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PHASE-RESOLVED PREDICTION OF NONLINEAR OCEAN WAVES FROM REMOTE OPTICAL MEASUREMENTS PRÉDICTION À PHASE RÉSOLUE DE CHAMP DE VAGUES NON-LINÉAIRE PAR TÉLÉDÉTECTION OPTIQUE

We investigate the performance of a phase-resolved algorithm for the prediction of nonlinear ocean wave fields based on spatio-temporal remote optical measurements of free surface elevations. To quantify the prediction accuracy, error estimates are calculated for the case of a unidirectional wave field by ensemble averaging a large number of synthetic data sets. For several characteristic wave steepnesses, we compare results based on linear and weakly nonlinear approaches. It is shown that our nonlinear wave model, based on a Lagrangian description of the free-surface dynamics, allows to catch relevant nonlinear effects that play an increasingly large role as the waves get steep, i.e., wave shape asymmetry and phase shift. Experimental data are also used to illustrate the performance of the method applied on real field measurements.

Résumé

Les performances d'une méthode de prédiction de champs de vagues non-linéaires à partir de mesures optiques spatio-temporelles d'élévation de surface sont étudiées. Afin de quantifier la qualité des prédictions, des indicateurs d'erreur sont estimés dans le cas d'une houle unidirectionnelle en moyennant les résultats sur un grand nombre de données synthétiques. Pour des quelques cambrures caractéristiques, nous comparons les résultats issus d'approches linéaire et faiblement non-linéaire. Il est montré que le modèle non-linéaire utilisé, basé sur une description Lagrangienne de la dynamique de surface libre, permet de capter des effets non-linéaires jouant un rôle important et grandissant avec la cambrure, i.e., asymmétrie de forme et déphasage. Des données expérimentales sont également utilisées pour illustrer les performances de la méthode appliquées à des mesures réelles.

I -Introduction: Formulation of the Prediction Problem

To many offshore applications, such as the optimal maneuvering and operational guidance of surface vessels or active control of ocean renewable energy harvesting systems, the capacity to predict in real-time the incoming phase-resolved wave field is an crucial issue. This problem was studied in some earlier work on the basis of free surface elevation time series measured at fixed wave probes [START_REF] Blondel | Deterministic non-linear wave prediction using probe data[END_REF][START_REF] Simanesew | Surface wave predictions in weakly nonlinear directional seas[END_REF][START_REF] Takagi | Prediction of wave time-history using multipoint measurements[END_REF]. However, in situ measurements, typically made from a moving vessel or vehicle, are more challenging since wave reconstruction must rely on data acquired at constantly updated locations surrounding the path of the vehicle, which leads to practical limitations. Solutions to this problem was proposed based on X-band radar measurements made from an on-board sensor, combined with a 3D-FT to reconstruct a large patch of free surface elevation surrounding the sensor [START_REF] Dankert | Wind-and wave-field measurements using marine x-band radar-image sequences[END_REF][START_REF] Hilmer | Deterministic wave predictions from the wamos ii[END_REF][START_REF] Qi | Phase-resolved wave field simulation calibration of sea surface reconstruction using noncoherent marine radar[END_REF][START_REF] Xiao | Large-scale deterministic predictions of nonlinear ocean wave-fields[END_REF]. This initial estimate was then used in a direct numerical simulation of future sea states.

Here, we present recent developments of a method for reconstructing and predicting ocean waves in the short term, ahead of a moving or fixed ocean structure, based on optical measurements such as made with a LIDAR camera mounted on the structure.

The general wave prediction problem is formulated in the form of explicit relationships between the main parameters of the problem, i.e., the incoming wave field, the targeted prediction horizon (time span during which the wave field dynamics can be estimated), and the kinematics and size of the structure of interest (e.g., a moving ship, a marine energy device).

