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From internal to pointwise control for the 1D heat equation and

minimal control time

Cyril LETROUIT∗†

Abstract

Our goal is to study controllability and observability properties of the 1D heat equation
with internal control (or observation) set ωε = (x0 − ε, x0 + ε), in the limit ε → 0, where
x0 ∈ (0, 1). It is known that depending on arithmetic properties of x0, there may exist a
minimal time T0 of pointwise control at x0 of the heat equation. Besides, for any ε fixed,
the heat equation is controllable with control set ωε in any time T > 0. We relate these two
phenomena. We show that the observability constant on ωε does not converge to 0 as ε→ 0
at the same speed when T > T0 (in which case it is comparable to ε1/2) or T < T0 (in which
case it converges faster to 0). We also describe the behavior of optimal L2 null-controls on
ωε in the limit ε→ 0.
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1 Introduction and main results

1.1 Motivations

In this paper, we consider the controlled heat equation on (0, 1) with Dirichlet boundary
conditions 

∂tu− ∂xxu(t, x) = f(t, x) in (0,+∞)× (0, 1)

u(·, 0) = u(·, 1) = 0 on (0,+∞),

u(0, ·) = u0 on (0,1),

(1)

where u0(x) ∈ L2(0, 1) is the initial datum and f(t, x) is the control. We will consider two
cases in which (1) is known to be well-posed:

• either f ∈ L2((0, T )× (0, 1));

• or f(t, ·) = ψ(t)δx0
where ψ ∈ L2(0, T ) and x0 ∈ (0, 1). Here δx0

denotes the Dirac
mass at x0.
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In the first case, well-posedness means that, for every T > 0, there exists a constant C > 0
such that for any u0 ∈ L2(0, 1) and f ∈ L2((0, T ) × (0, 1)), there exists a unique solution
u ∈ C0([0, T ], L2(0, 1)) ∩ L2((0, T ), H1

0 (0, 1)) of (1), and this solution moreover satisfies

‖u‖C0([0,T ],L2(0,1)) + ‖u‖L2((0,T ),H1
0 (0,1))

6 C(‖u0‖L2(0,1) + ‖f‖L2((0,T )×(0,1))).

In the second case, it means that, for every T > 0, there exists a constant C > 0 such that for
any u0 ∈ L2(0, 1) and ψ ∈ L2(0, T ), there exists a unique solution u ∈ C0([0, T ], L2(0, 1)) ∩
L2((0, T ), H1

0 (0, 1)) of (1) with f(t, ·) = ψ(t)δx0
, and this solution moreover satisfies

‖u‖C0([0,T ],L2(0,1)) + ‖u‖L2((0,T ),H1
0 (0,1))

6 C(‖u0‖L2(0,1) + ‖ψ‖L2(0,T )).

In this paper, what will be of interest is the case where f is concentrated only on one
point x0 ∈ (0, 1) (in this case we speak of pointwise control at x0) or on a small neighborhood
of x0 of the form (x0 − ε, x0 + ε) for some small ε > 0 (in this case we speak of internal
control). In the sequel, we fix a point x0 ∈ (0, 1).

Several results are known about exact observability (or, by duality, about exact control-
lability) of (1). In the sequel, by observability we always mean exact observability.

• By internal observability of (1) in time T on an open subset E ⊂ (0, 1), we mean that

C(T,E) := inf

{∫ T

0

∫
E

u(t, x)2dxdt, ‖u0‖L2(0,1) = 1, u solution of (1) with f = 0

}
> 0.

The constant C(T,E) is called the observability constant on E in time T .

• By pointwise observability of (1) in time T at a point x0 ∈ (0, 1), we mean that

C(T, x0) = inf

{∫ T

0

u(t, x0)2dt, ‖u0‖L2(0,1) = 1, u solution of (1) with f = 0

}
> 0.

(2)
The constant C(T, x0) is called the observability constant at point x0 in time T .

By duality (see Lemma 1), observability in time T of the heat equation on the open set
E is equivalent to the property that for all u0 ∈ L2(0, 1), there exists f ∈ L2((0, T )× (0, 1))
with support in (0, T ) × E such that the solution u of (1) satisfies u(T, ·) = 0. In this case
f is called a null-control. Similarly, pointwise observability of the heat equation at x0 is
equivalent to the property that for all u0 ∈ L2(0, 1), there exists ψ ∈ L2(0, T ) such that the
solution u of (1) with f(t, ·) = ψ(t)δx0

satisfies u(T, ·) = 0.
Depending on the arithmetic properties of x0 (mainly how well x0 is approached by

rational numbers), the heat equation may or may not be observable at point x0 in time T .
More precisely, we have the following result, due to [Dol73] (see also [AKBGBDT14]).

