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An exhaustive description of the dynamics under shear flow of a large number of red
blood cells in dilute regime is proposed, which highlights and takes into account the
dispersion in cell properties within a given blood sample. Physiological suspending fluid
viscosity is considered, a configuration surprisingly seldom considered in experimental
studies, as well as a more viscous fluid that is a reference in the literature. Stable and
unstable flipping motions well described by Jeffery orbits or modified Jeffery orbits are
identified, as well as transitions to and from tank-treading motion in the more viscous
suspending fluid case. Hysteresis loops upon shear rate increase or decrease are high-
lighted for the transitions between unstable and stable orbits as well as for the transition
between flipping and tank-treading. We identify which of the characteristic parameters of
motion and of the transition thresholds depend on flow stress only or also on suspending
fluid viscosity.
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1. Introduction

In human blood, the haematocrit, that is, the volume fraction of red blood cells (RBCs)
is usually between 40 and 50% while other cells, platelets and white blood cells, occupy
less than 1% of blood volume. Under healthy conditions, RBCs are highly deformable
cells. This allows them to easily squeeze through narrow capillaries while preventing
clogging even at high volume fraction, and to migrate away from vessel walls, which
optimizes transport thanks to the formation of a lubricating cell-free layer. Cells also
contribute strongly to blood viscosity and its shear-thinning behaviour (see Chien 1970;
Pries et al. 1992; Vitkova et al. 2008; Forsyth et al. 2011; Fedosov et al. 2011), which
allows to partly compensate for the higher heart power needed in situations of effort.
While in most situations blood flow is influenced by interactions with walls and between
cells, the question of the dynamics of a single RBC in a simple linear shear flow is
of utmost fundamental interest and has been the subject of many experimental and
theoretical studies due to its complexity and its sensitivity to RBC properties. From a
structural and mechanical viewpoint, a RBC is fundamentally a liquid drop encapsulated
in a membrane. The cytosol is a haemoglobin solution with an average concentration
(MCHC: Mean Corpuscular Haemoglobin Concentration) normally between 320 and 360
g/l corresponding to a mean viscosity in the range 6-10 mPa.s (see Ross & Minton 1977).
The RBC membrane is composed of a lipid bilayer that provides area dilation resistance
and bending rigidity, and a spectrin network that constitutes a quasi 2D skeleton on the
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inner surface of the lipid bilayer and connected to it via junction complexes and membrane
proteins. This skeleton provides 2D shear elasticity to the membrane and to some extent
shape memory. The cell volume is about 90 µm3 on average and the membrane area 136
µm2, corresponding to a reduced volume of around 0.6 (see Linderkamp et al. 1983; Fung
1993). This leads to the characteristic biconcave disk shape and provides enough excess
area (compared with a sphere) to allow large deformations.

Simple shear flow is a basic rheometric configuration and as such the dynamics of a
suspended object can be considered as a marker of rheological and mechanical properties.
In addition, it is also a benchmark situation for comparing experiments and theoretical
or numerical modelling of the red blood cell. Indeed, there are still many open questions
about the mechanical structure and properties of the RBC: what are the respective roles
of the bending rigidity of the lipid bilayer, the elasticity of the spectrin network and the
viscosity of the cytosol? Does the cytoskeleton have a permanent stress-free shape or
should the possibility of remodelling be considered (e.g. due to NO (see Simmonds et al.
2014; Grau et al. 2013) or ATP (see Betz et al. 2009) release and production in response
to stress)? What is this stress-free shape (see Fischer et al. 1981; Svelc & Svetina 2012;
Peng et al. 2014; Cordasco & Bagchi 2014; Sinha & Graham 2015)? RBC mechanical
properties are an indicator and consequence of several pathologies (sickle cell disease,
thalassaemia, elliptocytosis) and can be modified by physical activity or conditions such
as long-term space flight for instance (see Rizzo et al. 2012). It has been shown that
these conditions can induce modifications of membrane composition and properties, RBC
shape and internal viscosity. The corresponding variations of dynamics, deformation and
orientation of RBCs in flow strongly condition blood rheology (viscosity, viscoelasticity)
and the hydrodynamic interactions that govern the structure of blood flows in vessels
through lift forces near walls, interactions between cells and distribution in networks (see
Grandchamp et al. 2013; Shen et al. 2016; Roman et al. 2016).

Numerous studies, both experimental (see Morris & Williams 1979; Goldsmith & Mar-
low 1972; Bitbol 1986; Abkarian et al. 2007; Dupire et al. 2012; Fischer & Korzeniewski
2013; Levant & Steinberg 2016; Lanotte et al. 2016; Mauer et al. 2018) and numerical
(see Cordasco & Bagchi 2013, 2014; Peng et al. 2014; Sinha & Graham 2015; Lanotte
et al. 2016; Mauer et al. 2018) have been devoted to the dynamics of a single RBC in a
shear flow. Efforts to capture the main features of the dynamics are recent (see Dupire
et al. 2015; Mendez & Abkarian 2018). In an attempt to isolate the contributions of
shear elasticity and membrane bending energy, investigations related to the modelling
of blood flows using elastic capsules or giant lipid vesicles as simplified models of RBCs
already show rather complex diagrams of dynamical states notably involving tumbling
(TB), tank-treating (TT), vacillating-breathing (VB) modes as a function of membrane
properties, viscosities of the external and internal media, shear rate and rest shape of
the object (see Barthès-Biesel & Rallison 1981; Ramanujan & Pozrikidis 1998; Lac &
Barthès-Biesel 2005; Skotheim & Secomb 2007; Kessler et al. 2009; Bagchi & Kalluri
2009; Walter et al. 2011; Foessel et al. 2011; Dupont et al. 2013, 2016; Barthès-Biesel
2016; de Haas et al. 1997; Rioual et al. 2004; Kantsler & Steinberg 2005; Abkarian &
Viallat 2005; Noguchi & Gompper 2005a,b; Kantsler & Steinberg 2006; Mader et al. 2006;
Misbah 2006; Mader et al. 2007; Noguchi & Gompper 2007; Lebedev et al. 2007; Danker
et al. 2007; Kantsler et al. 2008; Deschamps et al. 2009; Farutin et al. 2010; Biben et al.
2011; Zabusky et al. 2011; Farutin et al. 2012; Farutin & Misbah 2012; Laadhari et al.
2012). These parameters are usually combined in a set of dimensionless numbers such as
reduced volume ν, viscosity ratio λ and capillary number Ca, the latter comparing the
hydrodynamic shear with either bending rigidity or shear elasticity of the membrane. In
high viscosity media, the drop-like tank-treading motion and its characteristics (cell elon-
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gation, inclination and tank-treading frequency) have often been put forward as a means
to characterize RBC mechanical properties (see Fischer et al. 1978; Fischer 2007; Chien
1987). While other regimes that exist for physiological values of viscosity and shear rate,
such as flipping/tumbling (see Goldsmith & Marlow 1972), rolling motion (see Bitbol
1986) or swinging motion at intermediate stress and viscosity (see Abkarian et al. 2007)
have been identified, as well as hysteretic behaviour in the transitions between different
modes (see Dupire et al. 2012), there is still no clear consensus on the whole dynamical
diagram of RBCs in shear flow as a function of shear stress and external viscosity.

Part of the discrepancies and uncertainties on the boundaries of the different dynamical
modes in phase space in experimental studies available in the literature is likely to be due
to the variability of RBC properties between different subjects and even within a given
blood sample. Indeed, most studies focused on the analysis of single cells, sometimes the
same cell (by varying shear rate) and often different cells when it is necessary to vary the
viscosity of suspending medium. However, RBCs are filled with a haemoglobin solution
whose concentration - and viscosity - can vary significantly during the RBC lifespan, as
they tend to slightly dehydrate when getting older, and between individuals. For instance,
the volume of RBCs can vary by 25 % between young and old cells (see Linderkamp &
Meiselman 1982), leading to equivalent variations of the haemoglobin concentration at
the cell level (32 to 40 g/dl). This leads to dispersion of internal viscosities within a blood
sample between 6 and 20 mPa.s at 37◦C (see Ross & Minton 1977) and dispersion of
mechanical properties and dynamics (see Pfafferott et al. 1985).

In this paper, after summarizing the data on transition thresholds between different dy-
namical modes available in the literature, we report on measurements of the distribution
of orientation angles and aspect ratios of RBCs in large samples by varying suspending
medium viscosity and shear rate. This allows to derive and quantify the populations of
cells that are in the different dynamic modes for a given set of parameters, for a given
healthy blood sample in which natural variability of cell properties is present. We give
ranges of values for the transition thresholds and their hysteretic behaviour, that take
this variability into account. The large populations analyzed for each point of the pa-
rameter space (several hundreds of RBCs) provide for the first time relevant statistical
information on the dispersity of RBC dynamics in shear flow.

We focus on two suspending media: one has high viscosity (25 mPa.s), and allows to
make comparisons with the literature, which has notably focused on such a configuration
because it allows the tank-treading regime to be reached. The other has a viscosity 1.5
mPa.s close to that of plasma and has an obvious interest for physiological issues. This
situation has been much less studied in the literature, as far as experiments are concerned.

2. Cell orientation and Jeffery orbits

We introduce the notations for angles that will be used all along the paper, and Jeffery
orbits, that describe the motion of rigid ellipsoids under shear flow. This motion that
will be used here in our modelling is also a reference case.

2.1. Euler angles

We consider cells placed in a shear flow with flow direction Oz′, shear gradient direction
Oy′ and vorticity axis Ox′. To characterize the orientation and motion of cells, we shall
use the Euler angles. Let us consider, as a first approximation of RBC shape, an ellipsoid
of equation

r2x2 + y2 + z2 = 1. (2.1)
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Figure 1. The Euler angles used to describe the flipping regime. Convention used in Jeffery
(1922) and in this paper. The large black arrow shows the viewing direction in the experiments,
where projection on the x′z′ plane is seen (black ellipse).

r is the aspect ratio, which will be larger than 1 here (oblate ellipsoid). This ellipsoid may
rotate and we use the Euler angles as defined in Jeffery (1922) and in Fig. 1 to describe
this rotation in the fixed coordinate system Ox′y′z′ that coincides initially with the
system Oxyz associated with the ellipsoid (see supplemental material for a comparison
with the other convention used in the literature).

In the original paper by Jeffery (Jeffery (1922)), θ is obtained by rotation around the
Oz′ = Oz axis, then φ is obtained by rotation around the Ox′ axis, such that it is defined
as the angle between the planes Ox′y′ and Ox′x (see Fig. 1). With this convention, when
φ = 0 and θ = 90◦, the cell face is in the Ox′z′ plane.

If the cells are viewed from the velocity gradient axis Oy′, as in our experiments, the
angle Ψ defined as the angle between Ox′ and the projection of the cell axis of revolution
Ox onto the plane Ox′z′, can be easily determined (see. Fig. 1). This angle is also the
angle between the projection of the cell and the flow direction. Ψ is related to θ and φ
through tan Ψ = tan θ sinφ.

2.2. Jeffery orbits

For a shear flow in the z′ direction with y′ the shear gradient direction and x′ the vorticity
direction, the motion of a rigid ellipsoid in creeping flow is given by (Jeffery (1922)):

θ̇ = γ̇
r2 − 1

r2 + 1
sin θ cos θ sinφ cosφ, (2.2)

φ̇ =
γ̇

1 + r−2
(r−2 cos2 φ+ sin2 φ), (2.3)
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Figure 2. Selected snapshots along half a flipping period of an ellipsoid of aspect ratio r = 3
following a Jeffery orbit of orbit angle θ0 = 45◦. The black shape is the projection of the ellipsoid
parallel to the shear gradient direction; it corresponds to what is seen in our experiment. Ψ is
the angle of the main axis of this projected shape with the flow direction. As stated by Eq.
2.6, it oscillates between −θ0 and θ0. The apparent aspect ratio ra oscillates between a minimal
value strictly larger than 1 and r, when the cell is seen edge on and Ψ = ±θ0.

with C ≡ r tan θ0 the orbit parameter. These equations can be solved and give:

tan θ =
C

r(r−2 cos2 φ+ sin2 φ)1/2
, (2.4)

tanφ = r−1 tan
γ̇t

r + r−1
. (2.5)

θ oscillates between θ0 and arctanC (spinning motion).