Since typical wave fields are bounded in frequency and direction of propagation (i.e., the energy is not homogeneously spread out over all frequencies/directions), a basic statistical knowledge of the incoming sea state can help define relevant bandwidths for accurately representing the underlying deterministic fields. In the following, the wave field frequency and directional energy density spectrum S (k, θ) is assumed to be known, where k(ω) is the frequency-dependent wavenumber, with ω and θ the wave angular frequency and direction of propagation, respectively. The prediction horizon corresponds to the time constraint of the prediction problem, i.e., the duration for the structure control system or operator to adequately react to changes in incoming waves. The ocean structure motion defines its path (assumed to be known), which together with the structure size allow calculating the spatio-temporal area over which wave dynamics is to be predicted.

A central element in the wave prediction problem, relating the aforementioned parameters, is the concept of accessible prediction zone, that is the spatial area denoted here by P (t), over which sufficient information on the wave field is available to adequately predict its dynamics. This is detailed in the next section.

Accordingly, the wave prediction problem is formulated as follows: based on adequately located real-time ocean surface measurements, extract and process sufficient data to predict the wave dynamics at the structure's future position, fast enough to satisfy the prediction horizon constraint.

II -Application to Optical Measurements

II -1 Accessible Prediction Zone from Nonuniform Observations

Earlier work has shown that the spatio-temporal region over which wave dynamics can be predicted based on a set of free surface measurements, is bounded [START_REF] Naaijen | Limits to the extent of the spatio-temporal domain for deterministic wave prediction[END_REF][START_REF] Qi | Predictable zone for phase-resolved reconstruction and forecast of irregular waves[END_REF][START_REF] Wu | Direct Simulation and Deterministic Prediction of Large-scale Nonlinear Ocean Wave-field[END_REF]. When measurements are made using an optical system, at a specific sampling rate and over a given observation zone, this limits the amount of data that can be assimilated and used in the wave reconstruction process, yielding a reconstructed surface in space/time defined with finite frequency and direction bandwidths. In light of this, the sea-state prediction obtained by propagating the assimilated information is similarly limited to a spatio-temporal region referred to as prediction zone. In the following, we show how the latter can be defined for a set of nonuniform observations made in a unidirectional wave field (i.e., irregularly distributed in space). Both theoretical and experimental studies have shown that directional components in a dispersive wave field, of given amplitude, frequency, and phase, travel at the associated group velocity along their direction of propagation [START_REF] Naaijen | Limits to the extent of the spatio-temporal domain for deterministic wave prediction[END_REF][START_REF] Qi | Predictable zone for phase-resolved reconstruction and forecast of irregular waves[END_REF]. The intersections of the slowest and fastest components thus determine the boundary of the spatio-temporal region over which information is available and a prediction can be issue. Consequently, as time increases, the accessible prediction zone shrinks, to eventually disappear when the assimilated information is completely dispersed in space. Fig. 1 illustrates this phenomenon for a unidirectional wave field propagating in the x direction. The last time used for the assimilation corresponds to the reconstruction time t r . If only spatial data is used in the assimilation (Fig. 1a), the initial prediction zone P (t r ) is the spatial area where observations were made. However, when spatio-temporal data sets are used (over an assimilation time T a ; Fig. 1b), the initial prediction zone expands due to the advection of wave information during T a . A point (x, t ≥ t r ) is included in the prediction zone if,

x b o + c g1 (t -t r ) ≤ x ≤ x e o + c g2 (t -t r ) , (1) 
where c g1 and c g2 are the fastest and slowest group velocities, respectively, and x b o and x e o define the beginning and the end of the initial prediction zone as,

   x b o = min k x min ok + c g1 (t r -t k ) , x e o = max k {x max ok + c g2 (t r -t k )} , (2) 
where k ∈ {1, ..., K} with K the number of observation times.

