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ABSTRACT

Context. Thermal atmospheric tides have a strong impact on the rotation of terrestrial planets. They can lock these planets into an
asynchronous rotation state of equilibrium.
Aims. We aim to characterize the dependence of the tidal torque resulting from the semidiurnal thermal tide on the tidal frequency,
the planet orbital radius, and the atmospheric surface pressure.
Methods. The tidal torque was computed from full 3D simulations of the atmospheric climate and mean flows using a generic version
of the LMDZ general circulation model in the case of a nitrogen-dominated atmosphere. Numerical results are discussed with the help
of an updated linear analytical framework. Power scaling laws governing the evolution of the torque with the planet orbital radius and
surface pressure are derived.
Results. The tidal torque exhibits (i) a thermal peak in the vicinity of synchronization, (ii) a resonant peak associated with the exci-
tation of the Lamb mode in the high frequency range, and (iii) well defined frequency slopes outside these resonances. These features
are well explained by our linear theory. Whatever the star–planet distance and surface pressure, the torque frequency spectrum – when
rescaled with the relevant power laws – always presents the same behaviour. This allows us to provide a single and easily usable empiri-
cal formula describing the atmospheric tidal torque over the whole parameter space. With such a formula, the effect of the atmospheric
tidal torque can be implemented in evolutionary models of the rotational dynamics of a planet in a computationally efficient, and yet
relatively accurate way.
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1. Introduction

Understanding the evolution of planetary systems has become
a crucial question with the rapidly growing number of exoplan-
ets discovered up to now. Terrestrial planets particularly retain
our attention as they offer a fascinating diversity of orbital
configurations, and possible climates and surface conditions.
This diversity is well illustrated by Proxima-b, an exo-Earth
with a minimum mass of 1.3 M⊕ orbiting Proxima Centauri
(Anglada-Escudé et al. 2016; Ribas et al. 2016), and the
TRAPPIST-1 system, which is a tightly-packed system of seven
Earth-sized planets orbiting an ultracool dwarf star (Gillon et al.
2017; Grimm et al. 2018).

Characterizing the atmospheric dynamics and climate of
these planets is a topic that motivated numerous theoretical
works, both analytical and numerical (e.g. Pierrehumbert 2011;
Heng & Kopparla 2012; Leconte et al. 2013; Heng & Workman
2014; Wolf et al. 2017; Wolf 2017; Turbet et al. 2018). This ten-
dency will be reinforced in the future by the rise of forthcoming
space observatories such as the James Webb Space Telescope
(JWST), which will unravel features of the planetary atmo-
spheric structure by performing high resolution spectroscopy
over the infrared frequency range (Lagage 2015).

Constraining the climate and surface conditions of the
observed terrestrial planets requires constraint of their rotation
rate first because of the key role played by this parameter in the
equilibrium atmospheric dynamics (Vallis 2006; Pierrehumbert
2010). Particularly, it is important to know whether a planet is

locked into the configuration of spin-orbit synchronization with
its host star and the extent to which asynchronous rotation states
of equilibrium might exist. Over long timescales, the planet rota-
tion is driven by tidal effects, that is the distortion of the planet by
its neighbours (star, planets and satellites) resulting from mutual
distance interactions. Tides are a source of internal dissipation
inducing a variation of mass distribution delayed with respect
to the direction of the perturber. As a consequence, the planet
undergoes a tidal torque, which modifies its rotation by estab-
lishing a transfer of angular momentum between the orbital and
spin motions.

Tides can be generated by forcings of different natures. First,
the whole planet is distorted by the gravitational tidal potential
generated by the perturber, and is driven by the resulting tidal
torque towards spin-orbit synchronous rotation and a circular
orbital configuration. Second, if the perturber is the host star, the
atmosphere of the planet undergoes a heating generated by the
day-night cycle of the incoming stellar flux. The variations of the
atmospheric mass distribution generated by this forcing are the
so-called thermal atmospheric tides (Chapman & Lindzen 1970).

As demonstrated by the pioneering study by Gold & Soter
(1969) in the case of Venus, thermal tides are able to drive a
terrestrial planet away from spin-orbit synchronization since they
induce a tidal torque in opposition with that resulting from solid
tides in the low frequency range. Hence, the competition between
the two effects locks the planet into an asynchronous rotation
state of equilibrium, which explains the departure of the rotation
rate of Venus to spin-orbit synchronization.
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The understanding of this mechanism has been progres-
sively consolidated by analytical works based upon the classical
tidal theory (e.g. Ingersoll & Dobrovolskis 1978; Dobrovolskis &
Ingersoll 1980; Auclair-Desrotour et al. 2017a,b) or using
parametrized models (Correia & Laskar 2001, 2003; Correia
et al. 2003). Over the past decade, the growing performances of
computers have made full numerical approaches affordable, and
the atmospheric torque created by the thermal tide was computed
using general circulation models (GCM; Leconte et al. 2015).
This approach remains complementary with analytical models
owing to its high computational cost. However, it is particu-
larly interesting since it allows to characterize the atmospheric
tidal response of a planet by taking into account the atmospheric
structure, mean flows and other internal processes by solving the
primitive equations of fluid dynamics in a self-consistent way.

By using a generic version of the LMDZ GCM (Hourdin
et al. 2006), Leconte et al. (2015) retrieved the frequency-
dependence of the tidal torque predicted by ab initio analytical
models (Ingersoll & Dobrovolskis 1978; Auclair-Desrotour et al.
2017a, 2018). The torque increases linearly with the tidal fre-
quency in the vicinity of synchronization. It reaches a maximum
associated with a thermal time of the atmosphere and then
decays in the high-frequency range. This behaviour is approxi-
mated at the first order by the Maxwell model, which describes
the forced response of a damped harmonic oscillator. It shows
evidence of the important role played by dissipative processes
such as radiative cooling in Venus-like configurations. To better
understand the action of the thermal tide on the planet rotation,
this frequency-dependent behaviour has to be characterized.

Thus, our purpose in this study is to investigate the depen-
dences of the tidal torque created by the semidiurnal tide on
the tidal frequency and on key control parameters. We follow
along the line by Leconte et al. (2015) for the method, and treat
the case of an idealized dry terrestrial planet hosting a nitrogen-
dominated atmosphere and orbiting a Sun-like star. Hence, we
recall in Sect. 2 the mechanism of the thermal atmospheric tide.
In Sect. 3, we detail the method and the physical setup of the
treated case.

In Sect. 4, we compute the tidal torque exerted on the atmo-
sphere from simulations using the LMDZ GCM and examine
its dependence on the tidal frequency. We introduce in this sec-
tion two new models for the thermally generated atmospheric
tidal torque: an ab initio analytical model based upon the lin-
ear theory of atmospheric tides (e.g. Chapman & Lindzen 1970),
and a parametrized semi-analytical model derived from results
obtained using GCM simulations. This later model describes in
a realistic way the behaviour of the torque in the low-frequency
range, where a thermal peak is observed. In addition, we inves-
tigate in this section the role played by the ground-atmosphere
thermal coupling in the lag of the tidal bulge.

In Sect. 5, we examine the dependence of the tidal response
on the planet orbital radius and surface pressure. We thus estab-
lish empirical scaling laws describing the evolution of the char-
acteristic amplitude and timescale of the thermal peak with these
two parameters. Combining together the obtained results, we
finally derive a new generic formula to quantify the atmospheric
tidal torque created by the thermal semidiurnal tide in the case of
a N2-dominated atmosphere. We give our conclusions in Sect. 6.

2. Basic principle

We briefly recall in this section the main aspects of the mech-
anism of atmospheric tides in the case of terrestrial planets,
and we introduce analytical expressions that will be used in the

following to compute the resulting tidal torque. For the sake of
simplification, we consider in this study the case of a spheri-
cal planet of radius Rp and mass Mp, orbiting its host star, of
mass M?, circularly. The star–planet distance is denoted a, the
mean motion of the system n?, and the obliquity of the planet is
set to zero. We assume that the planet rotates at the spin angu-
lar velocity Ω, which is positive if the spin rotation is along the
same direction as the orbital motion, and negative otherwise.

The atmosphere of the planet undergoes both the tidal grav-
itational and thermal forcings of the host star. Below a certain
orbital radius, the planet is sufficiently close to the star to
make gravitational forces predominate. Thus, its rotation is
driven towards spin–orbit synchronization (Ω = n?), which is
the unique possible final state of equilibrium for the planet rota-
tion in the absence of obliquity and eccentricity. Conversely, the
predominance of the thermal tide enables the existence of asyn-
chronous final rotation states of equilibrium, as showed in the
case of Venus (e.g. Gold & Soter 1969; Ingersoll & Dobrovolskis
1978; Dobrovolskis & Ingersoll 1980; Correia & Laskar 2001;
Auclair-Desrotour et al. 2017a). As a consequence, we ignore
here the action of gravitational forces on the atmosphere. We
note however that the action of these forces on the atmospheric
tidal bulge will be taken into account to compute the tidal torque,
as seen in the following.

The thermal forcing results from the day-night periodic
cycle. The atmosphere undergoes heating variations due to the
time-varying component of the incoming stellar flux F, which
scales as the equilibrium one, F? = L?/

(
4πa2

)
, where L? is

the luminosity of the star. Hence, the absorbed energy induces
a delayed variation of the atmospheric mass distribution. Let
us assume the hydrostatic approximation (i.e. that pressure and
gravitational forces compensate each other exactly in the ver-
tical direction) and consider that the surface of the planet is
rigid enough to support the atmospheric pressure variations with
negligible distortions. It follows that the variation of mass distri-
bution is directly proportional to the surface pressure anomaly,

δps (t, θ, ϕ) =

+∞∑
l=1

l∑
m=−l

δpm,σ
s;l Ym

l (θ, ϕ) eiσt, (1)

where l and m designate the latitudinal and longitudinal degrees
of a mode, θ and ϕ the colatitude and longitude in the reference
frame co-rotating with the planet, t the time, Ym

l the normal-
ized spherical harmonics (see Appendix A), δpm,σ

s;l the associated
components, and σ= m (Ω − n?) the associated forcing frequen-
cies (see e.g. Efroimsky 2012; Ogilvie 2014)1.

The tidal torque exerted on the atmosphere is obtained by
integrating the gravitational force undergone by the tidal bulge
over the sphere. Hence, denoting UT the tidal gravitational
potential at the planet surface, the atmospheric tidal torque is
defined in the thin-layer approximation (H � Rp) as (e.g. Zahn
1966)

T =
1
g

∫
S

∂ϕUT δpsdS, (2)

where the notation g refers to the surface gravity of the planet,
∂ϕ to the partial derivative in longitude, S to the sphere of radius
Rp, and dS= R2

p sin θdθdϕ to the surface element.

1 The expression of δps given by Eq. (1) is similar to that of the
tidal gravitational potential, which is derived by applying the addi-
tion theorem to the components of the potential expanded in Legendre
polynomials (see e.g. Efroimsky 2012, Eq. (47)).
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Similarly as the surface pressure anomaly, UT can be
expanded in Fourier series of time and spherical harmonics,

UT (t, θ, ϕ) =

+∞∑
l=1

l∑
m=−l

Um,σ
T;l Ym

l (θ, ϕ) eiσt, (3)

where the Um,σ
T;l are the amplitudes of the different modes. Terms

associated with l = 1 do not contribute to the tidal torque
since they just correspond to a displacement of the planet grav-
ity centre. Thus, the main components of the expansion are
those associated with the quadrupolar semidiurnal tide, that
is with degrees l = |m|= 2. Besides, since the Um,σ

T;l scale as

Um,σ
T;l ∝

(
Rp/a

)l
, terms of greater order in l can be neglected with

respect to the quadrupolar components if the radius of the planet
Rp is assumed to be small compared to the star-planet distance,
which is the case in the present study.

Thus, by substituting UT and δps by their expansions in
spherical harmonics in Eq. (2), we note that the quadrupolar
terms l = |m|= 2 only remain, as for the tidal potential UT, and
we end up with the well-known expression of the semidiurnal
quadrupolar torque in the thin layer approximation (e.g. Leconte
et al. 2015),

T =

√
24π

5
M?

Mp

R6
p

a3 =
{
δp2,σ

s;2

}
, (4)

with σ= 2 (Ω − n?), and where the notation= refers to the imag-
inary part of a complex number (< referring to the real part).
In this expression, δp2,σ

s;2 designates the component of degrees
l = 2 and m = 2 in the expansion on spherical harmonics given
by Eq. (1). This complex quantity is the most important one
since it encompasses the whole physics of the atmospheric tidal
response. In the following, it will be calculated using a GCM.

The action of the torque on the planet is fully determined
by the sign of the product η= sign (σ)=

{
δp2,σ

s;2

}
. When η < 0

(η > 0), the atmospheric tidal torque pushes the planet
towards (away from) spin-orbit synchronization, |Ω − n?| decays
(increases). Positions for which η = 0 correspond to the stable
(dη/dσ|eq < 0) or unstable (dη/dσ|eq > 0) equilibrium rotation
rates that the planet would reach if it were subject to atmospheric
tides only, that is if solid tides were ignored in the case of a dry
terrestrial planet.

3. Method

As mentioned in the previous section, the guideline of the
method is to compute the quadrupolar component of the surface
pressure anomaly from 3D GCM simulations. We detail here the
basic physical setup of these simulations in a first time, and the
way δp2,σ

s;2 is extracted from pressure snapshots in a second time.
In the whole study, we focus on a Venus-sized planet orbiting a
Sun-like star.

A ‘reference case’ of fixed surface pressure and star–planet
distance is defined. Specifically, the surface pressure is set in this
case to ps = 10 bar and we assume that the planet is located at the
Venus-Sun distance, that is aVenus = 0.723 au. This configuration,
characterized in Sect. 4, corresponds to the case illustrated by
Fig. 1 of Leconte et al. (2015), and seems thereby a convenient
choice for comparisons with this early work.