We shall refer to these possible motions as flipping motions. Among them, θ0 = 0◦

corresponds to what is called rolling motion (θ always equal to 0), while θ0 = 90◦ corre-
sponds to tumbling (θ always equal to 90◦). Note that when r > 1, φ̇ is minimal when
φ = 0, which corresponds to the cell aligned with the flow direction.

Simple trigonometry then yields the equation for Ψ(t) according to Jeffery theory:

tan Ψ = tan θ0 × sin
γ̇t

r + r−1
. (2.6)

Ψ therefore oscillates between two extreme positions −θ0 and θ0, where it stays more
time (see Fig. 2 for an example).

In this paper, we shall consider the possible flipping motions for a cell, that will be
hypothesized to closely follow Jeffery orbits, but also the tank-treading motion. In that
case, the cell small axis remains in the shear plane (θ = 90◦) while the cell adopts a
constant angle relatively to the flow direction. This definition is unambiguous as long
as the cell does not deform. If it does, as pointed out in Dupont et al. (2016) where
oblate capsules are considered, one should refer to the membrane material point that
was located, at rest, on the small axis. From this unambiguous definition, a cell of fixed
shape in flow for which this point is directed toward the vorticity direction would be called
a rolling cell, even though its deformation is such that it ressembles a tank-treading cell.
From this point of view, the tank-treading motion mentioned in Cordasco et al. (2014),
Fig.12 or in Sinha & Graham (2015), Fig. 15 should be called rolling motion.

Since the numerical studies we will refer to in the following have used the term tank-
treading, and since in most experimental studies the deformation seems to remain weak,
we shall however go on using the (potentially improper) term of tank-treading for cells
whose small axis of symmetry lies in the shear plane.
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3. State of the art

In the whole paper and in this section in particular, we shall use the Jeffery notations
and conventions (Fig. 1). The original notations used in the considered papers (which are
quite varied) are recalled in the supplemental material, for sake of clarity. Experiments
were run at laboratory temperature, at which the viscosity of the hemoglobin solution is
close to 10 mPa.s, when it is equal to 6.5 mPa.s at body temperature. In experimental
papers, the ”natural” parameter space (η0, γ̇) is often used, where η0 is the carrying
fluid viscosity and γ̇ the shear rate, a parameter that can be varied continuously. As an
alternative to γ̇, the typical stress on the cell τ = η0γ̇ is also often considered. We shall
stick to this latter choice in the following.

The main thresholds and dynamics states domains found in previous experiments from
the literature are reported in Fig. 3.

In numerical simulations, dimensionless parameters are naturally chosen. These are
λ and Ca. λ is the viscosity contrast that is, the ratio between the viscosity of the
haemoglobin solution and that of the carrying fluid. λ = 1 therefore corresponds to
η0 ' 10 mPa.s in the experiments. The capillary number Ca compares the flow stress
η0γ̇ with the elastic stress: Ca = η0γ̇R/µ, where R is the typical size of the RBC and
µ the shear elasticity modulus of the membrane. η0 is typically varied between 1 and
100 mPa.s and the stress η0γ̇ does not exceed 5 Pa (20 Pa in the more recent Mauer
et al. (2018)). Technical details and description of the main results of the most recent
and relevant papers that we consider here are reported in the Supplemental Material and
will be recalled when necessary in the discussion of our results.

All recent simulation papers establish a diagram that is qualitatively coherent with
the one partly drawn by experiments (see Cordasco & Bagchi 2013; Peng et al. 2014;
Cordasco et al. 2014; Sinha & Graham 2015; Mendez & Abkarian 2018). This diagram
can be divided into four zones, the frontier of which depends on the considered equilib-
rium shapes (see Fig. 3): (i) flipping motions, (ii) tank-treading, (ii’) tank-treading like
motions with oscillations or slightly off-plane motion, (iii) flipping motions, but orbit
stability is different than in the low external viscosity case (i). The intermediate region
(ii’) corresponds to a narrow range in the parameter space. In all papers, the different
regimes are obtained by starting with a cell with a given orientation θ, and following
its time evolution. From the way the simulations are run, we can consider that they
correspond more to the increasing γ̇ case (but to a sharp increase). None of the previous
studies consider the decreasing case, or the smoothly increasing case.

3.1. Experimental papers

One of the first major contributions to the study of RBC dynamics under shear flow
is found in Goldsmith & Marlow (1972) where statistics on the angle distribution is
obtained. They observed dilute red blood cells in a large tube where, at the cell scale,
the flow can be assimilated to simple shear flow, with the same outer viscosity η0 as
plasma. They also performed experiments in a plate plate geometry at high η0 (520
mPa.s) and low γ̇ (around 1 s−1). Both experiments correspond to an increasing γ̇: in
the Poiseuille flow experiment the observation tube is narrower than the upstream tubes,
and in the shear chamber experiment, RBCs are initially at rest.

The main outcomes of Goldsmith & Marlow study are :

• In plasma and at low shear rate (γ̇ < 10 s−1, τ < 0.01 Pa), the time evolution
φ(t) can be well described by Jeffery’s equation (Eq. 2.5) if an effective aspect ratio is
introduced, which is 25% lower than the aspect ratio of the convex envelope of the cell.
This result was previously found for rigid circular disks (Anczurowski & Mason (1967)),
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Figure 3. Summary of the transition thresholds identified in the literature and in our exper-
iments. Whether the mentioned transition should be understood to occur in the increasing or
decreasing shear rate case is indicated by the symbols (γ̇ 1) and (γ̇ %), respectively. The chosen
data points from the literature are commented in the text. Due to variability between cells, all of
our thresholds are identified by an interval. Some transitions have no lower bond because of the
range of stresses explored. The transition intervals are slightly shifted around the two explored
viscosities 1.5 and 25 mPa.s for clarity.

and the discrepancy between the two ratios is expected to decrease as the aspect ratio
gets closer to 1.
• At higher γ̇ , departure from Jeffery’s equation is observed, with longer duration of

alignment with flow and the initial φ→ −φ symmetry for φ̇ is lost. This is interpreted as
the consequence of cell deformability, which induces different shapes depending on the
cell orientation relatively to the extensional direction of the flow. At the same time, more
cells drift into rolling motion (θ = 0). Those feature are lost for hardened cells.
• θ was found not to be periodic as a function of φ, contrary to what the Jeffery theory

states, and the motion appears to be less regular. This is interpreted as a consequence
of rotary Brownian motion of cells.
• In the highly viscous suspending medium, cells are seen to align strongly with the

flow. However, no clear discrimination is made between tank-treading cells and rolling
ones.

The drift to rolling is studied in Bitbol (1986). The cells were observed in a cone-plate
geometry allowing for γ̇ between 1 and 200 s−1. Viscosity η0 of the suspending medium
was between 1 and 10 mPa.s. The main results are:
• If one considers the single parameter τ = η0γ̇, which measures the flow stress on the

cell, a rough phase diagram is obtained from direct observations as follows: if τ < 0.02
Pa, cells rotate in the flow (that is, flipping motion is observed). In the intermediate
range 0.02 Pa < τ < 1 Pa, cells drift to rolling. For higher stresses, the number of rolling
cells plateaus at viscosity η0 = 1 mPa.s while it decreases when η0 > 5 mPa.s: cells start
to tank-tread.
• In the rolling regime, the cell diameter increases with η0 and γ̇, as already found in

Goldsmith & Marlow (1972).
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• In the considered viscosity range, the typical time for cell drift towards rolling is of
order 100×γ̇−1.

Several new features were highlighted in Dupire et al. (2012), which followed a first
paper by the same group (see Abkarian et al. 2007). In these papers, the case of decreasing
γ̇ is considered for the first time, and off shear plane motion is also described for the first
time. The carrying fluid viscosities η0 are 7 and 29 mPa.s, and the γ̇ goes from 0 to 15 s−1

in the first case and to 2.7 s−1 in the second case. The cells flow in a large parallelepiped
flow chamber where around 20 cells were tracked individually and visualized along both
the shear and vorticity axis. The main results of this paper are :
• At low γ̇ , the orbit angle θ0 of a flipping cell is not constant but varies between 50◦

and 90◦.
• If the shear rate exceeds a threshold γ̇t lying between 0.01 Pa and 0.05 Pa depending

on the observed cell, this orbit angle stabilizes to a constant value (that decreases with
γ̇ , until the rolling regime is reached).
• In the flipping regime, the time evolution of φ is well described by the Jeffery equa-

tion.
• At some critical shear rate γ̇+

c , transition towards tank-treading is observed. Tank-
treading is associated with swinging, that is, periodic oscillation of the inclination angle.
• If γ̇ is then decreased, the tank-treading motion remains stable until some other

critical shear rate γ̇−c < γ̇+
c at which a transient intermittent regime is observed. It

shows an alternance (in time) between tank-treading and flipping motions with high θ0.
When an orbit angle lower than 50◦ is reached, flipping motion with fixed orbit angle
becomes stable, with the same orbit angle equal as the one observed for the same shear
rate in the increasing γ̇ case. From this observation we deduce that γ̇t < γ̇−c . Although
not explicitly stated in Dupire et al. (2012), it seems that upon a further decrease of γ̇
the same branch as in the increasing γ̇ case is followed.
• γ̇−c and γ̇+

c do not vary if many shear rate cycles are applied to the same cell. The
corresponding critical shear stress values are 0.023 and 0.086 Pa for η0 = 29 mPa.s. These
are mean values, because all the critical stresses, as well as the orbit angles associated
with a given stress, depend on the considered cell.
• All these transitions occur in a shape preserving manner, with diameter variations

that remains lower than 10%.

The transition between flipping and tank-treading for several viscosities and many cells
is studied in Fischer & Korzeniewski (2013). They consider a Poiseuille flow, so probably
only the increasing γ̇ case is considered, though we do not know what the upstream
conditions are. The critical γ̇ for η0 = 11, 24 and 104 mPa.s are 75, 10 and 0.6 s−1

respectively. The transition shear rate is determined as the value at which half of the red
blood cells are in tank-treading regime. The authors also establish that the transition is
not sharp: the number of cells in tank-treading increases smoothly with the γ̇. The tran-
sition becomes more abrupt at high carrying fluid viscosity η0. Those thresholds together
with the one measured in Morris & Williams (1979) for plasma viscosity, allow to draw a
separation line between flipping-like motion and tank-treading-like motion in the (η0, τ)
space, as shown in Fig. 3.

