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ABSTRACT

This work presents a method to calculate non-conservative Nonlinear Normal Modes (NNMs) based on the conservative
NNMs. A specific fictive force is added to the initial non-conservative equation of motion in order to insure the energy balance
of the damped nonlinear equation. By doing so, conservative equations corresponding to Phase and Energy resonances are
obtained. Therefore non-conservative NNMs can be computed with conservative NNMs calculation methods. Finally, the
proposed method allows to calculate all non-conservative NNMs branches with their stability and bifurcation points.

INTRODUCTION
In the literature methods to compute conservative NNM can be found [1]. In the paper [2], Harmonic Balance Method (HBM), a

specific phase condition and Lagrange multipliers are used to compute periodic solutions. The quadratic eigenvalue problem obtained
by Hill’s method is shifted to calculate stability and bifurcation points. Some researches worked on the influence of damping onto the
NNM. In the paper [3], an Energy balance is applied to conservative NNMs to explore the connection between NNMs and damped
frequency responses. Malte Krack proposed to insure energy balance by introducing a fictional negative damping [4]. In this work,
Phase and Energy resonances are computed by introducing a fictional force to insure the energy balance without modifying the invariant
manifold.

Equation of motion
A nonlinear dynamical system with 2 degrees of freedom is considered [1]. Let x(t) the displacement vector and γ = 5e−2.

Mẍ(t)+Cẋ(t)+Kx(t)+ fnl(x, ẋ) = f

M =

[
1 0
0 1

]
,C = γK = γ

[
2 −1
−1 2

]
, fnl =

[ 1
2 x3

1(t)
0

]
(1)
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with M, K, C the generalized mass, damping and stiffness matrices, fnl the vector of nonlinear forces. The HBM method is applied to
(1) as in [2]. X, Fnl represent the Fourier coefficient of the displacement vector and the vector of nonlinear forces. ⊗ corresponds to the
Kronecker tensor product and ∇ represents the time derivative operator in the frequency domain. The equation of motion is frequency
domain is obtained.

R(X,ω) = Z(ω)X+Fnl(X) = F

Z(ω) = ω
2
∇

2⊗M+ω∇⊗C+ I2H+1⊗K

∇ = diag(0,∇1, ...,∇ j, ...,∇H) with ∇ j = j
[

0 1
−1 0

] (2)

Resonances
For usual damping of a few percents, the Phase and Energy resonances give almost the same results. However for higher damping

values, the obtained NNMs are different and the calculation method has to be chosen appropriately. This work deals with small and high
damping, but for length consideration only the case where damping is small is dealt within this extended abstract.

Phase resonance
Let ξφ be one of the damped NNMs of the system (2) corresponding to the phase resonance. The phase φ between the periodic

solution X and the damped NNM ξφ is calculated (3). Im(R) and Re(R) representing the corresponding imaginary and reel part of
Eqn. (2). In order to have a phase resonance, ξφ

T (Re(R)) has to be equal to zero and ξφ
T (Im(R)) 6= 0. Since ξφ 6= 0, the equation

corresponding to the Phase resonance is obtained (4). Xξφ
and ωξφ

representing the Fourier coefficients and the frequency of the damped
NNM ξφ . One can note that Eqn. (4) corresponds to the classical equation used to calculate undamped-unforced NNMs [1]. By
identifying Eqns. (2) and (4), the force vector that has to be applied to the system in order for the corresponding forced response to pass
through the considered NNM point is calculated (5).

φ = arctan

(
ξφ

T (Im(R))

ξφ
T (Re(R))

)
(3)

Zφ (ωξφ
)Xξφ

+Fnl(Xξφ
) = 0

Zφ (ωξφ
) = ω

2
ξφ

∇
2⊗M+ I2H+1⊗K

(4)

Fφ = ωξφ
(∇⊗C)Xξφ

(5)

Energy resonance
Let ξE be one of the damped NNM corresponding to the energy resonance with XξE and ωξE the corresponding Fourier coefficient

and frequency. The energy resonance takes place at a point (XξE ,ωξE) where the derivative of the energy along the frequency is null.
By performing the calculation, Eqn.(6) is obtained. Energy resonance takes the influence of damping into account through a fictional
stiffness. By identifying Eqns. (2) and (6), the force vector that has to be applied to the system in order for the corresponding forced
response to pass through the considered NNM point is calculated (7).

Zφ (ωξE)XξE +Fnl(XξE)−
1
2

(
I2H+1⊗M−1C2

)
XξE = 0 (6)

FE =

(
ωξE∇⊗C+

1
2

I2H+1⊗M−1C2
)

XξE (7)
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FIGURE 1: Frequency responses with the NNMs

Since Eqns. (4) and (6) are autonomous, methods for conservative NNMs computation [2] are used to compute NNMs of the system Fig.
1. Using periodic solutions of the first NNM to calculate fictional forces, the corresponding frequency responses are plotted. For small
γ , the Phase and Energy resonances cannot be distinguished from one another. As expected, frequency responses only respond greatly
to the NNM used to calculate the fictional force.

Conclusion
A generalization of conservative NNMs to non-conservative equations of motion has been presented. By using conservative equa-

tions of motion to describe the Phase and Energy resonances from non-conservative equations of motion, classical methods for NNMs
calculation can be used to compute damped NNMs, their stability and bifurcations points. Moreover, fictional force allows specific
NNM to be targeted by frequency responses. Phase and Energy resonances are almost superposed for small damping and separate from
one another for higher damping.
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