNDP-SPC, Stop.

Step 4: For the commodities with cl(P k) 6= cl(P ′k), generate a set of shortest
path constraints to eliminate the path (P k)l. Let S be the set of con-
straints generated. Append the constraints generated S to (BILP )l+1.

Do l = l + 1, and go to step 1.

The set S of inequalities in Step 4 can be generated in three different245

ways giving us three different iterative cutting plane methods CP1, CP2,
and CP3:

CP1: Generate the inequality (6b).

CP2: Find the cycles formed by (P ′k)l and (P k)l. Generate the set of valid
inequalities (5c)-(5e).250

CP3: Find the cycles formed by (P ′k)l and (P k)l. Generate the inequality
(7).

4.3. Branch-and-cut algorithm

The FCNDP-SPC can also be solved to optimality by using branch-and-
cut algorithms based on formulations (6) and (9).255

The principle of the algorithm used here is to solve a fixed charge net-
work design problem (without the shortest path constraints) by a branch-
and-bound procedure and to add valid inequalities to each integral node
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violating shortest path constraints. The algorithm stops when there is no
more node to evaluate, i.e., all the need path constraints were generated.260

The difference of this algorithm over the iterative cutting plane algorithms
lies in solving a unique mixed integer problem by considering all the short-
est path constraints. Next, we detail each component of the Branch-and-cut
procedure.

The initial model: The initial model consists in minimizing the sum of265

the fixed and variable costs under the flow conservation constraints (1d), the
constraints (1e) forcing the flow to use only the opened edges and the binary
requirement constraints of x (1f) and of y (1b).

Separation problem: Since the initial problem does not contain all
the constraints of the FCNDP-SPC, an integer solution obtained can be270

infeasible. For this reason, for each integer node on the branch-and-bound
tree, we introduce a cut generation procedure to eliminate the infeasible
paths.

We first check if an integer solution (x̄, ȳ) is feasible for FCNDP-SPC
by solving a set of shortest path problems. For each commodity k, in the275

subnetwork defined by ȳ we verify if the path P ′ defined by x̄ is the shortest
path from o(k) to d(k) in ȳ. If (x̄, ȳ) is infeasible, i.e., there exists at least
one path P with c(P ) < c(P ′), then a set of shortest path constraints is
added. Two variants of the algorithm were developed. In B&C1 shortest
path constraints correspond to (6b) while for B&C2 they correspond to (7).280

4.4. Valid inequalities
The different formulations of the FCNDP-SPC can be weak. One way to

strengthen the models is to introduce a set of valid inequalities. From the
definition of the problem, we can remark that, if there exist several different
commodities with the same origin and destination, then their paths in the285

optimal solution have the same cost.
The following proposition shows that a valid inequality can be generated

in this particular case.

Proposition 1. Consider two commodities k1, k2 such that o(k1) = o(k2)
and d(k1) = d(k2), then the constraint:290 ∑

(i,j)∈A

cijx
k1

ij =
∑

(i,j)∈A

cijx
k2

ij (10)

is valid for FCNDP − SPC.

Proof. Straightforward.
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5. Numerical results

In this section, we present computational experiments carried out with
all the methods described in the previous sections. All algorithms are im-295

plemented in Julia 0.5.0, and the problems are solved using Gurobi 6.5.2
(with four threads). Simulations were performed on an Intel(R)core TM
i7-3520M CPU@2.90 GHz×4 computer with 8 GB of RAM. Numerical ex-
periments were performed on two sets of data. The first one concerns 405
random instances generated for this work, while the second one consists of300

real instances from different city transportation networks (Ravenna, Italy [6],
and Albany, NY,USA [18]). Next, we describe each data set and discuss the
computational results obtained on each one.

We summarize all the exact algorithms used to solve the FCNDP-SPC:

B&B1 : Branch-and-bound algorithm for the one-level formulation (3).305

B&B2 : Branch-and-bound algorithm for the Bellman model (4).