1. Given any x0 ∈ (0, 1), there exists T0 > 0 such that if T > T0, then the heat equation is
pointwise observable at point x0, and if 0 < T < T0, then it is not pointwise observable
at point x0.

Moreover, it is also known that on any open sub-interval of (0, 1), the heat equation is
observable in any time T > 0 (see, e.g., [Rus78]). In particular

2. Given any x0 ∈ (0, 1), any ε > 0 such that (x0 − ε, x0 + ε) ⊂ (0, 1) and any T > 0, the
heat equation is observable on (x0 − ε, x0 + ε) in time T .

Our goal is to understand how these two phenomena are linked, most notably by studying
the limit ε→ 0. How does a minimal time appear when the domain of observation shrinks,
i.e. when ε→ 0? Is it related to the size of L2-optimal null-controls in the limit ε→ 0?

The appearance of a minimal time of control at x0 can be intuitively understood in the
following way. First assume that x0 is a rational number, x0 = p/q with p ∈ N and q ∈ N∗.
Then, for any time T > 0, the initial datum u0 = sin(qπx) cannot be steered to 0 by any
control of the form ψ(t)δx0 with ψ ∈ L2(0, T ). If u denotes the solution of (1) with initial
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datum u0, the quantity
∫ T
0
u(t, x0)2dt is equal to 0, and therefore the heat equation is not

pointwise observable at x0. If now x0 is irrational but well approached by rational numbers,
meaning that there exist sequences (pk), (nk) of integers such that |x0− pk/nk| is very small

compared with 1/nk (typically less than e−Cn
2
k), then, by evaluating the quantity defining

the observability constant (2) for the initial data sin(nkπx), it is possible to prove that the
observability constant is equal to 0 (but the infimum defining the observability constant is
not reached if x0 /∈ Q).

In the existing literature, similar problems have been investigated. In [FP94], the authors
study the convergence for the 1D wave equation of the L2-optimal null-controls on a spatial
interval (x0 − ε, x0 + ε) and compute their blow-up rate. Our problem is somehow the same
for the heat equation, but our situation is more intricate due to the appearance at the limit of
a minimal control time. For the 1D heat equation, the cost of optimal controls on shrinking
volume (i.e., at the limit ε→ 0) does not seem to have been studied. A different asymptotic
question which has attracted much more attention is the cost of optimal controls in the limit
T → 0 for a fixed domain of observation, see [LL18] for recent results in this direction.

Let us also mention that the existence of a minimal time of control for parabolic equa-
tions has been studied a lot in the last few years. See for example [AKBGBdT11] or
[AKBGBDT14]. However, it has apparently never been related to the blow-up of the cost of
the null-controls in the limit ε→ 0 when the control is located in a thin domain of width ε,
and this is precisely what we do in this paper for the 1D heat equation.

The specificity of our problem is that it is related to number theory, as already noted in
[Dol73], since the main property which determines the cost of the optimal null-controls is
how x0 is approximated by rational numbers. The problem is tractable in dimension 1, but
its extension to higher dimension is not easy. In some sense, the controllability at point x0
of the heat equation is not a local problem but a global one: if the manifold Ω in which the
heat equation evolves is deformed (even very far from x0), the properties of controllability
at point x0 may change dramatically. Therefore, well-known methods such as Carleman
estimates are not appropriate in this context since they are in some sense ”local”. To give an
example, in [LL18, Theorem 1.15], the authors have derived a (uniform in x0) lower bound
on the observability constant of the heat equation in the limit ε → 0, but this lower bound
cannot be optimal for every point x0 since the arithmetic properties of point x0 are not taken
into account.

The main method we use to address this problem is the so-called moment method, which
has been widely used to deal with the 1D heat equation since the seminal work [FR71]. See
for example [Lis17] for recent results and an extensive bibliography.

The paper goes as follows. In Section 1.2 we state the main results of our paper. In
Section 1.3, we give some perspectives and open problems. Finally, in Section 2, we give the
proofs.

Acknowledgment. We warmly thank Emmanuel Trlat for careful reading of earlier versions
of this paper.

1.2 Main results

Our first main result is the following. It roughly says that the convergence of the internal
observability constant to 0 in the limit ε → 0 is much faster when the heat equation is not
pointwise observable at the limit point x0 in time T than when it is observable at x0 in time
T .

Theorem 1. Fix x0 ∈ (0, 1) and denote by C(T, ε) the observability constant in time T on
the interval (x0 − ε, x0 + ε).

1. If T > T0, then there exist constants C1, C2 > 0 (depending on T ) such that C1ε
1/2 6

C(T, ε) 6 C2ε
1/2.

