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Abstract

Safety arguments, also called safety cases, are commonly used to demonstrate that
adequate efforts have been made to achieve safety goals. Assessing the confidence
of such arguments and decision-making is usually done manually and is heavily de-
pendent on subjective expertise. Therefore, there is an urgent need for an approach
that can assess confidence in the arguments in order to support decision-making. We
therefore propose a quantitative approach, based on Dempster-Shafer (D-S) theory,
to formalize and propagate confidence in safety cases. Goal Structuring Notation
is adopted. The proposed approach focuses on the following issues regarding argu-
mentation assessment: 1) formal definitions of confidence measures based on belief
functions from D-S theory; and 2) the development of confidence aggregation rules
for structured safety arguments with the help of Dempster’s rule. Definitions of con-
fidence measures and aggregation rules are deduced for single, double, and n-node
arguments. Finally, a sensitivity analysis of aggregation rules is used to preliminarily
validate this approach.
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1. Introduction

In safety-critical domains, such as aeronautics, railways, or the automotive sec-
tor, a structured safety argument is often used to justify sufficient confidence in sys-
tem safety (safety is defined as freedom from unacceptable risk in ISO/IEC-Guide51
(1999)). Currently, although most safety arguments are textual, there is a grow-
ing trend for graphical notations, and establishing an evidence-based argument is
already a requirement in various industrial sectors. A safety argument consists of a
top statement to be justified (e.g., “{system X} is acceptably safe” or “the failure
rate of {system X} is less than 10−9”). Nevertheless, issues arise when assessing
a safety argument that is based on extensive documentary evidence, especially for
computing systems. In practice, a regulatory body decides on the acceptability of the
statement, and their decision is based on their confidence in the argument. The avail-
able arguments do not provide such confidence directly, and judgments rely heavily
on subjective expertise. Thus, an approach is needed that can make explicit and
measure confidence in the safety argument, and can take into account the following
challenges:

• Confidence definition

Clarifying the concept of confidence in a safety argument is clearly important.
Uncertainties exist in the argument intended to demonstrate the system safety.
Confidence can be derived from measuring these uncertainties. For instance, an
uncertainty may relate to the degree of belief in a supporting evidence.It could
also be the extent of the contribution of an evidence to the top claim. Moreover,
compared to pure hardware uncertainties expressed with probabilities (usually
calculated with objective measures), the assessment of uncertainties in an argu-
ment done by experts is often subjective. Thus, a suitable uncertainty theory
is necessary for a formal definition of the confidence placed in an argument.

• Aggregation rules

Aggregation rules are essential for propagating confidence in an argument. Con-
fidence varies depending on the independent and combined contributions of
different supporting premises, which relate to different argument types. Sev-
eral premises that relate to the same top statement can be complementary
or redundant. Hence, this should be considered when developing aggregation
rules. Similarly, the choice of the mathematical method for merging confidence
measures is crucial.
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In this paper, we propose a quantitative approach to formalize and propagate
confidence in the safety argument. This approach is based on Dempster-Shafer un-
certainty theory (D-S theory). Goal Structuring Notation (GSN) is used to demon-
strate the argument’s structure. First, we formally define confidence measures for
safety arguments using belief functions. Then, we derive confidence propagation
rules using Dempster’s rule. These definitions and aggregation rules are developed
for both single, double-, and n-node arguments. We carry out a sensitivity analysis
to observe the behaviors of aggregation rules. Our previous work (Wang et al., 2017,
2018) proposed a practical framework for safety argument assessment. This paper is
a theoretical extension and a complete rework of a first version (Wang et al., 2016).
New inference types and associated propagation rules are introduced, along with a
detailed derivation procedure.

This paper is organized as follows. In Section 2, we introduce the structuring
notation, types and uncertainty sources for safety cases. In Sections 3 and 4, formal
definitions of confidence measures for arguments are proposed for single and double-
node arguments, respectively. Then, we aggregate these measures consistently using
D-S theory. In Section 5, aggregation rules are generalized for n-node arguments.
We discuss related work and draw some conclusions in the last two sections.

2. Background

In this section, we introduce the relevant background knowledge. We start with
the concept of the safety case and its method. Then, the argument types proposed
in literature are presented. Finally, we discuss uncertainties that can be present in
an argument.