CP1 : Cutting plane algorithm using the inequalities (6b).

CP2 : Cutting plane algorithm using the inequalities (5c)-(5e).

CP3 : Cutting plane algorithm using the inequalities (7).

B&C1 : Branch-and-cut algorithm using inequalities (6b) in the cut gener-310

ation.

B&C2 : Branch-and-cut algorithm using inequalities (7) in the cut genera-
tion.

5.1. Random instances

The different methods are tested on 405 instances generated randomly315

with different values for the angles α between the variable cost vector “g”
and the length vector associated to the edges “c” in the network G(V,E).
We consider three different categories for the value of α:

• 0◦ ≤ α ≤ 10◦

• 40◦ ≤ α ≤ 50◦320

• 80◦ ≤ α ≤ 90◦
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Table 2: CPU time in seconds for instances with 0◦ ≤ α ≤ 10◦

n - d - K B&B1 B&B2 CP1 CP2 CP3 B&C1 B&C2
10-0.3-5 0.04 0.01 0.01 0.01 0.01 0.08 0.13
10-0.3-10 0.09 0.04 0.02 0.02 0.02 0.06 0.13
10-0.3-15 0.26 0.06 0.05 0.07 0.05 0.20 0.28
10-0.5-5 0.07 0.03 0.03 0.05 0.04 0.04 0.09
10-0.5-10 0.43 0.12 0.14 0.25 0.19 0.22 0.35
10-0.5-15 0.82 0.45 0.19 0.30 0.21 0.45 0.94
10-0.7-5 0.04 0.02 0.01 0.01 0.01 0.05 0.05
10-0.7-10 0.47 0.25 0.08 0.20 0.14 0.31 0.40
10-0.7-15 0.63 0.20 0.13 0.16 0.15 0.30 0.49

10-Average 0.32(45) 0.13(45) 0.07(45) 0.12(45) 0.09(45) 0.19(45) 0.32(45)
20-0.3-10 0.86 0.21 0.10 0.09 0.07 0.41 0.47
20-0.3-20 284.73 8.80 4.13 12.15 28.61 3.07 10.27
20-0.3-30 655.37 61.48 9.07 54.10 45.68 8.99 34.63
20-0.5-10 1.49 0.19 0.17 0.19 0.14 0.40 0.48
20-0.5-20 257.22 10.82 4.93 14.70 11.75 5.20 7.13
20-0.5-30 379.72 (2) 1095.67(4) 349.24 455.11 453.08 440.30 633.17(4)
20-0.7-10 0.93 0.20 0.12 0.14 0.11 0.33 0.40
20-0.7-20 308.80 56.19 23.96 80.47 65.89 13.70 23.79
20-0.7-30 622.18(1) 912.28 241.56 547.02 542.20 139.11 694.23

20-Average 279.03(38) 238.43(44) 70.36(45) 129.33(45) 127.50(45) 67.95(45) 156.06(44)
30-0.3-15 38.26 1.07 0.49 0.66 0.65 1.31 1.32
30-0.3-30 1595.92(2) 273.98 65.70 179.70 152.62 54.21 67.33
30-0.5-15 22.78 1.18 0.55 0.65 0.64 2.32 1.55
30-0.5-30 - - 862.61 761.85 729.97 - -
30-0.7-15 132.37 5.65 4.26 4.77 4.39 8.22 3.64
30-0.7-30 - - 1095.17 1074.14 986.96 - -

30-Average 447.33(17) 70.47(20) 338.13(30) 336.96(30) 312.54(30) 16.51(20) 18.46(20)

The purpose of distinguishing these three scenarios is to examine whether
the difficulty of the instance is related to the angle between g and c, i.e., the
direction of the objective function of the upper and the lower levels. For
instance, we can expect that if both levels go in the same direction, i.e., the325

two vectors are very close to each other, the instance is easy.
The instances are generated varying also the number of nodes in the graph

n ∈ {10, 20, 30}, the graph density d ∈ {0.3, 0.5, 0.7}, and the number of dif-
ferent commodities to be transported K ∈ {n