In Lanotte et al. (2016), experiments similar to those in Fischer & Korzeniewski (2013)
are performed in physiological condition, but on a limited amount of cells. Transitions
from flipping to rolling are observed from γ̇ = 10 s−1 until γ̇ = 40 s−1 (τ = 0.04 Pa.s).
In the meantime and also for larger shear rates, an increasing proportion of cup-shaped
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stomatocytes in rolling motion is detected. At even higher shear rates (until the max-
imum considered, γ̇ = 2000 s−1), highly deformed polylobed shapes are observed. No
notion of increasing or decreasing γ̇ is introduced in these experiments. They confirmed
this picture in a second recent paper with shear rates higher than 60 s−1 (see Mauer
et al. 2018)

Finally, in Levant & Steinberg (2016), 17 cells are studied in a four roll mill apparatus
which allows to consider a more general flow defined by the vorticity ω and the strain rate
s. Simple shear flow corresponds to the case 2ω = 2s = γ̇. It corresponds to a stability
threshold for the apparatus, since ω/s > 1 is required for the cell to remain trapped.
Long time observation is then possible, while varying the ratio ω/s. More precisely, ω is
fixed and s is varied. The explored range of external viscosities is 20 to 87 mPa.s. The
possibility to increase the contribution of the vorticity allows to switch to flipping regimes
even in that viscosity range. With the choice to characterize the flow stress by 2sη0 and
to consider the extended viscosity η0(w/s)−1, three regions are identified, corresponding
to tumbling, swinging, and an intermittent regime, which coincide with those identified
in Dupire et al. (2012). Contrary to what was observed in Dupire et al. (2012), large
deformations are associated with the intermittent regime. Although the stress seems to
be increased and decreased within the same experiment, no hysteretic behavior is re-
ported. In Fig. 3, the explored area in the (η0(w/s)−1, 2sη0) parameter space is shown
on the phase diagram for simple shear rate with parameter space (η0, η0γ̇). We shall note
that, in agreement with numerical simulations in Cordasco & Bagchi (2013), no off-plane
motion is observed in the flipping region while it is seen in simple shear flow in Dupire
et al. (2012). This partial mapping shows that an increased rotational component in the
flow, as in Levant & Steinberg (2016), favors in plane motion.

The experimental studies summarized above have all brought new features to the prob-
lem. They neither contradict each other nor provide cross-validation since the explored
parameter ranges, or the experimental method, often differ. Studies on individual cells
which are followed in time have allowed to exhibit more detailed dynamics (see Abkarian
et al. 2007; Dupire et al. 2012; Levant & Steinberg 2016), but full characterization of the
transition dynamics could not be addressed, in particular concerning the consequence
of dispersion in size and mechanical properties of cells. The decreasing γ̇ case has only
been clearly addressed in Dupire et al. (2012). On the other hand studies on statistically
relevant populations are often limited to the study of a single feature, e.g. the population
in tank-treading regime (see Goldsmith & Marlow 1972; Fischer & Korzeniewski 2013)
or in deformed rolling regime (see Mauer et al. 2018), but they allowed to estimate the
width of transition zones due to cell dispersity, in the increasing γ̇ case only.

The case of physiological values for the external fluid viscosity has seldom been ad-
dressed, probably because of sedimentation issues, and is therefore much less documented
than the case of more viscous fluids.

3.2. On the hysteresis and the intermittent regimes

A striking feature is the existence, at least for high enough viscosities of the external
fluid, of an hysteresis in the (η0, γ̇) space upon variations of γ̇, which has been described
differently in different papers. We aim at clarifying this in the following.

In the first experimental paper to account for such a feature (see Abkarian et al.
2007), the observed low shear rate motion is surprisingly always tumbling. Transition to
tank-treading (or, rather, swinging) is characterized by the existence of an intermediate
regime where cells alternatively tumble and swing, which is observed for both decreasing
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and increasing γ̇. The experimental constraints did not allow to conclude whether this
intermittent regime is transient or not. Transition shear rates denoted γ̇>c and γ̇<c are
identified, with γ̇>c > γ̇<c , a signature of hysteretic behavior. They correspond respectively
to the first observed transition from tumbling to swinging when increasing γ̇ and to the
first observed transition from swinging to tumbling when decreasing γ̇, for an observation
over a time scale of order 20s.

In the same paper, an improvement of the analytical model by Keller and Skalak(see
Keller & Skalak 1982) (a droplet enclosed by an ellipsoidal fluid membrane) is proposed
for red blood cell dynamics. Membrane shear elasticity is taken into account (as, simul-
taneously, in Skotheim & Secomb (2007)) and in Dupire et al. (2015), the possibility
for a stress free configuration different from the equilibrium shape is explored. In that
model, considering more inflated stress free configurations amounts to multiply the shear
modulus by some constant smaller than 1. Considering the transition threshold and other
characteristics like cell oscillation periods, it is deduced in Dupire et al. (2015) that the
stress free configuration is likely to be a spheroid, in agreement with other modelling (see
Lim H. W. et al. 2002; Peng et al. 2014; Cordasco & Bagchi 2014). Back to our initial
question, the analytical model results in differential equations for the angles characteriz-
ing cell dynamics, for the case where the cell axis of symmetry remains in the shear plane.
In other words, only transitions between tumbling-like and tank-treading like motions
can be explored (a recent model proposed in Mendez & Abkarian (2018) should allow
to get rid of this issue in the future). These equations can be solved numerically for a
given shear rate and a given set of parameters for the cell mechanical properties, and an
intermittent regime is observed in an interval [γ̇−c ; γ̇+

c ]. In Abkarian et al. (2007) or in
Dupire et al. (2015) it is however not specified if the threshold values are obtained con-
sidering increasing or decreasing γ̇. Knowing the dependency of the solutions of the cell
angle evolution equations on the history of γ̇ values probably requires a precise stability
analysis such as that done in Kessler et al. (2009) in the case of quasi-spherical cells.

Though they are clearly related to each other, how the different thresholds γ̇<,>c and
γ̇−,+c compare with each other is not clear as they were determined differently (limited
observation time in the experiments and more importantly no direct study of potential
hysteresis in the numerical analysis).

The intermittent behavior has been observed and thoroughly studied by numerical
simulations (starting from a rest configuration) in Cordasco & Bagchi (2014) and in Peng
et al. (2014), with the axis of revolution also restricted to shear plane, though in some
cases this configuration is said to be metastable according to Cordasco & Bagchi (2014).
In Peng et al. (2014), the minor bound γ̇−c of the intermittent regime is determined and
shown to be smaller than the transition shear rate between rolling and tank-treading.
Finally, in the experimental paper by Levant & Steinberg (2016) a stationary intermittent
regime is also observed for, apparently, increasing and decreasing flow stress although
it is only explicitly highlighted for a decrease of the flow stress 2sη0. Note that in this
paper the flow geometry is not the same and no off-shear plane motion is observed.

In Dupire et al. (2012), the picture turns out to be more complex: the decreasing γ̇
path would be characterized by the apparition of a transient intermittent (tank-treading
/ flipping with angle larger than 50◦) phase when tank-treading regime is left, whose
duration in time is not clear. After this intermittent phase, flipping motion with orbit
angle strictly smaller than 50◦ would follow. The shear rate at which this transition takes
place is denoted γ̇−c , and no notion of interval over which this intermittent regime would
be possible is introduced. The analogy with the notation γ̇−c introduced in Abkarian
et al. (2007) suggests that the transient intermittent regime would only take place in the
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low range of the whole expected range for the intermittent regime [γ̇−c ; γ̇+
c ], while stable

tank-treading would be preferred in the top range.
On the other hand, upon an increase of shear rate, no intermittent regime is observed

but rather a continuous drift from tumbling to rolling, then a transition to swinging.
In Dupire et al. (2012), the threshold for this transition is denoted γ̇+

c , suggesting that
when increasing γ̇ the route to swinging through the intermittent regime is replaced by
the orbital drift. In Levant & Steinberg (2016), the intermittent regime is associated
with large cell deformations: we hypothesize that the orbital drift is another route that
prevents such large elastic distortions. This would explain why the intermittent regime
is not seen in the increasing shear rate case, unless forced by restricting the motion to
the shear plane, artificially in the simulations or because of a specific flow geometry as
in Levant & Steinberg (2016).

Finally, the fact that, to our knowledge, no analytical or numerical analysis has con-
sidered the decreasing shear rate case so far limits the discussion on the relationship
between hysteretic and (possibly transient) intermittent regimes. A secondary goal of
the present study is to reinforce the experimental input on this question.

4. Experiments

Blood samples from healthy donors were tested and provided by the French blood
bank EFS. To remove all substances except RBCs, the samples were centrifuged and
washed in physiological buffer solution (PBS, phosphate buffered saline, Sigma). This
procedure was repeated three times at room temperature; after each centrifugation, the
liquid phase and buffy coat were removed by aspiration. Then RBCs were resuspended
either in PBS solution with 1 g/L of bovine serum albumine (BSA, Sigma) or in a
PBS+BSA solution where dextran was diluted (20 g/L of dextran of molecular weight
1.5×104 + 70 g/L of dextran of molecular weight 2×106). This latter solution has a
viscosity at room temperature (23-25 ◦ C) of 25±0.5 mPa.s, a configuration close to that
often considered in the literature. The viscosity and density of this solution are such that
they allow long-time acquisition without sedimentation issues.

By contrast, cells in plasma quickly sediment, with a velocity of typically 1 µm/s.
This prevents long-time observations in flow chambers adapted to microscopy. In order
to counterbalance sedimentation, water in the PBS solution was replaced by a mixture
of 68.5 % water and 31.5 % Optiprep© (iodixanol solution, Axis-Shield), so as to reach a
density close to that of cells (1.1 g/ml), following a method initially proposed in Roman
et al. (2012), later on used in Shen et al. (2016) and Roman et al. (2016). This solution
has a viscosity at room temperature of 1.5±0.1 mPa.s, close to that of plasma (1.95
mPa.s at 20◦C and 1.34 mPa.s at 37◦C (see Brust et al. 2013)).

In all suspensions, the volume fraction is very weak (∼ 0.01%), and cells are located
everywhere in the chamber: one can consider the cells are isolated and do not interact
hydrodynamically. The suspension is injected in a plane-plane shear chamber of gap 200
µm which was previously described in Callens et al. (2008). The shear rate γ̇ is varied
step by step from 0.5 s−1 to 200 s−1 then decreased back. The flow stress ranges are thus
7.5×10−4 Pa to 0.3 Pa and 1.3×10−2 Pa to 5 Pa for the low and high viscosity solutions,
respectively. Those ranges are indicated in Fig. 3 for comparison with the explored ranges
in the literature. Because of the low sedimentation rate, one sequence of increasing or
decreasing shear rate could last around 1h, with the same RBCs in the chamber all along
the experiment. Thus, small steps for shear rate variation could be imposed, so as to
obtain a precise diagram of the RBC dynamics. At each value of γ̇, between 1 and 5
(for low shear rates) series of 600 images are taken at 24 fps. Series are separated by at
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Figure 4. Examples of images from the DHM after treatment. The green contours are the fits
of the cells projected shapes. Red ones correspond to contours that were discarded because the
aspect ratio or the apparent surface are considered as non realistic. They mostly correspond
to superimposed cells. Due to the low concentration in cells, those patterns are scarce and,
whatever the exclusion criterion considered, do not influence much the analysis.

least 15 s. Using several series allows obtaining good enough statistics on the shape and
orientation of the cells. Only cells located at at least 20 µm from the walls are included
in the analysis, because the presence of walls may impact the cell dynamics, in particular
flipping motion (see Vitkova et al. 2009).

The RBC suspension is monitored by a Digital Holographic Microscope working in
reduced spatial coherence, whose optical axis is perpendicular to the chamber planes.
This configuration allows a strong reduction of the inherent noise of interferometry and
provides better in-depth reconstruction capabilities (see Grandchamp et al. 2013; Minetti
et al. 2016). On the basis of the acquired interferogram, it is possible to extract the com-
plex amplitude of the optical beam passing through the sample and simulate numerically
the propagation of the beam through the whole thickness of the experimental cell. In this
way one can scan, slide by slide, the experimental volume and refocus numerically all the
RBCs present in the suspension volume. The procedure to extract the three-dimensional
position and features of each cell in the experimental volume is similar to the one used in
Minetti et al. (2014) for lipid vesicles. Red blood cells require more attention in the data
treatment than vesicles because their convex shape leads to a much higher distortion
of the light beam, a property which was recently used to characterize cell morphologies
(see Miccio et al. 2015). The projection of the cell shape on the plane perpendicular to
the shear gradient direction is obtained, where each pixel intensity is proportional to the
optical thickness (thickness of the cell times the difference of refractive index between
the cell and the suspending fluid) in the optical axis direction. A segmentation is applied
on each cell to determine the geometrical boundaries of the projected shape.

