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Consider the sequence {F n } n≥0 of Fibonacci numbers defined by F 0 = 0, F 1 = 1, and F n+2 = F n+1 + F n for all n ≥ 0. In this paper, we find all integers c having at least two representations as a difference between a Fibonacci number and a power of 3.

Introduction

We consider the sequence {F n } n≥0 of Fibonacci numbers defined by F 0 = 0, F 1 = 1, and F n+2 = F n+1 + F n for all n ≥ 0.

The first few terms of the Fibonacci sequence are {F n } n≥0 = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . . In this paper, we are interested in studying the Diophantine equation

F n -3 m = c (1)
for a fixed integer c and variable integers n and m. In particular, we are interested in finding those integers c admitting at least two representations as a difference between a Fibonacci number and a power of 3. This equation is a variant of the Pillai equation

a x -b y = c (2)
where x, y are nonnegative integers and a, b, c are fixed positive integers.

In 1936 and again in 1937, Pillai (see [START_REF] Pillai | On a xb y = c[END_REF][START_REF] Pillai | A correction to the paper on a xb y = c[END_REF]) conjectured that for any given integer c ≥ 1, the number of positive integer solutions (a, b, x, y), with x ≥ 2 and y ≥ 2 to the Eq. ( 2) is finite. This conjecture is still open for all c = 1. The case c = 1 is Catalan's conjecture which was proved by Mihȃilescu (see [START_REF] Mihȃilescu | Primary cyclotomic units and a proof of Catalan's conjecture[END_REF]). Pillai's work was an extension of the work of Herschfeld (see [START_REF] Herschfeld | The equation 2 x -3 y = d[END_REF][START_REF] Herschfeld | The equation 2 x -3 y = d[END_REF]), who had already studied a particular case of the problem with (a, b) = (2, 3). Since then, different variants of the Pillai equation have been studied. Some recent results for the different variants of the Pillai problem involving Fibonacci numbers, Tribonacci numbers, Pell numbers and the k-generalized Fibonacci numbers with powers of 2 have been intensively studied in [START_REF] Bravo | On a problem of Pillai with Tribonacci numbers and powers of 2[END_REF][START_REF] Chim | On a variant of Pillai's problem[END_REF][START_REF] Chim | On a variant of Pillai's problem II[END_REF][START_REF] Ddamulira | On a problem of Pillai with Fibonacci numbers and powers of 2[END_REF][START_REF] Ddamulira | On a problem of Pillai with k-generalized Fibonacci numbers and powers of 2[END_REF][START_REF] Hernane | On Pillai's problem with Pell numbers and powers of 2[END_REF][START_REF] Hernández | On Pillai's problem with the Fibonacci and Pell sequences[END_REF].

Main result

The main aim of this paper is to prove the following result. Since F 1 = F 2 = 1, we discard the situation when n = 1 and just count the solutions for n = 2.

Theorem 1

The only integers c having at least two representations of the form F n -3 m are c ∈ {-26, -6, -1, 0, 2, 4, 7, 12}. Furthermore, all the representations of the above integers as F n -3 m with integers n ≥ 2 and m ≥ 0 are given by

-26 = F 10 -3 4 = F 2 -3 3 ; -6 = F 8 -3 3 = F 4 -3 2 ; -1 = F 6 -3 2 = F 3 -3 1 0 = F 4 -3 1 = F 2 -3 0 ; 2 = F 5 -3 1 = F 4 -3 0 ; 4 = F 7 -3 2 = F 5 -3 0 ; 7 = F 9 -3 3 = F 6 -3 0 ; 12 = F 8 -3 2 = F 7 -3 0 . ( 3 
)

Auxiliary results

To prove our main result Theorem 1, we need to use several times a Baker-type lower bound for a nonzero linear form in logarithms of algebraic numbers. There are many such in the literature like that of Baker and Wüstholz from [2]. We use the one of Matveev from [START_REF] Matveev | An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II[END_REF]. Matveev [START_REF] Matveev | An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II[END_REF] proved the following theorem, which is one of our main tools in this paper.