2.1. Structured safety argument

Structured arguments play an important role in communicating a system’s at-
tributes with various names: safety case (Kelly and Weaver, 2004; Bishop and Bloom-
field, 1998), assurance case (Bloomfield et al., 2006), trust case (Cyra and Gorski,
2007), dependability case (Bloomfield et al., 2007), etc. Of these, the concept of
safety case has already been adopted in various safety-critical sectors. It is gener-
ally considered as “a documented body of evidence that provides a convincing and
valid argument that a system is adequately safe for a given application in a given
environment” (Bishop and Bloomfield, 1998). The development of the safety case
is a common way to demonstrate system safety. In several sectors, regulations re-
quire developing a safety case and some regulatory bodies explicitly require building
safety assurance arguments (automotive (ISO26262, 2011), railway (EN50129, 2003),
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defense (EN50129, 2003), software engineering (ISO/IEC15026-2, 2011), etc.). The
Object Management Group (OMG, 2018) recently proposed a method to establish a
meta-model for safety arguments.

Safety cases can be documented with plain text, which can be a flexible way
to express arguments. However, the quality of such arguments is closely linked to
how the argument is organized. Kelly (1998) points out that proficiency in the
written language impacts the expression of arguments, and unclear semantics may
introduce ambiguity. To structure the argumentation, Toulmin (1969) proposed a
model including six distinctive elements: claim, data, warrant, qualifier, rebuttal and
backing.

Based on Toulmin’s model, Kelly (1998) put forward a notation specifically de-
signed for the safety case, called Goal Structuring Notation (GSN), which helps to
make the presentation of an argument more readable and adaptable. The notation
aims to break down the top goal into sub-goals until there is evidence to support
them. The main elements of GSN are presented in an example (Figure 1) and listed
below. This safety argument fragment is derived from the Hazard Avoidance Pattern
(Kelly and McDermid, 1997).

• Goal : the goal refers to claims regarding system design, implementation, op-
eration or maintenance. For instance, a goal can be “G1: {System X} is
acceptably safe”.

• Solution: this refers to available information that directly supports a goal.
Solutions may include all forms of evidence. For example, they can be test
results, verification reports, fault trees, etc.

• Strategy : the description of how to decompose the goal. This always appears
between parent and child goals. For instance, in Figure 1, strategy S1 shows
how goal G1 is inferred from sub-goals.

• Context : a reference to contextual information, or a statement of contextual
information. It can be related to a goal, a strategy or a solution.

These terms proposed in GSN may not always fit with other approaches. Actually,
in the safety case community, alternative terminology exists, such as claim-argument-
evidence from ASCE tool (Bishop and Bloomfield, 1998), claim-artifact from SACM
(OMG, 2018) or claim-evidence from (ISO/IEC15026-2, 2011). When we refer to a
GSN diagram we will use its terminology (Goal / Solution), but in other case we will
use Claim/Evidence terms which are more generic in argumentation.
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C1
 List of identified 

hazards for {System X}

G1
 {System X} is 

acceptably safe

S1
 Argumentation by 

claiming addressed all 
identified plausible 

hazards

 
A given prevention 

risk control is 
implemented.

 
A given protection 

risk control is 
implemented.

G2
 {Hazard H1} has been 

addressed

G3
 {Hazard H2} has been 

addressed

Gn
 {Hazard Hn} has been 

addressed
…

{Hazard H1} has 
been removed.

Sn1 Sn2 Sn3

Solution

Goal

Strategy

SupportedBy

InContextOf

Context

Legend

Figure 1: GSN example adapted from the Hazard Avoidance Pattern (Kelly and McDermid, 1997)

2.2. Argument types

For complex arguments in which the derivation of the conclusion (top statement)
from premises is not obvious, Govier (2013) emphasized the importance of structuring
arguments into argument types. A clear argument structure distinguishes the way
premises contribute to the conclusion. The argument type helps to understand the
line of reasoning underlying an argument, which significantly impacts its evaluation.

Given the cooperative contribution of premises, a graphical notation is used to
show different argument structures (Figure 2). Premises and conclusions are not
distinguished. In Figure 2, À and Á are premises while Â represents the conclu-
sion. Three basic argument types (called argument patterns by Govier (2013)) are
proposed for arguments with two or more premises:

1) Linear sequential : Premises support the conclusion in sequence. In 1) of Fig-
ure 2, Á is deduced from À; and Â is deduced from Á. Both premises are
necessary to obtain the conclusion.