For each detected cell, its major axis is determined from the diagonalisation of the
inertia matrix of its projected shape. This axis makes an angle Ψ with respect to the
flow direction, as defined is Sec. 2.1. Ψ is defined in the range [0, 90◦]. Taking this axis as
an origin for angle ξ, the contour of the projection of the cell is fitted by the polar equation
ρ(ξ) = ρ0 + a1 cos2 ξ + a2 cos4 ξ + a3 cos6 ξ, which allows to also describe shapes that are
more rod-like than ellipse-like, as is the case when viewed from the side. In that case,
they may also appear as concave, because of the smaller contribution of the outer ring to
the total optical thickness of the object. Examples of obtained images with the associated
contours are shown in Fig. 4. The weight of the contribution of the outer ring can vary a
lot depending on the orientation or position of the cell, for that reason we consider the
aspect ratio ra of the convex envelope of the cell (that is, its effective projection) rather
than the ratio between the radii at ξ = 0 and π/2 : ra = ρ(0)/max

(
ρ(ξ) sin ξ

)
. ra lies in
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the range [1; +∞], but in practice it is never larger than 5. Probability densities for Ψ
and ra are then calculated for each shear rate. For simplicity we consider the Ψ and ra
distributions separately, so as to make the fitting procedure described in the next section
converge more easily and in a reasonable amount of time. A long computing time is due
to the necessity to consider only discrete data sets instead of formal expressions for some
fitting functions, as described in the next section. The bin sizes are δra = 0.05 for ra
and δΨ = 1◦ for Ψ. For high γ̇, around 6000 cell pictures are included in the statistics.
This number is regularly increased as lower shear rates are considered, up to 40 000 for
the lower shear rate 0.5 s−1, so as to describe accurately more complex dynamics with
many orbit angles. This last number corresponds to about 500 different cells that were
observed at least once.

5. Model and data analysis

The experimental probability densities are compared to the theoretical distribution for
Ψ and ra that are expected from the model described in the following.

5.1. Premises

We assume that, for a given shear rate, the suspension is composed at each time, on
average, of a proportion pT of cells in tank-treading-like (or swinging) motion and a
proportion 1− pT of cells in flipping motion following a Jeffery orbit, where orbit angle
θ0 can be between 0 (rolling) and 90◦ (tumbling). In Dupire et al. (2012), it is shown
that above a threshold value, orbits are unstable and the cells switch from one orbit to
another, with angles between this threshold and 90◦. On the contrary, below this value
orbits are stable. In order to explore this idea, we look for two subpopulations of flipping
cells: a) with proportion ps, those with stable orbits which we suppose to lie between two
extremal values θ−0 and θ+

0 , with equal probability. While this may appear as a strong
statement, this is the only reasonable choice amongst the possible distributions, that
would lead to a reasonable number of fitting parameters. b) with proportion (1 − ps),
those with unstable orbits with angles between θ+

0 and 90◦, with equal probability. In
addition, shear stress may have an influence on the cells’ aspect ratio, which should also
be determined.

In the following, we derive the expression of the theoretical densities that include the
geometrical and dynamical characteristics of the tank-treading and flipping regimes, but
also the dispersion in size and shape within a sample and the uncertainties associated
with the shape characterizations.

5.2. Tank-treading

Viewed from the shear axis direction, depending on the elongation of the cell (increasing
with shear rate), but also on its angle π/2−φ compared to the flow direction (decreasing
with shear rate), a tank-treading (or swinging) cell will appear as an ellipse whose long
axis may be in the flow or in the vorticity direction. We therefore look for two populations
of cells, in proportion β and 1−β, with orientations 0 and 90◦. The theoretical distribution
dΨ,TT on [0◦; 90◦] is then, in principle:

dΨ,TT [β](Ψ) = β 2 δ0(Ψ) + (1− β) 2 δ90(Ψ), (5.1)

where δΨ0 is the Dirac distribution centered on Ψ0.
Here and in the following, we mention inside square brackets [−] the parameters of the

distribution while the studied variable is placed inside brackets (−). For the aspect ratio,
we notice that the size distribution is large, as at rest: typical range for the long axis of
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Figure 5. Probability density for the length of the projected shapes of RBCs, in the vorticity
and flow direction, in the η = 25 mPa.s solution, for γ̇ = 200 s−1.

a cell at rest is 7 to 9 µm (see Canham & Burton 1968). In addition, the distribution
of apparent cell length in the flow direction is not symmetric but has shorter tail on
the large values side (see Fig. 5). The distribution of width in the vorticity direction
is not symmetric either, with shorter tail on the low value side. This may be due to
many factors: uneven distribution of the deformability among the cells (see Dobbe et al.
2002b), saturation of deformation of a given cell under shear (it would not possible to
elongate a cell and shrink it in the vorticity direction beyond a given threshold), result
of swinging dynamics that favors some projected lengths (not valid for width). For the
aspect ratio rzx =(flow direction axis / vorticity direction axis) we shall therefore expect
an asymmetric distribution (see Dobbe et al. 2002a). It appeared that the skew-normal
distribution, defined by

psG[rT , wT , α](rzx) ∝ (1 + erf(α(rzx−rT )√
2wT

))e−(rzx−rT )2/(2w2
T ) (5.2)

works well. α is an asymmetry parameter that will be negative in our case. In our general
analysis, we chose to consider the aspect ratio ra between the long axis and the short
axis of the cells, a parameter that is defined even for cells not parallel or perpendicular
to flow. Here, we shall therefore consider the inverse aspect ratio for the cells with aspect
ratio rzx lower than 1, hence the following theoretical distribution dra,TT for ra :

dra,TT [rT , wT , α](ra) = Θ(ra − 1)
[
psG[rT , wT , α](ra) +

1

r2
a

psG[rT , wT , α](
1

ra
)
]
, (5.3)

with Θ the Heaviside function. The proportion β of cells whose projection is aligned with
the flow (Eq. 5.1) , is equal to

∫∞
1
psG[rT , wT , α](ra)dra.
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5.3. Flipping motion

Although cells are not exactly ellipsoids, we assume that the dynamics of a flipping cell
may still be described by the Jeffery orbit of an ellipsoid having the same aspect ratio r
as the convex envelope of the cell, as in Anczurowski & Mason (1967).

In experiments, the optical axis is y′ and we visualize its projection on the x′z′ plane
(see Fig. 1 for the notations and Fig. 2 for an example). The relationship between the
coordinates (x, y, z) in the moving Oxyz coordinate system and (x′, y′, z′) in the Ox′y′z′

coordinate system is, according to the convention used here:xy
z

 =
[1 0 0

0 cosφ − sinφ
0 sinφ cosφ

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

]−1

x′y′
z′

 . (5.4)

Eqs 2.1 and 5.4 yield the equation of the ellipsoid in the Ox′y′z′ coordinate system.
This is a quadratic equation in x′, y′ and z′, with parameters r, θ and φ. The contour of
the projection of the ellipsoid along the y′ axis corresponds to the x′z′ points for which
the ellipsoid equation has exactly one solution for y′. It yields the quadratic equation of an
ellipse for x′ and z′ which can be written as A(r, θ, φ)x′2+B(r, θ, φ)x′z′+C(r, θ, φ)z′2 = 1.

The angle Ψ of the long axis relatively to flow direction z′ and the aspect ratio (long
axis/short axis) ra of this ellipse are given by

cot Ψ = (−A+ C −
√

(A− C)2 +B2)/B, (5.5)

ra =

√
(A+ C +

√
(A− C)2 +B2)/(A+ C −

√
(A− C)2 +B2). (5.6)

For a given aspect ratio r and orbit parameter θ0 we can calculate the trajectories
Ψ(r, θ0, t) and ra(r, θ0, t) over one period and deduce the associated probability function
for Ψ and ra, as the probability is inversely proportional to the time derivative of the
considered parameter. For ra it yields a very complex function, which furthermore has
to be integrated to normalize the probability, making the calculation unfeasible. For Ψ,
thanks to the more direct Eq. 2.6, this can indeed be more easily done, and one finds,
for Ψ cast onto [0; 90◦], the probability density:

pΨ[θ0](Ψ) =
1 + tan2 Ψ

90 tan θ0

√
1− tan2 Ψ/ tan2 θ0

if Ψ < θ0, and 0 else. (5.7)

Interestingly, for a given θ0, the apparent angle probability does not depend on r. This
could already be seen from the expression 2.6, where the aspect ratio r only appears in
the expression through the period.

To calculate the probability density pra for ra we chose to sample ra(r, θ0, t) given by
Eq. 5.6 over one period T with time step 10−3T and infer the associated probabilities
pra [r, θ0](ra) with bin size 0.05 as for the experimental data, for all aspect ratios r between
rmin = 1.025 and rmax = 4.975 with step δr = 0.05 and all orbit angles θ0 between 0 and
90◦ with step δθ0 = 0.25◦. This set of 80×361=28880 discretized probability distributions
will be used in the fitting procedure.

Following the premises of this modelling section, the expected distributions are eventu-
ally obtained by considering that the orbit angle lies between two extremal values θ−0 and
θ+

0 , with equal probabilities of sum ps or between θ+
0 and 90◦, with equal probabilities

of sum (1− ps) and that, because cell population is not fully homogeneous, there can be
some variation in their aspect ratio. We consider normal pG[rF , wF ](r) distribution for
the cell aspect ratio (see Rodak et al. 2007), with mean rF and standard deviation wF .
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We would thus seek for Ψ and ra distribution in flipping regime

dra,F [rF , wF , θ
−
0 , θ

+
0 , ps](ra) =

rmax∑
r=rmin

pG[rF , wF ](r)δr

×
(

ps δθ0

θ+
0 −θ

−
0 +δθ0

θ+
0∑

θ0=θ−0

pra [r, θ0](ra) +
(1−ps) δθ0

90−θ+
0 +δθ0

90∑
θ0=θ−0

pra [r, θ0](ra)
)
, (5.8)

dΨ,F [θ−0 , θ
+
0 , ps](Ψ) =

ps δθ0

θ+
0 −θ

−
0 +δθ0

θ+
0∑

θ0=θ−0

pΨ[θ0](Ψ) +
(1−ps) δθ0

90−θ+
0 +δθ0

90∑
θ0=θ+

0

pΨ[θ0](Ψ). (5.9)

Sums on r are made with step δr and sums on θ0 use step δθ0. Both steps are those
used for the generation of the reference distributions.

5.4. Error function on angles

Experimental uncertainty on aspect ratio determination is somehow taken into account
by the use of (skew-)normal distributions.

The determination of the cell angle may lead to huge errors when cell apparent aspect
ratio is close to 1. If one considers the ellipse equation Ax2 +Bxz + Cz2 = 1 with A,B
and C being normal distributed around 1, 0 and 1 + ε respectively and variances of order
0.1 close to the experimental ones, one numerically finds an orientation angle distribution
that is centered on 0 but with long tail such that it is rather well described by Cauchy
distribution. As the considered angles are in the interval [0; 90] we will therefore consider,
instead of δ functions, the Cauchy distribution folded onto this interval:

p̃C [Ψ0, wΨ](Ψ) = pC [Ψ0, wΨ](Ψ) + pC [Ψ0, wΨ](−Ψ) + pC [Ψ0, wΨ](180−Ψ), (5.10)

with pC [Ψ0, wΨ](Ψ) = 1

wΨπ(1+
(Ψ−Ψ0)2

w2
Ψ

)
the Cauchy distribution function around Ψ0.