Let γ be an algebraic number of degree d with minimal primitive polynomial over the integers

a 0 x d + a 1 x d-1 + • • • + a d = a 0 d i=1 (x -γ (i) ),
where the leading coefficient a 0 is positive and the η (i) 's are the conjugates of γ . Then, the logarithmic height of γ is given by

h(γ ) := 1 d log a 0 + d i=1 log max{|γ (i) |, 1} .
In particular, if γ = p/q is a rational number with gcd( p, q) = 1 and q > 0, then h(γ ) = log max{| p|, q}. The following are some of the properties of the logarithmic height function h(•), which will be used in the next sections of this paper without reference:

h(η ± γ ) ≤ h(η) + h(γ ) + log 2, h(ηγ ±1 ) ≤ h(η) + h(γ ), h(η s ) = |s|h(η) (s ∈ Z). (4) 
Theorem 2 (Matveev) Let γ 1 , . . . , γ t be positive real algebraic numbers in a real algebraic number field K of degree D, b 1 , . . . , b t be nonzero integers, and assume that

:= γ b 1 1 • • • γ b t t -1, ( 5 
)
is nonzero. Then log | | > -1.4 × 30 t+3 × t 4.5 × D 2 (1 + log D)(1 + log B)A 1 • • • A t , where B ≥ max{|b 1 |, . . . , |b t |}, and 
A i ≥ max{Dh(γ i ), | log γ i |, 0.16}, for all i = 1, . . . , t.
During the calculations, we get upper bounds on our variables which are too large; thus, we need to reduce them. To do so, we use some results from the theory of continued fractions.

For the treatment of linear forms homogeneous in two integer variables, we use the well-known classical result in the theory of Diophantine approximation.

Lemma 1 Let τ be an irrational number, p 0 q 0 , p 1 q 1 , p 2 q 2 , . . . be all the convergents of the continued fraction of τ and M be a positive integer. Let N be a nonnegative integer such that q N > M. Then, putting a(M) := max{a i : i = 0, 1, 2, . . . , N }, the inequality

τ - r s > 1 (a(M) + 2)s 2 ,
holds for all pairs (r , s) of positive integers with 0 < s < M.

For a nonhomogeneous linear form in two integer variables, we use a slight variation of a result due to Dujella and Pethő (see [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF], Lemma 5a), which is itself a generalization of the result of Baker and Davenport [START_REF] Baker | The equations 3x 2 -2 = y 2 and 8x 2 -7 = z[END_REF]. For a real number X , we write ||X || := min{|X -n| : n ∈ Z} for the distance from X to the nearest integer.

Lemma 2 Let M be a positive integer, p q be a convergent of the continued fraction of the irrational number τ such that q > 6M, and A, B, μ be some real numbers with A > 0 and B > 1. Let further ε := ||μq|| -M||τ q||. If ε > 0, then there is no solution to the inequality

0 < |uτ -v + μ| < AB -w , in positive integers u, v, and w with u ≤ M and w ≥ log(Aq/ε) log B .
Finally, the following lemma is also useful. It is Lemma 7 in [START_REF] Sánchez | Linear combinations of factorials and s-units in a binary recurrence sequence[END_REF].

Lemma 3 (Gúzman, Luca) If m ≥ 1, T > (4m 2 ) m , and T > x/(log x) m , then x < 2 m T (log T ) m .

Proof of Theorem 1

Assume that there exist nonnegative integers n, m, n 1 , m 1 with min{n,

n 1 } ≥ 2 and min{m, m 1 } ≥ 0 such that (n, m) = (n 1 , m 1 )
, and

F n -3 m = F n 1 -3 m 1 .

Without loss of generality, we can assume that

m ≥ m 1 . If m = m 1 , then F n = F n 1 , so (n, m) = (n 1 , m 1 )
, which gives a contradiction to our assumption. Thus, m > m 1 . Since

F n -F n 1 = 3 m -3 m 1 , (6) 
and the right-hand side is positive, we get that the left-hand side is also positive and so n > n 1 .