2. If T < T0, then there exist a sequence εk → 0 and constants C1 > 0 and C2 > 1/2
(depending on T ) such that C(T, εk) 6 C1ε

C2

k .
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Remark 1. By duality, this theorem gives information on how, for a fixed initial datum
u0, when T > T0, the norm of the L2-optimal null-control ψε on (x0 − ε, x0 + ε) behaves
in the limit ε → 0. It says that if T > T0, ‖ψε‖L2 is at most of the order of Cε−1/2. To
prove our results, we will sometimes make use of this duality between controllability and
observability. We refer to Lemma 1 for a precise statement on duality between controllability
and observability.

Our second and third results give a finer analysis of the behavior of the optimal null-
control in the limit ε→ 0 for a given initial datum u0.

First, for an initial datum u0 ∈ L2(0, 1) which is assumed to be non-null-controllable in
time T (which implies T 6 T0), we describe the behavior of the norm of the optimal control
with control domain (x0 − ε, x0 + ε) in the limit ε→ 0.

Theorem 2. If u0 ∈ L2(0, 1) is not pointwise null-controllable at x0 in time T , then the
optimal L2 null-control ψε with control domain (x0 − ε, x0 + ε) of the heat equation verifies
ε1/2‖ψε‖L2 → +∞.

Remark 2. Theorems 1 and 2 roughly indicate that, for a fixed initial datum u0 ∈ L2(0, 1),
the blow-up rate of the optimal null-controls ψε in the limit ε→ 0 determines the controlla-
bility at point x0 and that the key quantity for measuring this rate is ε1/2‖ψε‖L2 .

Lastly, for T > T0, and for any initial datum u0 ∈ L2(0, 1), we know that u0 is pointwise
controllable at x0 in time T . In this case, we are able to describe not only the behavior of
the norm of the optimal control ψε with control domain (x0 − ε, x0 + ε) in the limit ε→ 0,
but also its shape.

Theorem 3. Let x0 ∈ (0, 1) and let T > T0. Let δ > 0 be such that (x0−δ, x0+δ) ⊂ (0, 1) and
let u0 ∈ L2(0, 1) be an initial datum. For 0 < ε < δ, we denote by ψε the optimal null-control
of the heat equation with control domain (x0 − ε, x0 + ε). Let ϕε(x, t) = εψε

(
x0 + ε

δx, t
)
∈

L2((0, T )× (−δ, δ)). Then there exists ϕ ∈ L2((0, T )× (−δ, δ)) such that up to a subsequence

ϕε ⇀ ϕ weakly in L2((0, T ) × (−δ, δ)) and ψ(·) = 1
δ

∫ +δ

−δ ϕ(·, x)dx ∈ L2(0, T ) is a pointwise
null-control of u0 at x0 in time T .

1.3 Perspectives and open questions

In this section, we gather several conjectures and open questions related to the problem
addressed in this paper.

• In case T > T0, we speculate that there exists a universal constant K such that we
have ε−1/2C(T, ε)→ KC(T, x0) ∈ (0,+∞).

• In the case where T < T0, we think that there exists C > 0 (depending on T ) such
that for all ε > 0, we have C(T, ε) > Cε3/2. This exponent is the one obtained for
example if x0 = p/q is a rational number and we evaluate the observability constant at
an associate eigenfunction sin(qπx). The moment method cannot work to prove this
conjecture (the infinite series defining the scalar control does not converge). The only
way we see to tackle it is to use Carleman estimates, like in [LL18, Theorem 1.15].

• It is probably true that the limit control 1
δ

∫ δ
−δ ϕ(·, x)dx obtained in Theorem 3 is an

optimal control for u0 from point x0 in time T . Moreover, Theorem 3 might hold
without any extraction of a subsequence.

• It is of interest to extend our results to dimension > 1, that is to understand the be-
havior of the observability constant of the heat equation in a manifold Ω of dimension
> 1 when the domain of observation shrinks to a point or a submanifold. The moment
method cannot work anymore in this context (it is restricted to dimension 1 since it
requires the convergence of

∑
1/λn, where the λn denote the eigenvalues of the Lapla-

cian) and therefore Theorem 1 cannot be easily transposed to this higher-dimensional
setting, but Theorems 2 and 3 generalize well. In dimension > 1, nodal lines play a
role similar to the role of rational points in 1D and it is probable that depending on
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how well a measurable set E is approached by nodal lines, the heat equation may or
may not be exactly observable on E in time T > 0.

2 Proofs

Before presenting the proofs of our results, we recall the following theorem of [Dol73], which
is the starting point of our analysis.