2) Linked support : Premises must be linked to support the conclusion. No con-
clusion can be deduced if one of the premises is missing. In 2) of Figure 2, both
premises À and Á are needed for conclusion Â. The falseness of either premise
leads to the rejection of the conclusion based on this argument.
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Therefore,
3. Vulnerability to heart disease is inherited.

Here the reasoning is from the combination of (1) and (2) to the conclusion, (3). If we
were to argue either from (1) alone or from (2) alone, the argument would not make
much sense. To support (3), (1) and (2) must be linked, as shown in Figure 2.10. Both
premises are needed for the argument to work. If either one is false or unacceptable,
you will not be able to reach the conclusion on the basis of this argument.

Let us look at one further example:

1. Athletes get plenty of exercise.
2. Exercise keeps a person healthy.
3. Healthy people will live a long life.
Therefore,
4. Athletes will lead a long life.

The argument here requires the linking of all three premises, as is depicted in
Figure 2.11. When you evaluate the argument, this linking will be important, because
if you reject any one of these premises, you will, in effect, be judging that no premise
can offer any support to the conclusion. If (1) is rejected, then (2) and (3) do not
support (4); if (2) is rejected, (1) and (3) do not support it; and if (3) is rejected, (1)
and (2) do not support it.

Linked support contrasts with convergent support. When the support is of the
convergent type, each premise states a separate reason that the arguer thinks is relevant
to the conclusion. In these cases, premises are not linked and are not interdependent
in the sense that each one could support the conclusion without the others.

Consider the following example:

1. Setting aside apartments for adults and keeping out children discriminates against
people with children.
2. Setting aside apartments for adults and keeping out children encourages single, child-
less people to pursue an overly selfish lifestyle.

1 !

3

2

FIGURE 2.10

1 ! !

4

2 3

FIGURE 2.11
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Therefore,
3. Apartments should not keep children out.

Here, either (1) or (2) by itself could provide some reason for the conclusion. If you
were to deny (1), you would still have some reason for supporting the conclusion on
the basis of (2)—and if you were to deny (2), you would still have (1) as support.
Having both reasons together does, however, strengthen the argument because more
dimensions of the topic are considered. This argument would be diagrammed as
shown in Figure 2.12.

These patterns of support may be combined in arguments. For example, a main
argument might have two premises, (4) and (5), that link to support a main conclu-
sion, (6). Premise (4) might be supported by premise (1) in a linear subargument and
premise (5) might be supported by premises (2) and (3) in a convergent subargument.
An argument with this pattern would be diagrammed as in Figure 2.13.

Convergent support is discussed further in Chapter Twelve, and various types of
linked support are treated in detail in Chapters Seven, Eight, Nine, and Ten.

G E X E R C I S E S E T

EXERCISE 2
Assume that each of the following passages represents an argument. Identify the premises and
the conclusion. For all cases where there is more than one premise, indicate whether you think
the premises are linear, linked, or convergent in the way they are supposed to support the
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Standardized, the passage looks like this:

1. Only the person leading a life can give it a purpose.
Thus,
2. Every life has a different purpose, given to it by the person leading that life.
Therefore,
3. The purpose of life in general is not something that can be known.

Here, the main conclusion is supported by a single premise, which, in turn, is the con-
clusion of a subargument with a single premise. The structure is illustrated in Figure 2.3.
This diagram shows that (1) is offered to support (2), and then (2) is offered to support
(3). You might wish to deny the inference from (1) to (2) on the grounds that it is
possible for different people to give the same meaning to life; however, we are not yet
discussing the evaluation of arguments—only their structure—so we will not consider
this issue now.

Another argumentative structure is one in which the same premise or premises
may be used to establish two distinct conclusions, so that one argument may appear to
have two conclusions. Here is an example, adapted from the political philosophy of
John Locke.

Labor is the basis of all property. From this it follows that a man owns what he makes by
his own hands and the man who does not labor has no rightful property.

Here, the phrase from this it follows that serves as a logical indicator; it introduces two
quite distinct conclusions that Locke is drawing from the same premise. The premise is
that labor is the basis of all property. From this premise, two conclusions are inferred: that
a man owns what he makes by his own hands and that a man who does not labor has no
rightful property. There is no subargument in this argument, because the premise is not
supported by any other premise. If you were unwilling to accept this premise, then there
would be no basis provided for either conclusion. The conclusions make distinct claims.
The short passage expresses two quite distinct arguments in a highly compact way.