2
, n, 3n

2
}. For each combination

of (n, d,K), 5 instances are generated.330

Similar random instances have also been generated for FCNDP-SPC by
Mauttone et al [17] and used in [11]. Their instances were not used here for
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Table 3: CPU time in seconds for instances with 40◦ ≤ α ≤ 50◦

n - d - K B&B1 B&B2 CP1 CP2 CP3 B&C1 B&C2
10-0.3-5 0.04 0.02 0.01 0.01 0.01 0.04 0.07
10-0.3-10 0.16 0.05 0.05 0.05 0.04 0.17 0.19
10-0.3-15 0.28 0.09 0.10 0.14 0.10 0.30 0.44
10-0.5-5 0.02 0.08 0.04 0.02 0.01 0.05 0.08
10-0.5-10 0.24 0.44 0.35 0.39 0.19 0.31 0.47
10-0.5-15 0.77 6.60 1.34 1.91 1.01 0.90 1.11
10-0.7-5 0.02 0.04 0.01 0.02 0.01 0.06 0.06
10-0.7-10 0.47 7.86 1.17 3.51 1.43 0.86 0.92
10-0.7-15 4.30 256.09 9.03 29.70 11.85 3.87 12.62

10-Average 0.70(45) 30.14(45) 1.35(45) 3.97(45) 1.63(45) 0.73(45) 1.77(45)
20-0.3-10 1.65 0.25 0.16 0.20 0.15 0.53 0.52
20-0.3-20 1226.54 27.66 43.71 117.58 94.21 16.77 35.32
20-0.3-30 - 1427.53(4) 827.44 696.42 648.77 927.19 1147.03(3)
20-0.5-10 0.26 4.09 0.82 0.28 0.20 1.00 0.51
20-0.5-20 271.99(4) 308.38(2) 659.96(4) 329.23(4) 132.99 1182.37 841.59
20-0.5-30 - 3410.90 614.23 500.25 776.10 - -
20-0.7-10 0.42 2.74 0.91 0.28 0.19 0.73 0.58
20-0.7-20 185.35(4) 648.43(2) 334.97 224.35 210.19 881.23(4) 386.98(4)
20-0.7-30 - - 1196.37 1030.52 910.30 - -

20-Average 281.04(28) 728.75(33) 408.73(44) 322.12(44) 308.12(45) 429.97(34) 344.65(32)
30-0.3-15 19.79 856.09 4.08 6.55 6.26 15.32 8.17
30-0.3-30 - - - - 744.85 - -
30-0.5-15 4.07 192.25 1.54 1.45 1.47 5.95 2.55
30-0.5-30 - - - - 785.04 - -
30-0.7-15 27.63 1171.09 5.82 12.69 11.34 24.51 12.80
30-0.7-30 - - - - 674.06 - -

30-Average 17.16(15) 739.81(15) 3.81(15) 6.90(15) 370.50(30) 15.26(15) 7.84(15)

two reasons. First, these instances belong to a particular case of the problem
where all the variable costs are equal for all the commodities. Second, all
instances are included in the first scenario of α, where α is close to zero.335

Hence, the random instances of [17] are considered very easy to solve.
The obtained results are shown in Tables 2, 3 and 4, where, we report

in each row the average CPU time in seconds spent by each algorithm on
each group of 5 instances with the same (n, d, k). The symbol “-” means
that the algorithm was not able to find the optimal solution in the time340

limit of 3600s for all the considered instances, also, an additional number
(.) is added to represent the number of instances solved in each group of 5
instances. In addition, the average CPU time and the total number of solved
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Table 4: CPU time in seconds for instances with 80◦ ≤ α ≤ 90◦

