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Summary. These works analyze isolated solutions in a symmetric 2-beam MEMS array designed for mass detection using
Nonlinear Normal Modes (NNM) during symmetry breaking event. While symmetric, the system present two pure NNM and
one mixed NNM. Then an added mass is dropped onto the MEMS array, the symmetry is broken and an isolated NNM is
appearing. Particular behaviors on the isolated solutions depend on which type of NNM the isolated solution are linked to. The
originality lies in the detection and analysis of isolated solution and NNM before and after symmetry breaking in a MEMS
array using bifurcation calculation and continuation methods.
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1 Introduction

Current researches on mass sensing are essentially focused on an single MEMS resonator. A study
by Nguyen et al. investigates alternatives mass-sensing techniques using nonlinearities [1]. The mul-
tistability and frequency sweep, the resulting hysteresis cycle are used to provide a new mass sensing
technique. Nevertheless array of resonant MEMS present complex dynamical behavior due to the non-
linear couplings induced by electrostatic forces. A paper by Gutschmidt and Goettlieb [2] analyzed an
arrays with electrical coupling. They focused on the n-beam dynamic behavior in the region of internal
one-to-one, parametric and several internal three-to-one resonances corresponding to low, medium and
large DC voltages. These nonlinear behavior are complex to analyze and researches are currently work-
ing on methods that simplify the understanding of such phenomena. Hill et al. [3] analyze analytically
the apparition of isolated solutions on backbone curves (NNMs). They show that symmetry breaking
can generate isolated solutions supported by an isolated NNM. Kuether et al. worked on the Energy bal-
ance method [4] that allows to know the amplitude of forcing required to pass by the wanted point of a
NNM. In this work, a symmetric 2-beam array is considered for mass detection purpose. When an added
mass drops onto one of the moving beam of the MEMS array, the symmetry of the system is broken.
This symmetry breaking event have been used in [5] for mass detection. Our work proposes to analysis
the change in the nonlinear dynamics behavior of the MEMS array before and after symmetry breaking
event using NNM, bifurcation analysis and continuation of bifurcation points in parallel with standard
response curve. For some configuration of the system, isolated solutions, isolated and mixed NNM ap-
pear. Parametric methods of continuation that allows to catch the various isolated solutions and isolated
NNM are presented. Moreover the results shows that the merging behavior of the isolated solutions with
the response curve depend greatly on which type of NNM the isolated solutions are found onto.

2 Array of two nanomechanical resonators

A 2-moving-beam array is considered, as represented in Fig. 1. The two beams 0 and 3 located at the
ends of the array are clamped and serve only as electrostatic actuator. The two others beams 1 and 2 are
clamped-clamped. All 4 beams are identical. l, b, h, I , g are respectively length, width, height, moment
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of inertia of the beams, gap between two adjacent beams. Let E, ρ be the Young’s modulus and the mass
density.
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Figure 1: Array of two clamped-clamped M/NEMS beams.

Each beam is an electrostatic actuator for its adjacent beams. Vs,s+1 = Vdcs,s+1+Vacs,s+1 cos(Ωt) is the
voltage applied between the successive beams s and s + 1 with Vdc, Vac the continuous and alternative
voltages. The equation of the beam s in bending is written as follows.
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with s = 1, 2. Small added mass m is dropped on the beam i at the location x0. Let ε0, Cn be the
dielectric constant and fringing the coefficient respectively. Ñ represents the lineic load along the x-
axis. The following voltages are taken, see Tab. 1.

V dc10 V ac10 V dc21 V ac21 V dc32 V ac32
3 0.1 3 0 3 -0.1

Table 1: Applied voltages.

Since the resonators of the 2-beams-array are identical, the beams 1, .., 2 have the same eigenmodes.
Therefore Galerkin method is used to withdraw the spatial dependence from the equation of motion,
see Eq. (1). To compute the solution of the MEMS array, the Harmonic Balance Method (HBM) is
used which consists in researching a periodic solution as a truncated Fourier series. Then the alternate
frequency-time (AFT) is used for the calculation of nonlinear part of the equation of motion. The NNM
are then computed on a conservative equation of motion [6]. This equation being autonomous, a phase
condition is added and the equation of motion regularized to ensure the computation of an unique so-
lution. Then the stability and bifurcation points of the NNM is calculated using a regularized quadratic
eigenvalue problem and augmented system. An Energy balance is performed to calculate the correspond-
ing amplitude of the force necessary to pass by the corresponding point of the NNM [4].