Theorem 4. [Dol73, Theorem 1]

(a) If the series
∑∞
n=1

exp(−n2π2T )
| sin(nπx0)| is convergent, then the heat equation is pointwise ob-

servable at x0 for all T ′ > T .

(b) If this series is divergent, the heat equation is not pointwise observable at x0 for T ′ < T .

As a corollary, we get the existence of a minimal time of control (denoted by T0) for
pointwise control at point x0, as already recalled in the introduction.

An important point to compute the blow-up rate of observability constants is to remark
that the size observability constant is related to the one of the minimal control of the asso-
ciated control problem. We recall the following lemma, for which we took the formulation
of [Cor07] although it is much older (see [Rud91] for example).

Lemma 1. [Cor07, Proposition 2.16] Let H1 and H2 be two Hilbert spaces. Let F be a
linear continuous map from H1 into H2. Then F is onto if and only if there exists c > 0
such that

‖F∗(x2)‖H1
> c‖x2‖H2

, ∀x2 ∈ H2. (3)

Moreover, if (3) holds for some c > 0, there exists a linear continuous map G from H2 into
H1 such that

F ◦ G(x2) = x2, ∀x2 ∈ H2,

‖G(x2)‖H1
6

1

c
‖x2‖H2

, ∀x2 ∈ H2.

In particular, if F is the input-output map, this relates the observability constant with the
controllability one.

2.1 Proof of Theorem 1

Point 1. For the upper bound, we proceed as follows. Let j be an integer such that
jx0 /∈ Z. Such a j exists since x0 /∈ {0, 1}. Then

C(T, ε)2 6
2

e−2j2π2T

∫ T

0

∫ x0+ε

x0−ε
e−2j

2π2t sin(jπx)2dxdt

6
e2j

2π2T − 1

j2π2

∫ x0+ε

x0−ε
sin(jπx)2dx

∼ 2ε
e2j

2π2T − 1

j2π2
sin(jπx0)2

when ε→ 0. Therefore, C(T, ε) 6 Cε1/2, which proves the upper bound.

Following Remark 1 and Lemma 1, the proof of the lower bound consists roughly in proving
an upper bound on the optimal null-controls ψε driving a given initial datum u0 to 0 in time
T . In order to do so, we find a scalar null-control ϕε (in the sense that ϕε = bε(x)fε(t) with
supp bε ⊂ [x0− ε, x0 + ε]) which is not the optimal null-control but whose L2 norm is of the
same magnitude as the one of ψε in the limit ε→ 0. Said differently, for any ε > 0 and any
initial datum u0 ∈ L2(0, 1), we find a scalar control ϕε on [x0−ε, x0 +ε] steering u0 to 0 and
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whose L2 norm is bounded above by Cε−1/2 for some universal constant C > 0 independent
of ε and of u0.

As in [FR71], for a fixed initial datum u0 ∈ L2(0, 1) with Fourier decomposition u0(x) =∑
µn sin(nπx), we look for ϕε of the form ϕε = bε(x)f(t), with bε(x) supported in [x0 −

ε, x0 + ε] and

f(t) =

∞∑
n=0

e−n
2π2tµn∫ x0+ε

x0−ε bε(x) sin(nπx)dx
ψn(t)

where (ψn) is a family of functions in L2(0, T ) which is biorthogonal to the family of L2(0, T )

functions (e−n
2π2t), meaning that for j, k ∈ N,∫ T

0

ψj(t)e
−k2π2tdt = δjk

with the Kronecker notation.
Of course, this requires that the numbers

∫ x0+ε

x0−ε bε(x) sin(nπx)dx are not too small (and

in particular non-zero), so that f ∈ L2(0, T ). In our construction, bε(x) will be of the form
χ[x0−ε′,x0+ε′] for some well-chosen ε/2 6 ε′ 6 ε, where the symbol χ denotes characteristic
functions.

We now start the proof of the lower bound. It is based on several lemmas.

Lemma 2. There exists a family (ψn)n∈N∗ ∈ L2(0, T ) biorthogonal to the family e−n
2π2t

and satisfying ‖ψn‖L2 6 eCn for every n ∈ N∗.

Proof. This result follows for example from results of [FR71]. By [FR71, estimate (3.9)], we
know that there exists K > 0 such that for all n ∈ N,

‖ψn‖L2(0,T ) 6 Kn2

∞∏
j=1

(
1 + n2

j2

)
∞∏
j=1

j 6=n

(
1− n2

j2

) . (4)

By [FR71, lemma 3.1], we know that

∞∏
j=1

(
1 + n2

j2

)
∞∏
j=1

j 6=n

(
1− n2

j2

) = exp(n+ o(n)) (5)

as n→ +∞. Combining (4) and (5), we get the proof of Lemma 2.