In Sect. 5, two families of configurations will be studied,
both including the reference case. In the first family, the sur-
face pressure is set to ps = 10 bar and the semi-major axis varies.

Conversely, in the second family, planets have the same orbital
radius, a = aVenus, and various surface pressures.

3.1. Physical setup of the 3D simulations

Apart from the surface pressure and star-planet distance, all sim-
ulations are based on a common physical setup. For the stellar
incoming flux, the emission spectrum of the Sun is used. The
planet is assumed to be dry, with no surface liquid water or
water vapour, which allows us to filter out effects associated
with the formation of clouds in the study of its atmospheric tidal
response. The atmosphere is arbitrarily assumed to be nitrogen-
dominated. However, a pure N2-atmosphere would be an extreme
case for radiative transfer owing to the absence of radiator.
Hence, we have to set a non-zero volume mixing ratio for carbon
dioxyde to avoid numerical issues in the treatment of the radia-
tive transfer with the LMDZ, which was originally designed to
study the Earth atmosphere. Although any value could be used,
we choose to set the value of the CO2 volume mixing ratio to
that of the Earth atmosphere at the beginning of the twenty-first
century, that is ∼370 ppmv (e.g. Etheridge et al. 1996). The mass
ratio corresponding to this volume mixing ratio being negligi-
ble, we use the value of N2 for the mean molecular mass of the
atmosphere, Matm = 28.0134 g mol−1 (Meija et al. 2016).

For a perfect diatomic gas, the ratio of heat capacities (also
called first adiabatic exponent) is Γ1 = 1.4, and it follows that
κ= (Γ1 − 1) /Γ1 = 0.285 (the parameter κ can also be written
κ=RGP/

(
MatmCp

)
, where RGP and Cp stand for the perfect gaz

constant and the thermal capacity per unit mass of the atmo-
sphere, respectively). The effects of topography are ignored and
the surface of the planet is thus considered as an isotropic sphere
of albedo As = 0.2 and thermal inertia Igr = 2000 J m−2 s−1/2 K−1,
which is a typical value for Venus-like soils (see e.g. Lebonnois
et al. 2010)2. All of these parameters remain unchanged for the
whole study and are summarized in Table 1.

Our simulations are performed with an upgraded version of
the LMD GCM specifically developed for the study of extrasolar
planets and paleoclimates (see e.g. Wordsworth et al. 2010, 2011,
2013; Forget et al. 2013; Leconte et al. 2013), and used previ-
ously by Leconte et al. (2015) for the study of atmospheric tides.
The model is based on the dynamical core of the LMDZ 4 GCM
(Hourdin et al. 2006), which uses a finite-difference formula-
tion of the primitive equations of geophysical fluid dynamics.
Particularly, the following approximations are assumed.

The main one is the hydrostatic approximation (e.g. Vallis
2006), meaning that the pressure and gravitational forces com-
pensate each other exactly along the vertical direction. The
second approximation is the traditional approximation (e.g.
Unno et al. 1989), which consists in ignoring the components
of the Coriolis acceleration associated with a vertical motion
of fluid particles or generating a force along the vertical direc-
tion. The third important assumption in the code is the thin layer
approximation, meaning that the thickness of the atmosphere is
considered as small with respect to the radius of the planet (e.g.
Vallis 2006).

A spatial resolution of 32 × 32 × 26 in longitude, latitude,
and altitude is used for the simulations.

The radiative transfer is computed in the model using a
method similar to Wordsworth et al. (2011) and Leconte et al.
(2013). High-resolution spectra characterizing optical properties
were preliminary produced for the chosen gas mixture over a

2 This is the value prescribed for nonporous basalts by Zimbelman
(1986).
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Table 1. Main GCM parameters.

Parameter Symbol Value Unit

Planet characteristicsa

Planet mass Mp 0.815 M⊕
Planet radius Rp 0.950 R⊕
Surface gravity g 8.87 m s−2

Star characteristicsa

Mass of the star M? 1.0 M�
Luminosity of the star L? 1.0 L�

Atmospheric propertiesb

Mean molecular mass Matm 28.0134 g mol−1

Adiabatic exponent κ 0.285 –

Surface parameters
Surface albedo As 0.2 –
Surface thermal inertia Igr 2000 J m−2 s−1/2 K−1

Notes. The subscripts ⊕ and � refer to the Earth and the Sun,
respectively.
References. (a)Bureau Des Longitudes & Institut de Mécanique Céleste
Et de Calcul Des Ephémérides Observatoire de Paris (2011). (b)From, for
example Meija et al. (2016).

wide range of temperatures and pressures using the HITRAN
2008 database (Rothman et al. 2009). These spectra are inter-
polated every radiative timestep during simulations to determine
local radiative transfers. The method is commonly used and has
been thoroughly discussed in past studies (e.g. Leconte et al.
2013). We thus refer the readers to these works for a detailed
description.

3.2. Extraction of the quadrupolar surface pressure anomaly

For a given planet, of fixed rotation, semi-major axis and sur-
face pressure, the calculation of the quadrupolar surface pressure
anomaly follows several steps.

First, the GCM is run for a period Pconv corresponding to
the convergence timescale necessary to reach a steady cycle. We
note that this period has to be specified for each doublet (a, ps).
As a first approximation, it depends on the radiative timescale of
the deepest layers of the atmosphere τrad, which scales as

τrad ∝
ps

g

Cp

4σSBT 3
e
, (5)

where Te stands for the mean effective, or black body, temper-
ature of the atmosphere (see e.g. Showman & Guillot 2002,
Eq. (10)). In the reference case, we observe that the atmospheric
state has converged towards a steady cycle after ∼5800 Earth
Solar days, and we thus use this value for calculations in this
section.

After this first step, a simulation is run for 300 Solar days of
the planet, defined by Psol = 2π/ |Ω − n?|, except in the case of
the spin-orbit synchronization (Ω = n?), where there is no day-
night cycle (in this case, the simulation is simply run for 3000
Earth Solar days). At the end of the simulation, we have at our
disposal a time series of snapshots of the surface pressure given
as a function of the longitude and latitude (see e.g. Fig. 1).

The third step consists in post-processing these data. We
first remove the constant component, that is the mean surface

Fig. 1. Surface pressure and horizontal winds computed with the LMDZ
GCM for a Venus-sized terrestrial planet hosting a 10 bar atmosphere
(reference case). In this study, the surface pressure anomaly is folded
over one Solar day and expanded in spherical harmonics to calculate
the atmospheric tidal torque using the formula given by Eq. (4).

pressure. Then, we proceed to a change of variable: the time
coordinate is replaced by the Solar zenith angle, so that snap-
shots are all centred on the substellar point. Since meteorological
fluctuations can be considered as a perturbation varying ran-
domly over short timescales, we filter them out by folding the
surface pressure anomaly over one Solar day.

We finally apply a spherical harmonics transform to the
resulting averaged surface pressure snapshot in order to get the
complex coefficient δp2,σ

s;2 associated with the semidiurnal tidal
mode of degrees l = 2 and m = 2 (see Eq. (1)). The method
is illustrated by Fig. 2 in the reference case (a = aVenus and
ps = 10 bar).

This procedure provides the value of the tidal torque for
a given forcing frequency. In practice, the torque is computed
over an interval of the normalized frequency ω= (Ω − n?) /n?
centred on synchronization (ω = 0) with n? fixed, the planet
rotation rate being deduced from ω (the normalized frequency
ω is employed here instead of σ to follow along the line by
Leconte et al. 2015). Typically, we use −30 ≤ ω ≤ 30 to study
the low-frequency regime of the atmospheric tidal response and
−300 ≤ ω ≤ 300 to study the high-frequency regime.

The frequency range is thus divided into N intervals, mean-
ing that the whole above procedure has to be repeated N +1 times
to construct a frequency-spectrum of the tidal torque. The size
of an interval is defined as ∆ω ≡

(
ωsup − ωinf

)
/N. For instance,

for the exploration of the parameters space detailed in Sect. 5,
N = 20, ωinf = − 30, ωsup = 30, and thus ∆ω= 3.

4. Frequency behaviour of the atmospheric
tidal torque

The apparent complexity of the physics involved in thermal
atmospheric tides requires that we opt for a graduated approach
of the problem. Hence, before investigating the dependence of
the tidal torque on the planet orbital radius and atmospheric
surface pressure as mentioned above, we have to preliminary
characterize how it varies with the tidal frequency. To address
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! = 0

! = 6

! = 12

! = 18

! = 24

Mean pressure anomaly [Pa] Semidiurnal component [Pa]

Fig. 2. Surface pressure anomaly created by the thermal tide. Left panels: daily averaged spatial distribution of the departure of the surface pressure
from its mean value created by the thermal tide. Right panels: spatial distribution of the semidiurnal component only. The surface pressure anomaly
is computed for 300 Solar days and folded over one Solar day centred on the substellar point, whose location and direction of motion are shown
with a white arrow. From top to bottom panels: normalized forcing frequency ω = (Ω − n?) /n? is increased from 0 (spin-orbit synchronization) to
24 (this corresponds to the length of the Solar day Psol = 9.36 days) for the reference case of the study (a = aVenus and ps = 10 bar).

this question, we consider the reference case (ps = 10 bar and
a = aVenus).

4.1. Characterization of the reference case

In order to characterize the reference case, frequency-spectra
of the atmospheric torque created by the semidiurnal thermal
tide are computed in low-frequency and high-frequency ranges.
For convenience, we introduce the function fGCM (σ), which is
the interpolating function of GCM results with cubic splines.
Noting that the tidal torque should be an odd function of the
tidal frequency in the absence of rotation (or if the effect of

rotation on the tidal response were negligible), we also introduce
the function fodd, defined by

fodd (σ) =
1
2

[
fGCM (σ) − fGCM (−σ)

]
, (6)

which is the odd function f minimizing for any σ the distance
defined by
d (σ) = || fGCM (σ) − f (σ)| − | fGCM (−σ) − f (−σ)|| . (7)

The complementary function feven, such that fGCM = fodd +
feven, is defined by

feven =
1
2

[
fGCM (σ) + fGCM (−σ)

]
, (8)
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“ 10 bar). Top left:

Fig. 3. Imaginary part of the Y2
2 com-

ponent of surface pressure variations as
a function of the normalized forcing
frequency ω= (Ω − n?) /n? in the ref-
erence case (a = aVenus and ps = 10 bar).
Top left panel: spectrum over the high-
frequency range (−300 < ω < 300) in
linear scales. Top right panel: spectrum
over the low-frequency range (−30 <
ω < 30) in linear scales. Bottom left
panel: spectrum in logarithmic scales
(for ω > 0). Numerical results obtained
with GCM simulations are plotted (grey
points), as well as the interpolating
function fGCM (grey solid line), the odd
and even functions of σ defined by
Eqs. (6) and (8) (black and purple solid
line, respectively), the function derived
from the ab initio analytical model and
given by Eqs. (12) and (13) (orange
dashed line), its Maxwell-like approx-
imation given by Eq. (17) (red dot-
ted line), and the parametrized function
given by Eq. (26) (blue dashed line).

and provides a measure of the impact of Coriolis effects on
the tidal torque. The data, the interpolating function fGCM and
its components fodd and feven are plotted in Fig. 3 as functions
of the normalized tidal frequency ω=σ/ (2n?) in linear and
logarithmic scales. Additional functions of the frequency are
plotted in dashed lines. They correspond to the ab initio analyt-
ical (‘Ana.’), Maxwell, and parametrized (‘Param.’) models that
will be introduced and discussed further.

We first consider the low-frequency range (−30 ≤ ω ≤
30). The reference case of our study exactly reproduces the
results plotted in Fig. 1 of Leconte et al. (2015), with a max-
imum slightly greater that 2000 Pa located around ω ∼ 5.
We introduce here the maximal value of the peak qmax ≡

max { fodd (σ)} and the associated frequency σmax, such that
fodd (σmax) = qmax, timescale τmax ≡ σ−1

max and normalized fre-
quency ωmax =σmax/ (2n?).

The tidal torque is negative for σ < 0 and positive other-
wise, which corresponds to the typical behaviour of the ther-
mally induced atmospheric tidal response in the vicinity of
synchronization, as discussed in Sect. 2. As shown by early
studies (Gold & Soter 1969; Ingersoll & Dobrovolskis 1978;
Dobrovolskis & Ingersoll 1980; Correia & Laskar 2001), thermal
atmospheric tides thus tends to drive the planet away from syn-
chronous rotation and determines its non-synchronized rotation
states of equilibrium.

In the zero-frequency limit, the torque scales as T ∝σα, with
α ≈ 0.73. In the high-frequency range (20 . |ω| ≤ 300), it scales
as T ∝σ−1 with a remarkable regularity (see Fig. 3, bottom left
panel) and exhibits a resonance at ω ≈ 260. We will see in
the next section that these features can be explained using the
linear theory of atmospheric tides (Wilkes 1949; Siebert 1961;
Lindzen & Chapman 1969).

We note that the spectrum of fGCM exhibits a slight system-
atic asymmetry with respect to the synchronization. This feature
is obvious in the low-frequency range, where | fGCM (−σ)| >
| fGCM (σ)|, and tends to vanish while |σ| increases. Particu-
larly, a small departure between fGCM and fodd can be observed
around the extrema of the tidal torque, and we note that the
atmosphere undergoes a non-negligible tidal torque at synchro-
nization (σ= 0), although the perturber does not move in the
reference frame co-rotating with the planet.