II -2 Bandwidths of the Reconstructed Wave Field

The dynamics of a wave field is governed by the propagation of its most energetic components. Since ocean wave generation processes eventually yield energy spectra with fairly narrow frequency bandwidth in their main direction of propagation, the dynamics of the wave field can be accurately represented by finite frequency and direction bandwidths having appropriate cutoff limits k min,max , θ min,max . As mentioned above, the spatio-temporal characteristics of the observation grid constraint the wave information that is accessible. The smallest wavenumber measurable in this grid

k min = 2π/L o is function of the largest distance L o = x e o -x b
o between two observation points at reconstruction time t r (see Fig. 1b). However, L o itself depends on the minimum and maximum group velocities, thus on the cutoff frequencies. This paradox is resolved by conservatively calculating

k min = 2π/L c , with L c = x e o -x min oK ≤ L o .
L c only depends on the spatio-temporal location of the observations and on the minimum group velocity, which is related to the high cutoff wavenumber k max . When reconstructing a signal over a regular observation grid (i.e., with a constant spatial sampling), the maximum high cutoff frequency must satisfy Shannon's condition k max ≤ 2π/ (2 o ) where o is the distance between two observation points. Since the observation grid is highly irregular when using an optical method [START_REF] Nouguier | Nonlinear ocean wave reconstruction algorithms based on spatiotemporal data acquired by a flash lidar camera[END_REF], k max is set so that the spectral energy truncated at higher frequencies is negligible for the dynamic description of the wave field. Also, since optical measurements provide observations at many spatial locations, there is no constraints on the cutoff directions from the observation grid. Hence, likewise k max , θ min,max are calculated based on the truncation of a negligible amount of energy. If an estimate of the underlying wave field is known, one way to choose these parameters is to evaluate their influence on the quality of the reconstructed or predicted wave fields, since a convergence of the quality of the reconstruction/prediction is expected as k max increases and θ min , θ max gets larger. In operational conditions, such information is not typically available and one must rely on an estimate of the wave spectrum, for instance based on measurements of the motion of the structure of interest, or from earlier measurements of free surface elevations. In this case, relevant values of k max and θ min,max can be selected by ensuring that,

+∞ k max θ max θ min S (k, θ) dθ dk ≤ µ +∞ 0 2π 0 S (k, θ) dθ dk, (3) 
where S (k, θ) is the directional wave energy density spectrum and µ 1 is the fraction of total energy that can be considered as negligible on free surface dynamics.

II -3 Group Velocities for the Determination of the Prediction Zone

In practice, the cutoff frequencies calculated for the wave field reconstruction can be too restrictive for the determination of the evolution of the prediction zone. Hence, the wave group velocities c g1,2 that govern the evolution of the prediction zone boundaries are instead defined based on two wavenumbers k 1,2 , such that,

F (k 1 ) = F (k 2 ) = µF (k p ) , (4) 
where

F (k) = 2π 0 S (k, θ
) dθ is the one-sided wave spectrum, k p is the wavenumber based on its peak wavelength, i.e., that of maximum energy, and µ is a small fraction, here, of the peak spectral energy. k 1 (k 2 ) is the smallest (largest) wavenumber to respect condition (4). In the following, we will use the linear deep water dispersion relationship to estimate the group velocities from k 1,2 .

III -Wave Models

Computing real-time wave predictions using complex, highly nonlinear, wave models, such as based on High-Order Spectral method, is challenging and may be prohibitive. Hence, similar to earlier work [START_REF] Nouguier | Nonlinear ocean wave reconstruction algorithms based on spatiotemporal data acquired by a flash lidar camera[END_REF], we seek to apply a model that properly accounts for nonlinear effects, which may significantly affect wave propagation in strong sea-states, while being suitable for the real-time constraint of the prediction problem. In this work, we consider and compare two wave models: a simple model based on linear wave theory (LWT), and a weakly nonlinear wave model, denoted as Improved Choppy Wave Model (ICWM) [START_REF] Guérin | An improved lagrangian model for the time evolution of nonlinear surface waves. Under review for publication[END_REF], derived from a Lagrangian approach of the description of the fluid motion, as an improved version of the earlier CWM [START_REF] Nouguier | choppy wave" model for nonlinear gravity waves[END_REF][START_REF] Nouguier | Scattering from nonlinear gravity waves: the "choppy wave" model[END_REF]. When applied to a set of observations, both models provide an analytic expression of the reconstructed free surface elevations, which allows for a very efficient numerical prediction of wave propagation, by simply increasing time in the formulation.