Using the Binet formula

F k = α k -β k √ 5 for all k ≥ 0, (7) 
where

(α, β) := 1+ √ 5 2 , 1- √ 5 2
are the roots of the equation x 2x -1 = 0, which is the characteristic equation of the Fibonacci sequence. One can easily prove by induction that

α k-2 ≤ F n ≤ α k-1 for all k ≥ 1. ( 8 
)
Using the Eq. ( 6), we get

α n-4 ≤ F n-2 ≤ F n -F n 1 = 3 m -3 m 1 < 3 m , (9) α n-1 ≥ F n ≥ F n -F n 1 = 3 m -3 m 1 ≥ 3 m-1 , ( 10 
)
from which we get that

1 + log 3 log α (m -1) < n < log 3 log α m + 4. (11) 
If n ≤ 300, then m ≤ 127. We ran a Mathematica program for 2 ≤ n 1 < n ≤ 300 and 0 ≤ m 1 < m ≤ 127 and found only the solutions from the list [START_REF] Bravo | On a problem of Pillai with Tribonacci numbers and powers of 2[END_REF]. From now, we assume that n > 300 and from [START_REF] Hernández | On Pillai's problem with the Fibonacci and Pell sequences[END_REF] we have that m > 127. Therefore, to solve the Diophatine Eq. ( 1), it suffices to find an upper bound for n.

Bounding n

By substituting the Binet formula [START_REF] Ddamulira | On a problem of Pillai with k-generalized Fibonacci numbers and powers of 2[END_REF] in the Diophantine Eq. ( 1), we get

α n √ 5 -3 m = β n √ 5 + α n 1 -β n 1 √ 5 -3 m 1 ≤ α n 1 + 2 √ 5 + 3 m 1 ≤ 2α n 1 √ 5 + 3 m 1 < 3 max{α n 1 , 3 m 1 }.
Multiplying through by 3 -m , using the relation ( 9) and using the fact that α < 3, we get

|( √ 5) -1 α n 3 -m -1| < 3 max α n 1 3 m , 3 m 1 -m < max{α n 1 -n+7 , 3 m 1 -m+1 }. ( 12 
)
For the left-hand side, we apply the result of Matveev, Theorem 2 with the following data:

t = 3, γ 1 = √ 5, γ 2 = α, γ 3 = 3, b 1 = -1, b 2 = n, b 3 = -m.
Throughout we work with the field K := Q( √ 5) with D = 2. Since max{1, n, m} ≤ 2n, we take B := 2n. Furthermore, we take

A 1 := 2h(γ 1 ) = log 5, A 2 := 2h(γ 2 ) = log α, A 3 := 2h(γ 1 ) = 2 log 3. We put = ( √ 5) -1 α n 3 -m -1.
First we check that = 0, if it were, then α 2n ∈ Q, a contradiction. Thus, = 0. Then, by Matveev's theorem, the left-hand side of ( 12) is bounded as

log | | > -1.4 • 30 6 • 3 4.5 • 2 2 (1 + log 2)(1 + log 2n)(log 5)(log α)(2 log 3).
By comparing with [START_REF] Herschfeld | The equation 2 x -3 y = d[END_REF], we get 

min{(n -n 1 -7) log α, (m -m 1 -1) log 3} < 1.
(n -n 1 ) log α, (m -m 1 ) log 3} = (n -n 1 ) log α.
In this case, we rewrite (6) as

α n -α n 1 √ 5 -3 m = β n -β n 1 √ 5 -3 m 1 < 1 + 3 m 1 ≤ 3 m 1 +1 , which implies α n-n 1 -1 √ 5 α n 1 3 -m -1 < 3 m 1 -m+1 . ( 13 
)
We put