n - d - K B&B1 B&B2 CP1 CP2 CP3 B&C1 B&C2
10-0.3-5 0.03 0.01 0.01 0.01 0.01 0.02 0.06
10-0.3-10 0.17 0.05 0.06 0.05 0.03 0.14 0.22
10-0.3-15 0.40 0.12 0.11 0.10 0.07 0.26 0.36
10-0.5-5 0.02 0.01 0.01 0.01 0.01 0.02 0.05
10-0.5-10 0.46 0.12 0.14 0.27 0.18 0.27 0.29
10-0.5-15 3.18 0.37 0.85 1.46 1.08 0.52 1.29
10-0.7-5 0.07 0.02 0.02 0.03 0.02 0.05 0.73
10-0.7-10 0.87 0.16 0.22 0.35 0.22 0.30 3.61
10-0.7-15 108.61 1.96 2.11 9.41 5.38 0.80 89.82

10-Average 12.65(45) 0.31(45) 0.39(45) 1.30(45) 0.78(45) 0.27(45) 10.71(45)
20-0.3-10 1.35 0.15 0.17 0.15 0.12 0.33 0.51
20-0.3-20 837.97(4) 27.22 31.18 85.09 77.47 70.48 20.97
20-0.3-30 - 923.06 279.67 292.00 269.23 72.24(4) 91.21
20-0.5-10 3.21 0.55 0.51 0.84 0.71 0.72 0.76
20-0.5-20 1161.59 41.18 22.61 50.50 39.08 18.35 33.82
20-0.5-30 33.02(4) 264.56(2) 943.67 655.29 644.81 1043.20(4) 583.20(4)
20-0.7-10 1.15 0.30 0.12 0.11 0.09 0.37 7.32
20-0.7-20 329.74(3) 548.91 209.45 130.58 131.29 120.45 2.59(4)
20-0.7-30 - - 1444.21 885.10 893.73 1206.02(4) 2508.14(4)

20-Average 338.29(31) 225.74(37) 325.73(45) 233.30(45) 228.50(45) 281.89(42) 360.94(42)
30-0.3-15 87.28 4.07 1.79 2.46 2.19 4.43 4.99
30-0.3-30 - - - - 771.18 - -
30-0.5-15 159.66 1.59 1.16 1.07 1.05 2.41 1.51
30-0.5-30 - - - - 737.51 - -
30-0.7-15 9.62 1.00 0.50 0.51 0.46 1.39 1.10
30-0.7-30 - - - - 688.11 - -

30-Average 85.52(15) 2.22(15) 1.15(15) 1.35(15) 366.75(30) 2.74(15) 2.53(15)

instances are given for each number of nodes n. Overall, the iterative cutting
plane algorithms CP1 and CP3 outperform the other algorithms and they345

solve more instances. Furthermore, algorithms B&C1 and B&C2 are more
efficient than B&B1 and B&B2, although the difference is less marked. We
can also see from Tables 2, 3 and 4 that the instances with 0◦ ≤ α ≤ 10◦ are
easy to solve than the other instances.

We provide next more detailed statistics to compare the different for-350

mulations and algorithms. These are reported in Figure 2, while the full
details are reported to Tables A.9-A.12 of Appendix A. In order to compare
the different one-level formulations presented in this work, in Figure 2a, we
compare the average of the gap between the solution of the linear relaxation
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(a) Gap between the optimal so-
lution and the linear relaxation

(b) percentage of CPU-SP/CPU-
total

(c) Number of cuts generated by
CP and B&C algorithms

(d) Number of separation prob-
lems solved

Figure 2: Additional statistics for the algorithms and formulations

and the optimal solution. We can remark that the linear relaxations of the355

BILP formulations (5) and (9) are stronger than those of formulations (3)
and (4). For instance, in the first case of α the gap of (5) (resp. (9)) is twice
(resp. four times) smaller than the gap of the formulations (3) and (4). Al-
though the formulation (9) has smaller gap for our random instances, there
are instances where the linear relaxation of the formulation (5) is stronger360