This asymmetry is an effect of the Coriolis acceleration,
which comes from the fact that |Ω (−σ)| , |Ω (σ)| (in the
low-frequency range, the spin rotation rate is not proportional
to the tidal frequency). The Coriolis acceleration affects the
atmospheric general circulation by generating strong zonal jets
through the mechanism of non-linear Rossby waves pump-
ing angular momentum equatorward (e.g. Showman & Polvani
2011). These jets induce a Doppler-like angular lag of the tidal
bulge with respect to the direction of the perturber.

4.2. Ab initio analytical model

The behaviour of the torque in the high-frequency range can be
explained with the help of the linear theory of thermal atmo-
spheric tides (Wilkes 1949; Siebert 1961; Lindzen & Chapman
1969). In Appendix B, by using an ab initio approach, we com-
pute analytically the atmospheric tidal torque created by the
semidiurnal thermal tide in the idealized case of an isothermal
atmosphere undergoing the tidal heating of the planet surface.
The atmospheric structure is here characterized by the constant
pressure height

H =
RsTs

g
, (9)
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where Rs and Ts designate the specific gas constant and the
surface temperature, respectively. It allows to renormalizes the
altitude z with the introduction of the pressure height scale
x = z/H. In the analytic model, we choose for the heat per unit
mass inducing the tidal response the vertical profile J = Jse−bJ x,
where Js is the heat per unit mass at the planet surface, and
bJ a dimensionless optical depth corresponding to the inverse
of the characteristic thickness of the heated layer. We note
that the limit bJ → +∞ corresponds to the case studied by
Dobrovolskis & Ingersoll (1980), where the vertical profile of
heat is approximated by a Dirac distribution.

The surface pressure anomaly is obtained by solving the ver-
tical structure equation of the dominating mode with the above
profile of the forcing. We refer the reader to the appendix for
the detail of approximations and calculations made to get this
result. Particularly, we note that dissipative processes are ignored
since they are associated with timescales that are supposed to far
exceed typical tidal periods in the high-frequency range.

The solution takes two different forms depending on the way
σ compares to the frequency characterizing the turning point,
where the vertical wavenumber annihilates (see Appendix B),

σTP =

√
4κHΛ0g

R2
p

. (10)

The notation Λ0 designates here the eigenvalue of the pre-
dominating mode in the expansion of perturbed quantities on
the basis of Hough functions (see Eq. (B.17)). This mode is the
gravity mode of latitudinal wavenumber n = 0 in the indexing
notation used by Lee & Saio (1997). Its eigenvalue Λ0 can be
approximated as a constant provided that n? � |Ω|.

Hence, introducing the equivalent depth of the mode,

h ≡
R2

pσ
2

Λ0g
, (11)

we obtain, for |σ| ≤ σTP,

= {δps}=σ
−1 ps

κJs

gH

H
h

(
bJ + 1

2 + κ
)
− 1

2 (bJ + 1)[
bJ (bJ + 1) + κH

h

] (
H
h −

1
Γ1

) , (12)

and, for |σ| > σTP,

= {δps} =

σ−1 ps
κJs
gh

[
bJ + 1

2

(
1 −

√
1 − 4κH

h

)]
[
bJ (bJ + 1) + κH

h

] [
H
h −

1
2

(
1 +

√
1 − 4κH

h

)] . (13)

We recall that κ=Rs/Cp, where Cp designates the heat
capacity per unit mass, and Γ1 = 1/ (1 − κ) the adiabatic exponent
at constant entropy (Gerkema & Zimmerman 2008). The solu-
tion given by Eqs. (12) and (13) provides a useful diagnosis about
the frequency-behaviour of the torque in the high-frequency
range.

The most striking feature of this behaviour is the peak
that can be observed in Fig. 3 (top and bottom left panels)
at the normalized frequency ω ≈ 260. This peak correspond
to the fundamental resonance of the atmospheric vertical struc-
ture associated with the propagation of the Lamb mode (e.g.
Lindzen et al. 1968; Bretherton 1969; Lindzen & Blake 1972;
Platzman 1988; Unno et al. 1989), which is an acoustic type wave
of long horizontal wavelengh. In an inviscid, isothermal atmo-
sphere, the Lamb mode is characterized by the equivalent depth
hL = Γ1H (Lindzen & Blake 1972). In the asymptotic regime,

where n? � |Ω|, the characteristic Lamb frequency follows from
Eq. (11),

σL =

√
Λ0ghL

R2
p

=

√
Γ1

4κ
σTP. (14)

By noticing that σL > σTP in the case of a diatomic gas
(Γ1 = 1.4) and substituting h by hL into the corresponding expres-
sion of the solution – that is Eq. (13) – we can easily observe
that the tidal torque is singular at |σ|=σL. The resonance hence
occurs when the phase velocity of the forced mode equalizes the
characteristic Lamb velocity VL =

√
ghL.

With the numerical values given by Table 1 and the mean
surface temperature computed from GCM simulations (Ts ≈

316 K), the isothermal approximation leads to H ≈ 10.6 km and
hL ≈ 15 km for the reference case. Besides, Λ0 ≈ 11.1 in the
adiabatic asymptotic regime of high rotation rates. It thus fol-
lows that ωL ≈ 308, and we recover the order of magnitude of
the frequency identified in Fig. 3 (top left panel) using GCM
simulations (i.e. ωL ≈ 260).

The observed departure between values of ωL obtained in
analytical and numerical approaches can be explained by the
dependence of the resonance on the atmospheric vertical struc-
ture (see e.g. Bretherton 1969; Lindzen & Blake 1972). The ana-
lytical value corresponds to the case of an isothermal atmosphere
of temperature Ts. In reality, the mean temperature vertical pro-
file is characterized by a strong gradient in the troposphere, the
temperature decaying linearly from ∼316 K at z = 0 to ∼160 K
at z ≈ 25 km in GCM simulations. As a consequence, the mean
pressure height scale of the tidally heated layer is less than the
surface pressure heigh scale, which leads to smaller equivalent
depth and resonance frequency for the Lamb mode.

The other interesting feature highlighted by Fig. 3 is the
scaling law of the torque T ∝σ−1 in the range of intermediate
frequencies, that is between the thermal and Lamb resonances,
typically. This behaviour is described by the analytical model.
As discussed before (see Eq. (14)), σTP and σL are close to
each other. The intermediate-frequency range thus corresponds
to the case |σ| < σTP, which leads us to consider the solution
given by Eq. (12). We place ourselves in the configuration where
characteristic timescales are clearly separated, that is |σ| � σTP
and n? � |Ω| in the meantime. As H/h∝σ−2, the preceding
condition implies that H/h � 1. It follows that
H
h

(
bJ + 1

2 + κ
)
− 1

2 (bJ + 1)
H
h −

1
Γ1

∼ bJ +
1
2

+ κ. (15)

By invoking the strong optical thickness of the atmosphere in
the infrared (bJ � 1), we remark that we recover analytically the
scaling law T ∝σ−1 observed in Fig. 3 from the moment that the
condition 1 � H/h � κ−1b2

J is satisfied. This provides a defini-
tion for the intermediate frequency-range, which is now the range
corresponding to σJ � |σ| � σL, where we have introduced the
thermal frequency

σJ =
σTP

2
√

bJ (bJ + 1)
� σTP. (16)

Basically, σJ is the frequency for which the vertical wave-
length of the mode and the characteristic depth of the heated
layer are of the same order of magnitude.

From the moment that |σ| � σL (or H/h � 1), Eq. (12) can
be approximated by the function

= {δps} ≈
2qJτJσ

1 + (τJσ)2 , (17)
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where the associated characteristic timescale τJ and maximal
amplitude of the pressure anomaly qJ are

τJ = σ−1
J , and qJ =

κJs

(
bJ + 1

2 + κ
)

gHσTP
√

bJ (bJ + 1)
ps. (18)

We recognize in the form of the function given by Eq. (17)
the well-known Maxwell model, which is commonly used to
describe the dependence of the tidally dissipated energy on the
forcing frequency in the case of solid bodies (e.g. Efroimsky
2012; Correia et al. 2014). Its use in the case of thermal
atmospheric tides is discussed in the next section.

4.3. Discussion on the Maxwell model

Analytic ab initio approaches based on a linear analysis of the
atmospheric tidal response – including this work (cf. previous
section) – predict that the imaginary part of surface pressure
variations can be expressed as a function of the forcing fre-
quency σ= 2 (Ω − n?) as (e.g. Ingersoll & Dobrovolskis 1978;
Auclair-Desrotour et al. 2017a)

=
{
δp2,σ

s;2

}
M

=
2qMτMσ

1 + (τMσ)2 , (19)

the notations τM and qM referring to an effective thermal time
constant and the amplitude of the maximum (located at σ= τ−1

M ),
respectively (the factor 2 sets the maximal amplitude to qM). This
functional form corresponds to the so-called Maxwell model
mentioned above. It describes the behaviour of an idealized
forced oscillator composed of a string and a damper arranged
in series (Greenberg 2009; Efroimsky 2012; Correia et al. 2014).

We note that other works based upon different approaches
converged towards the functional form of the Maxwell model.
For instance, Correia & Laskar (2001) used the parametrized
function f (σ) =σ−1

(
1 − e−γσ

2
)

(γ being a real parameter, see
Eq. (26) of the article) to mimic the behaviour of the atmospheric
tidal torque, while Leconte et al. (2015) retrieved Eq. (19) empir-
ically by analysing results obtained from simulations run with
the LMDZ GCM.

An important remark should be made here concerning the
behaviour of the tidal torque in the vicinity of the synchroniza-
tion (i.e. for σ ≈ 0). To our knowledge, most of early works
using the classical tidal theory to study the spin rotation of
Venus and ignoring dissipative processes obtained a torque scal-
ing as T ∝σ−1, and thus singular at the synchronization (e.g.
Dobrovolskis & Ingersoll 1980; Correia & Laskar 2001, 2003).
This is precisely the reason that led Correia & Laskar (2001) to
introduce the regular ad hoc parametrized function mentioned
above. Conversely, Ingersoll & Dobrovolskis (1978) and, later,
Auclair-Desrotour et al. (2017a), derived a Maxwell-like tidal
torque analytically by introducing a characteristic thermal time
associated with boundary layer processes and radiative cooling.
These early results may let think that dissipative processes are
a necessary ingredient for a regular tidal torque to exist at the
synchronization.

Although dissipative processes definitely regularize the
atmospheric tidal torque at the synchronization (e.g. Auclair-
Desrotour et al. 2017a), we showed in Sect. 4.2 that regularity
also naturally emerges from approaches ignoring them when
the vertical structure equation is solved in a self-consistent way.
For a sufficiently small frequency, namely |σ| � σJ, the torque
derived from our analytic solution in the absence of dissipative

mechanisms scales as T ∝σ. Therefore, it seems that the singu-
larity atσ= 0 obtained by early works could result from oversim-
plifying hypotheses, such as neglecting the three-dimensional
aspect of the tidal response or tidal winds. For instance, we
note that our analytical model asymptotically converges towards
the function obtained by Dobrovolskis & Ingersoll (1980) when
the vertical profile of tidal heating tends towards the Dirac
distribution used by these authors (i.e. when bJ → +∞).

The above statement means that the analytical solutions
given by Eqs. (12) and (13) can be used in practice over the
whole range of tidal frequencies without leading to unrealistic
behaviours at the vicinity of synchronization, notwithstanding
the fact that they were derived assuming that characteristic
timescales associated with dissipative processes far exceed the
tidal period.

In studies taking into account dissipative processes (e.g.
Ingersoll & Dobrovolskis 1978; Auclair-Desrotour et al. 2017a),
the parameter τM of Eq. (19) can be interpreted as an effective
timescale associated with the radiative cooling of the atmo-
sphere in the Newtonian cooling approximation, where radiative
losses are assumed to be proportional to temperature vari-
ations (Lindzen & McKenzie 1967; Auclair-Desrotour et al.
2017a; Auclair-Desrotour & Leconte 2018). These early analyti-
cal works established the following expression of the tidal torque
(see e.g. Ingersoll & Dobrovolskis 1978, Eq. (2)),

T =
3πn2

?R4
pεF?

8CpTs

σ

σ2 + τ−2
M

, (20)

where ε stands for the effective fraction of the incoming flux
absorbed by the atmosphere. Substituting =

{
δp2,σ

s;2

}
by Eq. (19)

in Eq. (4) and comparing the obtained result with the preceding
expression leads to a relationship between the Maxwell thermal
time and maximum, which is

qM

τM
=

3
128

√
5

6π
GMpεL?
CpTsR2

pa2
, (21)

the notation G referring to the gravitational constant.
Assuming that the atmosphere is optically thin in the visible

frequency range and that the surface temperature corresponds to
a black body equilibrium, we write the mean surface temperature
as

Ts =

[
(1 − As) L?
16πσSBa2

] 1
4

, (22)

where we have introduced the Stefan-Boltzmann constant σSB
and the surface albedo As. By substituting Ts by Eq. (22) in
Eq. (21), we obtain that the ratio qM/τM does not depend on the
surface pressure and scales as

qM

τM
≈

3
128

√
5

6π
GMpεL?

CpR2
p

[
(1 − As) L?

16πσSB

]− 1
4

a−3/2. (23)

with ε= 1−As if the atmosphere is optically thick in the infrared.
This relationship between τM and qM means that the two parame-
ters of the Maxwell model (Eq. (19)) can theoretically be reduced
to the effective thermal timescale only, which is determined by
complex boundary layer and dissipative processes in the general
case. The scaling law given by Eq. (23) will be tested using GCM
simulations in Sect. 5.