1 = α n-n 1 -1 √ 5 α n 1 3 -m -1.
To see that 1 = 0, for if 1 = 0, then

α n -α n 1 = √ 5 • 3 m .
By conjugating the above relation in K, we get that

β n -β n 1 = - √ 5 • 3 m .
The absolute value of the left-hand side is at most

|β n -β n 1 | ≤ |β| n + |β| n 1 < 2,
while the absolute value of the right-hand side is at least

| - √ 5 • 3 m | ≥ √ 5 > 2 for all m > 127, which is a contradiction.
We apply Theorem 2 on the left-hand side of [START_REF] Herschfeld | The equation 2 x -3 y = d[END_REF] with the data

t = 3, γ 1 = α n-n 1 -1 √ 5 , γ 2 = α, γ 3 = 3, b 1 = 1, b 2 = n 1 , b 3 = -m.
The minimal polynomial of γ 1 divides

5X 2 -5F n-n 1 X -((-1) n-n 1 + 1 -L n-n 1 ),
where {L k } k≥0 is the Lucas companion sequence of the Fibonacci sequence given by L 0 = 2, L 1 = 1, L k+2 = 2L k+1 + L k for all k ≥ 0, for which the Binet formula for its general term is given by

L k = α k + β k for all k ≥ 0.
Thus, we obtain

h(γ 1 ) ≤ 1 2 log 5 + log α n-n 1 + 1 √ 5 < 1 2 log(2 √ 5α n-n 1 ) < 1 2 (n -n 1 + 2) log α < 8.4 × 10 11 (1 + log 2n). (14) 
So, we can take A 1 := 1.67 × 10 12 (1 + log 2n). Furthermore, as before, we take Then,

log | 1 | > -1.72 × 10 24 (1 + log 2n) 2 .
By comparing the above relation with [START_REF] Herschfeld | The equation 2 x -3 y = d[END_REF], we get that

(m -m 1 ) log 3 < 1.80 × 10 24 (1 + log 2n) 2 . ( 15 
)
Case 2. min{(nn 1 ) log α, (mm 1 ) log 3} = (mm 1 ) log 3.

In this case, we rewrite (6) as

α n √ 5 -(3 m-m 1 -1) • 3 m 1 = β n + α n 1 -β n 1 √ 5 < α n 1 + 2 √ 5 < α n 1 , which implies that |( √ 5(3 m-m 1 -1)) -1 α n 3 -m 1 -1| < α n 1 3 m -3 m 1 ≤ 3α n 1 3 m < 3α n 1 -n+4 < α n 1 -n+7 . ( 16 
)
We put

2 = ( √ 5(3 m-m 1 -1)) -1 α n 3 -m 1 -1.
Clearly, 2 = 0, for if 2 = 0, then α 2n ∈ Q, which is a contradiction. We again apply Theorem 2 with the following data

t = 3, γ 1 = √ 5(3 m-m 1 -1), γ 2 = α, γ 3 = α, b 1 = -1, b 2 = n, b 3 = -m 1 .
The minimal polynomial of γ 1 is X 2 -5(3 1 -1) 2 . Thus,

h(γ 1 ) = log( √ 5(3 m-m 1 -1)) < (m -m 1 + 1) log 3 < 1.25 × 10 12 (1 + log 2n).
So, we can take A 1 := 2.5 × 10 12 (1 + log 2n). Further, as in the previous applications, we take A 2 := log α and A 3 := 2 log 3. Finally, since max{1, n, m 1 } ≤ 2n, we can take B := 2n. Then, we get Finally, we rewrite the equation ( 6) as

log | 2 | > -1.4 • 30 6 • 3 4.5 • 2 2 (1 + log 2)(1 + log 2n)(2.
(α n-n 1 -1) √ 5 α n 1 -(3 m-m 1 -1) • 3 m 1 = β n -β n 1 √ 5 < |β| n 1 < 1.
Dividing through by 3 m -3 m 1 , we get