(see Theorem 2).
The computational experiments show that, overall, the iterative cutting

plane algorithm CP3 is faster than the branch-and-cut algorithms. One of
the reasons that explain those results is the time consumed on the separation
problem in each algorithm. To study the effect of the separation problem365

on the results, we compute the percentage of the run time consumed by the
separation problem on the CPU-total in Figure 2b. This percentage is similar
and negligible for the iterative cutting plane algorithms unlike the branch-
and-cut algorithms where the solution of separation problem takes for many
instances more than 20% (see Figure 2d) of the total time consumed by the370

B&C2 algorithm. To complement these results we compare the number of
iterations and the number of cuts generated by each algorithm. As we can see
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in Figure 2c, the CP1 algorithm generates a smaller number of cuts to obtain
the optimal solution than the other iterative cutting plane and branch-and-
cut algorithms. Specifically, B&C1 (resp. B&C2) generates more than six375

(resp. twenty) times the number of cuts of CP1. In addition, we can remark
that the similar performances of CP1 and CP2 can be partly explained by
the equivalence between the two valid inequalities used in these algorithms.
The same remark can be shown for the number of iterations in Figure 2d.

To evaluate the performance of the different formulations, a performance380

profile [8] of solution time on the random instances is given in Figure 3. The
chart represents the proportion of instances for which each algorithm is not
more than x-times worst than the best algorithm. For example, if we take
x = 1, we can see that CP3 is the best algorithm for 40% of instances, while
CP1 has the best CPU-time for more than 20% of instances.385
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Figure 3: Performance profile comparing the different algorithms for random instances.

Table 5 sums up the number of instances solved to optimality in 3600s.
The iterative cutting plane approaches CP1 and CP2 are similar to each
other. They can solve up to 19% (resp. 8%) more instances than the branch-
and-bound algorithms (resp. the branch-and-cut algorithms). Also, CP3
solves more instances than the other methods.390

5.2. Real instances

We apply the proposed algorithms to solve FCNDP-SPC on real instances
from the literature representing the road networks of Ravenna (Italy) and
Albany, NY (USA). In these instances, the fixed costs are equal to zero.

22



Table 5: Number of random instances solved to optimality

B&B1 B&B2 CP1 CP2 CP3 B&C1 B&C2
0◦ ≤ α ≤ 10◦ 100 109 120 120 120 110 109
40◦ ≤ α ≤ 50◦ 88 89 104 104 120 94 92
80◦ ≤ α ≤ 90◦ 88 97 105 105 120 102 102

Sum 276 295 329 329 360 306 303

5.2.1. Ravenna data395

The area of Ravenna, Italy, measures 28.8km× 26km [6]. To describe its
road network, 111 nodes and 143 edges are considered. There are 8 nodes
with a transportation requirement for 4 hazmats: LPG, Methanol, Gasoline,
and Chlorine. The 8 nodes form 35 origin-destination (O-D) pairs, and the
number of commodities to be transported between each O-D varies between400

16 and 29684. The variable cost associated to each edge is measured using
population density. Seven instances are taken from the original Ravenna data
with different number of commodities K ∈ {5, 10, 15, 20, 25, 30, 35}, where, in
each case we take the first K pairs of origin-destination. The results obtained
after applying the six models on these instances are displayed in Table 6.405

Table 6: Comparison of CPU time in seconds on the Ravenna data

K B&B1 B&B2 CP1 CP2 CP3 B&C1 B&C2
5 41.91 0.45 1.59 1.52 1.52 2.32 2.45
10 145.90 0.98 3.15 3.09 2.98 3.29 4.68
15 1,169.96 3.80 33.01 23.13 27.88 50.75 96.00
20 - 8.98 51.61 47.93 46.21 78.13 2,896.65
25 - 259.91 82.74 86.72 63.15 - -
30 - 1,494.56 151.28 283.88 265.86 - -
35 - - 222.11 451.68 351.18 - -
Average - - 77.93 128.28 108.40 - -

The presented results show that the iterative cutting plane algorithms
are faster , in average, than the other algorithms and are able to solve more
instances to optimality. Also, our approach CP1 is more efficient for this set
of instances.