We now compare the Maxwell model to numerical results by
assimilating the Maxwell amplitude and timescales to the maxi-
mum value of fodd and its associated timescale, respectively. The
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ab initio analytical solution given by Eqs. (12) and (13) (‘Ana.’)
and its Maxwell-like form, derived for |σ| � σL and given by
Eq. (17) (‘Maxwell’), are both plotted in Fig. 3 as functions
of the normalized forcing frequency (ω). The numerical values
of σL and σTP used for the plot are determined by the eigen-
frequency of the resonance associated with the Lamb mode in
GCM simulations, that is ωL ≈ 260. We arbitrarily choose to
set σJ =σmax (correspondence between the numerically-derived
and the Maxwell maxima), which determines the value of bJ
(i.e. bJ ≈ 14). Finally, the maximum qJ is obtained by fitting the
slope in the intermediate frequency-range to numerical results
(qJ ≈ 1042 Pa), and provides the value of the parameter Js (i.e.
Js ≈ 0.05 W.kg−1).

Figure 3 highlights the fact that the Maxwell model does
not allow us to recover the behaviour of the torque in the
low-frequency regime. The functional form given by numerical
results and the Maxwell function clearly differ in this regime.
Particularly, the maximal amplitude obtained from GCM simu-
lations is about twice larger than that given by the model. We
note that a smaller departure between the Maxwell and numeri-
cal maxima would certainly be obtained by fitting the Maxwell
function to the whole spectrum of numerical results, and not
only to the peak. However, this would also lead to overestimate
the Maxwell timescale, and the fit would not be satisfactory
either. A a consequence, a novel parametrized model has to be
introduced to better describe the behaviour of the tidal torque
in the low-frequency range. This is the purpose of the next
section.

4.4. Introduction of a new parametrized model

It has been shown that the ab initio analytic model described in
Sect. 4.2 and Appendix B reproduces the main features of the
tidal torque in the high-frequency range, namely the resonance
associated with the Lamb mode and the asymptotic scaling law
T ∝σ−1. However, in the low-frequency range, the behaviour
of the torque appears to be a little bit more complex than that
predicted by the model, which reduces to a simple Maxwell func-
tion. This is not surprising since the atmospheric tidal response
at low tidal frequencies involves complex non-linear mecha-
nisms, interactions with mean flows, and dissipative processes,
which are clearly outside of the scope of the classical tidal theory
used to establish the solution given by Eqs. (12) and (13).

Yet, the frequency dependence of the tidal torque has to
be characterized in the vicinity of synchronization as this is
where its action of the planetary rotation is the strongest. Our
effort has thus to be concentrated on the low-frequency regime
and the transition with the high-frequency regime. As they treat
the full non-linear 3D dynamics of the atmosphere in a self-
consistent way, GCM simulations are particularly useful in this
prospect.

To make oneself an intuition of the behaviour of the torque,
it is instructive to look at the logarithmic plot of Fig. 3 (bottom
left panel), which enables us to identify the different regimes at
first glance. We basically observe two tendencies, highlighted in
the plot by slopes taking the form of a straight line, in the zero-
frequency limit (log (ω) . 0.5) and the high-frequency asymp-
totic regime (log (ω) & 1.5). In the interval 0.5 . log (ω) . 1.5,
the tidal torque reaches a maximum and undergoes an abrupt
decay.

Considering these observations, it seems relevant to approx-
imate the logarithm of the torque by linear functions corre-
sponding to the low and high-frequency regimes, and multiplied
by sigmoid activation functions. By introducing the notation

χ ≡ logω, we thus define the parametrized function as

Fpar (χ) ≡ (a1χ + b1)F1 (χ) + (a2χ + b2)F2 (χ) (24)
+ btrans

[
1 − F1 (χ) − F2 (χ)

]
,

where btrans ≈ log (qmax) is the level of the transition plateau,
a1, b1, a2 and b2 the dimensionless coefficients of linear func-
tions describing asymptotic regimes, and F1 and F2 two sigmoid
activation functions expressed as

F1 (χ) ≡
1

1 + e(χ−χ1)/d1
, and F2 (χ) ≡

1
1 + e−(χ−χ2)/d2

. (25)

In these expressions, the dimensionless parameters χ1 and
χ2 designate the cutoff frequencies of F1 and F2 in logarith-
mic scale, and d1 and d2 the widths of transition intervals. The
corresponding tidal torque is given by

Tpar = 10Fpar(log |ω|)sign (ω) . (26)

As the scaling law T ∝σ−1 was derived from the ab initio
model of Sect. 4.2 in the high-frequency range, we enforce it
by setting a2 = − 1. The eight left parameters are then obtained
by fitting the function given by Eq. (24) to numerical results (as
done previously, the odd function fodd is used). We thus end up
with

a1 = 0.734, b1 = 2.85, d1 = 0.0100, χ1 = 0.637,
a2 = −1, b2 = 4.23, d2 = 0.0232, χ2 = 1.20,
btrans = 3.33,

(27)

and plot the model function Fpar in Fig. 3 using these numerical
values (‘Param.’).

As shown by Fig. 3, the parametrized function defined by
Eq. (24) describes important features that escaped the Maxwell
function, such as the fact that the tidal torque does not scale lin-
early with the forcing frequency in the zero-frequency limit, and
the rapid decay characterizing the transition between low and
high-frequency regimes.

4.5. Dependence of the tidal torque on the atmospheric
composition

As it clearly has a strong impact, the dependence of the tidal
torque on the atmospheric composition has to be discussed. In
Appendix C, we treat the case of a CO2-dominated atmosphere
with a mixture of water and sulphuric acid (H2SO4) comparable
to that hosted by the Venus planet. The obtained spectrum and
the associated functions introduced above are plotted in Fig. 4,
and shall be compared to those computed for the N2-dominated
atmosphere, plotted in Fig. 3 (right panel). Several interesting
features may be noted.

First, the tidal torque exerted on the CO2-dominated atmo-
sphere is more than twice weaker than that exerted on the
N2-dominated atmosphere. Particularly, peaks are strongly atten-
uated. This results from the vertical distribution of tidal heating.
Because of the optical thickness of carbon dioxide in the visi-
ble frequency range, an important part of the incoming stellar
flux is absorbed above clouds. This is not the case of the
N2-dominated atmosphere, where most of the flux reaches the
planet surface and is re-emited in the infrared frequency range,
leading to the thermal forcing of dense atmospheric layers
located at high pressure levels.

Second, we observe a greater asymmetry between the nega-
tive and positive frequency ranges, the function feven being not
negligible with respect to fodd. This is also an effect of the verti-
cal distribution of tidal heating. In the case of the N2-dominated
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Fig. 4. Imaginary part of the Y2
2 component of surface pres-

sure variations as a function of the normalized forcing frequency
ω= (Ω − n?) /n? in the reference case (a = aVenus and ps = 10 bar)
with a CO2-dominated atmosphere. Numerical results obtained with
GCM simulations are plotted (grey points), as well as the interpolat-
ing function fGCM (dashed grey line), the odd and even functions of
σ defined by Eqs. (6) and (8) (solid black and purple lines, respec-
tively), the Maxwell function given by Eq. (17) (red dotted line), and
the parametrized function given by Eq. (24) (blue dashed line) with
the parameters: a1 = 0.549, b1 = 2.52, a2 = − 1, b2 = 3.94, χ1 = 0.798,
d1 = 0.072, χ2 = 1.35, d2 = 0.0098, and btrans = 2.59.

atmosphere, most of the tidal torque is generated by density vari-
ations occurring at low altitudes, where the fluid is well coupled
to the solid part of the planet by frictional forces. Switching
from N2 to CO2 decreases the contribution of these layers, while
it increases the contribution of layers located at pressure lev-
els where the strong zonal jets mentioned above are generated.
Despite the clear interest there is to study the tidal response
of CO2-dominated atmospheres for the similarity of configura-
tions they offer with the Venus planet, we choose to focus in
this work on N2-dominated atmospheres owing to their simpler
frequency-behaviour.

4.6. The surface-atmosphere coupling

The specific role played by the surface thermal response is
not taken into account in linear models used to establish the
Maxwell-like behaviour of the tidal torque described by Eq. (19)
(e.g. Dobrovolskis & Ingersoll 1980; Auclair-Desrotour et al.
2017a). In these early works, the thermal forcing is assumed to be
in phase with the stellar incoming flux, which amounts to con-
sidering that thermal tides are caused by the direct absorption of
the flux. This approximation seems realistic in the case of Venus-
like planets given that their atmospheres are optically thick in the
visible range, and sufficiently dense to neglect their interactions
with the surface.

However, it appears as a rough approximation in the case of
optically thin atmospheres, where most of the stellar flux reaches
the surface. In this case, thermal tides are mainly caused by
the absorption of the flux emitted by the surface in the infrared
range, which is delayed with respect to the stellar incoming flux
owing to the surface inertia and dissipative processes such as
thermal diffusion. Our N2-dominated atmosphere belongs to the
second category. Thus, the role played by the thermal response of
the ground should be considered in the present study to explain
the observed difference between the obtained tidal torque and the
Maxwell model.

Table 2. Scaling laws of τmax and qmax obtained using the LMDZ GCM
for a dry terrestrial planet with a homogeneous N2 atmosphere.

Case Scaling laws of qmax and τmax R2

log (qmax) = −0.69 log (a) + 3.25 0.998
ps = 10 bar log (τmax) = 0.86 log (a) + 0.48 0.901

log
(

qmax

τmax

)
= −1.55 log (a) + 2.77 –

log (qmax) = 0.46 log (ps) + 2.86 0.990
a = aVenus log (τmax) = 0.30 log (ps) + 0.13 0.959

log
(

qmax

τmax

)
= 0.16 log (ps) + 2.73 –

Notes. The scaling law of qmax/τmax is computed using the formers
and should be compared to Eq. (35). Units: a is given in au, ps in bar,
τmax in days, qmax in Pa, the parameters of the linear fit α, β and R2 are
dimensionless.

Concerning this point, we note that Leconte et al. (2015)
included the heat capacity of the surface Cs in the simpli-
fied model they used to establish the Maxwell-like behaviour
of the tidal torque (see Sect. 4 in the Material and Methods
of their article). Hence, by introducing the heat capacity of
the atmosphere/surface system C = Cp ps/g + Cs and the emis-
sion temperature (Te), they expressed the relationship between
surface temperature variations δT and the variations of the
incoming stellar flux δFinc as

δTs =
δFinc

σMC
1

1 + iσ/σM
, (28)

withσM = 4σSBT 3
e /C (the subscript M refers to the Maxwell-like

form of the function given by Eq. (28)). As we generally observe
that Te ≈ Ts in our GCM simulations of a 10 bar atmosphere
(the mean surface temperature of the planet is well approximated
by the black body equilibrium temperature, given by Eq. (22),
in this case), this model implies that σM should be always less
than σsup

M = 4σSBT 3
s g/

(
Cp ps

)
. However, in light of typical values

of τM obtained with the GCM (see Table 2), it appears that the
above formula for σsup

M leads to underestimate σM by a factor 10
to 100 for the case treated in the present study.

To understand the role played by the ground in the atmo-
spheric tidal response, we adopt an ab initio approach describing
thermal exchanges at the surface-atmosphere interface. Follow-
ing along the line by Bernard (1962; see also Auclair-Desrotour
et al. 2017a), we write the local budget of perturbative power
inputs and losses,

δFinc − 4σSBT 3
s δTs + δFatm − δQgr − δQatm = 0, (29)

where we have introduced the small variations of the incoming
stellar flux δF, surface temperature δTs, radiative heating by the
atmosphere δFatm and diffusive losses in the ground δQgr and
in the atmosphere δQatm. Owing to the absence of water, latent
heats associated with changes of states are ignored.

In the general case, δTs and δQatm are coupled with the atmo-
spheric tidal response. Particularly, in the Newtonian cooling
approximation (i.e. variations of the emitted flux are proportional
to temperature variations), δFatm can be expressed as

δFatm =

∫ +∞

0
K (x, θ, ϕ) δT (x, θ, ϕ)dx, (30)

where K designates an effective coefficient of Newtonian cool-
ing. In order to avoid mathematical complications, we ignore this
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with the function given by Eq. (32) in the low-frequency range
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Fig. 5. Nyquist plot of the transfer function Bσs associated with the Y2
2

component of the semidiurnal tide, that is such that δT 2,σ
s;2 =Bσs δF

2,σ
inc;2.

The imaginary part of the normalized function Bσs /
∣∣∣B0

s

∣∣∣ is plotted in
absolute value as a function of the real part in the reference case of the
study (a = aVenus and ps = 10 bar). Values obtained using GCM simula-
tions are indicated by points. They are interpolated by a green line in the
range 0 ≤ ω < 3 (step ∆ω= 0.3), a black line in the range 3 ≤ ω < 30
(step ∆ω= 3), and a blue line in the range 30 ≤ ω ≤ 300 (step ∆ω= 30),
ω= (Ω − n?) /n? being the normalized tidal frequency. Similarly, val-
ues obtained in these ranges with the model given by Eq. (32) for the
surface thermal time τs = 0.3 days are designated by crosses. The red
line corresponds to the function itself.

coupling by assuming either that |δFatm| � 4σSBT 3
s |δTs|, or, fol-

lowing Bernard (1962), that the variation of the atmospheric flux
scales as δFatm ∝ δTs in a similar way as the variation of the flux
emitted by the ground. This allows us to simplify radiative terms
by writing

4σSBT 3
s δTs − δFatm = 4σSBT 3

s εsδTs, (31)

where εs ≈ 1 stands for the effective emissivity of the surface.
With the above approximations, surface temperature varia-

tions can be written for a given mode as δTσ
s =Bσs δF

σ
inc. We thus

end up with (see detailed calculations in Appendix D)

B
σ
s =

B0
s

1 +
[
1 + sign (σ) i

] √
τs|σ|

, (32)

where B0
s =

(
4σSBT 3

s εs

)−1
, and τs designates the characteristic

timescale of the surface thermal response, which depends on the
thermal inertia of the ground Igr and of the atmosphere Iatm at
the interface, and is expressed as

τs =
1
2

(
Igr + Iatm

4σSBT 3
s εs

)2

. (33)

We compare this model to numerical results by extracting
the Y2

2 component of the surface temperature distribution δT 2,σ
s;2

provided by GCM simulations, as previously done for the surface
pressure distribution. The obtained values are plotted in the com-
plex plane in Fig. 5. In this plot, the horizontal and vertical axes
correspond to the real and imaginary parts of the normalized
transfer function Bσs /B

0
s (such that δT 2,σ

s;2 =Bσs δF
2,σ
inc;2), respec-

tively. Normalization is obtained by fitting numerical results
with the function given by Eq. (32) in the low-frequency range
(0 ≤ ω < 3).