α n-n 1 -1 √ 5(3 m-m 1 -1) α n 1 3 -m 1 -1 < 1 (3 m -3 m 1 ) ≤ 3 3 m ≤ 3α -(n-4) ≤ α 7-n , ( 19 
)
since α < 3 and α < α n 1 . We again apply Theorem 2 on the left-hand side of (19) with the data

t = 3, γ 1 = α n-n 1 -1 √ 5(3 m-m 1 -1) , γ 2 = α, γ 3 = 3, b 1 = 1, b 2 = n 1 , b 3 = -m 1 .
Using the algebraic properties of the logarithmic height function, we get

h(γ 1 ) = h α n-n 1 -1 √ 5(3 m-m 1 -1) ≤ h α n-n 1 -1 √ 5 + h(3 m-m 1 -1) < 1 2 (n -n 1 + 4) log α + (m -m 1 ) log 3 < 2.80 × 10 24 (1 + log 2n) 2 ,
where in the above inequalities, we used the argument from ( 14) as well as the bounds (18). Thus, we can take A 1 := 5.60×10 24 (1+log 2n), and again as before A 2 := log α and

A 3 := 2 log 3. If we put 3 = α n-n 1 -1 √ 5(3 m-m 1 -1) α n 1 3 -m 1 -1,
we need to show that 3 = 0. If not, 3 = 0 leads to

α n -α n 1 = √ 5(3 m -3 m 1 ).
A contradiction is reached upon a conjugation in K and by taking absolute values on both sides. Thus, 3 = 0. Applying Theorem 2 gives

log | 3 | > -1.4 • 30 6 • 3 4.5 • 2 2 (1 + log 2)(1 + log 2n)(5.6 × 10 24 (1 + log 2n) 2 ) ×(log α)(2 log 3), a comparison with (19) gives (n -4) < 3 × 10 36 (1 + log 2n) 3 , or 2n < 6.2 × 10 36 (1 + log 2n) 3 . ( 20 
)
Now by applying Lemma 3 on (20) with the data m = 3, T = 6.2 × 10 36 , and x = 2n, leads to n < 2 × 10 40 .

Reducing the bound for n

We need to reduce the above bound for n and to do so we make use of Lemma 2 several times. To begin, we return to [START_REF] Herschfeld | The equation 2 x -3 y = d[END_REF] and put

:= n log α -m log 3 -log( √ 5).
For technical reasons, we assume that min{nn 1 , mm 1 } ≥ 20. We go back to the inequalities for , 1 , and 2 . Since we assume that min{n

-n 1 , m -m 1 } ≥ 20 we get |e -1| = | | < 1 4 . Hence, | | < 1 2
and since the inequality |y| < 2|e y -1| holds for all y ∈ -1 2 , 1 2 , we get

| | < 2 max{α n 1 -n+5 , 3 m 1 -m+1 } ≤ max{α n 1 -n+8 , 3 m 1 -m+2 }.
Assume that > 0. We then have the inequality

0 < n log α log 3 -m + log(1/ √ 5) log 3 < max α 8 (log 3)α n-n 1 , 6 (log 3)3 m-m 1 . < max{45α -(n-n 1 ) , 8 • 3 -(m-m 1 ) }.
We apply Lemma 2 with the data

τ = log α log 3 , μ = log(1/ √ 5) log 3
, (A, B) = (45, α) or [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF][START_REF] Bravo | On a problem of Pillai with Tribonacci numbers and powers of 2[END_REF].

Let τ = [a 0 ; a 1 , a 2 , . . .] = [0; 2, 3 , 1, 1, 6, 1, 49, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 10, 3, 
. . .] be the continued fraction of τ . We choose M := 2 × 10 40 and consider the 91th convergent p q = p 91 q 91 = 487624200385184167130255744232737921512174859336581 1113251817385764505972408650620147577750763395186265 .

It satisfies q = q 91 > 6M. Furthermore, it yields ε > 0.4892 and, therefore, either

n -n 1 ≤ log(45q/ε) log α < 254, or m -m 1 ≤ log(8q/ε) log 3 < 110.
In the case < 0, we consider the inequality

m log 3 log α -n + log( √ 5) log α < max α 8 log α α -(n-n 1 ) , 8 log α • 3 -(m-m 1 ) < max{98α -(n-n 1 ) , 18 • 3 -(m-m 1 ) }.
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We then apply Lemma 2 with the data