The two arguments can be standardized as:

1. Labor is the basis of all property.
Therefore,
2. A man owns what he makes by his own hands.

and

1. Labor is the basis of all property.
Therefore,
3. A man who does not labor has no rightful property.

3

2

1

FIGURE 2.3
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1) Linear sequential 
pattern

2) Linked support 
pattern

3) Convergent support 
pattern

Figure 2: Govier (2013)’s three argument types

3) Convergent support : In contrast with the linked support argument, each premise
of a convergent support argument contributes to the conclusion. In 3) of Fig-
ure 2, either premise À or Á can support the conclusion Â. If one of the
premises is false, the other is able to support it Â. The truth of both premises
increases confidence in the conclusion, due to the fact that more dimensions of
the topic are considered.

2.3. Sources of uncertainty in an argument

To assess confidence, we need to identify the potential uncertainties in the argu-
ments. Taking a simple GSN safety argument as an example (shown in Figure 3):
the top goal A: {System X} is acceptably safe is supported by the sub-goal Tests are
conclusive. Two sources of uncertainties are identified, which are noted:

• Uncertainty in the fact that B is True

For instance, do we consider that Tests are conclusive is true? We may doubt
this claim after evaluating associated evidences (which are not presented here,
but could be demonstration of test input coverage for instance). We propose to
use the term trustworthiness, which assesses the degree of belief in claim B.The
definition of the trustworthiness is universal for all claims, and is introduced
in the following section (Section 3.1).

• Uncertainty in the fact that B effectively supports A

For instance, is Tests are conclusive sufficient to support the claim {System X}
is acceptably safe? We may doubt the extent to which claim A can be deduced
from claim B. We add another property, named appropriateness, to estimate
the degree of belief in the inference. The definitions of the appropriateness
depend on the argument structures and they are introduced in Sections 3 and
4, respectively.
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Uncertainty in “B supports A”

Uncertainty in Sub-goal B

?

A
{System X} is 

acceptably safe 

B
Tests are 

conclusive

?

Uncertainty in Goal A
?Goal

Goal

Figure 3: Sources of uncertainties in a simple inference modelled with GSN

3. Confidence propagation for a single argument

In this section, we formally define the two properties, appropriateness and trust-
worthiness, as confidence measures (Section 3.1). Then, we propose an approach for
a single argument (linear sequential or one-node) to propagate confidence to the top
goal in a safety case using these two factors

3.1. Formal definition of trustworthiness and appropriateness

A goal, in GSN, is expressed by a claim (e.g., “Tests are conclusive”). Here,
the assessment of the trustworthiness of a goal is generally studied by focusing on a
statement. Let us consider, for instance, the statement A “{System X} is acceptably
safe”. The frame of discernment ΩA for the truth of A is binary: {A,A} or {True,
False}.

The adoption of D-S theory, instead of classic probabilistic theory, in our approach
aims to explicitly measure the uncertainty. There is a consensus that the probabilistic
theory is suffering from some issues. For example, equal probabilities are always used
to show the total ignorance (0.5 to win or lose the toss). The universe set of the
possible results is Ω = {x, x̄}. The probabilities of x, x̄ are p(x) = p(x̄) = 0.5.
These probabilities can be interpreted as we have no information at all for the event
X; or it can be explained as there is an equal distribution. Dempster (2008) also
explains the importance to allow probabilities of “don’t know”, and introduces the
same triple (p,q,r) associated with an assertion, where p and q represent respectively
the probabilities “for” and “against” the assertion, and r is the probability of “don’t
know”.

In D-S theory, the mass function of set A reflects the degree of belief in the truth
of A, denoted as mΩA({A}). Hence, the trustworthiness of a statement is formalized
through assigning the mass function to sets representing the belief, uncertainty, and
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disbelief uncertainty belief
m( A ) m(A)

1

m( A, A )

Figure 4: The measures of truth of statement A with D-S theory

disbelief. An opinion of the truth of this statement can be explicitly expressed with
three masses represented in Figure 4. These measures are:

Belief in the statement A: belA = mΩA({A}),
Disbelief in the statement A: disbA = mΩA({A}),
Uncertainty in the statement A: uncerA = mΩA({A,A}).