III -1 Linear Wave Theory

Linear Wave Theory (LWT) refers to the Stokes wave model derived based on the classical Eulerian approach and linearized with respect to wave steepness. With this model, the ocean surface is represented in a Cartesian coordinate system (x, y, z) (with x and y axes located on the mean water surface and the z-axis being vertical and positive upward) as the superposition of N individual periodic waves of amplitudes A n , wavelengths λ n , and propagating in directions θ n with respect to the x-axis, as,

η (r, t) = N n=1 A n cos (k n • r -ω n t + ϕ n ) , (5) 
with r = (x, y) the horizontal position vector, t the time, ϕ n a set of random phases uniformly distributed in [0, 2π], and k n = k n kn = (k n cos θ n , k n sin θ n ) the wavenumber vectors, with k n = 2π/λ n . The latter are related to angular frequencies ω n through the deep water linear dispersion relationship, ω 2 n = gk n , where g denotes the acceleration of gravity. To simplify the mathematical formalism of wave field reconstruction methods developed hereafter, Eq. ( 5) is recast as,

η (r, t) = N n=1 a n cos ψ n + b n sin ψ n , (6) 
where ψ n = k n • r -ω n t are spatio-temporal phases, and (a n , b n ) = (A n cos ϕ n , A n sin ϕ n ) are wave parameters describing the ocean surface.

III -2 Improved Choppy Wave Model

At each data acquisition time, optical measurements of ocean waves provide surface elevations measured at a set of irregularly distributed points of known coordinates in the reference frame. Earlier ocean surface reconstruction and prediction algorithms were implemented to use such irregular data sets [START_REF] Nouguier | Nonlinear ocean wave reconstruction algorithms based on spatiotemporal data acquired by a flash lidar camera[END_REF][START_REF] Wu | Direct Simulation and Deterministic Prediction of Large-scale Nonlinear Ocean Wave-field[END_REF]. Moreover, Nouguier et al's [START_REF] Nouguier | Nonlinear ocean wave reconstruction algorithms based on spatiotemporal data acquired by a flash lidar camera[END_REF] algorithm, which is extended here, was based on the Lagrangian CWM [START_REF] Gjosund | A lagrangian model for irregular waves and wave kinematics[END_REF][START_REF] Nouguier | choppy wave" model for nonlinear gravity waves[END_REF][START_REF] Nouguier | Scattering from nonlinear gravity waves: the "choppy wave" model[END_REF], which can simulate higher-order nonlinear wave properties, in terms of steepness, than Eulerian models of the same order. In the following the CWM equations are recast as the solution of Lagrangian dynamical equations in an Eulerian system.

Considering a water particle located on the ocean surface at coordinates ξ in the horizontal plane, its horizontal and vertical displacements are found as a Lagrangian perturbation expansion in wave steepness as [START_REF] Nouguier | Second-order lagrangian description of tridimensional gravity wave interactions[END_REF][START_REF] Pierson | Models of random seas based on the lagrangian equations of motion[END_REF][START_REF] Pierson | Perturbation analysis of the navier-stokes equations in lagrangian form with selected linear solutions[END_REF],

r (ξ, t) = ξ + i D i (ξ, t) , z (ξ, t) = i Z i (ξ, t) , (7) 
respectively, where D i and Z i are the horizontal and vertical particle displacements with respect to the particle position at rest ξ associated with the i th -order of expansion, respectively. Noting an inconsistency in the Stokes drift predicted by the CWM, Guérin et al. [START_REF] Guérin | An improved lagrangian model for the time evolution of nonlinear surface waves. Under review for publication[END_REF] added a correction to these equations, yielding the Improved Choppy Wave Model (ICWM),

   r (ξ, t) = ξ + N n=1 kn -a n sin ψn + b n cos ψn + U s t, z (ξ, t) = N n=1 a n cos ψn + b n sin ψn + 1 2 a 2 n + b 2 n k n , (8) 
where