Lemma 3. For all δ > 0, there exist C > 0 and a sequence (εj)j∈N tending to 0 and

satisfying εj > εj+1 > εj/2 and φjn > Cεje
−n2π2δ where φjn = inf{|εj − p/n|, p ∈ Z}.

Proof. We construct (εj)j∈N iteratively. First we construct ε0 ∈ (0, 1).

Set C =

(
4
∑
n

(n+ 1)e−n
2π2δ

)−1
. Define also for n ∈ N∗

U0,n =
{
x ∈ [0, 1], ∃p ∈ Z,

∣∣∣x− p

n

∣∣∣ < Ce−n
2π2δ

}
and

U0 =
⋃
n∈N∗

U0,n.
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We search ε0 ∈ (0, 1)\U0. Denoting by |E| the Lebesgue measure of a set E, we have

|U0,n| 6 2(n + 1)Ce−n
2π2δ and therefore |U0| 6 2C

∑
n

(n + 1)e−n
2π2δ = 1/2. Hence, we can

pick ε0 ∈ (0, 1)\U0.
Let us now define εj (for j > 0) iteratively. Suppose that εj has been defined for some

j > 0. We set

Uj+1,n =
{
x ∈

(εj
2
, εj

)
, ∃p ∈ Z,

∣∣∣x− p

n

∣∣∣ < Cεje
−n2π2δ

}
for n ∈ N∗

and
Uj+1 =

⋃
n∈N∗

Uj+1,n.

We have |Uj+1,n| 6 Cε2j (n+ 1)e−n
2π2δ, and therefore |Uj+1| 6 1

4ε
2
j 6

εj
4 . Hence we can pick

εj+1 ∈ (
εj
2 , εj)\Uj+1.

This procedure defines recursively a sequence which satisfies the statement of Lemma
3.

Lemma 4. Fix δ > 0. For a sequence εj constructed as in Lemma 3, there exists C > 0
such that ∣∣∣∣∣

∫ x0+εj

x0−εj
sin(nπx)dx

∣∣∣∣∣ > Cεj | sin(nπx0)|e−n
2π2δ (6)

Proof. We set θn = inf
{∣∣x0 − p

n

∣∣ , p ∈ Z
}

and φjn = inf
{∣∣εj − p

n

∣∣ , p ∈ Z
}

. We will keep
these notations until the end of the proof of Theorem 1. Remark that 0 6 θn 6 1

2n and
0 6 φjn 6 1

2n . In the sequel, we fix j and n, and therefore we can write εj = p
n ±φ

j
n, omitting

the dependence of p in j and n. There are two cases.
Let us first assume that εj 6 θn. Then on (x0 − εj , x0 + εj), the function sin(nπx) is of

constant sign and therefore∣∣∣∣∣
∫ x0+εj

x0−εj
sin(nπx)dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ x0+εj−p/n

x0−εj−p/n
sin(nπx)dx

∣∣∣∣∣ >
∣∣∣∣∣
∫ x0+εj−p/n

x0−εj−p/n
2nxdx

∣∣∣∣∣
since | sin(πy)| > 2|y| for |y| 6 1/2. Therefore∣∣∣∣∣

∫ x0+εj

x0−εj
sin(nπx)dx

∣∣∣∣∣ > 4εjn
∣∣∣x0 − p

n

∣∣∣ > 4

π
εj | sin(nπx0)|,

which proves that (6) holds in this case for C = 4/π.

We now assume at the contrary that εj > θn. We set f(ε) =
∫ x0+ε

x0−ε sin(nπx)dx. Then we
can easily verify the following properties of f :

• If sin(nπx0) > 0, then f increases between 0 and 1/2n and decreases between 1/2n
and 1/n. Moreover f(0) = f(1/n) = 0.

• If sin(nπx0) 6 0, then f decreases between 0 and 1/2n and increases between 1/2n
and 1/n. Moreover f(0) = f(1/n) = 0.