According to the mass function constraint, we have m({A})+m({A})+m({A,A}) =
1, i.e., belief + disbelief + uncertainty = 1. Hence, we define the trustworthiness of
statement of goal A based on the belief function and the mass function of D-S theory:

Definition 3.1. The trustworthiness of the statement of goal A is a three-tuple
trustA = (belA, uncerA, disbA):

trustA


belA = belΩA({A}) = mΩA({A})
disbA = belΩA({A}) = mΩA({A})
uncerA = mΩA({A,A}) = 1−mΩA({A})−mΩA({A})

(1)

where belA, disbA, uncerA ∈ [0, 1]. belA, disbA and uncerA denote the degree of our
belief in, disbelief in or doubt about statement A. If A = {System X} is acceptably
safe, it depends on, for instance, the completeness of the test sequence, the cor-
rectness of the test results, the clarity of the evidence, the competence of engineers,
etc.

In Figure 5, we represent the trustworthiness of goal A (belA, uncerA, disbA) with
a black rectangle.

As introduced in Section 2.3, appropriateness is used to evaluate inferences from
child to parent goals. In Figure 6, the top goal is supported by n sub-goals: G1-Gn.
Appropriateness measures are annotated to the arrows linking them. We propose
three appropriateness factors that may influence the propagation of trustworthiness
from sub-goals to the top-goal:
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A

{System X} is acceptably safe

(belA, uncerA, disbA)

Figure 5: Goal A annotated with trustworthiness measures

Top Goal

G1 G2 Gn…

wG1 wG2 wGn

<<TYPE>>

v

Figure 6: An argument annotated with appropriateness measures

• The contributing weight of each sub-goal, wG1, wG2, ..., wGn. As the name in-
dicates, this weight is used to measure the degree of the contribution of each
sub-goal to the top goal.

• The cooperative contribution of sub-goals; this is called the argument type and
is annotated with TYPE . Two main types are proposed in the next section:
complementary and redundant arguments.

• The overall reliability of sources of information or the completeness of premises,
denoted as v. As the available premises may be not enough to justify full confi-
dence in the top goal, this parameter provides a way to weaken the confidence
obtained from sub-goals. It is also known as a discounting factor1 in D-S theory.

1A discounting factor v ∈ [0, 1] is employed to make the mass, for example, mΩA({A}) less
informative and to increase the mass allocated to ignorance, i.e., mΩ

A(Ω). v = 0 represents zero
reliability of the source; on the contrary, while v = 1 implies total trust in the source. The
discounting operation is defined as:

mΩ
v (A) =

{
v ·mΩ(A), if A 6= Ω,

1− v · (1−mΩ(Ω)), if A = Ω.
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A

B

(belB, uncerB, disbB)

(belA, uncerA, disbA)

wB

Figure 7: A single argument annotated with assessment parameters

Based on these factors, we propose a general definition of appropriateness using
the example given in Figure 6:

Definition 3.2. The appropriateness of sub-goals (appr{G1,...Gn}→A, simplified as
apprA) regarding the top goal is specified by the factors in the following expression:

apprA = (wG1, wG2, ..., wGn, < TY PE >, v) (2)

where wGi
, v,

∑
wGi
∈ [0, 1], < TY PE >∈ {complementary, redundant}.

As noted above, wGi
, < TY PE > and v correspond to the three factors that may

influence trustworthiness propagation; < TY PE > is an operator for the argument
type, which is only applicable if the argument has more than one premise (n > 1).
The two options for argument types (complementary and redundant) will be defined
in the following sections.

Confidence propagation starts from the simplest argument with one sub-goal. We
call this the single argument (one-node argument), as shown in Figure 7. A single
argument A is supported by B and has only one premise. Note that although we
adopt the GSN notation “is supported by” arrow (from A to B), in this section, we
focus on confidence propagation from B to A (bottom-up). This calculation shows
the simplest case; the same rationale is applied in the next sections to double-node
and n-node arguments.