ψn = k n • r -ωn t, ωn = ω n -1/2k n • U s and U s = N n=1 a 2 n + b 2 n ω n k n .
To use ICWM in practical simulations, its Lagrangian formulation [START_REF] Grilli | Ocean wave reconstruction algorithms based on spatio-temporal data acquired by a flash lidar camera[END_REF] is first transformed into an equivalent Eulerian model, by deriving an approximate explicit relationship between r and z. First, the horizontal particle shift U s t is implicitly incorporated into a modified angular frequency, which yields,

R (ξ, t) = r (ξ -U s t, t) = ξ + D (ξ) = ξ + N n=1 kn (-a n sin ψ Ln + b n cos ψ Ln ) , Z (ξ, t) = z (ξ -U s t, t) = N n=1 a n cos ψ Ln + b n sin ψ Ln + 1 2 a 2 n + b 2 n k n , (9) 
where ψ Ln = k n • r -ω Ln t and ω Ln = ω n + 1/2k n • U s . Then, the particle vertical displacement D is calculated at the current particle location R rather than at its reference location ξ, as,

Z (ξ) = Z (R -D (ξ)) Z (R -D (R)) = η (R) . (10) 
Accordingly, the free surface elevation at any location r reads,

η (r, t) = N n=1 a n cos Ψ n + b n sin Ψ n + 1 2 a 2 n + b 2 n k n , with, (11) 
Ψ n = k n • r - N n=1 kn (-a n sin ψ Ln + b n cos ψ Ln ) -ω Ln t.
Earlier work has shown [START_REF] Grilli | Ocean wave reconstruction algorithms based on spatio-temporal data acquired by a flash lidar camera[END_REF][START_REF] Nouguier | Nonlinear ocean wave reconstruction algorithms based on spatiotemporal data acquired by a flash lidar camera[END_REF] that errors due to the approximation made in Eq. ( 10) are on the order of the mean square slope of the ocean surface, which is expected to be small compared to other sources of error in the reconstruction process.

III -3 Ocean Surface Reconstruction

Similar to earlier work [START_REF] Grilli | Ocean wave reconstruction algorithms based on spatio-temporal data acquired by a flash lidar camera[END_REF][START_REF] Nouguier | Nonlinear ocean wave reconstruction algorithms based on spatiotemporal data acquired by a flash lidar camera[END_REF], the ocean surface is reconstructed, using either LWT or ICWM, based on determining model parameters that minimize the mean square error between spatiotemporal ocean observations and their representation in the model, referred to as the Cost Function, i.e.,

C (p) = K k=1 J j=1 η jk (p) -η jk 2 = L =1 (η (p) -η ) 2 , (12) 
in which p = {a n , b n } (n ∈ {1, ..., N }) is the control vector containing the 2N unknown model parameters, J and K are the number of spatial observations made at each observation time and the number of observation times, respectively (hence, the total number of spatio-temporal observations assimilated in the model is, J × K = L), η jk are free surface elevations measured at spatial locations r j (j ∈ {1, ..., J}) and times t k (k ∈ {1, ..., K}), η jk are estimates of these made using the wave model, i.e., with Eq. ( 6) for LWT or Eq. ( 11) for ICWM.

III -3.1 Linear Wave Field

The ocean surface is reconstructed through a least square minimization of the cost function, as,

∂C ∂a m = 0, ∂C ∂b m = 0 ⇐⇒ A mn p n = b m , (13) 
for n, m ∈ {1, ..., N } (note that index summation is implied for repeated indices), with,

p n = a n , p N +n = b n , (14) 
the control vector of 2N unknown wave parameters. According to LWT, the right hand side vector, which contains observations, reads,

b m = L =1 η cos ψ m , b N +m = L =1 η sin ψ m , (15) 
and the 2N × 2N matrix A mn reads,

A mn = L =1 cos ψ n cos ψ m , A m,N +n = L =1 sin ψ n cos ψ m , A N +m,n = L =1 cos ψ n sin ψ m , A N +m,N +n = L =1 sin ψ n sin ψ m . ( 16 
)
The linear system of Eqs. ( 13) is solved for the model parameters (a n , b n ), with the relevant number of frequency components N being determined through a convergence study.