For the tank-treading regime, we will thus consider the modified distribution function
for the angle :

d̂Ψ,TT [β,wΨ](Ψ) = βp̃C [0, wΨ](Ψ) + (1− β)p̃C [90, wΨ](Ψ). (5.11)

wΨ is a free parameter that is expected to increase when γ̇ decreases, to take into
account the fact that the aspect ratio becomes close to 1.

For the flipping cells, the link between aspect ratio and angle is more complex. The
apparent aspect ratio is maximal when Ψ = θ0 (cell viewed from the edge, φ = ±90◦).
It is minimal when Ψ = 0 but this minimal value depends on the orbit: it reaches 1 only
for tumbling (θ0 = 90◦). Therefore, the uncertainty on a given angle depends on the
orbit the cell is following. So as to go on handling separately the ra distribution and the
Ψ distribution, we make the simplifying assumption that, for a given orbit, the width
of the modified Cauchy function is 0 when the angle is equal to its maximum value θ0

and increases linearly with the distance between the angle and the orbit angle. We thus
consider the modified distribution for one orbit:

p̂Ψ[θ0, wΨ](Ψ) =

90∑
ξ=0

pΨ[θ0](ξ)p̃C [ξ, wΨ|ξ − θ0|/90](Ψ). (5.12)

Here, wΨ is the width of the error distribution when the aspect ratio is close to 1
(θ0 = 90◦, ξ = 0). For simplicity, we shall consider the same wΨ for both tank-treading
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pT Proportion of TT cells
rT Location parameter of the skew-normal distribution for the apparent aspect ratio of TT cells
wT Scale parameter of the skew-normal distribution for the apparent aspect ratio of TT cells
α Shape parameter of the skew-normal distribution for the apparent aspect ratio of TT cells
rF Mean aspect ratio of the F cells, assimilated to oblate ellipsoids
wF Standard deviation of the aspect ratio of the F cells, assimilated to oblate ellipsoids
θ−0 Minimal stable orbit angle of F cells
θ+

0 Maximal stable orbit angle of F cells
ps Proportion among the F cells in stable orbits (between θ−0 and θ+

0 )
wΨ Width of the error distribution of apparent angles

Table 1. Summary of the fitting parameters for the apparent angle and apparent aspect ratio
distributions. See Eqs. 5.14 and 5.15. TT refers to tank-treading and F to flipping.

and flipping distributions. Both tank-treading and flipping populations will coexist in the
highly viscous solution. At high shear rate, tank-treading cells have aspect ratio far from
1 so wΨ will be smaller than the expected value for the flipping cells, but in that case, the
latter are not many. As γ̇ decreases, flipping cells will appear but in the meantime the
apparent aspect ratio of tank-treading cells will be close to 1, and the wΨ values should
coincide reasonably.

Finally, the modified distribution function for the flipping regime is

d̂Ψ,F [θ−0 , θ
+
0 , ps, wΨ](Ψ) =

ps δθ0

θ+
0 −θ

−
0 +δθ0

θ+
0∑

θ0=θ−0

p̂Ψ[θ0, wΨ](Ψ) +
(1−ps) δθ0

90−θ+
0 +δθ0

90∑
θ0=θ+

0

p̂Ψ[θ0, wΨ](Ψ)

(5.13)

5.5. Complete fitting function

Considering that we have two populations of cells, one in tank-treading-like regime with
proportion pT and one in flipping regime in proportion (1 − pT ), we finally have the
following fitting functions for the distributions in apparent aspect ratio ra and apparent
angle Ψ, respectively defined on [1; +∞] and [0; 90], with 10 fitting parameters:

dra [pT , rT , wT , α, rF , wF , θ
−
0 , θ

+
0 , ps](ra) =

pT dra,TT [rT , wT , α](ra) + (1− pT ) dra,F [rF , wF , θ
−
0 , θ

+
0 , ps](ra), (5.14)

with dra,TT given by Eq. 5.3 and dra,F by Eq. 5.8, and

dΨ[pT , rT , wT , α, θ
−
0 , θ

+
0 , ps, wψ](Ψ) =

pT d̂Ψ,TT [β,wΨ](Ψ) + (1− pT ) d̂Ψ,F [θ−0 , θ
+
0 , ps, wΨ](Ψ),

with β =

∫ ∞
1

psG[rT , wT , α](ra)dra. (5.15)

d̂Ψ,TT is given by Eq. 5.11 and d̂Ψ,F by Eq. 5.13.

The fitting parameters are recalled in Table 1. For each shear rate, we minimize the
distance between the theoretical and experimental distribution functions for ra and Ψ,
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Figure 6. Apparent angle Ψ probability distribution for hardened cells in the suspending
medium of viscosity 1.5 mPa.s, for different γ̇ = 200 s−1. Dots: experimental data; red solid
line: full fit (Eq. 5.15) with pT = 0 (no tank-treading cells), θ−0 = 0◦, θ+

0 = 90◦. In order to
help understand more complex distributions, we also show the distribution for θ−0 = 20◦, that
exhibits a peak around 20◦ (dotted line), and a case where the probability of orbits between 50◦

and 90◦ is 1/4 of that between 0◦ and 50◦ (dashed line). A strong decrease can be seen around
50◦.

given by

ε =
∑
Ψ

|dΨ,exp(Ψ)− dΨ[pT , rT , wT , α, θ
−
0 , θ

+
0 , ps, wψ](Ψ)|δΨ +∑

ra

|dra,exp(ra)− dra [pT , rT , wT , α, rF , wF , θ
−
0 , θ

+
0 , ps](ra)|δra. (5.16)

Because they appear as bounds in sums, the parameters θ−0 and θ+
0 are treated differ-

ently from the other parameters. For a given choice of these angles, we minimize ε using
the NMinimize function of Mathematica © software. We then explore systematically the
region of interest for these angles so as to find the global minimum.

6. Results

6.1. Preliminary result: hardened cells

Glutaraldehyde-hardened cells were studied at γ̇ = 200s−1 in the η0 = 1.5 mPa.s solution.
No tank-treading motion is expected and we find that the apparent angle distribution
is fully compatible with that of flipping cells with orbit angles equally distributed in
the [0◦; 90◦] interval, as shown in Fig. 6. This is agreement with the fact that Jeffery
orbits are stable at low Reynolds number: the followed orbit only depends on the initial
condition.

6.2. Cells in fluid of high viscosity

6.2.1. Examples of fits

We first comment on a set of fits obtained in the η0 = 25 mPa.s case for selected shear
rates (see Figs. 7 and 8), so as to validate the modelling hypotheses and draw a rough
scenario for cell dynamics. At high shear rates (γ̇ = 164 s−1 and higher values), it is
known that all cells are in tank-treading regime. The apparent aspect ratio distribution
is well described by the proposed skew-normal distribution (Fig. 8, bottom panel), while
all angles are close to zero due to strong cell elongation (Fig. 7, bottom panel). The
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Figure 7. Selection of apparent angle Ψ probability distributions for cells in the suspending
medium of viscosity 25 mPa.s, for different shear rates. Dots: experimental data; red line: full
fit (Eq. 5.15); orange line and area: tank-treading population; red line and grey area: flipping
population.
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Figure 8. Selection of apparent aspect ratio ra probability distributions for cells in the sus-
pending medium of viscosity 25 mPa.s, for different shear rates. Dots: experimental data; red
line: full fit (Eq. 5.14); orange line and area: tank-treading population; red line and grey area:
flipping population.
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Figure 9. Maps of probability densities in the (Ψ, ra) space. (a): η0 = 25 mPa.s and γ̇ = 1
s−1, increasing shear rate case. (b): η0 = 25 mPa.s and γ̇ = 7 s−1, decreasing shear rate case.

width wΨ of the angle distribution is of order 1◦ ; as the angle determination is quite
precise due to the high apparent aspect ratio, this is an indicator of experimental intrinsic
fluctuations: shear chamber vibrations and influence of other cells, which can therefore
be considered negligible.

For γ̇ = 20 s−1, the scenario is different whether γ̇ is increasing or decreasing. In the
latter case, there is still only one population of tank-treading cells, but as the cells are
less stretched, their apparent aspect ratio is close to 1. As a consequence, the distribution
of their apparent angle has two peaks around 0 and 90◦, well described by the proposed
Cauchy distribution. The two peaks have almost the same height, indicating an aspect
ratio close to 1 (as seen on the ra distribution), which is the worse case for angle detection.
This results in the presence of all angles in the experimental distribution, which would
not be well described by a Gaussian distribution, for instance.

On the other hand, in the increasing γ̇ case, a second peak appears in the apparent
aspect ratio distribution, around ra = 2, which is more important for γ̇ = 12 s−1 or 7
s−1, and corresponds to flipping cells with orbit angles close to 0◦, that is, to rolling.
This second peak is well fitted by a normal distribution, as hypothesized for Eq. 5.8. This
second peak of rolling cells is present in the decreasing γ̇ case, but has lower weight. We
shall return to this later.

At low shear rates (γ̇ =2.5 s−1 and 1 s−1 for this example), the tank-treading cells
contribute in the ra distribution with a peak which is now far from 1, with apparent
angle is now only around 90◦, along the vorticity direction due to the projection. On the
other hand, the contribution of flipping cells is more complex because other orbit angles
have appeared. This results in a broadening of angle distribution towards higher angles
(from 0 to around θ+

0 ), while the aspect ratio distribution broadens towards ra = 1:
flipping cells with θ0 = 0 are always seen from their edge so the apparent aspect ratio is
a peak centered on their 3D aspect ratio r, while cells with larger θ0 also exhibit apparent
aspect ratios lower than r. Only for θ0 = 90◦ can this apparent aspect ratio be 1. At
the minimum shear rate presented in this example, one can see that the peak of the
distribution is not located at 0◦ anymore. As exemplified by the dashed line in Fig. 6,
the location of this peak is indeed an indicator of the value of θ−0 . For instance, at γ̇=1
s−1, decreasing case, θ−0 is around 20◦ while θ+

0 is around 50◦.
In the increasing case particularly, for γ̇ =1 s−1 and 2.5 s−1, the angle distribution

does not drop to zero for high angles. This cannot be associated only to tank-treading
cells with angle 90◦: a look at the probability distribution in the (Ψ, ra) space (Fig. 9(a))
shows that cells with high angles also have apparent aspect ratios as high as those with
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low angles, that is, they are also seen edge-on sometimes. This is even clearer when one
compares with a case where the high angle cells are in tank-treading regime: in Fig. 9(b),
the aspect ratios of the high angle cells are lower than those of the low angle rolling
cells. Note that what matters here is the comparison between the low and high angle
populations, not the absolute values of the aspect ratios, that depend on the shear rate
through cell deformation. On the other hand, the angle distribution cannot be described
by an equal orbit distribution between θ−0 and 90◦. It requires to divide the population
of flipping cells into two subpopulations, in proportion ps and 1 − ps, having orbits
between θ−0 and θ+

0 , and θ+
0 and 90◦, respectively, such that the high angle orbits are less

probable. This is exemplified by the dotted line in Fig. 6, to be compared with the solid
line corresponding to equal probabilities. For instance, for γ̇ = 1 s−1, increasing shear
rate case, we find ps = 0.81 such that the ratio αu/s between the probability of an orbit

with θ+
0 < θ0 < 90◦, and of that of an orbit with θ−0 < θ0 < θ+

0 , is equal here to 0.22.
αu/s is defined by [(1− ps)/(90− θ+

0 )]/[ps/(θ
+
0 − θ

−
0 )].

6.2.2. Transition scenario

In Fig. 10 we show the evolution with flow stress τ = η0γ̇ of the main parameters
characterizing the collective dynamics of red blood cells.