Now we write ∣∣∣∣∣
∫ x0+εj

x0−εj
sin(nπx)dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ x0+

p
n±φ

j
n

x0− pn∓φ
j
n

sin(nπx)dx

∣∣∣∣∣ .
This last integral can be decomposed into three parts∫ x0+

p
n±φ

j
n

x0− pn∓φ
j
n

=

∫ x0− pn

x0− pn∓φ
j
n

+

∫ x0+
p
n

x0− pn
+

∫ x0+
p
n±φ

j
n

x0+
p
n

.
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The middle integral equals 0 and the first one is also equal to
∫ x0+

p
n

x0+
p
n∓φ

j
n

sin(nπx)dx. Finally

we get ∣∣∣∣∣
∫ x0+εj

x0−εj
sin(nπx)dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ x0+φ

j
n

x0−φjn
sin(nπx)dx

∣∣∣∣∣ .
Let us finally prove that ∣∣∣∣∣

∫ x0+φ
j
n

x0−φjn
sin(nπx)dx

∣∣∣∣∣ > Cφjn| sin(nπx0)| (7)

for some universal constant C > 0. If |φjn| 6 θn, as in the case εj 6 θn, we easily get that (7)
holds for C = 4/π. If θn 6 φjn 6 1/(2n), then we can suppose for example that sin(nπx0) >

0. The case sin(nπx0) 6 0 can be handled similarly. The integral
∫ x0+φ

j
n

x0−φjn
sin(nπx)dx is

decomposed into ∫ x0+φ
j
n

x0−φjn
=

∫ p
n

x0−φjn
+

∫ 2 pn−x0+φ
j
n

p
n

+

∫ x0+φ
j
n

2 pn−x0+φ
j
n

.

The first two integrals compensate and therefore∣∣∣∣∣
∫ x0+φ

j
n

x0−φjn
sin(nπx)dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ x0+φ

j
n

2 pn−x0+φ
j
n

sin(nπx)dx

∣∣∣∣∣ .
The integral at the right-hand side has bounds 2 pn − x0 + φjn and x0 + φjn, between which
sin(nπx) is positive. Note that for any a such that sin(nπa) > 0 and any b such that

sin(nπx) is positive on (a − b, a + b), we have
∫ a+b
a−b sin(nπx)dx > b sin(nπa). Applying this

with a = 2 pn − x0 + φjn and b = 2(x0 − p
n ), we get∣∣∣∣∣

∫ x0+φ
j
n

x0−φjn
sin(nπx)dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ x0+φ

j
n

2 pn−x0+φ
j
n

sin(nπx)dx

∣∣∣∣∣
>

∣∣∣sin(nπ ( p
n

+ φjn

))∣∣∣ ∣∣∣x0 − p

n

∣∣∣
> 2nφjn

∣∣∣x0 − p

n

∣∣∣ because | sin(x)| > 2

π
|x| for |x| 6 π

2

>
2

π
φjn| sin(nπx0)|

> Cεj | sin(nπx0)|e−n
2π2δ

where we have used Lemma 3. This concludes the proof of Lemma 4.

End of the proof of the lower bound. We first prove that there exists C > 0 such that for all

j ∈ N, we have Cε
1/2
j 6 C(T, εj). It will imply the lower bound of point 1 of Theorem 1 for

a particular sequence of ε, namely the sequence (εj). Fix j ∈ N. Following [FR71], we look
for a control ϕεj in the scalar form ϕεj = f(t)χ[−εj ,εj ] where χ denotes the characteristic
function. We take

f(t) =
∑
n

µne
−n2π2T∫ x0+εj

x0−εj sin(nπx)dx
ψn(t).

Then

‖f(t)‖L2(0,T ) 6
∑
n

|µn|e−n
2π2T∣∣∣∫ x0+εj

x0−εj sin(nπx)dx
∣∣∣‖ψn‖L2(0,T ).

Since T > T0, by Theorem 4, we can pick δ > 0 so that
∑

e−n
2π2(T−2δ)

| sin(nπx0)| < +∞. This implies

in particular ∑
n

e−2n
2π2(T−2δ)

| sin(nπx0)|2
< +∞. (8)

8



For this δ > 0, we take a sequence (εj)j∈N as in Lemma 3. We get, following Lemma 4 and
Lemma 2:

‖f(t)‖L2(0,T ) 6
C

εj

∑
n

|µn|e−n
2π2(T−δ)

| sin(nπx0)|
‖ψn‖L2(0,T ) 6

C

εj

∑
n

|µn|e−n
2π2(T−2δ)

| sin(nπx0)|
.

Using the Cauchy-Schwarz inequality, recalling that ‖u0‖2L2 =
∑
n
|µn|2 and ‖ϕεj‖L2((0,T )×(0,1)) =

√
2ε

1/2
j ‖f‖L2(0,T ), we finally get

‖ψεj‖L2 6 ‖ϕεj‖L2 6
C

ε
1/2
j

(∑
n

e−2n
2π2(T−2δ)

| sin(nπx0)|2

)1/2

‖u0‖L2 6
C

ε
1/2
j

‖u0‖L2

because of (8). By Lemma 1, we get that C(T, εj) > Cε
1/2
j .