III -3.2 Nonlinear Wave Field

Using the weakly nonlinear ICWM formulation [START_REF] Hilmer | Deterministic wave predictions from the wamos ii[END_REF], we have,

b m = L =1 η P m , b N +m = L =1 η Q m , (17) 
and

A mn = L =1 cos Ψ n + 1 2 a n k n P m , A m,N +n = L =1 sin Ψ n + 1 2 b n k n P m , A N +m,n = L =1 cos Ψ n + 1 2 a n k n Q m , A N +m,N +n = L =1 sin Ψ n + 1 2 b n k n Q m , ( 18 
)
in which,

           P m = cos Ψ m -k m (a m sin Ψ m -b m cos Ψ m ) × {sin ψ Lm -[k m (a m cos ψ Lm + b m sin ψ Lm ) + 1] a m ω m k m t } + a m k m , Q m = sin Ψ m -k m (a m sin Ψ m -b m cos Ψ m ) × {-cos ψ Lm -[k m (a m cos ψ Lm + b m sin ψ Lm ) + 1] b m ω m k m t } + b m k m . (19) 
Since both A mn and b m now depend on wave parameters (a n , b n ), the system of equations ( 13) is solved iteratively [START_REF] Nouguier | Nonlinear ocean wave reconstruction algorithms based on spatiotemporal data acquired by a flash lidar camera[END_REF]. Thus, when solving for p (q+1) n at iteration q + 1, A

mn and b

(q)
m are based on wave parameters obtained at the previous iteration q. The solution is initialized at q = 0 using A (0) mn and b (0) m computed for the linear reconstruction with Eqs. ( 15) and [START_REF] Nouguier | Scattering from nonlinear gravity waves: the "choppy wave" model[END_REF]. Convergence is typically achieved within 5 to 20 iterations depending on wave steepness.

III -3.3 Regularization of the Solution

In applications, the ocean reconstruction problem may become ill-conditioned due to practical constraints, such as the heterogeneous distribution of spatial observation points, the limited ocean area observed by the optical sensor, and the frequency and direction bandwidth cutoffs in the reconstructed wave field. Nevertheless, consistent results can be achieved, independently of the conditioning of the system matrix to invert (i.e., A mn ), through a Tikhonov regularization procedure, in which the matrix inversion is replaced by a minimization problem as,

min ||A mn p n -b m || 2 -r 2 ||p n || 2 , ( 20 
)
where r is the regularization parameter. The optimal value of the regularization parameter is found using the "L-curve" method, which consists in finding the r value corresponding to the point of maximal curvature (i.e., corner) of the function (log

||A mn p n -b m || , log ||p n ||).
This method thus provides an optimal compromise between minimizing the residual error and ensuring that the norm of the solution does not become too large, i.e., ill-posed. The L-curve corner can be determined analytically through solving a singular value decomposition problem [START_REF] Calvetti | L-curve and curvature bounds for tikhonov regularization[END_REF][START_REF] Hansen | Computational inverse problems in electrocardiology, Chap. The[END_REF]. Note that this procedure is equivalent to adding a constraint to the minimization problem, physically representing the total energy of the reconstructed wave spectrum, since the latter is proportional to the squared norm of p n ; in this case, -r 2 can simply be interpreted as a Lagrangian multiplier. 

IV -Synthetic Application Case

In this application, similar to [START_REF] Grilli | Ocean wave reconstruction algorithms based on spatio-temporal data acquired by a flash lidar camera[END_REF][START_REF] Nouguier | Nonlinear ocean wave reconstruction algorithms based on spatiotemporal data acquired by a flash lidar camera[END_REF], one-dimensional synthetic optical data is geometrically created for irregular sea states described by their wave energy spectrum and generated using a wave model, here a HOS model [START_REF] Bonnefoy | Advances in Numerical Simulation of Nonlinear Water Waves[END_REF][START_REF] Ducrozet | 3-d hos simulations of extreme waves in open seas[END_REF]. The ocean surface is then reconstructed and predicted based on this data set and compared to the original surface η HOS . This is repeated for realistic sea states of various characteristic steepness. Sea state parameters and optical sensor configuration are similar to those used in earlier work [START_REF] Desmars | Phaseresolved reconstruction algorithm and deterministic prediction of nonlinear ocean waves from spatio-temporal optical measurements[END_REF], as briefly recapped below.