The main difference between the increasing and the decreasing γ̇ cases lies in the
proportion pT of cells in tank-treading regime (Fig. 10 (a)). A full hysteresis loop is
highlighted: at low and high flow stresses, the amount of cells in tank-treading regime
are identical. At low flow stress, we observe that, according to our model, the proportion
of tank-treading cells is not equal to 0. We shall propose later an interpretation of this
result, which calls for a refinement of the model.

For increasing γ̇, a significant increase in the proportion of tank-treading cells is ob-
served from τ>c−min = 0.08 Pa until all cells are in tank-treading regimes at τ>c−max = 2
Pa. This shows that the dispersion in the transition stress towards tank-treading τ>c is
high: the transition values span over one decade. This result is in agreement with Fischer
& Korzeniewski (2013), where for η0 = 24 mPa.s a transition to tank-treading is found
around τ = 0.23 Pa but with a smooth transition that indeed spans over one decade, as
here (see Fig. 2(b) in Fischer & Korzeniewski (2013)).

For decreasing γ̇, the first cells to leave the tank-treading regime do it at a flow stress
τ<c−max=0.4 Pa smaller than τ>c−max. The last cells to leave the tank-treading regime seem
to do it around τ<c−min=0.02 Pa. The values for τ>c and τ<c found in Dupire et al. (2012)
and Mauer et al. (2018) lie in the lower part of the transition zone we find.

Fig. 10(b) shows the mean aspect ratio of cells in tank-treading regime, considering
the aspect ratio rzx between the axis along the flow direction and the axis in the vorticity
direction, whose distribution is given by Eq. 5.2. This mean value is a function of the
fit parameters through 〈rzx〉T = rT +wT α

√
2/
√
π(1 + α2) and is directly linked to the

deformability of cells. Due to the dispersion in cell properties (and, probably, to swinging
motion), the standard deviation around this mean value is between 0.1 and 0.15 within
the whole stress range.

Deformation is quite similar for both directions of shear rate variation. However, in
the hysteretic region for the tank-treading population, the apparent aspect ratio is up to
10% smaller in the decreasing γ̇ case and is almost constant while it varies more strongly
for higher stress values. On the other hand, in this range stress is not so small that we
should expect cell shape not to be modified by the flow. Indeed, even for lower stresses
transitions between different regimes occur and orbit angles of the flipping regimes change
continuously: another explanation for this plateau has to be found.

We note that, while the aspect ratio of cells in tank-treading regime should be an
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Figure 10. Main parameters characterizing cell dynamics for η0 = 25 mPa.s as a function of
shear stress τ = η0γ̇ in both increasing γ̇ (full triangles) and decreasing γ̇ (empty triangles)
cases, as indicated by arrows. Empty circles: additional control experiments at decreasing γ̇
made with RBCs from two other donors and a suspending medium prepared independently. On
top of panel (a), the transition between the two stresses indicated by stars corresponds to that
studied in Fig. 16. (a) Proportion pT of cells in tank-treading like motion. (b) Mean apparent

aspect ratio 〈rzx〉T = rT +wT α
√

2/
√
π(1 + α2) of tank-treading cells. (c) Minimal and maximal

orbit angles θ−0 and θ+
0 for stable flipping cells. Dotted symbols indicate the limit orbits (90◦)

of (probably) unstable orbits between θ+
0 and 90◦, when present. (d) Ratio αu/s between the

probability of orbits with orbit angle between θ+
0 and 90◦, and between θ−0 and θ+

0 .
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Figure 11. Mean apparent aspect ratio 〈rzx〉T = rT + wT α
√
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√
π(1 + α2) of tank-treading

cells, in the increasing and decreasing shear case (same data as in Fig.10(b)). Additional full
line shows the mean apparent aspect ratio 〈rzx〉∗T when the less deformable cells are removed
from the distributions in the decreasing shear rate case (see text).

increasing function of stress, the population of cells in that regime is not constant. We
hypothesize that the plateauing shows that, upon an increase of shear rate, the contribu-
tion of the cells switching to tank-treading compensates the increased deformation of the
cells already in tank-treading regime. This implies that the latter are more deformable (in
the sense of stretchable) than the newcomers, which are themselves the most deformable
of the flipping cells that have not switched to tank-treading yet. This is coherent with the
picture of more deformable cells needing smaller stress to make their transition. Similar
reasoning shows that, upon a decrease of shear rate, the less deformable cells of the tank
treading population are the first ones to transit towards the flipping motion.

A consequence of this would be that at a given stress, because of the hysteresis in
the transition thresholds, the tank-treading population in the decreasing γ̇ case contains
more cells than in the increasing γ̇ case. To validate the whole picture, let us first denote
by PT1 and PT% the proportion of cells in the tank-treading regime in the increasing and
decreasing γ̇ cases, respectively. From the previous discussion, we conclude that, among
the tank-treading cells in the decreasing γ̇ case, the more deformable ones are also in tank-
treading regime in the increasing shear rate case, while the less deformable are not. The
proportions of these two subpopulations are, by definition, PT1/PT% and 1− PT1/PT%,
respectively. Considering, for a given stress τ , the whole skew-normal distribution of rzx
in the decreasing shear rate case, we make a cut-off in this distribution by considering
only the last PT1/PT% cells, on which the mean value of rzx, that we denote 〈rzx〉∗T ,
is calculated. The result is shown in Fig. 11. The curve of the mean value taken on the
more deformable cells in the decreasing shear rate case now collapses onto the mean value
〈rzx〉T in the increasing shear rate case, thus validating our hypothesis.

Even in the hysteresis domain, the main characteristics of the cell flipping dynamics
remains unchanged whether γ̇ is increased or decreased (Fig. 10 (c)): the range of orbit
angles of flipping cells does not depend on shear rate history. This is in agreement with
Dupire et al. (2012), where it is found that once the cells have left the tank-treading
regime when decreasing γ̇, they follow the same dynamics as the one they had at the same
shear rate in the increasing sequence. However, in Dupire et al. (2012), no quantitative
data on the orbit angles upon a decrease of γ̇ are given. A single example is given (Fig
4C), where an orbit angle around 30◦ is shown. Here, we do not prove formally that a
given cell will follow the same orbit for a given stress, whatever the shear rate history,
but the similarities in the angle distribution for both shear rate variation cases pleads
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in favor of such a scenario. Finally, the large range of orbits is another signature of the
dispersion in cell properties.

Fig. 10 (d) shows that at low stress the flipping populations must be divided into
two subpopulations with different probabilities. Interestingly, the range of existence of a
population reaching orbits up to 90◦ (in probability 1−ps) is similar to that where θ+

0 is
almost constant (between 50◦ and 60◦, when τ . 0.07 Pa close to the upper bound for
η0γ̇ = 0.05 Pa found in Dupire et al. (2012)). This shows that, while limit orbit angles
θ−0 and θ+

0 vary smoothly with stress, a population with many different orbits equally
distributed between θ+

0 and 90◦, with θ+
0 very different from 90◦, emerges (or disappears)

as a whole as the stress is varied. This is in strong agreement with the observation in
Dupire et al. (2012) of the existence of a threshold in θ0 above which orbits are not stable
and are rather distributed on a wide range (hence a much lower relative probability αu/s).
Here we exhibit, with strong statistical weight, that this threshold is 56◦ ± 2◦ (averaged
on values for τ 6 0.05 Pa). Note finally that at decreasing γ̇, cells also reach this state
of unstable Jeffery orbits, which was not mentioned in Dupire et al. (2012). There is a
difference in the number of cells in unstable orbits depending on the direction γ̇ variation,
which is even clearer in the case of low η0 discussed in the next section.

According to the fitting procedure, we find a non negligible amount of tank-treading
cells at the lowest stresses, which clearly does not correspond to the reality but must
be seen as an artifact of the chosen model. As seen in Fig. 7, these cells are seen with
apparent angle centered on 90◦. This is consistent with the assumption that the unstable
flipping cells do not fully follow Jeffery orbits but spend more time aligned with the flow,
presenting thus a kind of transient tank-treading regime, as found in physiological solu-
tion in Goldsmith & Marlow (1972). This interpretation is reinforced by the overlap of
the domain of existence of these tank-treading-like cells and of unstable orbits (τ . 0.08
Pa in the increasing γ̇ case). This feature as a strong impact on the overall distribution
of aspect ratios and apparent angles.

While the decrease of the flipping cell population with increasing γ̇ is associated with
a decrease of the orbit angle θ0, the data do not clearly show in which orbits the cells
are right before switching to tank-treading. In Dupire et al. (2012), the tracking of single
cells showed that all studied cells are in rolling regime before they do so. To connect this
observation to our statistically relevant sample, we compare our data for the population
1− pT of cells in flipping regime to that expected from the following model: we assume
that, for a given relative stress variation dτ/τ = d log(τ), the flipping cells having orbit
angle comprised between 0 and dθt, if any, switch towards tank-treading. The ratio
q = dθt/d log(τ) is considered as a constant to be determined. The theoretical proportion
of cells in flipping regime 1− pT,th then obeys

1− pT,th(τ + dτ) =
[
1− pT,th(τ)

]
×
[
1− ps(τ)

max
(

0,min
(
θ+

0 (τ), q d log(τ)
)
− θ−0 (τ)

)
θ+

0 (τ)− θ−0 (τ)

]
.

(6.1)
If this equation is discretized on the experimental stresses τi, i 6 n, one finds

1− pT,th(τi+1) =
[
1− pT,th(τ1)

]
×

n∏
j=2

[
1− ps(τi−1)

max
(

0,min
(
θ+

0 (τj−1), q log(τj/τj−1)
)
− θ−0 (τj−1)

)
θ+

0 (τj−1)− θ−0 (τj−1)

]
, (6.2)
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Figure 12. Evolution of the proportion 1− pT of cells in flipping regime for η0 = 25 mPa.s as
a function of shear stress τ = η0γ̇, for the increasing shear rate case; dots: experimental data
(same as 16(a) with the low stress values set to 1 to discard the fake tank-treading cells); full
line: fit with equation 6.2. Dashed line: best fit with a constant transition angle by absolute
stress variations dθt/dτ (see text).

where 1− pT,th(τ1) is the proportion of cells in flipping regime at the lowest explored
stress, expected to be equal to 1 in our case where we have explored low enough stresses.
Together with q, they constitute the free parameters of the model, that can be adjusted to
fit the experimental data. As shown in Fig. 12, a good fit is obtained, with q = 10.7◦. This
means that, upon a relative stress variation dτ/τ of 5%, only the cells with orbit angle
between 0 and 0.54◦ will switch to tank-treading. This validates the observation made in
Dupire et al. (2012). Note that a model that would assume a constant transition angle
by absolute stress variations dθt/dτ does not result in a good fit with the experimental
data (see Fig. 12).

For decreasing γ̇, Fig. 10 (c) directly shows that at least half of the cells switching from
tank-treading to flipping do switch to an orbit close to rolling (θ+

0 < 10◦, in the range
0.1 Pa< τ < 0.4 Pa), while at lower stress the others may a priori directly reach other
orbits. However, the same analysis made with equation 6.2 on the data for decreasing γ̇
reveals that q = 16.6◦ that is, they always reach an orbit close to rolling.

6.3. Cells in a fluid of physiological viscosity

6.3.1. Examples of fits

As for the first case, we start by commenting on some selected distributions and the
corresponding fits, shown in Fig. 13 (increasing shear rate case). At the highest explored
shear rate γ̇ = 200 s−1, the apparent angles mainly span between 0 and 10◦, indicating
flipping orbit angles between 0 and 10◦. For such orbits, the apparent aspect ratio spans
between a value larger than 1 and r the cell aspect ratio (grey envelope in Fig. 13, bottom
panel). Here, we observe that the probability of apparent aspect ratio around 1 is not 0,
indicating that tank-treading like motion is present, as found by the fitting procedure.