3.2. Appropriateness of sub-goals

The appropriateness of sub-goals affects the trustworthiness of the top goal. The
general definition of appropriateness is given in Section 3.1. Here, we specify the
corresponding factors for the single argument based on Definition 3.2. In this case,
only the contributing weight of the sub-goal is considered.
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We start from the definition of the contributing weight, for instance, the weight
of sub-goal B (see Figure 7). Based on the D-S theory, masses are used to ex-
press the degree of belief in certain states. A 2-tuple (XB, XA) presents the cross
product ΩB × ΩA, where XB and XA are elements of ΩB and ΩA, respectively
(ΩA = {A,A}, ΩB = {B,B}). Therefore, the frame of discernment ΩB × ΩA =
{(B,A), (B,A), (B,A), (B,A)}. Among the elements of the frame, for example,
(B,A) represents the situation: when B is false, A is false. In our approach, the
appropriateness of B to A is defined as follows:

Definition 3.3. The appropriateness of the sub-goal B to support the top goal A
(apprB→A) is specified by the masses m1 assigned to the subsets ({(B,A), (B,A)})
and (ΩB × ΩA) considering the discounting factor v:

apprB→A :

{
mΩB×ΩA

1 ({(B,A), (B,A)}) = wBv

mΩB×ΩA
1 (ΩB × ΩA) = 1− wBv

(3)

where wB ∈ [0, 1] is the contributing weight of B, representing the degree to which
A depends on B; v ∈ [0, 1] is the discounting factor that is used to evaluate the
completeness of the available premises for A.

In the above definition, masses are assigned to:

• The direct inferences ({(B,A), (B,A)}), which is called the contributing weight
of B, denoted as wB→A (simplified as wB in Figure 7 and Equation 3).
{(B,A), (B,A)} indicates that the inference that A is true can be inferred from
B is true, and conversely B is false leads to A is false.

• The uncertainty (ΩB × ΩA), where ΩB × ΩA is the simplified expression of
{(B,A), (B,A), (B,A), (B,A)}. It represents uncertainty in whether B con-
tributes to demonstrating the truth of A.

In addition, the available premises may be not enough to justify full confidence in
the top goal. The discounting factor (v) is introduced. In D-S theory, the discounting
factor aims to measure the reliability of the source of information (usually called an
agent). It is adopted here to represent the reliability of sources or the completeness
of premises. According to the discounting operation (see the footnote in Section 3.1),
the support of sub-goal B is weakened and more mass is credited to the uncertain
state (ΩB × ΩA). When v = 1, B sufficiently supports A and no other premise is
needed. When v = 0, mΩB×ΩA

1 (ΩB × ΩA) = 1, B does not provide any knowledge
about A, i.e. there is complete uncertainty regarding A.
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It is important to note that in a safety case, no rebuttal (as defined by Toul-
min) is considered, which means that m({(B,A)}) and m({(B,A)}) are included in
uncertainty, and thus not expressed in the equations.

3.3. Trustworthiness of sub-goals

Even if argument B is appropriate to support A, we need to estimate the trustwor-
thiness of B itself. The trustworthiness of a goal is introduced in the Definition 3.1.
To combine these two types of confidence measures of sub-goal B and obtain the
trustworthiness of top goal A, we need to unify frames of discernement (ΩB and
ΩB × ΩA) to which the masses are assigned, as ΩB × ΩA. This is achieved by vac-
uous extension (see (Mercier et al., 2005)) which is actually an extension of a mass
defined in ΩB to the frame of discernment ΩB × ΩA. The masses m2 represent the
trustworthiness of B extended to the frame ΩB × ΩA (represented by the up arrow
↑):

trustB :


belΩB({B}) = mΩB↑ΩB×ΩA

2 ({B} × ΩA) = belB

belΩB({B}) = mΩB↑ΩB×ΩA
2 ({B} × ΩA) = disbB

mΩB({B,B}) = mΩB↑ΩB×ΩA
2 (ΩB × ΩA) = uncerB = 1− belB − disbB

(4)
Where belB, disbB, belB +disbB ∈ [0, 1]. {B}×ΩA is used instead of {(B,A), (B,A)}
and {B} × ΩA instead of {(B,A), (B,A)} to highlight the focus on B.

3.4. Confidence propagation for the single argument

Our aim is to deduce the trustworthiness of A (belA, disbA, uncerA) based on the
trustworthiness of B, trustB (4) and the appropriateness of B to A, apprB→A (3).
These can be regarded as two ways to assess A and the two sources of information
can be combined with the help of Dempster’s rule.