IV -1 Setup and Error Definitions

A fixed optical sensor, located at abscissa x c and at an elevation of 30 m observes the ocean surface for x < x c , with a mean viewing angle of 76 • , an aperture of ±10 • , and along J = 64 rays, which are homogeneously distributed over the aperture angle. The sea state is represented by a JONSWAP spectrum of peak period T p = 10 s and peakedness γ = 3.3. The significant wave height H s varies between 1.5 and 6 m. Converged results were achieved using N = 50, a high cutoff wavenumber k max = 10k p , and a number of observation times K = 10 with a sampling rate of 1 Hz. The spatio-temporal target zone for wave prediction T (t) is 100 m long, centered on the sensor location x c , spans a 10 s time, from 20 to 30 s after the first waves enter the region. Hence, a point (x, t) is in the target zone if x c -50 ≤ x ≤ x c + 50 and t r + 20 ≤ t ≤ t r + 30.

Two error indicators are used to quantify the prediction accuracy. The first one is a local "point to point" error,

ε (x, t) = |η (x, t) -η HOS (x, t)| H s . (21) 
In the second one, statistics are calculated by ensemble averaging 1,000 independent sea state realizations, generated for different sets of random phases. For each sea state, the average root mean square (RMS) error is calculated as,

ε RMS (t) = T (t) (η (x, t) -η HOS (x, t)) 2 dx T (t) η 2 HOS dx 1/2 , ( 22 
)
with η is the predicted elevation using LWT or ICWM. This error is finally averaged over the 1,000 realizations. 

IV -2 Results

The ocean surface predicted using the LWT or the ICWM models are compared with each other and with the reference solution based on the two previously defined error indicators. Thus, Fig. 2a shows ε(x, t) computed over a large spatio-temporal domain using ICWM, for a specific realization with H s = 3 m. Boundaries of the prediction zone are calculated according to Eq. ( 1) and group velocities c g1,2 based on Eq. ( 4), for k 1,2 , with µ = 5%. For this realization, the reconstruction error is very low in the spatio-temporal target zone T (t), within the prediction zone P (t). Figure 2b shows the time evolution of the same error averaged over 1,000 realizations at the sensor location x c , for 4 different characteristic steepnesses (i.e., significant wave heights), using LWT or the ICWM model. For each steepness, the error decreases from a relatively large value at t = t r , as waves enter the prediction zone (located between the vertical dashed lines in the figure) where it reaches its lowest value, and then increases to reach 0.2 after 8T p of propagation. Within the prediction zone, ICWM does reduce ε in all cases as compared to LWT, but most significantly for the largest steepnesses (i.e., nonlionearity). Also, due to nonlinear phase shifts for steep waves, the location of the minimum error shifts towards lower times as steepness increases.

Figure 3a further quantifies the prediction algorithm performance over the target zone (box in Fig. 2a), by plotting the time evolution of ε RMS integrated within it, for LWT or the ICWM model. As observed earlier, this error significantly reduces using ICWM for average to high steepness. Moreover, ε RMS only slowly varies with time and, hence, its time-average shown in Fig. 3b can provide a global estimate of the reconstruction model performance, as a function of the characteristic steepness H s /λ p . In all cases this average error reduces using ICWM rather than LWT, with the largest reduction, 13% (from 0.52 to 0.39), occurring for the steepest wave field. This confirms the importance of accurately representing nonlinear effects, with a model such as ICWM, when performing an ocean surface prediction based on observations, and in particular wave asymmetry and phase shifts, which increase as the sea state becomes more severe.

V -Experimental Data

Next, the prediction algorithm performance is assessed for an actual wave field using experimental data acquired in the wave tank of École Centrale de Nantes. 