Unlike the other instances, in Ravenna data, many commodities have the410

same origin and the same destination. For this reason, the inclusion of the
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valid inequality (10) as a constraint in the initial model can improve the
results. Table 7 presents the CPU time obtained after adding the valid in-
equality. According to the results in Table 7, the addition of valid inequality

Table 7: CPU time in seconds on the Ravenna data with additional valid inequality

K B&B1 B&B2 CP1 CP2 CP3 B&C1 B&C2
5 41.91 0.45 1.75 1.66 1.53 1.59 1.57
10 160.03 1.10 3.49 3.61 3.09 2.32 2.38
15 585.17 2.43 5.94 6.40 5.34 3.66 3.92
20 - 8.98 70.90 42.98 35.28 205.94 35.47
25 - 151.27 63.50 55.25 43.95 105.33 355.98
30 - 371.25 57.83 105.59 66.78 156.80 290.37
35 - - 84.20 174.00 119.83 229.43 414.51
Average - - 36.63 55.64 39.40 100.72 157.74

(10) reduces the running time for all algorithms. Comparing Tables 6 and415

7, we see that the branch-and-cut algorithms solved more instances to op-
timality when we include inequalities (10). Also, the results show that the
CPU times for all the algorithms with the constraint (10) is about 2.25 times
faster than the CPU of algorithms without it.

5.2.2. Albany data420

The Albany data set is composed of information on the highway system
of Albany, NY, USA, used for the routing of Hazmat shipments problem
[18]. The highway system is represented by a network of 90 nodes and 149
edges. We generated a set of origin-destination pairs for each shipment. The

Table 8: Comparison of CPU time on the Albany data

K B&B1 B&B2 CP1 CP2 CP3 B&C1 B&C2
5 83.97 0.65 23.43 37.06 20.13 5.65 2.71
10 - 919.53 87.01 - 996.03 332.79 -
15 - - 193.51 - - - -
20 - - 255.40 - - - -
25 - - 652.84 - - - -

number of commodities takes a value in the set K = {5, 10, 15, 20, 25}, and425
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the demand for each O-D is generated uniformly in [1, 100]. Table 8 displays
the results obtained by each method.

According to the results in Table 8, only CP1 is able to find the optimal
solution for up to 25 different commodities.

6. Conclusion430

In this paper, we proposed two new BILP formulations for the fixed charge
network design problem with shortest path constraints. The two models are
combined with the iterative cutting plane (CP1, CP3) and a branch-and-
cut (B&C1, B&C2) algorithms. We further provide a valid inequality for
the formulation of FCNDP-SPC whenever there are commodities sharing the435

same origin and the same destination exist.
All algorithms are tested on two types of data. We generated a set of

405 random instances classified in three groups according to their difficulty.
The results show that the FCNDP-SPC is much easier when 0◦ ≤ α ≤ 10◦

and it becomes very difficult for 40◦ ≤ α ≤ 50◦. In these instances, the iter-440

ative cutting plane algorithms are almost equivalent and more efficient than
the branch-and-bound and the branch-and-cut algorithms. This somewhat
surprising result can be partly explained by the high number of inequalities
generated by the branch-and-cut algorithms and the time consumed by the
separation problem.445

We also used instances from the literature. Two real instances Ravenna
(Italy) [6] and Albany, NY, (USA) [18] used to test the different algorithms.
The obtained results show the time efficiency of our cutting plane algorithm
(CP1) in comparison with the other algorithms.