For lower γ̇, the orbit distribution is wider, but a contribution of tank-treading like
motions is still needed to explain the whole distribution. At shear rate γ̇ = 20 s−1,
all orbit angles are present, but the contribution of high θ0 orbits is less important,
indicating probably the presence of unstable high angle orbits (see dotted curve of Fig.
6, to be compared with the solid curve on the same figure). At even smaller shear rate
γ̇ = 4 s−1, these angles now have similar probabilities, but small angle orbits are not
present anymore, as on the dashed curve of Fig. 6.
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Figure 13. Selection of apparent angle Ψ and apparent aspect ratio ra probability distributions
for cells in the suspending medium of viscosity 1.5 mPa.s, for different increasing shear rates.
Dots: experimental data; red line: full fit (Eqs. 5.14 and 5.15); orange line and area: tank-treading
population; red line and grey area: flipping population.

6.3.2. Transition scenario

Fig. 14 details the values of the main parameters while the shear rate is varied. As for
the high η0 case, the range of θ0 increases as the shear rate becomes lower, and it does
not depend on the direction of γ̇ variation (Fig. 14(c)). Interestingly, the threshold in
flow stress below which orbits other than those close to rolling (maximal orbit angle θ+

0

larger than 10◦) is similar to that obtained for a much more viscous suspending fluid. For
smaller stress, a plateau in θ+

0 is also reached, at 45◦ ± 2◦ while orbits between θ+
0 and

90◦ with smaller relative probability αu/s appear (Fig. 14(d)). We interpret these orbits
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Figure 14. Main parameters characterizing cell dynamics for η0 = 1.5 mPa.s as a function of
shear stress τ = η0γ̇ in both increasing (full triangles) and decreasing (empty triangles) γ̇ cases,
also indicated by arrows. (a) Proportion pT of cells in tank-treading like motion. For sake of
comparison, the full line corresponds to the data for η0 = 25 mPa.s, increasing γ̇ case, already
shown in Fig. 10(a). (b) Mean apparent aspect ratio 〈rzx〉T of tank-treading cells. (c) Minimal
and maximal orbit angles θ−0 and θ+

0 for flipping cells. Dotted symbols indicate the limit orbits
of (probably) unstable orbits between θ+

0 and 90◦. The lines correspond to the data for η0 = 25
mPa.s, increasing γ̇ case, already shown in Fig. 10(c). On top the panel, the transition between
the two stresses indicated by stars corresponds to that studied in Fig. 18. (d) Ratio αu/s of the

probability of an orbit with orbit angle between θ+
0 and 90◦, and of that of an orbit between

θ−0 and θ+
0 . The full lines correspond to the data for η0 = 25 mPa.s, increasing (orange) and

decreasing (black) γ̇ cases.
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as unstable orbits. For small stresses, all orbits between θ−0 and 90◦ become equiprobable
(αu/s = 1). In that case θ+

0 is ill-defined (any value can yield the same fitting function
eventually, with an adapted value of ps). If we interpret this equiprobability as a signature
of the stability of the large angle orbits, then θ+

0 = 90◦, which is the choice made in Fig.
14(c).

The range of existence of unstable orbits is not the same whether we consider increasing
or decreasing γ̇ Fig. 14(d). This feature, which has not been observed in the literature
so far, is also a key ingredient to understand the variations in the proportion of tank-
treading like cells (Fig. 14(a)) and the associated mean aspect ratio (Fig. 14(b)).

The hysteretic behaviour is seen for stresses below ∼ 0.05 Pa. Let us comment first on
what happens above this threshold. There, the mean aspect ratio of tank-treading like
cells is much larger than 1 (Fig. 14(b)), which would support the observation made in
Lanotte et al. (2016) and Mauer et al. (2018): in physiological conditions, the authors
observe that between 40 s−1 and 200 s−1, more than 60% of cells are rolling or vacillating-
breathing stomatocytes. This feature disappears for a shear rate of 40 s−1, corresponding
in their case to a stress of 0.04 Pa. This is also the value around which we observe a strong
drop of the mean aspect ratio, for decreasing γ̇. This drop is not observed for increasing γ̇
because of overlapping with another phenomenon, which we discuss now: when increasing
γ̇, unstable orbits are present in the range 0.01 Pa < τ < 0.05 Pa (Fig. 14(c)), which
is very close to that where the proportion of (apparently) tank-treading like cells is non
negligible (Fig. 14(a)), and associated apparent aspect ratio still large (Fig. 14(b)). This
observation holds also when decreasing γ̇ for the domain τ < 0.01 Pa.

The similarity in the range of existence of tank-treading like cells and unstable orbits,
already observed in the high η0 case, indicates that unstable (large angle) orbits do not
follow completely Jeffery orbits but longer time is spent aligned with the flow, as observed
in one of the few experiments made in that regime (Goldsmith & Marlow (1972)).

The threshold τ ∼ 0.01 Pa for the appearance of the first feature in the increasing γ̇
case (considered also in Goldsmith & Marlow (1972)) is the same here as in this historical
paper, and we also observe around this threshold the apparition of rolling motion (while
below this threshold θ−0 is slightly larger than 10◦), as well as the loss of stability of
orbits close to tumbling (high orbit angles).

6.4. The whole picture

We have synthesized in Fig. 3 the main findings of this study in terms of transition
threshold and existence intervals. They are compatible with those mentioned in the main
experimental studies of the literature as commented along the above analysis. The sole
notable incompatibility is the existence of off-plane motion in flipping regime in the case
of high η0, which was not observed in Levant & Steinberg (2016) while observed in Dupire
et al. (2012), but the parameter space is different.

Many features are quantitatively similar in the low and high viscosity cases, as soon
as one considers the flow stress τ = η0γ̇ as the control parameter (see full lines in Fig.
14(a,c,d)). This observation was also made in Mauer et al. (2018), where stresses larger
than here were considered and other regimes and deformation observed.

The range of existence of flipping orbits, and the values of the angles of stable orbits,
are a remarkably robust feature that does not depend on the history of shear rates and
only weakly on the external viscosity for a considered stress (the angles are shifted by
about 10-15◦ in the high viscosity case). Flipping motions are well described by Jeffery
orbits, which seem stable as long as the orbit angle is lower than θ+

0 ∼ 50◦. There exists
a range where higher angles orbits appear but seem to be unstable: all angles between
θ+

0 and 90◦ become available, with small probability. The existence of many orbits is in



30 C. Minetti , V. Audemar, T. Podgorski and G. Coupier

contradiction with recent numerical simulations (see Cordasco & Bagchi 2013; Cordasco
et al. 2014; Sinha & Graham 2015), where it is often found, for small or large values
of η0, that stable orbits are those with angle θ0 close to 0◦ or 90◦, depending on the
paper considered (see Supplemental Material for a detailed description). However, more
recent results by Mendez & Abkarian (2018) exhibit stability of other orbits with a drift
towards rolling as the shear rate is increased.

Unstable orbits are present below a threshold ∼ 0.04 Pa for both viscosities, in higher
proportion at low viscosity, and associated with strong hysteresis with stress variation
(through γ̇). On average, the unstable-to-stable transition occurs for larger stress than
the stable-to-unstable transition. It is particularly clear at low η0, while at high η0 these
transitions are close to the lowest explored value, making the picture less obvious. Unsta-
ble orbits are modified Jeffery orbits: longer time is spent aligned with the flow, which is
seen through an artificial increase in the number of tank-treading cells in our model. At
low stresses (only explored in the low viscosity case, though), all orbits become equiprob-
able, as for rigid cells, though low angles are not explored any more. Indeed, normal cells
never behave like rigid cells even under small stress.

Finally, in the tank-treading regime (at high η0), cell deformation is similar whatever
the history of shear rates (Fig. 11). At low η0 and high stress, a signature of the presence
of stomatocytes is detected. This feature is also history-independent.

Contrary to the previous features, the flipping to tank-treading transition strongly
dependens on η0. While tank-treading appears for τ between 0.1 and 2 Pa at high η0

(with the more stretchable cells transiting first), the threshold is expected to be at least
2 orders of magnitude higher at low η0 (see Morris & Williams 1979). Note however that
in that case, according to our results and Lanotte et al. (2016), the notion of such a
transition would not be as well defined because of the strong deformations undergone by
the cells, whose shapes strongly depart from the usual discocyte.

To summarize, the characteristics of each regime (accessible orbits and stability of
orbits for the flipping regime, deformation in the tank-treading regime) are controlled
by the flow stress with no dependency with the shear rate history, while the possibility
of transition towards tank-treading also depends on the viscosity ratio. An hysteresis is
associated with this latter transition, as well as with the unstable-to-stable Jeffery orbit
transition.

6.5. Dispersion in the transition thresholds

The width of the transition zones between the different regimes or between the different
orbits can be associated with the dispersion in RBC properties. Cells can, in particular,
differ by their size, deflation (volume/surface ratio), and mechanical properties: viscosity
of the haemoglobin solution, shear and bending moduli of the membrane, stress-free
shape or spontaneous curvature. Linking the width of the transition zone to a dispersion
in all these parameters would require a full (numerical or theoretical) model that is not
available for now. Yet, we can draw some conclusion from our results and from the partial
results found in the literature.

We first focus on the rolling to tank treading transition for high η0. There is a factor
∼ 20 between the two stresses between which the transition of all cells occur (in both
increasing and decreasing γ̇ cases).

The effect of bending rigidity on the transition towards tank-treading has been explored
in Yazdani & Bagchi (2011) where the bending modulus was varied by a factor 25: the
critical stress for transition varies only by a factor 1.7. In Mendez & Abkarian (2018),
it is argued that because of the strong dependency of the transition thresholds on the
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choice of stress free shape (relatively to the value of in-plane shear elasticity), out-of-plane
deformations (that would be controlled by the bending modulus) should play a minor
role. This is confirmed by the reproduction of several important features (orbital drift
and transition towards tank-treading) through a shape preserving model. Finally, for
vesicles where shear modulus vanishes, it as also been shown in Farutin & Misbah (2012)
that the transition towards tank-treading depends only weakly on the bending modulus.
We conclude that dispersion in bending moduli, that seem to lie between 3× 10−19 and
9×10−19 N.m (see Betz et al. 2009; Evans et al. 2008; Sinha & Graham 2015), is unlikely
to contribute significantly to the dispersion in transition stresses.

As already mentioned, the viscosity of the cytoplasm can lie between 6 and 20 mPa.s
within one sample. From the results of Fischer & Korzeniewski (2013) shown in Fig.
3, the critical stress varies by one decade when the external viscosity (and therefore,
the ratio between internal and external viscosities) is varied by one decade. Therefore,
variations in inner fluid viscosity may account for a factor around 3 in the critical stress
dispersion.

The flow stress can be directly compared to the shear stress in the membrane, that
is proportional to µ/R, where µ is the shear modulus and R a typical size of the cell.
In Hénon et al. (1999), it is stated that according to the literature µ lies between 4 and
10 µN/m ; they themselves find values between 1 and 4 µN/m (but extreme values are
scarcer) while in Mills et al. (2004) values between 5 and 11 µN/m are found. Beyond the
question of the exact value of this modulus, that indeed depends on the chosen model for
elasticity, one can see that it can be dispersed by a factor 2 to 3, which can be multiplied
by a factor 1.3 if one takes into account that cell size can vary by this amount: cell
diameters are typically between 7 and 9 µm (Canham & Burton (1968)).