2.1 Before symmetry breaking event
The NNM and the response curve of the system are computed for a null added mass, see Fig. 2. The
denomination pure and mixed NNM below are defined as in [7] [8]. The system exhibit two pure NNMs
initialized using the Linear Normal Modes frequency and modal shape. One can see, on the NNM that
a Branch Point (BP) appears on the second pure NNM initialized at the Frequency 22.35. The Branch
point, also known as symmetry breaking point, is symptomatic of a symmetric system. Beyond the BP,
the pure NNM becomes unstable and two new stable mixed NNM, that does not respect the symmetry
of the system, appear. A mixed NNM has a modal shape mixing modal shapes of the pure NNM of the
system. The given voltages ( see Table 1 ), excite the first pure NNM and the two mixed NNM. One
can see on the response curve that the first pure NNM behaves as expected, while the second pure NNM
does not react at all. Additionally, isolated solutions are present on each mixed NNM. They are found
and initialized using the energy balance method. The two mixed NNM being isolated from the excited
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Figure 2: Beam 1 and 2 for an null added mass, Stable (red), Unstable (blue), Bifurcation (orange).

NNM, the merging of the isolated solutions with the response curve can not occur with the current shape
of excitation 1.

2.2 After symmetry breaking event
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Figure 3: Beam 1 for an dimensionless added mass of 1e− 4, Stable (red), Unstable (blue), Bifurcation
(orange).

After the drop of a dimensionless added mass of 1e − 4 onto the beam 1, the symmetry of the system
is broken. The corresponding NNM of the system are computed in Figs. 3,4. The dynamical behavior
of the system is modified, the BP onto the second pure NNM does no longer exist. The drop of the
added mass has broken the symmetry and therefore the BP becomes an imperfect bifurcation point. The
second pure NNM and the two mixed modes existing before the symmetry breaking event become one
pure NNM and one isolated NNM. Such a behavior for beam 1 can be seen in Fig. 3. Moreover the
system now being non-symmetric has different modal shape on each beam. The second pure NNM is
composed by the previous lower energy part of the second pure NNM and lower energy mixed NNM.
While the upper part of the second pure NNM and mixed NNM form now the isolated NNM. On the
second beam 4, the left part of the previous second pure NNM and the mixed NNM form the second
pure NNM after symmetry breaking. In the same way, the right part of the previous second pure NNM
and mixed NNM compose the isolated NNM. The isolated NNM are found and initialized using Limit
Point continuation of NNM. Moreover, the second pure NNM, now composed partially by a previous
mixed NNM, responds to the current excitation. Therefore the isolated solution found onto the second
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Figure 4: Beam 2 for a dimensionless added mass of 1e − 4, Stable (red), Unstable (blue), Bifurcation
(orange).

pure NNM is supported by an excited NNM. Consequently, for a high enough amplitude of voltages
with respect to the current shape of excitation, the isolated solution supported by the second pure NNM
will merged with the response curve. On the other hand, the isolated solution found onto the isolated
NNM is totally isolated from any excited NNM. Hence, the isolated solution will remain isolated even
for other amplitude and shape of excitation. The analysis of the complex dynamical behavior of an array
of two nanomechanical resonators beams explain well the symmetry breaking phenomena used for mass
detection in [5].

3 Conclusion

Multiple complex dynamical behavior, such as isolated NNM and isolated solutions with different merg-
ing behaviors, have been found in the considered array of two nanomechanical resonators. The merging
of isolated solutions present in such system have been characterized depending on which NNM it can be
found. Method that allows to find and initialize isolated solutions and isolated NNM are presented. As a
conclusion, the results found with the presented method explain and analysis complex dynamical behav-
ior found in a 2-beam MEMS before and after symmetry breaking used for mass detection. This research
represents an increment towards the comprehension and modeling of resonator arrays for application in
mass sensing.
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