Figure 5 shows a good agreement between the functional
form of the model and numerical results in the zero-frequency
limit. However, we observe that the value of the thermal time

τs ∼ 0.3 days obtained by fitting Eq. (32) to numerical results in
the low-frequency range is a decade smaller than the theoretical
value given by Eq. (33), τs ≈ 4.6 days (we use values given by
Table 1, set εs = 1 and neglect Iatm), which shows the limitations
of the approach detailed above.

While the forcing frequency increases, the behaviour of the
function interpolated using numerical results starts to change
radically. In the vicinity of the resonance (σ ∼ σmax), the imag-
inary part of Bσs decays abruptly whereas its theoretical analo-
gous keeps growing. This divergence suggests a strong radiative
coupling between the surface and the atmosphere, which comes
from the fact that the emission of the atmosphere to the surface
δFatm (see Eq. (30)) can no longer be neglected, as done in the
model. The abrupt variation of the surface thermal lag around the
resonance partially explain the behaviour of the tidal torque in
this range. Nevertheless, to better understand it, one should study
the whole dynamics of the atmospheric tidal response, which is
beyond the scope of this work.

In the high-frequency range, that is for σ � τ−1
s , the model

predicts that the amplitude of temperature variations should tend
to zero. Yet, we observe that

∣∣∣δT 2,σ
s;2

∣∣∣ increases until reaching a
maximum before decaying. This maximum corresponds here to
a resonance whose frequency coincides with that of the main
Lamb mode identified previously, in Sect. 4.2 (see Lamb 1917;
Vallis 2006).

5. Exploration of the parameter space

We now examine the evolution of the tidal torque with the planet
semi-major axis (a) and surface pressure (ps).

5.1. Frequency spectra of the tidal torque

Considering the planet defined in Sect. 3.1, we carry out two
studies. In study 1, we set ps = 10 bar and we compute frequency
spectra of the imaginary part of the Y2

2 -surface pressure compo-
nent in the low-frequency range for a varying from 0.3 to 0.9 au.
In study 2, we set a = aVenus, that is a = 0.723 au, and frequency
spectra are computed for ps varying from 1 to 30 bar. The refer-
ence case characterized in the previous section, and parametrized
by a = aVenus and ps = 10 bar, is located at the intersection of the
two studies.

Limitations concerning the lower bound of the orbital radius
range and the upper bound of the surface pressure range come
from the spectra of optical properties used in simulations to com-
pute radiative transfers (see Sect. 3.1), which were produced for
temperatures below 710 K. Indeed, for a < 0.3 au or ps > 30 bar,
the planet surface temperature exceeds this maximum. As this
might lead to erroneous estimations of radiative transfers, we
choose not to treat extremal cases, although there is no formal
limitation for the GCM to run normally in these conditions.

Radiative transfers also determine the convergence timescale
necessary for the atmosphere to reach a steady state, Pconv. For
study 1, we use the timescale obtained in the reference case, that
is 5800 Earth Solar days, considering that the steady state is
reached more rapidly in mosts cases, where the planet is closer
to the star (see Eq. (5)). Similarly, to take the dependence of
Pconv on the planet surface pressure into account in study 2, we
set Pconv to 1100, 2300, 5800 and 14000 Earth Solar days for
ps = 1, 3, 10, 30 bar, respectively.

The obtained frequency spectra are plotted in Fig. 6 in linear
(left) and logarithmic scales (right) for study 1 (top) and study 2
(bottom). In all plots, points designate the results of GCM
simulations with the method described in Sect. 3, while solid
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Fig. 6. Imaginary part of the Y2
2 harmonic of surface pressure oscillations (Pa) as a function of the normalized tidal frequency ω= (Ω − n?) /n? in

linear (left panels) and logarithmic scales (for ω > 0). Top panels: spectra obtained with GCM numerical simulations for a fixed surface pressure,
ps = 10 bar, and various values of the star–planet distance: a = 0.3–0.9 au with a step ∆a = 0.1 au. Bottom panels: spectra obtained for a fixed star
planet–planet distance, a = aVenus and various values of the surface pressure : ps = 1, 3, 10, 30 bar. Numerical results are designated by points and
interpolated with cubic splines. The reference case of the study (a = aVenus and ps = 10 bar) corresponds to the grey line in all plots.

lines correspond to the associated cubic splines interpolations.
The reference case (a = aVenus and ps = 10 bar) is designated by
the solid grey line. Numerical values used to produce these plots
are given by Table E.1 for study 1 and Table E.2 for study 2.

We retrieve here the features identified in Sect. 4. The tidal
torque exhibits maxima located at the transition between the
low-frequency and high-frequency asymptotic regimes. The cor-
responding peaks are slightly higher in the negative-frequency
range than in the positive-frequency range owing to Coriolis
effects and the impact of zonal jets on the angular lag of the tidal
bulge. As expected, the amplitude of peaks increases with both
the incoming stellar flux and the planet surface pressure. Inter-
estingly, the evolution of qmax and σmax with a and ps looks very
regular. This suggests that the dependences of the peak maxi-
mum and characteristic timescale on the planet surface pressure
and distance to star are well approximated by simple power
scaling laws, and it is the case indeed, as shown in Sect. 5.2.

As previously noticed in the study of the reference case, the
asymptotic behaviour of the tidal torque in the zero-frequency
limit differs from that described by the Maxwell model. Particu-
larly, the logarithmic plot of study 2 (bottom right panel) shows
that the torque follows the scaling law fGCM (σ) ∝σ1/2 in cases
characterized by low surface pressures, that is 1 and 3 bar. These
cases correspond to the thin-atmosphere asymptotic limit, where
thermal tides are driven by diffusion in the ground in the vicin-
ity of the surface. We note that the simplified linear model of the

surface thermal response detailed in Sect. 4.6 and Appendix D
leads to a surface-generated radiative heating scaling as
= {δTs} ∝σ

1/2 in the zero-frequency limit, which is precisely the
dependence observed in Fig. 6.

5.2. Evolution of the thermal peak with the planet semi-major
axis and atmospheric surface pressure

Let us now quantify the regular dependence of the peak of
tidal torque on the planet orbital radius and surface pressure
observed in the preceding section. We have thereby to determine
how the two parameters defining the peak – namely its max-
imum value qmax and associated timescale τmax – vary with a
and ps.

Thus, for each study, we fit numerical values of qmax and τmax
using a linear regression, formulated as

Y = αX + β, (34)

where Y designates the logarithm of qmax (Pa) or τmax (days),
X the logarithm of a (au) or ps (bar), and α and β the dimen-
sionless parameters of the fit. The values of these parameters are
given by Table 2, as well as those of the corresponding coeffi-
cients of determination R2. We also compute log (qmax/τmax) for
comparison with the theoretical scaling law given by Eq. (23) in
the case where the dependence of the tidal torque on the forcing
frequency is approximated by a Maxwell function.
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Fig. 7. Parameters of the Maxwell model
given by Eq. (19) computed from GCM
simulations as functions of the star-planet
distance a (left panels, in au) and ps (right
panels, in bar) in logarithmic scales. Top
panels: amplitude qmax of the maximum
(Pa). Bottom panels: associated character-
istic thermal time τmax (days). Numerical
results obtained with GCM simulations are
designated by black points, the correspond-
ing linear regressions (see Table 2) by solid
blue lines. For the reference case, error bars
are given to indicate the resolution of the
sampling (for details about how they are
constructed, see Sect. 5.2).

Linear regressions are plotted in Fig. 7 (blue solid line). In
order to provide an estimation of the variability of numerical
results, error bars are given for the reference case. These error
bars do not literally correspond to a margin of error, but indicate
the resolution of the sampling for the frequency and maximum
of the tidal torque. For qmax, the amplitude of the error bar is
the departure between the maxima of the interpolating function
and data. For τmax, the two bounds of the error bar are the values
associated with the nearest points of the sampling, designated by
the subscripts inf and sup, such that τinf ≤ τmax ≤ τsup. These
error bars depend on the ratio between the size of a frequency
interval and the width of the thermal peak. For example, the ther-
mal peak is undersampled for a = 0.3 au, which makes the fit less
reliable in this case.

Comparing coefficients of determination in Table 2, we
observe that a better fit is systematically obtained for qmax than
for τmax. This difference may be explained by the aspect of spec-
tra displayed in Figs. 6 and 3. Since the peak of the tidal torque
computed with the GCM is both flatter and larger than that of the
Maxwell function, the position of the maximum is more sensitive
to small fluctuations than the maximum itself. As a consequence,
the variability of qmax is less than the variability of τmax.

Hence, the linear regression fits particularly well the depen-
dence of qmax on a, while the plot of τmax exhibits a relatively
important variability with respect to the linear tendency. We note
however that differences with the fit are not significative since
they remain small compared to the width of the peak. Concern-
ing the dependence of τmax on a, one may also observe that the
slope, given by α= 0.86, is almost twice smaller than that pre-
dicted by the scaling law of the radiative timescale given by
Eq. (5), that is τmax ∝ n−1

? ∝ a3/2.
As regards the ratio qmax/τmax however, we recover numer-

ically the scaling law predicted by the theoretical model
(Eq. (23)) with a good approximation. This scaling law is
numerically expressed in the units of Table 2 as

log
(

qM

τM

)
= −

3
2

log (a) + 2.49, (35)

if we assume that ε= 1− As (i.e. the flux reemitted by the ground
is entirely absorbed by the atmosphere).

As may be seen, the dependence of qmax/τmax on the surface
pressure is small (α= 0.13) for want of being zero, as predicted
by the model. Regarding the dependence on a, the relative dif-
ference between the numerical and theoretical values of α (i.e.
1.55 and 3/2, respectively) is around 3%. However, the value of
β computed from GCM simulations (2.77) is higher than that
predicted by the model (2.49), despite the fact that this latter
is an upper estimation. This difference illustrates the limita-
tions of the Maxwell model, which fails to describe the sharp
variations of the tidal torque with the tidal frequency when
|σ| ∼ σmax.

5.3. Scaling laws and generic formula for the tidal torque

By proceeding to a quantitative study of the evolution of the tidal
torque maximum with the planet orbital radius and surface pres-
sure, we demonstrated in the preceding section the regularity
observed in Fig. 3. The scaling laws given by Table 2 and plotted
in Fig. 7 show that frequency-spectra have the same aspect from
the moment that the horizontal and vertical axes are rescaled fol-
lowing the obtained dependences on a and ps. In this section,
our purpose is to compute this rescaling in a robust way, by tak-
ing into account the whole set of data at our disposal rather than
the maximal value of the torque and the associated timescale
only. Combining this rescaling with the parametrized model
given by Eq. (24), we will obtain a novel generic formula for
the frequency-behaviour of the thermally generated atmospheric
tidal torque.

The parameter with respect to which axes are rescaled, a or
ps, is denoted by p, and the considered case is subscripted j.
A given family is thus composed of Np couples of numerical
vectors

(
σ j,T j

)
, with 1 ≤ j ≤ Np (see Tables E.1 and E.2),

associated with the value p j of the varying parameter p. For
a given couple of vector, one may introduce the associated
interpolating function

f j (σ) ≡ f
(
σ j,T j, σ

)
. (36)

We also introduce the renormalized vectors σ̂ j and T̂ j,
defined by

σ̂ j ≡ p
−α1
j σ j, and T̂ j ≡ p

−α2
j T j. (37)
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where α1 and α2 are the exponents characterizing the renormal-
ization.

The size of frequency domains covered by the σ̂ j vectors
varies with p in the general case. As a consequence, rescal-
ing axes requires to define the bounds of the largest common
interval,

σ̂inf (α1) = max
{
p
−α1
j σ j,1

}
j
, (38)

σ̂sup (α1) = min
{
p
−α1
j σ j,Nσ

}
j
, (39)

the notation Nσ referring to the size of the frequency sampling
(typically Nσ = 21, see Tables E.1 and E.2), and σ j,1 and σ j,Nσ

to the lower and upper bounds of the interval sampled by σ j,
respectively.

The values of α1 and α2 are obtained by minimizing the
squared difference function

F (α1, α2) =

∑
j<k

∫ σ̂sup(α1)

σ̂inf (α1)

[
p
−α2
j f j

(
p
α1
j σ̂

)
− p

−α2
k fk

(
p
α1
k σ̂

)]2
dσ̂

σ̂sup (α1) − σ̂inf (α1)
.

(40)

We note that the parameters derived from these calculations,
q0 and τ0, slightly differ from qmax and τmax. They stand for the
characteristic amplitude and timescale of the peak and not for its
maximum value and corresponding forcing period, as qmax and
τmax. These parameters are defined by functions of p (that is a or
ps), by

τ0 ≡ τref

(
p

pref

)−α1

, and q0 ≡ qref

(
p

pref

)α2

, (41)

where pref designates the value of p in the reference case (typ-
ically aVenus or 10 bar), qref = 2.24 kPa the corresponding maxi-
mum of the peak and τref = 2.18 days the associated timescale.
Hence, we end up for the first family (ps = 10 bar and variable a)
with the scaling laws

log (q0) = −0.61 log (a) + 3.26, (42)
log (τ0) = 0.68 log (a) + 0.43, (43)

and for the second family (a = aVenus and variable ps), with

log (q0) = 0.48 log (ps) + 2.87, (44)
log (τ0) = 0.30 log (ps) + 0.038. (45)

Let us remind here the used units: a is given in au, ps in bar, q0
in Pa, and τ0 in days.