We have established the lower bound of point 1 of Theorem 1 for the sequence (εj), but
we must now deal with all ε ∈ (−δ, δ). We fix ε ∈ (−δ, δ) and εj so that ε/2 6 εj 6 ε which
is possible by construction of the sequence (εj). Then the optimal null-control ψεj is equal
to 0 outside (x0− εj , x0 + εj), and therefore it is also equal to 0 outside (x0− ε, x0 + ε). We
denote by ψε the optimal null-control on (x0 − ε, x0 + ε). We have

ε‖ψε‖2L2 6 2εj‖ψε‖2L2 = 2εj‖ψεj‖2L2 6 2C.

Therefore the lower bound for the observability constant holds with C replaced by C/2.

Point 2. By Theorem 4, since T < T0, there exist δ > 0 and an increasing sequence
(nk)k∈N with nk → +∞ when k → +∞ such that

| sin(nkπx0)| 6 e−n
2
kπ

2(T+δ).

Let us recall that θnk = inf
{∣∣∣x0 − p

nk

∣∣∣ , p ∈ Z
}

is the best approximation of x0 by fractions

with denominator nk. Since |x| 6 | sin(πx)|/2 for x ∈ [−1/2, 1/2], we have for a p reaching
the infimum in the definition of θnk :

θnk =
1

nk
|nkx0 − p| 6

1

2nk
| sin(nkπx0 − pπ)| 6 1

2nk
e−n

2
kπ

2(T+δ) 6 e−n
2
kπ

2(T+δ).

Therefore,

n2k 6
− log θnk
π2(T + δ)

. (9)

We set εk = θnk . Clearly, lim εk = 0 when k → +∞ and we have

C(T, εk)2 6
e2n

2
kπ

2T − 1

2n2kπ
2

∣∣∣∣∣
∫ x0+θnk

p/nk

sin(nkπx)2dx

∣∣∣∣∣ 6 e2n
2
kπ

2T

2n3kπ
2

∫ 2nkθnk

0

sin(πy)2dy.

Using that | sin(x)| 6 |x|, we get

C(T, εk)2 6
e2n

2
kπ

2T

2n3kπ
2

π2(2nkθnk)3

6
=

2

3
e2n

2
kπ

2T θ3nk

We can bound this expression by above using (9), and we get

C(T, εk)2 6
2

3
e
2π2T

(− log θnk
π2(T+δ)

)
θ3nk =

2

3
ε
3−2T/(T+δ)
k .

Finally, we have

C(T, εk)2 6

√
2

3
ε

1
2+

δ
T+δ

k .

Setting C2 = 1
2 + δ

T+δ , we get the upper bound.
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2.2 Proof of Theorem 2

We proceed by contradiction and assume that there exists C > 0 and a sequence (εj)j∈N,
εj → 0 such that εj‖ψεj‖2L2 6 C. In the sequel, we omit index j. Let δ > 0 such that
(x0 − δ, x0 + δ) ⊂ (0, 1). For x ∈ (x0 − δ, x0 + δ) and almost all t ∈ (0, T ) we set

ϕε(x, t) = εψε

(
x0 +

ε

δ
x, t
)

with ϕε ∈ L2((0, T )× (−δ, δ)). Then for 0 < ε < δ, we have∫ T

0

∫ δ

−δ
ϕε(x, t)

2dxdt =

∫ T

0

∫ δ

−δ
ε2ψε

(
x0 +

ε

δ
x, t
)2
dxdt = δε

∫ T

0

∫ x0+ε

x0−ε
ψε(x, t)

2dxdt 6 Cδ.

Therefore, there exists ϕ ∈ L2((0, T )× (−δ, δ)) such that ϕε ⇀ ϕ in L2((0, T )× (−δ, δ)).
For almost all t ∈ (0, T ), we set

ψ(t) =
1

δ

∫ δ

−δ
ϕ(x, t)dx ∈ L2(0, T )

and we prove that ψ is a null control from x0 for u0 in time T , i.e., the function u verifying

∂tu−∆u = ψ(t)δx0
, u|t=0 = u0

with Dirichlet boundary conditions also satisfies u|t=T = 0. In other words, ψ(t), which is
somehow a limit of the null-controls ϕε is also a null-control. The proof goes as follows. Fix
vT ∈ L2(0, 1). Let v ∈ L2((0, 1)× (0, T )) be a solution of the backward heat equation

∂tv + ∆v = 0, v|t=T = vT

with Dirichlet boundary conditions. We know that for every ε > 0, the solution uε of