V -1 Experimental Setup

Laboratory experiments were performed in a wave tank, in which irregular waves were generated with a wavemaker, based on a JONSWAP spectrum, with T p = 10 s and γ = 3.3, and a few values of H s (or characteristic wave steepness). Time series of surface elevation were measured using 20 fixed wave gauges (Fig. 4), irregularly spaced according to a geometric law. Measurements made with these gauges are used as a proxy for data acquired at their location using an optical sensor. The equivalent optical sensor used in the model is located at an elevation of 20 m, with a mean viewing anlge of 76 • , a aperture of ±10 • , J = 20 rays, and a 1/50 th scale factor was used to account for wave tank limitations. In results reported here, only the first 16 probes are used, which are closest to the reference gauge (Fig. 4).

The number of observation times is set to K = 100, with a sampling frequency of 1.4 Hz, leading to an horizon of prediction L o = 2.78λ p , i.e., similar to that of the synthetic case (2.55). Unlike synthetic observations, only a finite and smaller number of independent realizations can be performed experimentally. However, an average can be made over dependent realizations by using a large enough time span between two reconstructions of the same wave field. Note that while convergence of result is slower using experimental data, statistical estimates can be approached with the method proposed by [START_REF] Naaijen | Limits to the extent of the spatio-temporal domain for deterministic wave prediction[END_REF]. Note, however, since the purpose of the experimental results presented here is only to illustrate the method using actual field data, such methods are not used here, but will be the object of future work.

V -2 Results

Figure 5 shows time series of surface elevation for four different wave steepness, at the location of the reference probe (red triangle in Fig. 4). Surface elevations reconstructed/predicted by the LWT and the ICWM models are shown, and compared to the laboratory measurements. As expected, the prediction is closets to measurements within the boundaries of the prediction zone. As the sea state characteristic steepness increases, the ICWM solution increasingly differs from the LWT solution, while being closer to the measured surface. Comparing the local surface shapes in the largest steepness case, one clearly sees that nonlinear wave properties are better accounted for when using the ICWM model. In particular, both the amplitude and phase of the steepest waves are better predicted.

VI -Conclusions

The characterization of the proposed prediction algorithm based on optical measurements of free surface elevation was extended through the investigation of the influence of wave steepness on the prediction performance. Using synthetic data, we focused on comparing the gain in accuracy using the ICWM model rather than the LWT model, showing significant improvements for moderate and high steepness. The method was also applied on experimental data to illustrate the performance with real field measurements. Synthetic and experimental results are in agreement, showing that the nonlinear properties modeled by ICWM, i.e., wave asymmetry and phase shifts, are of importance for short-term predictions.

Future efforts will be made on a comprehensive experimental validation of the presented algorithm, which will help further investigate the performance of ICWM for a directional wave 

Figure 1 :

 1 Figure 1: Evolution of the prediction zone in time and space, for: (a) spatial data; and (b) spatiotemporal data (dash lines are prediction zones boundaries at time t k ; the increase in prediction zone relative to that of spatial observations is highlighted in red.

Figure 2 :

 2 Figure 2: Numerical error of ocean reconstruction: (a) ε(x, t) using ICWM for one realization with H s = 3 m; white box marks the spatio-temporal target zone T (t), within the prediction zone P (t) marked by oblique lines; dashed line at x = x c marks sensor location. (b) ε (averaged over 1,000 realizations) at x = x c , as a function of time, for different steepness using LWT ( ) or ICWM ( ); vertical dashed lines mark the prediction zone boundaries.

Figure 3 :

 3 Figure 3: Numerical error of ocean reconstruction ε RMS : (a) Instantaneous; and (b) timeaveraged over the target zone, for different steepnesses, using LWT ( ) or ICWM ( ).

Figure 4 :

 4 Figure 4: Locations of 16 (out of 20) irregularly spaced wave gauges (•) used in laboratory experiments; ( ) reference wave gauge.

Figure 5 :

 5 Figure 5: Time series of surface elevation in: ( ) laboratory measurements, ( ) LWT model, and ( ) ICWM model, for H s /λ p = (a) 0.006, (b) 0.018, (c) 0.029 and (d) 0.041. Vertical continuous line corresponds to the reconstruction time t r , and vertical dashed lines are boundaries of the prediction zone.
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