In Peng et al. (2014), the effect of stress-free shape on the transition threshold is
explored, and a factor 2 in this threshold arises when the this shape is varied within
an admitted range. In Sinha & Graham (2015), the effect of spontaneous curvature on
the transition have been explored, but only two cases of interest are explored, with very
tiny variation in the transition threshold. Finally, in Cordasco & Bagchi (2013), oblate
ellipsoids with mechanical properties similar to that of RBCS are considered and is is
shown that within a range of aspect ratio between 1.2 and 2, the transition threshold
cannot vary by more than 2, but the high discretization in the explored parameter space
prevents from drawing precise conclusions. In addition, the reduced volume (volume
divided by the volume of a sphere of same surface) of a red blood cell is typically between
0.61 and 0.76 (see Canham & Burton 1968), which corresponds for an oblate ellipsoid to
r between 2.7 and 3.7, far from the explored range.

All these considerations seem to indicate that taking into account all variabilities in cell
properties is necessary to account for the large dispersion in transition threshold. This
also implies that these variations are necessarily independent if one wants to account for
the factor 20 that characterizes that dispersion.

Other transitions are associated with variations within the flipping regime: unstable to
stable orbits, flipping to rolling, etc. We generally observe a dispersion in the transition
stress characterized by a factor of order 3 to 10. This tends to prove that not all cell
parameters are involved in this transition. It is suggested in Dupire et al. (2012) than in-
plane elasticity (and not dissipation) is responsible for the orbital drift, and in Mendez
& Abkarian (2018), it is shown, as in our study, that the flipping dynamics depends
very weakly on the fluids viscosities. This removes variations in the viscosity of the
haemoglobin solution from the cause of dispersion, and may explain why the dispersion
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Figure 15. Examples of transition dynamics for parameter 〈ra〉 after shear stress sharp increases
(a) or decreases (b). η0 = 25 mPa.s. Shear stresses τ are in Pa. Vertical dotted lines correspond
to the shear stress instantaneous switches (by changing the shear rate). (a) Two-step or one-step
increase from 0 to 3.7 Pa. (b) Three-step decrease from 3.7 Pa to 0.073 Pa.

in the transitions within the flipping regime is smaller than for the rolling to tank treading
transition.

6.6. Transition times and intermittent regimes

Transition times between states are a priori a function of the initial stress, the final stress,
but also on the state in which the cells are, which may depend on the history of shear
rates. While full study of these times is out of the scope of the present work, a few robust
points deserve to be mentioned.

In experiments presented above, γ̇ was varied by small steps so as to explore in details
the state diagram. Because of the dispersion in cell properties and of the few numbers of
cells seen in each picture, the time evolution of characteristic properties such as the mean
apparent aspect ratio is rather noisy and small transition times could not be measured.
Therefore, we ran a few experiments with more abrupt increase or decrease of γ̇ .

Some transitions in the high η0 case are shown in Fig. 15, by considering the mean
apparent aspect ratio 〈ra〉(t), where the average is made over all cells on each image.

Almost all situations, even when starting from rest (Fig. 15(a)), lead to transition times
that span between 10 and 70 ms. This is in agreement with stop-and-go experiments in
a channel performed in Prado et al. (2015). The only longer transition time found here
is when decreasing γ̇ so as to switch from tank-treading regime to coexistence between
tank-treading and flipping: see final transition in Fig. 15(b). This transition is indicated
by an arrow on top of Fig. 10. Transitions within the tank-treading regime (the two
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first transitions in Fig. 15(b)) do not exhibit such a long transition time: we conclude
that this long time is not associated with the relaxation of the cells that remained in
the tank-treading regime but rather to the regime transition. At first sight, this may be
related to the intermittent regime observed in Dupire et al. (2012), where successions of
high angle orbits and tank-treading motions are observed before stabilization towards a
low angle flipping regime. Indeed, right after the change of shear rate, the probability
distribution in the (Ψ, ra) space is quite different from the final distribution, which is
characterized by orbits between 0 and 40◦ and a population of cells in tank-treading
regime with apparent angle around 90◦ while in the initial state, the tank-treading cells
have an angle either around 0◦ or around 90◦ (see Fig. 16). In this transient state, (Fig.
16, middle panel), angles between 50◦ and 90◦ are dominant with aspect ratio that are
higher than that of the tank-treading cells. This is a clear signature of the presence of
the flipping orbits with high angles, that eventually disappear within a time of order one
minute.

In Dupire et al. (2012), it was noted that the cells do not get much deformed during
transitions, while in Levant & Steinberg (2016), important deformations are observed
during the intermittent regime. On the other hand, in this latter study, no off-plane
motion is observed. This may suggest that off-plane motion is an alternative scenario to
in-plane motion with high deformations, and that the different flow geometry in Levant
& Steinberg (2016) favors in-plane motions. From our data, it is difficult to validate any
scenario, because of the strong dispersion of behaviors within a short time lapse.

Note finally that even the presence of these transient orbits become statistically neg-
ligible for smaller steps of shear rates. In that case, the number of cells involved in the
transition would be so small that their contribution in the distribution could not be de-
tected accurately. This limit is the consequence of a statistical study led on a population
whose mechanical properties span on a wide range.

Intermittent behavior has also been reported in Abkarian et al. (2007) in the increasing
shear rate case (but no rolling as observed), as in some numerical studies (see Cordasco
& Bagchi 2014; Peng et al. 2014). Here, we do not observe such a regime: transitions are
sharp, even when directed towards the heart of the hysteresis zone (see, e.g. the transition
from 0 to 0.37 Pa in Fig. 15(a)): the suspension converges quasi-immediately towards its
final state, where no signature of tumbling is reported.

In Bitbol (1986), a transition time towards rolling of order 100 × γ̇−1 is measured.
Here, the transition from 0 flow to τ = 0.37 Pa corresponding to a shear rate of 15 s−1

is of 100 ms, much lower than 100/15 ∼ 7s.

Some transitions for low η0 are shown in Fig. 17. Here, we consider the apparent angle
as an indicator, as it varies more strongly than the apparent aspect ratio. Transition
times are of order 10 s and more, and this result is not in agreement with that of Bitbol
either: the transition between τ = 0.075 Pa and τ = 0.3 Pa, that is detailed in the
density maps of Fig. 18 corresponds to a mean angle continuous switching from 25◦ to
around 10◦ and corresponds clearly to a transition towards rolling, as seen also in Fig.
14(c). The corresponding shear rates are 50 and 200 s−1 so one should expect from Bitbol
(1986) (and also from Cordasco et al. (2014)) a transition time of order 1 s, one order of
magnitude lower than what we see here.

Finally, from a methodology viewpoint, the observed transition time of sometimes one
minute for very γ̇ decrease validates the method for exploring steady states: shear rates
were varied by small steps, many movies separated by 15 s were taken and the first one
was taken around 30 s after the change of shear rate.
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Figure 16. Maps of probability densities in the (Ψ, ra) space along a transition towards the
hysteresis zone in the decreasing shear rate case. η0 = 25 mPa.s. Left panel corresponds to the
47 s - 62 s interval in Fig. 15(b) (τ = 0.73 Pa). Middle panel corresponds to the 62 s - 74 s
interval right after the transition to τ = 0.073 Pa. Right panel to the 195 s - 207 s interval, still
at τ = 0.073 Pa. Left and right panel correspond to the initial and final states between which
the arrow on top of Fig. 10 indicates a transition. Middle panel is the transient state.

0 10 20 30 40 50 60 70 80 90 220 230 240
0

10

20

30

40

50

60

70

Figure 17. Examples of transition dynamics for parameter 〈Ψ〉 after shear stress sharp increases
and decreases. η0 = 1.5 mPa.s. Shear stresses τ are in Pa. Vertical dotted lines correspond to
the shear stress instantaneous switches (by changing the shear rate).
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Figure 18. Maps of probability densities in the (Ψ, ra) space along a transition towards rolling
in the increasing shear rate case, η0 = 1.5 mPa.s. Left panel corresponds to the 25 s - 35 s
interval in Fig. 17 (τ = 0.075 Pa). Middle panel corresponds to the 35 s - 50 s interval right
after the transition to τ = 0.3 Pa. Right panel to the 50 s - 60 s interval, still at τ = 0.3 Pa.
Left and right panel correspond to the initial and final states between which the arrow on top
of Fig. 14(c) indicates a transition
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7. Conclusion

We have proposed a complete description of the dynamics of a large, dilute population
of red blood cells, that takes into account the dispersion in size and mechanical properties
within this population. This dispersion, which is partly documented in the literature
results in large ranges for the transition thresholds as commented here.

Hysteretic behavior for the transition between rolling and tank-treading has been high-
lighted, in the case of suspending fluid of viscosity 25 mPa.s. We confirm the presence
of intermittent regimes during the transition from tank-treading to the rolling regime,
though quantifying this dynamics would require another more complete study. In con-
trast with Dupire et al. (2012), cells leaving the tank-treading regime seem to switch to
small angle orbits, and not to any stable orbit. The characteristics of the stable orbits
are the same whatever the direction of variation of the shear rate. Orbits with angles
larger than a threshold of order 50◦ are unstable. The transition to these orbits does not
occur at the same stress than the transition from these orbits, a feature which has not
been observed before.

In the low and physiological viscosity case, this hysteresis between stable and unstable
orbits was clearly identified. The characteristics of the stable orbits, as well as the range
of existence of only stable orbits, are quite similar in the low and high viscosity cases.
While in the high viscosity case rolling cells eventually switch to tank-treading motion,
some of them become stomatocytes in the low viscosity case. These two transitions are
observed for stresses that are not that different (of order 0.05 to 0.1 Pa).

One of the consequence of the deformability of cells under flow is the creation of fore-aft
asymmetry that allows lateral migration in the vicinity of walls, even in Stokes flow (see
Olla 1997; Coupier et al. 2008). In Grandchamp et al. (2013), the migration of red blood
cells in the vicinity of the walls of the same chamber as the one used here was studied.
It was found that, within the studied range of viscosity and shear rates, there is no other
effect of the shear rate than that of scaling the time. In particular, for η0 = 6.1 mPa.s,
the curves y′ = f(γ̇t) collapse for γ̇ between 10 and 50 s−1 that is, τ between 0.06 and
0.3 Pa. On the other hand, in that stress range, we can expect from our results to observe
a change in accessible orbits. We conclude that this change in behavior does not strongly
affect the surrounding flow and does not modify the resulting lift force. This does not
mean that stresses do not influence the lift: at fixed shear rate and upon an increase of
suspending fluid viscosity, the lift force increases (see Grandchamp et al. 2013). More
studies on wider ranges of shear rate are necessary to explore this issue.

From a rheology viewpoint, it has been shown in Vitkova et al. (2008) that the con-
tribution of cells to fluid viscosity depends on their regime in a non-trivial way. The
existence of hysteresis loops in the dynamics indicates that blood viscosity may depend
on the flow history, a fact that has never been reported (nor sought) to our knowledge.

While more and more numerical simulations approaches are found in the literature,
with models mostly validated through comparison with simple configurations such as
stretching experiments, we hope that this study based on statistically significant data
will provide a reliable benchmark that will help explore issues hardly solvable through
sole experiments, such as that of the nature and properties of cytoskeleton, the impact of
cell properties on rheology, and on the structuring of the suspension. It may also support
the development of adequate viscoelastic models such as in Mendez & Abkarian (2018)
that would account for the important features we highlighted here, such as the presence
of two hysteretic transitions and the robustness of the dynamical regimes against exter-



36 C. Minetti , V. Audemar, T. Podgorski and G. Coupier

nal viscosity variation, as long as stress is conserved.

This experimental work benefited from instrumentation and a collaboration developed
in the framework of microgravity experiments supported by CNES (parabolic flights) and
ESA (sounding rockets). The authors would like to thank CNES and ESA for providing
these opportunities and for supporting research, and B. Polack from CHU Grenoble Alpes
for help and discussions.
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