The last step consists in combining these scaling laws with
the parametrized model derived in the reference case (Eq. (24)).
Proceeding to the change of variables associated with the renor-
malization, we obtain the generic parametrized model function

=
{
δp2,σ

s;2

}
par
≡ q010Fpar(log|τ0σ|)sign (σ) . (46)

We remind here that Fpar is the function

Fpar (χ) ≡ (a1χ + b1)F1 (χ) + (a2χ + b2)F2 (χ) (47)
+ btrans

[
1 − F1 (χ) − F2 (χ)

]
,

where F1 and F2 are the activation functions defined by

F1 (χ) ≡
1

1 + e(χ−χ1)/d1
, and F2 (χ) ≡

1
1 + e−(χ−χ2)/d2

. (48)

The parameters characterizing the generic formula given by
Eq. (46) take the values

a1 = 0.734, b1 = 0.171, d1 = 0.010, χ1 = −0.277,
a2 = −1, b2 = −0.031, d2 = 0.023, χ2 = 0.290,
btrans = −0.020. (49)

The spectra of Fig. 6 are replotted in Fig. 8 using the nor-
malized variables derived from the axes rescaling. In addition
to numerical results and their interpolating functions, the tidal
torque described by the generic parametrized model (Eq. (46))
is plotted as a function of the normalized tidal frequency τ0σ
(dashed black line). Figure 8 clearly shows the relevance of the
rescaling as regards the first family, where the dependence of the
torque on the star–planet distance is investigated. After rescal-
ing, spectra look similar and the model matches them fairly well.
As regards the second family, we observe a greater variability of
q0 and τ0 with a net separation between the reference and 30 bar
cases. However, the frequency behaviour of the torque does not
change much from one case to another and the parametrized
function given by Eq. (46) remains a reasonable approximation
of its main features.

6. Conclusions

In order to better understand the behaviour of the atmospheric
torque created by the thermal tide, we computed the tidal
response of the atmosphere hosted by a terrestrial planet using
the LMDZ general circulation model. This work builds on both
the early study by Leconte et al. (2015), which was a first
attempt to characterize the atmospheric tidal response with this
approach, and the early analytical works based upon the lin-
ear theory of atmospheric tides (e.g. Auclair-Desrotour et al.
2017a,b). It is motivated by the need to merge these two differ-
ent approaches together in a self-consistent picture. Our aim was
to proceed to a methodic comparison of their predictions while
exploring the parameter space.

Hence, we considered the simplified case of a dry Venus-
sized terrestrial planet orbiting a Sun-like star circularly and
hosting a nitrogen-dominated atmosphere. Following the method
by Leconte et al. (2015), we computed the atmospheric torque
created by the semidiurnal thermal tide as a function of the tidal
frequency by extracting the Y2

2 component of the surface pressure
anomaly in simulations.

As a first step, we characterized the variation of the torque
with the forcing frequency for a reference case (ps = 10 bar
and a = aVenus), and explained its various features with an inde-
pendent analytical model. As a second step, we explored the
parameters space by focusing on the dependence of the tidal
torque on the planet orbital radius and atmospheric surface pres-
sure. The obtained results were then used to derive scaling laws
characterizing the torque, renormalize the pressure anomaly and
forcing period, and finally propose a novel generic parametrized
function to model the frequency-behaviour of the torque in a
realistic way in the case of a nitrogen-dominated atmosphere.

The first investigation confirmed and extended the results
obtained by Leconte et al. (2015). We showed that the torque
follows two different asymptotic regimes. In the high-frequency
range, the torque decays inversely proportionally to the tidal fre-
quency until it exhibits a resonance peak. These two features are
both explained by the analytical solution derived using the ab
initio linear theory of atmospheric tides. Particularly, the peak
corresponds to a resonance associated with the Lamb mode, an
acoustic type wave of wavelength comparable with the planet
radius.
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Fig. 8. Normalized imaginary part of the Y2
2 harmonic of surface pressure oscillations as a function of the normalized tidal frequency in linear (left

panels) and logarithmic scales (for ω > 0). Top panels: spectra obtained with GCM numerical simulations for a fixed surface pressure, ps = 10 bar,
and various values of the star–planet distance : a = 0.3–0.9 au with a step ∆a = 0.1 au. Bottom panels: spectra obtained for a fixed star planet–planet
distance, a = aVenus and various values of the surface pressure : ps = 1, 3, 10, 30 bar. Results are designated by points and interpolated with cubic
splines. The reference case of the study (a = aVenus and ps = 10 bar) corresponds to the grey line in all plots. The generic formula of the tidal torque
derived in this study and given by Eq. (46) is designated by the black dashed line. The characteristic torque q0 and timescale τ0 used for the
rescaling are given by Eqs. (42)–(45) as functions of a and ps.

In the low-frequency range the torque, which is zero at
synchronization, increases following a power law of index rang-
ing from 0.5 to 0.7 until it reaches a maximum. While the
increase and presence of a maximum are predicted by the ana-
lytical solution, the exponent and the value of amplitude of
the peak differ significantly. These discrepancies result from
the complex interactions between mechanisms laying beyond
the scope of standard analytical treatments but resolved in 3D
GCM simulations, such as the non-linear effects inherent to the
atmospheric dynamics in the vicinity of synchronization, and
the strong radiative coupling between the atmosphere and the
planet surface. Typically, the low-frequency asymptotic regime
of the tidal response is characterized by diurnal oscillations of
large amplitude. The resulting differences in the day- and night-
side temperature profiles significantly affect the stratification
of the atmosphere. This clearly violates the small perturba-
tion approximation upon which the analytic approach is based,
and induces a non-linear coupling between the diurnal and
semidiurnal oscillations that is important enough to modify the
dependence of the tidal torque on the forcing frequency.

The parametrized function that we propose in the present
work (given by Eq. (47)) appears as a good compromise as it
matches numerical results in a more satisfactory way than the

Maxwell model while being defined by a reasonably small num-
ber of parameters. It is thus perfectly suited to be implemented
in evolutionary models of the rotational dynamics of a planet.
Nevertheless, the Maxwell-like analytic solution derived by early
studies (e.g. Ingersoll & Dobrovolskis 1978; Auclair-Desrotour
et al. 2017a) provides a first order of magnitude approxima-
tion of the torque. It also predicts a relationship between the
maximum of the thermal peak and the associated characteristic
timescale. By establishing scaling laws governing the evolu-
tion of these features with the planet orbital radius and surface
pressure, we retrieved numerically this relationship, which is
qmax/τmax ∝ a−3/2.

The fact that scaling laws match well numerical results
reveals that the torque and the tidal frequency can be normalized
by the characteristic amplitude and frequency associated with
the low-frequency regime. This was confirmed by the rescaling
of spectra, which shows that numerical results obtained in all of
the treated cases actually describe the same frequency depen-
dence, whatever the star–planet distance and surface pressure.
The combination of the parametrized function and scaling laws
derived in this work thus leads to a generic empirical formula
for the atmospheric tidal torque in the vicinity of synchronous
rotation.
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In spite of its limitations in the low-frequency regime, the
analytic approach remains complementary with GCM calcu-
lations owing to the high computational cost of this method
(several days of parallel computation on 80 processors are nec-
essary to produce a spectrum with a sampling of 21 points in
frequency). Results obtained from simulations can be used to
improve the linear analysis, which provides in return a diagnosis
of the physical and dynamical mechanisms involved in the tidal
response.

As the study showed evidence of the interest of the numeri-
cal method using GCMs in characterizing the atmospheric tidal
torque of terrestrial planets, several prospects can be consid-
ered for future works. First, the effects of clouds and optical
thickness should be investigated owing to their strong impact on
the tidal response. The case of an exo-Earth hosting a cloudy
atmosphere may be treated in a similar way as the idealized
planet of the present study. Second, it would be interesting to
better characterize the dependence of the tidal torque on the
atmospheric structure using ab initio analytic models. Third,
numerical results and the derived generic parametrized function
may be coupled to evolutionary models in order to quantify in a
realistic way the contribution of the atmosphere to the evolution
of the planet rotation over long timescales.
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Appendix A: Normalized spherical harmonics

With the notations introduced in Sect. 2, the normalized spher-
ical harmonics associated with the degrees l and m (l ∈ N and
−l ≤ m ≤ l) are defined by (e.g. Arfken & Weber 2005)

Ym
l (θ, ϕ) ≡ (−1)m

√
2l + 1

4π
(l − m)!
(l + m)!

Pm
l (cos θ) eimϕ, (A.1)

where the Pm
l designate the associated Legendre functions,

expressed, for x ∈ [−1, 1], as

Pm
l (x) ≡ (−1)m

(
1 − x2

)m/2 dm

dxm Pl (x) , (A.2)

the Pl being the Legendre polynomials, defined by

Pl (x) ≡
1

2ll!
dl

dxl

[(
x2 − 1

)l
]
. (A.3)

Appendix B: Linear analytical model for the
high-frequency regime

In Sect. 4.2, we give an expression of the surface pressure
anomaly as a function of the tidal frequency (see Eqs. (12)
and (13)). This expression is a solution of the thermally gener-
ated tidal response derived in the framework of the linear theory
of atmospheric tides, as described for instance in Chapman &
Lindzen (1970). We detail here the calculations that allowed us
to obtain it.

In the linear analysis, the wind velocity V, pressure p, den-
sity ρ and temperature T are written as the sum of a spherically
symmetrical constant component, subscripted 0, and a time-
dependent small perturbation, identified by the symbol δ. Hence,
background equilibrium quantities depend on the radial coordi-
nate only, this later being here the altitude with respect to the
planet surface z. Perturbed quantities are functions of the time t,
altitude z, colatitude θ, and longitude ϕ. The constant compo-
nent of V is ignored, which enforces a solid rotation condition
and allows us to simply denote by V the velocity vector of tidal
winds.

The tidal response of the atmosphere in the accelerated frame
rotating with the planet is governed by the perturbed momentum
equation (e.g. Siebert 1961, p. 128)

∂tV + 2Ω ∧ V = −
1
ρ
∇δp +

δρ

ρ
g, (B.1)

the equation of mass conservation,

Dρ
Dt

+ ρ0∇·V = 0, (B.2)

the conservation of energy,

Rs

Γ1 − 1
DT
Dt

=
gH
ρ0

Dρ
Dt

+ J, (B.3)

and the perfect gas law,

p = ρRsT, (B.4)

the symbol ∂t designating the partial time derivative, ∇ the gra-

dient operator, ∇·the divergence and
D
Dt
≡ ∂t + V ·∇ the material

derivative.

We note that we have neglected the force resulting from
the tidal gravitational potential in the momentum equation as
we focus on the thermally generated component of the tidal
response. The only source term is thus the net absorbed heat
per unit mass J in the right-hand side of the conservation
of energy. Moreover, dissipative processes are not taken into
account since they play a role in the low-frequency regime
mainly, where their characteristic associated timescales are com-
parable or greater than the tidal period. The considered regime
is thus adiabatic, which is an appropriate approximation for
studying the atmospheric tidal response in the high-frequency
range, as demonstrated by early studies of the Earth’s case (see
Lindzen & Chapman 1969, for a review).

Other approximations are convenient to simplify analytic cal-
culations. First, considering that H � Rp, we assume the hydro-
static approximation, as discussed in Sect. 2. Second, we neglect
Coriolis components associated with a vertical displacement.
This approximation, known as the traditional approximation (e.g.
Unno et al. 1989), is appropriate provided that the fluid layer is
stably-stratified or thin with respect to the planet radius, which is
the case here. Thus the preceding equations reduce to

∂tVθ − 2Ω cos θVϕ = −
1

Rp
∂θ

(
δp
ρ0

)
, (B.5)

∂tVϕ + 2Ω cos θVθ = −
1

Rp sin θ
∂ϕ

(
δp
ρ0

)
, (B.6)

∂zδp = −gδρ, (B.7)

∂tδρ +
dρ0

dz
Vr + ρ0∂zVr = −ρ0∇h ·V (B.8)

Rs

Γ1 − 1

(
∂tδT +

dT0

dz
Vr

)
=
gH
ρ0

(
∂tδρ +

dρ0

dz
Vr

)
+ J, (B.9)

δp
p0

=
δρ

ρ0
+
δT
T0
, (B.10)

where the horizontal part of the velocity divergence ∇h ·V is
defined by

∇h ·V ≡
1

Rp sin θ

[
∂θ (Vθ sin θ) + ∂ϕVϕ

]
. (B.11)

Beside, we introduce the atmospheric pressure height scale,

H ≡
RsT0

g
, (B.12)

and the pressure altitude,

x ≡
∫ z

0

dz
H
, (B.13)

which will be used instead of z for convenience in the following.
Since it is periodical in time and longitude, the perturba-

tion can be written as a combination of Fourier modes, each one
being associated with a forcing frequency σ and a longitudinal
degree m. Fourier coefficients are functions of the colatitude (θ)
and altitude (z). Any perturbed quantity q is thus expressed as

q (x, θ, ϕ) =
∑
σ,m

qm,σ (z, θ) ei(σt+mϕ), (B.14)

where the qm,σ are the Fourier coefficients of the expansion.
Under the assumed approximations, Eqs. (B.5) and (B.6) are
decoupled from the radial momentum equation, which allows
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us to write Vm,σ
θ and Vm,σ

ϕ as functions of δpm,σ
n /ρ0. By sub-

stituting horizontal winds by the obtained expressions in ∇h ·V
(Eq. (B.11)), and introducing the variable