∂tuε −∆uε = ψε, u|t=0 = u0

with Dirichlet boundary conditions also satisfies uε|t=T = 0, and therefore

(∂tuε, v)− (∆uε, v) = (ψε, v)

where the scalar product is the L2((0, 1)× (0, T )) scalar product. Integrating by part, using
the boundary conditions and the fact that v is a solution of the backward heat equation, we
get

(uε(·, T ), v(·, T ))− (u0, v(·, 0)) =

∫ T

0

∫ x0+ε

x0−ε
ψε(x, t)v(x, t)dxdt

which reduces to

− (u0, v(·, 0)) =

∫ T

0

∫ x0+ε

x0−ε
ψε(x, t)v(x, t)dxdt. (10)

Similarly, we get

(u(·, T ), v(·, T ))− (u0, v(·, 0)) =

∫ T

0

ψ(t)v(x0, t)dt. (11)

Let us prove that
∫ T
0

∫ x0+ε

x0−ε ψε(x, t)v(x, t)dxdt→
∫ T
0
ψ(t)v(x0, t)dt when ε→ 0. We have∫ T

0

∫ x0+ε

x0−ε
ψε(x, t)v(x, t)dxdt =

1

δ

∫ T

0

∫ δ

−δ
ϕε(x, t)v

(
x0 +

ε

δ
x, t
)
dxdt = A+B (12)

where

A =
1

δ

∫ T

0

∫ δ

−δ
ϕε(x, t)v(x0, t)dxdt

10



and

B =
1

δ

∫ T

0

∫ δ

−δ
ϕε(x, t)

(
v
(
x0 +

ε

δ
x, t
)
− v(x0, t)

)
dxdt.

Integrating the weak convergence ϕε ⇀ ϕ, which holds in L2((−δ, δ) × (0, T )), against
1
δ1(−δ,δ)×(0,T )v(x0, t), we get

A→
∫ T

0

ψ(t)v(x0, t)dt. (13)

For B, we prove that B → 0. The proof goes as follows. We write that

B2 6

(
1

δ

∫ T

0

∫ δ

−δ
ϕε(x, t)

2dxdt

)(
1

δ

∫ T

0

∫ δ

−δ

∣∣∣v (x0 +
ε

δ
x, t
)
− v(x0, t)

∣∣∣2 dxdt)

and since the first integral is bounded above by a constant C, we just have to prove that the
second one converges to 0. We decompose v, writing v(x, t) =

∑
aj sin(jπx)e−j

2π2t, and we
get ∫ T

0

∫ δ

−δ

∣∣∣v (x0 +
ε

δ
x, t
)
− v(x0, t)

∣∣∣2 dxdt =
δ

ε

∫ T

0

∫ ε

−ε
|v (x0 + y, t)− v(x0, t)|2 dydt

6
2δ‖v‖∞

ε

∫ T

0

∫ ε

−ε
|v (x0 + y, t)− v(x0, t)| dydt

=
2δ‖v‖∞

ε

∫ T

0

∫ ε

−ε

∑
|aj |e−j

2π2t| sin(jπ(x0 + y))− sin(jπx0)|dydt

6
2δ‖v‖∞

ε

∫ T

0

∫ ε

−ε

∑
|aj |jπye−j

2π2tdydt

6 2εδ‖v‖∞
∫ T

0

∑
|aj |jπe−j

2π2tdt

which goes to 0 in the limit ε→ 0. Therefore we have obtained

B → 0. (14)

Combining (10), (11), 12), (13) and (14), we finally get (u(·, T ), vT ) = 0. Since this is true
for all vT , we get that uT = 0, which means that ψ(t)δx0

is a null-control for u0. This is a
contradiction. It finishes the proof of Theorem 2.

2.3 Proof of Theorem 3

Theorem 3 follows by combining Theorem 1 with the computations done in the proof of
Theorem 2. By Theorem 1, we know that there exists C > 0 such that for each 0 < ε < δ,
the optimal null-control ψε satisfies ε‖ψε‖2L2 6 C. As in the proof of Theorem 2, if we set

ϕε(x, t) = εψε

(
x0 +

ε

δ
x, t
)
, ϕε ∈ L2((−δ, δ)× (0, T ))

then for 0 < ε < δ, we have ∫ T

0

∫ δ

−δ
ϕε(x, t)

2dxdt 6 Cδ

and therefore, there exists ϕ ∈ L2((−δ, δ)× (0, T )) such that ϕε ⇀ ϕ in L2((0, T )× (−δ, δ)).
For almost all t ∈ (0, T ), we finally set

ψ(t) =
1

δ

∫ δ

−δ
ϕ(x, t)dx, ψ ∈ L2(0, T )

and the proof of Theorem 2 shows that ψ is a null-control from x0 for u0 in time T .
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