From the experiment results, we can make two major observations. First,450

branch-and-cut and cutting plane approaches are better than the branch-and-
bound algorithms for all types of instances. We saw that the iterative cutting
plane algorithms outperform the branch-and-cut algorithm in terms of CPU
time. This is because the latter consumes more time in the cuts generation
and the separation problems in each integer node of the branching tree. Also,455

our CP1 cutting plane method has the best results for all real instances.
Second, the valid inequality generated for the Ravenna data improves the

running time for all algorithms.
As future work, we intend to study exact approaches for a variation of

the FCNDP-SPC: the capacitated fixed charge network design problem with460
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user-optimal flow. We are interested in studying this variation because it
frequently appears in telecommunication networks.
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Appendix A.515

Table A.9: Gap between the optimal solution and the linear relaxation

Angle 0◦ ≤ α ≤ 10◦ 40◦ ≤ α ≤ 50◦ 80◦ ≤ α ≤ 90◦

Formulation (3) (4) (5) (9) (3) (4) (5) (9) (3) (4) (5) (9)
10-3-5 0.00 0.00 0.00 0.00 1.66 1.60 0.43 0.00 0.00 0.00 0.00 0.00
10-3-10 0.86 0.87 0.54 0.00 1.88 1.83 0.00 0.00 3.42 3.41 2.13 0.00
10-3-15 1.91 1.96 0.17 0.00 5.78 5.68 1.02 0.00 4.22 4.20 1.16 0.00
10-5-5 2.68 2.68 2.52 0.00 0.75 0.75 0.76 0.76 0.00 0.00 0.00 0.00

10-0.5-10 2.39 2.40 1.28 0.90 6.26 6.27 6.30 6.30 5.52 5.41 1.65 0.96
10-0.5-15 4.68 4.70 1.14 0.42 7.99 8.00 8.01 8.01 10.43 10.37 6.07 3.66

10.7.5 0.42 0.42 0.00 0.00 0.46 0.46 0.00 0.00 1.57 1.57 0.68 0.00
10.7.10 8.15 8.16 2.54 2.42 9.46 9.46 4.77 3.50 4.50 4.38 1.81 1.34
10.7.15 2.68 2.68 0.56 0.00 16.88 16.89 11.78 9.29 12.33 12.44 5.98 5.10

20-0.3-10 0.83 0.83 0.24 0.00 1.16 1.15 0.37 0.00 2.38 2.38 0.73 0.00
20-0.3-20 7.54 7.54 5.17 3.19 10.06 10.04 7.60 6.46 9.17 9.15 7.71 6.57
20-0.3-30 6.96 6.97 4.17 2.64 13.67 13.65 11.46 10.60 8.97 8.97 7.19 6.31
20-0.5-10 0.50 0.50 0.28 0.00 2.31 2.31 2.33 2.33 3.66 3.65 1.69 1.22
20-0.5-20 6.44 6.44 3.44 2.02 11.94 11.99 12.04 12.04 5.56 5.57 4.23 3.02
20-0.5-30 0.08 0.08 0.06 0.06 11.86 11.83 11.89 11.89 10.28 10.29 8.36 6.79
20.7.10 0.73 0.73 0.00 0.00 2.73 2.74 1.35 0.00 1.02 1.02 0.00 0.00
20.7.20 6.49 6.51 4.29 3.72 8.98 8.99 7.21 6.13 6.31 6.32 4.41 3.40
20.7.30 0.10 0.10 0.07 0.06 9.97 9.98 8.00 7.22 8.82 8.82 7.45 6.22

30-0.3- 15 2.24 2.24 1.60 0.00 3.18 3.18 2.61 1.53 2.41 2.41 1.36 0.74
30-0.5-15 1.83 1.84 0.53 0.00 2.11 2.11 2.12 2.12 2.65 2.65 0.96 0.00
30.7.15 4.32 4.32 2.63 1.27 4.11 4.12 2.81 1.11 1.20 1.20 0.32 0.00
Average 2.94 2.95 1.49 0.79 6.34 6.33 4.90 4.25 4.97 4.96 3.04 2.16
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