G = −
1

Γ1 p0

Dp
Dt

, (B.15)

the whole system of governing equations given by Eqs. (B.5)–
(B.10) can be put after some manipulations into the form (see
Lindzen & Chapman 1969)

F m,σGm,σ = Lm,ν
[(

d ln H
dx

+ κ

)
Gm,σ −

κJm,σ

Γ1gH

]
. (B.16)

Here, F m,σ is an operator depending on the x coordinate only
and Lm,ν the Laplace’s tidal operator, which depends on the θ
coordinate only and is formulated as (e.g. Lee & Saio 1997)

Lm,ν ≡
1

sin θ
∂θ

(
sin θ

1 − ν2 cos2 θ
∂θ

)
(B.17)

−
1

1 − ν2 cos2 θ

(
mν

1 + ν2 cos2 θ

1 − ν2 cos2 θ
+

m2

sin2 θ

)
,

the quantity ν ≡ 2Ω/σ designating the so-called spin parameter.
The above separation of coordinates allows us to expand the

Fourier coefficients of G as

Gm,σ (x, θ) =
∑

n

Gm,σ
n (x) Θm,ν

n (θ) . (B.18)

The Fourier coefficients of δp, δρ and δT are written like-
wise. In Eq. (B.18), the integer n corresponds to the latitudinal
wavenumber of a spherical mode modified by the planet spin
rotation (in the static case, where ν= 0, n = l − |m|). Similarly,
the Hough functions Θ

m,ν
n correspond to the associated Legen-

dre functions (see Appendix A) modified by rotation. Hough
functions are the eigenvectors of the Laplace operator (e.g.
Lee & Saio 1997). They are associated with the eigenvalues Λ

m,ν
n

through the relationship

Lm,νΘm,ν
n = Λm,ν

n Θm,ν
n , (B.19)

and determine the equivalent depth of the mode associated with
the triplet (n,m, σ) (e.g. Taylor 1936),

hm,σ
n ≡

R2
pσ

2

gΛm,ν
n
. (B.20)

In the absence of resonances, the semidiurnal tidal response
is generally dominated by the fundamental gravity mode, indi-
cated by n = 0 3, which corresponds to the associated Legendre
function P2

2 in the static case (e.g. Auclair-Desrotour & Leconte
2018). In the high-frequency regime, Λ

2,ν
0 ≈ Λ

2,1
0 ≈ 11.1, from

the moment that n? � |Ω|.
We note that this value, denoted by Λ0 in the following, can

be modified by dissipative processes. For instance, by including
friction with the planet surface using a Raleigh drag of constant
characteristic frequencyσR, one may show that the eigenvalue of
the modes tends to the value of the static case, that is Λ

2,ν
0 ≈ 6,

if σ/σR → 0 (see e.g. Volland 1974; Auclair-Desrotour et al.
2017b).

As we focus on the n = 0 mode, we can drop the subscripts
and superscripts n, m and σ to lighten notations. The func-
tion Gm,σ

n is now simply denoted by G, and so on for the tidal
3 We follow here the indexing notation by Lee & Saio (1997), which
associates g-modes with positive n and r-modes to strictly negative n.

heat source, pressure, density, temperature, wind velocity com-
ponents, eigenvalues and equivalent depths. The usual change of
variable G = ex/2y leads to the vertical structure equation in its
canonical form,

d2y

dx2 + k̂2
x y =

κJ
Γ1gh

e−x/2, (B.21)

where we have introduced the dimensionless vertical wavenum-
ber k̂x, defined by

k̂2
x ≡

1
4

[
4
h

(
κH +

dH
dx

)
− 1

]
. (B.22)

The vertical structure equation describe the behaviour of a
forced harmonic oscillator, and k̂x thus corresponds to the inverse
of a length scale of the variation of perturbed quantities across
the vertical coordinate. Since the tidal response is adiabatic, k̂2

x ∈

R, and its sign directly determines the nature of waves across the
vertical axis. The condition k̂2

x > 0 indicates a propagating mode.
Conversely, k̂2

x < 0 corresponds to an evanescent mode.
Computing analytic solutions turns out to be a very chal-

lenging problem except for a few simplified configurations.
Therefore, we treat here the idealized case of the isothermal
atmosphere, which is one of these configurations. We acknowl-
edge the limitations of this academic atmospheric structure
regarding real ones, where convective instability leads to a
strong temperature gradient near the planet surface. However,
this approach appears to be sufficient for the purpose of this
appendix.

In the isothermal approximation, the temperature profile is
supposed to be invariant with the radial coordinate. In light
of Eq. (B.12), it immediately follows that H is a constant,
dH/dx = 0, and

k̂2
x =

1
4

[
4κH

h
− 1

]
. (B.23)

The above expression shows the existence of a turning point
for h = 4κH, where the sign of k̂2

x changes. This turning point
occurs at the frequency

σTP =

√
4κHΛ0g

R2
p

. (B.24)

In the reference case of the study, GCM simulations provide
Ts ≈ 316 K, which, combined with Rs ≈ 297 J kg−1 K−1, gives
H ≈ 10.6 km in the isothermal approximation. An estimation
of the normalized frequency ωTP =σTP/ (2n?) using Eq. (B.12)
thus gives ωTP ≈ 270, showing that the turning point occurs
in the high-frequency range and must therefore be taken into
account in the calculation of an analytical solution. The condi-
tion k̂2

x > 0 (|σ| < σTP) corresponds to an oscillatory regime,
while k̂2

x < 0 (|σ| > σTP) corresponds to an evanescent one.
To solve the vertical structure equation, we have to choose a

vertical profile for the tidal heat power per unit mass J. Following
Lindzen et al. (1968), we opt for a profile of the form

J = Jse−bJ x, (B.25)

where Js stands for the heat absorbed at the planet surface and bJ
is a dimensionless optical depth characterizing the decay of heat-
ing across the vertical coordinate. This profile is derived from the
Beer’s law (e.g. Heng 2017) applied to an isothermal atmosphere
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of constant extinction coefficient, where the variation of flux is
supposed to be proportional to the local pressure,

dF
F

= −bJe−xdx. (B.26)

Integrating this expression from the surface to x and intro-
ducing the surface flux Fs, we obtain

F = FsebJ(e−x−1), (B.27)

which, linearized in the vicinity of the surface (x � 1) and
assuming bJ � 1, can be approximated by

F ≈ Fse−bJ x. (B.28)

Since the absorbed heat per unit mass is given by

J = −
1

Hρ0

dF
dx
, (B.29)

and ρ0 (x) ∝ e−x, we retrieve Eq. (B.25), with

Js =
gbJ

ps
Fs. (B.30)

With the preceding choices and approximations, the general
solution of Eq. (B.21) can be written as

y = Aeik̂x x + Be−ik̂x x + y(0)e−(bJ+
1
2 )x, (B.31)

the notations A and B designating integrating constants, and y(0)

the constant factor of the particular solution. The integrating
constant B can be easily eliminated by setting the appropriate
upper boundary condition. First, consider the oscillatory case,
where k̂2

x > 0. If the convention k̂x > 0 is adopted, the first term
of the solution is associated with upward propagation of energy
and the second term with downward propagation (Wilkes 1949;
Lindzen & Chapman 1969).

Since there is no energy source at x = +∞, we expect that
the energy propagation is only upward at the upper boundary.
It immediately follows that B = 0. This boundary condition is
known as the radiation condition (Lindzen & Chapman 1969).
When k̂2

x < 0, the radiation condition is not appropriate any more
since k̂x is now a pure imaginary number. In this case the wave is
evanescent, and the first and second term of the solution corre-
spond to decaying and diverging components, respectively, from
the moment that the convention =

{
k̂x

}
> 0 is adopted. In this

case, a non-divergence condition is applied at the upper bound-
ary on the energy flux (e.g. Wilkes 1949; Lindzen et al. 1968),
which leads to B = 0 again.

At the lower boundary, the fact that fluid particles cannot
penetrate through the planet surface is enforced by a rigid wall
condition. The vertical velocity is set to Vr = 0 at x = 0. As the
vertical velocity is given by (Lindzen & Chapman 1969)

Vr = Γ1hex/2
[
dy
dx

+

(
H
h
−

1
2

)
y

]
, (B.32)

the rigid wall condition is expressed as

dy
dx

+

(
H
h
−

1
2

)
y = 0, (B.33)

at x = 0. Thus the solution is

y =
κJs

Γ1gh
(
bJ (bJ + 1) + κH

h

)  1 + bJ −
H
h

ik̂x + H
h −

1
2

eik̂x x + e−(bJ+
1
2 )x

 ,
(B.34)

with the conventions k̂x > 0 if k̂2
x > 0 and =

{
k̂x

}
> 0 else. We

recover here the solution previously obtained by Lindzen et al.
(1968) for different values of bJ.

The surface pressure variation is readily deduced from y
using Eq. (B.15),

δps

ps
= i

Γ1

σ
y (0) . (B.35)

Taking the imaginary part of the preceding expression, we
finally obtain, for k̂2

x > 0 (i.e. |σ| < σTP),

= {δps} = σ−1 ps
κJs

gH

H
h

(
bJ + 1

2 + κ
)
− 1

2 (bJ + 1)[
bJ (bJ + 1) + κH

h

] (
H
h −

1
Γ1

) , (B.36)

and, for k̂2
x < 0 (i.e. |σ| > σTP),

= {δps} =

σ−1 ps
κJs
gh

[
bJ + 1

2

(
1 −

√
1 − 4κH

h

)]
[
bJ (bJ + 1) + κH

h

] [
H
h −

1
2

(
1 +

√
1 − 4κH

h

)] . (B.37)

Although they have been obtained using an idealized atmo-
spheric structure, these two expressions of the semidiurnal sur-
face pressure anomaly inform us about the frequency-behaviour
of the thermally generated atmospheric tidal torque in the high-
frequency range. First consider Eq. (B.36). By assuming that the
condition 1 � H/h � κ−1b2

J is satisfied, that is for |σ| � σTP
and a small thickness of the heated layer, the torque scales as
T ∝σ−1. This corresponds to what may be observed in Fig. 3 in
the interval 30 < |ω| < 200. In the zero-frequency limit, h → 0
by scaling as h∝σ2 if the dependence of the eigenvalue Λ0 on
the forcing frequency is ignored (see Eq. (B.20)). It follows that
T ∝σ in this asymptotic regime. The transition between the two
regimes occurs for |σ| ≈ σJ with

σJ =
σTP

2
√

bJ (bJ + 1)
� σTP. (B.38)

Since H/h � 1 when |σ| � σL (let us remind that σL desig-
nates the Lamb frequency given by Eq. (14)), Eq. (B.36) can be
put into the form of the Maxwell function,

= {δps} ≈
2qJτJσ

1 + (τJσ)2 , (B.39)

where the associated characteristic timescale τJ and maximal
amplitude qJ are

τJ = σ−1
J , and qJ =

κJs

(
bJ + 1

2 + κ
)

gHσTP
√

bJ (bJ + 1)
ps. (B.40)

Let us now consider the case where k̂2
x < 0, described

by Eq. (B.37). We notice that the surface pressure anomaly
diverges for h = Γ1H. This feature was discussed by early studies
(e.g. Lindzen & Blake 1972). It corresponds to the resonance
associated with an horizontally propagating acoustic mode of
large wavelength known as the Lamb mode (e.g. Lindzen et al.
1968; Bretherton 1969; Lindzen & Blake 1972; Platzman 1988;
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Unno et al. 1989). In the reference case, with the values previ-
ously used to estimate ωTP, we obtain ωL ≈ 308. The resonance
can be observed in Fig. 3 for a smaller frequency (ωL ≈ 260)
because of the departure between the isothermal atmospheric
structure and the realistic one computed in GCM simulations,
as discussed in Sect. 4.2.

Appendix C: Dependence of the tidal torque on
the atmospheric composition

The atmospheric torque generated by the thermal tide depends
on the atmospheric composition, which has a strong impact on
the vertical distribution of the tidal heating through clouds for-
mation and the optical thickness of the gas mixture. In the study,
we treat the case of a terrestrial planet hosting a cloudless N2-
dominated atmosphere with a small amount of CO2. Hence,
we ignore the effects of clouds and compute the thermal tide
of an optically thin atmosphere in the visible frequency range,
where the major part of the stellar flux reaches the planet surface
without being absorbed.

In this appendix, we consider the case of a planet hosting a
Venus-like CO2-dominated atmosphere with a mixture of water
and sulphuric acid (H2SO4) in the same reference configura-
tion (a = aVenus and ps = 10 bar). We do not attempt to reproduce
exactly the composition and dynamics of the Venus atmosphere,
which is a complex problem beyond the scope of this study (see
e.g. Lebonnois et al. 2010, 2016), but to simply retrieve its main
features (optical opacity, clouds absorption, etc.). As a conse-
quence, we opt for a generic approach excluding a fine tuning
of the atmospheric properties. We set the thermal capacity per
unit mass of the gas (Cp) to 1000 J kg−1 K−1, which is the typical
value of Cp in the case of Venus (e.g. Seiff et al. 1985), where
the parameter decreases from 1181 J kg−1 K−1 near the surface to
904 J kg−1 K−1 at an altitude of 50 km.

Similarly, the mean molecular mass is set to 43.45 g mol−1,
and the volume mixing ratio of water vapour to 20 ppm
(Moroz et al. 1979). We set the diameter of water particles
to 3 µm, which is a typical value in the lower cloud (e.g.
Knollenberg & Hunten 1980). To take into account the impact of
sulphuric acid on the saturation pressure of water vapour pH2O,
we use the prescription given by Gmitro & Vermeulen (1964) for
aqueous sulphuric acid (see Eq. (24) of their article). This pre-
scription is written as a function of the local temperature T , as

ln
(
pH2O

)
= A ln

(
298
T

)
+

B
T

+ C + DT + ET 2, (C.1)

where A, B, C, D, and E are empirical constants. The optical
properties of the atmosphere used to compute radiative transfers
are pre-computed using the HITRAN 2008 database (Rothman
et al. 2009) for the Venus atmospheric mixture (instead of
the Earth mixture used in the study). The spectrum of the
atmospheric tidal torque due to the semidiurnal tide is plot-
ted in Fig. C.1 with the spectrum of the N2 reference case for
comparison.