τ = log 3 log α , μ = log √ 5 log α , (A, B) = (98, α), or (18, 3). Let τ = [a 0 ; a 1 , a 2 , . . .] = [2; 3, 1 , 1, 6, 1, 49, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 10, 3, 12, 
. . .] be the continued fraction of τ . Again, we choose M = 2 × 10 40 , and in this case we consider the 101th convergent

p q = p 101 q 101 = 106360048375891410642967692492903700137161881169662 56228858848524361385900581302251812795713192394033 ,
which satisfies q = q 101 > 6M. Further, this yields ε > 0.125 and, therefore, either

n -n 1 ≤ log(98q/ε) log α < 254 , or m -m 1 ≤ log(18q/ε) log 3 < 110.
These bounds agree with the bounds obtained in the case > 0. As a conclusion, we have that either nn 1 ≤ 253 or mm 1 ≤ 109 whenever = 0. Now, we distinguish between the cases nn 1 ≤ 253 and mm 1 ≤ 109. First, we assume that nn 1 ≤ 253. In this case, we consider the inequality for 1 , ( 13) and also assume that mm 1 ≤ 20. We put

1 = n 1 log α -m log 3 + log α n-n 1 √ 5 .
Then, the inequality (13) implies that

| 1 | < 6 3 m-m 1 .
If we further assume that 1 > 0, we then get

0 < n 1 log α log 3 -m + log((α n-n 1 -1)/ √ 5) log 3 < 6 (log 3)3 m-m 1 < 6 3 m-m 1 .
Again we apply Lemma 2 with the same τ as in the case > 0. We use the 91th convergent p/q = p 91 /q 91 of τ as before. But in this case, we choose (A, B) := (8, 3) and use 

μ l = log((α l -1)/ √ 5)
τ - m n 1 + 2 < 6 3 m-m 1 (n 1 + 2) , or τ - m -3 n 1 + 6 < 6 3 m-m 1 (n 1 + 6) ,
respectively. We assume that mm 1 > 150. Then, 3 m-m 1 > 8 × (4 × 10 40 ) > 8 × (n 1 + 6); therefore

6 3 m-m 1 (n 1 + 2) < 1 3(n 1 + 2) 2 , and 6 3 m-m 1 (n 1 + 6) < 1 3(n 1 + 6) 2 .
By Lemma 1, it follows that m/(n 1 + 2) or (m -3)/(n 1 + 6) are convergents of τ , respectively. So, say one of m/(n 1 + 2) or (m -3)/(n 1 + 6) is of the form p k /q k for some k = 0, 1, 2, . . . , 92. Here, we use that q 92 > 4 × 10 40 > n + 1 + 6. Then

1 (a k + 2)q 2 k < τ - p k q k . Since max{a k : k = 0, 1, 2, . . . , 92} = 140, we get 1 142q 2 k < 6 3 m-m 1 q k
and q k divides one of {n 1 + 2, n 1 + 6}.

Thus, we get

3 m-m 1 ≤ 6 × 142(n 1 + 6) < 6 × 142 × 4 × 10 40 ,
giving mm 1 ≤ 92. Now let us turn to the case mm 1 ≤ 109 and we consider the inequality for 2 , (16). We put

2 = n log α -m 1 log 3 + log(1/( √ 5(3 m-m 1 -1))),
and we also assume that nn 1 ≥ 20. We then have

| 2 | < 2α 8 α n-n 1 .
We assume that 2 , then we get

0 < n log α log 3 -m 1 + log(1/( √ 5(3 m-m 1 -1)) log α < 3α 8 (log 3)α n-n 1 < 130 α n-n 1 .
We apply again Lemma 2 with the same τ, q, M, (A, B) := (130, α) and 

μ l = log(1/( √ 5(3 l -1))) log 3 for k = 1,
= n 1 log α -m 1 log 3 + log α n-n 1 -1 √ 5(3 m-m 1 -1) . 
Since n ≥ 300, the inequality (19) implies that

| 3 | < 3 α n-4 = 3α 4 α n .
Assuming that 3 > 0, then As before, we have a problem at (k, l) := (4, 1), [START_REF] Herschfeld | The equation 2 x -3 y = d[END_REF][START_REF] Baker | The equations 3x 2 -2 = y 2 and 8x 2 -7 = z[END_REF], [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF]2). The cases (k, l) := (4, 1), [START_REF] Herschfeld | The equation 2 x -3 y = d[END_REF][START_REF] Baker | The equations 3x 2 -2 = y 2 and 8x 2 -7 = z[END_REF] were treated before in the case of 1 . The case (k, l) := (8, 2) arises because

α 8 -1 √ 5(3 2 -1) = 3 8 α 4 .
We, therefore, discard the cases (k, l) := (4, 1), (12, 1), (8, 2) for some time. For the remaining cases, we get ε > 0.0015, so we obtain n ≤ log(20q/ε) log α < 264.

A similar conclusion is reached when 3 < 0. Hence, n < 300. Now, we look at the cases (k, l) := (4, 1), (12, 1), [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF]2). The cases (k, l) := (4, 1), (12, 1) can be treated as before when we showed that nn 1 ≤ 263 implies mm 1 ≤ 115. The case when (k, l) = (8, 2) can be dealt with in a similar way. Namely, it gives that

|(n 1 + 4)τ -m 1 | < 20 α n . Therefore τ - m 1 n 1 + 4 < 20 (n 1 + 4)α n . ( 21 
)
Since n ≥ 300, we have α n > 2 × 20 × (4 × 10 40 ) > 40(n 1 + 4). This shows that the right-hand side of the above inequality (21) is at most 2/(n 1 + 4) 2 . By Lemma 1, we get that m 1 /(n 1 + 4) = p k /q k for some k = 1, 2, . . . , 92. We then get by a similar argument as before that α n < 20 × 142 × (4 × 10 40 ), which gives n ≤ 211. Therefore, the conclusion is that n < 300 holds also in the case (k, l) = (8, 2). However, this contradicts our working assumption that n > 300. This completes the proof of Theorem 1.

A 2 :

 2 = log α and A 3 := 2 log 3. Finally, since max{1, n 1 , m} ≤ 2n, we can take B := 2n. Then, we get log | 1 | > -1.4 • 30 6 • 3 4.5 • 2 2 (1 + log 2)(1 + log 2n)(16.8 × 10 11 (1 + log 2n))×(log α)(2 log 3).

0 < n 1 log α log 3 -

 3 where (k, l) := (nn 1 , mm 1 ). We again apply Lemma 2 with the same τ, q, M, (A, B) := (20, α) andμ k,l = log((α k -1)/( √ 5(3 l -1)) log 3 for 1 ≤ k ≤ 265, 1 ≤ l ≤ 115.

  log 3 , instead of μ for each possible value of l := nn 1 ∈ [1, 2, . . . , 253]. We have problems at l ∈ {4, 12}. We discard these values for now and we will treat them later. For the remaining values of l, we get ε > 0.0005. Hence by Lemma 2, we get n 1 ≤ 253 implies that mm 1 ≤ 115, unless nn 1 ∈ {4, 12}. A similar conclusion is reached when 1 < 0 with the same two exceptions for n -n 1 ∈ {4, 12}.So, 1 = (n 1 + 2) log αm log 3 , or (n 1 + 6) log α -(m -3) log 3 when l = 4, 12, respectively. Thus we get that

	m -m 1 <	log(8q/0.0005) log 3	< 116.
	Thus, n The reason we have a problem at l ∈ {4, 12} is because
	α 4 -1 √ 5	= α 2 , and	α 12 -1 √ 5	= 2 3 α 6 .

  2, . . . , 109.

	We get ε > 0.004; therefore		
	n -n 1 <	log(130q/ε) log α	< 266.

A similar conclusion is reached when 2 < 0. To conclude, we first get that either

nn 1 ≤ 253 or mm 1 ≤ 109. If nn 1 ≤ 253, then mm 1 ≤

115, and if mm 1 ≤ 109 then nn 1 ≤ 265. Thus, we conclude that we always have nn 1 ≤ 265 and mm 1 ≤ 115.

Finally, we go to the inequality of 3 , (19). We put 3
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