Because of the opacity of the atmosphere in the visible range,
the fraction of the incoming stellar flux reaching the planet sur-
face is less in the case of the CO2 atmosphere than in the case of
the N2 atmosphere. Particularly, the resonance peak is strongly
attenuated. We also observe a greater impact of Coriolis effects,
the asymmetry of the tidal torque between negative and positive
frequency ranges being more significant.

This difference can be explained by the vertical distribu-
tion of tidal heating. As mentioned above, the major part of the
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Fig. C.1. Imaginary part of the surface pressure variation created by
the semidiurnal thermal tide as a function of the normalized tidal fre-
quency ω= (Ω − n?) /n? for a Venus-sized planet of surface pressure
ps = 10 bar and orbital radius a = aVenus. Results obtained using GCM
simulations are designated by points. Spectra are plotted for two cases:
the reference case of the study, where the atmosphere is mainly com-
posed of N2 (black line), and the case treated in Appendix C, where the
atmosphere is composed of CO2 with a mixture of water vapour and
sulphuric acid.

stellar flux reaches the planet surface if the atmosphere is com-
posed of N2, which means that the tidal torque is mainly due
to density variations occurring in the vicinity of the ground,
where friction predominate over Coriolis forces. In the case
of the CO2 atmosphere, an important fraction of the incoming
energy flux is absorbed at the cloud level. The contribution of
this fraction is thus strongly affected by Coriolis effects through
zonal mean flows characterizing the equilibrium dynamical
state.

Appendix D: Simplified ab initio analytical model
for the ground thermal response

As mentioned in Sect. 4.6, we follow along the line by Bernard
(1962) to study the thermal response of the planet surface. In this
approach, we consider the surface-atmosphere interface, located
at the altitude z = 0, and write the power flux budget for a small
perturbation in the framework of a frequency linear analysis.
Hence, any quantity q can be expressed as q = qσeiσt, where σ
is the forcing frequency introduced in Sect. 2. In the following,
we omit the superscript σ and use q in place of qσ, given that we
work in the frequency domain.

A variation of the effective incoming stellar flux (i.e. where
the reflected component has been removed), denoted δFinc, is
absorbed by the planet surface. A fraction δQgr of this power
is transmitted to the ground by thermal conduction, and an
other fraction, δQatm, is transmitted to the atmosphere through
turbulent thermal diffusion. Finally, the increase of surface
temperature δTs generated by δFinc induces a radiative emission,
δFrad, which is expressed as δFrad = 4σSBT 3

s δTs in the black
body approximation (we recall that σSB and Ts are the Stefan-
Boltzmann constant and mean surface temperature introduced
in Sect. 3.2, respectively). Since the atmosphere is heated by
both the incoming stellar flux and the surface thermal forcing,
it undergoes a radiative cooling, similarly as the surface. The
flux emitted downward to the surface is denoted δFatm. Thus,
the power budget of the thermal perturbation at the interface is
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expressed as

δFinc − 4σSBT 3
s δTs + δFatm − δQgr − δQatm = 0. (D.1)

To study the surface thermal response without having to con-
sider the full atmospheric tidal response in its whole complexity,
it is necessary to ignore the coupling induced by δFatm. This
amounts to assuming either that the emission of the atmosphere
towards the planet surface is negligible, or that it is propor-
tional to δTs (see Bernard 1962). Thus, introducing the surface
effective emissivity εs, radiative terms can be reduced to

4σSBT 3
s δTs − δFatm = 4σSBT 3

s εsδTs. (D.2)

The next step consists in defining the thermal exchanges
resulting from diffusive processes, δQgr and δQatm. These flux
are directly proportional to the gradient of the temperature pro-
file anomaly in the vicinity of the interface, and are expressed as

δQgr = kgr (∂zδT )z=0− , δQatm = −katm (∂zδT )z=0+ , (D.3)

where ∂z designates the partial derivative in altitude, δT the
profile of temperature variations, and kgr and katm the thermal
conductivities of the ground and of the atmosphere at z = 0,
respectively. By introducing the mean density profile of the
planet ρ0 and the thermal capacity per unit mass of the ground
Cgr (the analogous parameter for the atmosphere being Cp; see
Sect. 3.1), the corresponding diffusivities can be defined by

Kgr ≡
kgr

ρ0 (0−) Cgr
and Katm ≡

katm

ρ0 (0+) Cp
. (D.4)

Temperature variations in the vicinity of the interface are
described by the heat transport equation. We assume that dif-
fusive processes predominates in the z → 0 limit. Moreover,
since the typical horizontal length scale is far greater than the
vertical one in the thin layer approximation, the horizontal com-
ponent of the Laplacian describing diffusive processes can be
neglected with respect to the vertical component in both the solid
and atmospheric regions. It follows that

iσδT = Kgr∂zzδT, for z ≤ 0, (D.5)
iσδT = Katm∂zzδT, for z > 0. (D.6)

Solving these two equations with constant Kgr and Katm, and
ignoring the diverging term in solutions, we end up with

δT (z) = δTse[1+sign(σ)i]z/hσgr , for z ≤ 0, (D.7)

δT (z) = δTse−[1+sign(σ)i]/hσatm , for z > 0, (D.8)

where we have introduced the frequency-dependent skin thick-
nesses of heat transport by thermal diffusion in the ground (hσgr)
and atmosphere (hσatm), expressed as

hσgr =

√
2Kgr

|σ|
and hσatm =

√
2Katm

|σ|
. (D.9)

The transfer function Bσs defined by Eq. (32) comes straight-
forwardly when the profiles of δT are substituted by
Eq. (D.8) in Eqs. (D.3) and (D.1) successively. Introducing
B0

s =
(
4σSBT 3

s εs

)−1
, we obtain δTs =Bσs δF, with

B
σ
s =

B0
s

1 +
[
1 + sign (σ) i

] √
τs|σ|

, (D.10)

where τs can be interpreted as the characteristic timescale of
the surface thermal response. The parameter τs is a function
of the thermal inertia of the ground Igr ≡ ρ0 (0−) Cgr

√
Kgr and

of the atmosphere Iatm ≡ ρ0 (0+) Cp
√

Katm,

τs ≡
1
2

(
Igr + Iatm

4σSBT 3
s εs

)2

. (D.11)

The above expression shows that τs compares the efficiency
of diffusive processes to that of the radiative cooling of the
surface. The thermal time increases with the interface ther-
mal inertia and decays when the surface temperature increases,
scaling as τs ∝T−6

s .
The expression of Bσs given by Eq. (D.10) highlights two

asymptotic regimes. In the low-frequency regime, where |σ| �
τ−1

s , the surface responds instantaneously to the forcing δF,
leading to a surface temperature oscillation in phase with the
incoming stellar flux. At σ= 0, the incoming flux is equal to
the radiative flux (δFinc = 4σSBT 3

s εs), and Bσs =B0
s . In the hight-

frequency regime, where |σ| � τ−1
s , the amplitude of the surface

temperature variations decays and tends to zero in the limit
|στs| → +∞. At the transition, that is |σ| = τ−1

s , <
{
Bσs

}
=

(2/5)B0
s and = {Bs}= − (1/5)B0

s .
As discussed in Sect. 4.6, the transfer function obtained

using GCM simulations is well approximated by Eq. (D.10)
in the low-frequency regime (see Fig. 5). But it diverges
from the model when the forcing frequency increases, typi-
cally for |σ| & τ−1

s . This divergences seems to result mainly
from the fact that we ignored the radiative coupling between
the atmosphere and the surface associated with δFatm, although
it may be very strong. Particularly, this is the case for res-
onances of the atmospheric tidal response, where δFatm is
increased similarly as the amplitude of pressure and temperature
oscillations.

Appendix E: Tables of values obtained
with GCM simulations for the exploration
of the parameter space

The values used to plot the frequency-spectra of Fig. 6 are given
by Table E.1 for study 1 (dependence on the star–planet distance)
and Table E.2 for study 2 (dependence on the planet surface
pressure). In both cases, the first column corresponds to the
normalized tidal frequency ω= (Ω − n?) /n?.
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Table E.1. Values of the imaginary part of the semidiurnal surface pressure anomaly δp2,σ
s;2 (Pa) obtained from GCM simulations in study 1, where

ps = 10 bar, and used to plot the spectra of Fig. 6 (top panels).

ω 0.3 au 0.4 au 0.5 au 0.6 au 0.7 au aVenus 0.8 au 0.9 au

−30 −473.07 −545.09 −539.98 −533.95 −525.30 −517.29 −471.78 −434.51
−27 −511.43 −585.93 −607.25 −595.19 −512.35 −507.07 −465.63 −482.23
−24 −642.57 −644.54 −685.95 −580.62 −520.41 −513.39 −525.40 −651.49
−21 −704.17 −744.95 −703.56 −582.58 −592.16 −611.03 −772.29 −1035.44
−18 −804.42 −824.14 −666.45 −696.53 −1020.13 −1074.53 −1293.65 −1489.11
−15 −952.30 −778.00 −855.21 −1309.89 −1773.11 −1903.43 −1924.55 −1760.51
−12 −977.99 −1063.36 −1732.51 −2454.48 −2273.65 −2199.45 −2027.54 −1890.20
−9 −1472.86 −2614.20 −2777.14 −2534.91 −2237.35 −2243.82 −2102.46 −1926.23
−6 −3822.28 −3250.69 −2932.75 −2575.46 −2274.10 −2203.40 −2007.00 −1750.41
−3 −3588.82 −2847.24 −2059.37 −1753.74 −1530.60 −1486.34 −1389.68 −1213.63
0 334.42 234.58 151.64 89.75 55.15 49.50 32.02 15.13
3 3374.24 2785.68 2297.94 1964.36 1691.86 1638.27 1482.97 1241.96
6 3654.44 3058.04 2678.35 2433.68 2210.35 2145.61 1960.61 1728.26
9 1529.77 2386.06 2634.64 2356.54 2185.29 2135.41 2020.46 1839.10
12 973.74 1182.24 1720.70 2255.56 2092.64 2043.52 1925.20 1832.17
15 941.31 808.44 932.12 1302.36 1654.98 1732.38 1796.60 1618.30
18 797.69 812.74 694.15 762.96 969.00 1068.94 1276.22 1492.46
21 686.87 737.32 688.13 593.61 640.17 651.72 779.55 989.06
24 627.03 643.14 658.42 603.18 533.36 531.05 558.75 674.29
27 506.85 585.93 603.91 596.34 512.01 504.31 482.52 496.22
30 486.10 545.09 538.44 534.47 524.68 511.96 470.95 445.30

Notes. The first column corresponds to the normalized tidal frequency ω= (Ω − n?) /n?.

Table E.2. Values of the imaginary part of the semidiurnal surface
pressure anomaly δp2,σ

s;2 (Pa) obtained from GCM simulations in study 2,
where a = aVenus, and used to plot the spectra of Fig. 6 (bottom panels).

ω 1 bar 3 bar 10 bar 30 bar

−30 −354.77 −335.07 −517.29 −541.19
−27 −506.33 −486.33 −507.07 −547.23
−24 −611.39 −741.93 −513.39 −636.13
−21 −673.92 −1022.06 −611.03 −700.94
−18 −664.71 −1213.72 −1074.53 −737.02
−15 −678.58 −1242.91 −1903.43 −767.81
−12 −680.65 −1272.90 −2199.45 −1607.23
−9 −665.48 −1283.57 −2243.82 −2830.42
−6 −495.17 −1004.48 −2203.40 −3252.87
−3 −322.70 −657.66 −1486.34 −2989.54
0 25.37 37.06 49.50 51.20
3 358.98 712.00 1638.27 2989.06
6 504.55 1024.26 2145.61 3020.61
9 610.53 1249.16 2135.41 2598.07
12 679.89 1229.86 2043.52 1640.01
15 660.94 1198.29 1732.38 961.75
18 642.94 1179.86 1068.94 734.32
21 638.42 1003.31 651.72 703.06
24 586.54 726.95 531.05 632.88
27 489.53 488.95 504.31 551.61
30 352.31 371.83 511.96 539.69

Notes. The first column corresponds to the normalized tidal frequency
ω= (Ω − n?) /n?.

A17, page 22 of 22


	Generic frequency dependence for the atmospheric tidaltorque of terrestrial planets
	1 Introduction
	2 Basic principle
	3 Method
	3.1 Physical setup of the 3D simulations
	3.2 Extraction of the quadrupolar surface pressure anomaly

	4 Frequency behaviour of the atmospherictidal torque
	4.1 Characterization of the reference case
	4.2 Ab initio analytical model
	4.3 Discussion on the Maxwell model
	4.4 Introduction of a new parametrized model
	4.5 Dependence of the tidal torque on the atmospheric composition
	4.6 The surface-atmosphere coupling

	5 Exploration of the parameter space
	5.1 Frequency spectra of the tidal torque
	5.2 Evolution of the thermal peak with the planet semi-major axis and atmospheric surface pressure
	5.3 Scaling laws and generic formula for the tidal torque

	6 Conclusions
	Acknowledgements
	References
	Appendix A: Normalized spherical harmonics
	Appendix B: Linear analytical model for the high-frequency regime
	Appendix C: Dependence of the tidal torque on the atmospheric composition
	Appendix D: Simplified ab initio analytical model for the ground thermal response
	Appendix E: Tables of values obtainedwith GCM simulations for the explorationof the parameter space