In order to illustrate the combination of m1 (3) and m2 (4), the six possible
combinations and focal sets2 in the frame ΩB × ΩA are shown in Table 1. The
conflict factor K in this combination rule is 0, as there is no conflict in this case. Our
aim is to obtain the trustworthiness of A (belA, disbA, uncerA) in the frame ΩA from
the combined results of ΩB ×ΩA. Thus, the marginalization operation (see (Mercier
et al., 2005)) is used. For example, belA is obtained from the focal set {(B,A)},
which is underlined in Table 1:

belΩA({A}) = mΩA(A) = mΩB×ΩA↓ΩA(A) = mΩB×ΩA
12 ({(B,A)}) (5)

2For a mass function mk on the space Ω, a set E is a focal element of mk iff mk(E) > 0.
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Table 1: Focal sets after the combination of apprB→A and trustB

m1 (apprB→A)

mΩB×ΩA

1 ({(B,A), (B,A)}) mΩB×ΩA

1 (ΩB × ΩA)

m
2

(t
r
u
s
t B

)

mΩB↑ ΩB×ΩA

2 ({B} × ΩA) {(B,A)} {B} × ΩA

mΩB↑ ΩB×ΩA

2 ({B} × ΩA) {(B,A)} {B} × ΩA

mΩB↑ ΩB×ΩA

2 (ΩB × ΩA) {(B,A), (B,A)} ΩB × ΩA

Then, belief in A is calculated according to Dempster’s rule:

mΩB×ΩA
12 ({B,A}) =

mΩB×ΩA
1 ({(B,A), (B,A)})×mΩB↑ΩB×ΩA

2 ({B} × ΩA)

1−K

=belBwBv

(6)

Thus, according to (5):

belΩA({A}) = mΩB×ΩA
12 ({B,A}) = belBwBv (7)

where belB, wB, v ∈ [0, 1].
Similarly, disbA is obtained from the focal set {(B,A)}; uncerA is calculated from

the remaining four focal sets shown in Table 1. Therefore, we can summarize the
trustworthiness of A (belA, disbA, uncerA) as:

trustA :


belΩA({A}) = mΩA({A}) = belBwBv

disbΩA({A}) = mΩA({A}) = disBwBv

uncerΩA({A}) = mΩA(({A,A})) = 1− (belB + disB)wBv

(8)

where belB, disbB, wB, v ∈ [0, 1].
For example, let us take the argument: “A: System is acceptably safe” and “B: All

hazards have been addressed”. Assuming the trustworthiness of goal A is trustB =
(belB, uncerB, disbB) = (0.7, 0.2, 0.1), the appropriateness of goal B to A is wB = 0.9,
and v = 1. Following (8), we have:

trustA = (belA, uncerA, disbA) = (0.63, 0.28, 0.09)

13
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< <TYPE> >

Figure 8: A double-node argument annotated with assessment parameters

4. Confidence propagation for the double-node argument

In practice, most arguments have a more complex structure, with two or more
premises. As Figure 9 shows, two arguments may actually be based on different
argument types. For instance, (a) is often used as it is known that there is a partial
overlap between testing and formal verification in software development. In contrast,
in (b), knowing that hazards are associated with different impacts, each sub-goal
contributes independently to the top goal “System is acceptably safe”. Thus, in this
section, we focus on confidence propagation for a double-node argument.

4.1. Argument types

Govier (2013) emphasizes the importance of the cooperative contribution of premises
in argument assessment (this 2013 edition is actually the 7th edition, first editions are
in the 80’s). She proposes three argument types: linear sequential (single argument),
linked support (“pure AND”) and convergent support (“pure OR”). These types are
considered in the context of logical reasoning. A statement can only be true or false.
Referring to the work of Ayoub et al. (2013), Cyra and Gorski (2011) and Guiochet
et al. (2015) point out that most arguments are not “pure AND” nor “pure OR” to
infer a statement. Consequently, Cyra and Gorski (2011) extend Govier’s argument
types by considering more complex inferences. They define two types of argument
and several sub-types:

• Type 1: the falsification of a single premise leads to the rebuttal of the con-
clusion, including the NSC-argument (Necessary and Sufficient Condition list
argument), the SC-argument (Sufficient Condition list argument) and the com-
bination of the NSC-argument and the SC-argument

• Type 2: the falsification of one of the premises decreases, but does not nullify
support for the conclusion, including the C-argument (Complementary argu-
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Figure 9: Argument examples with different inference complexities

ment), the A-argument (Alternative argument), and the combination of the
C-argument and the A-argument

These complementary and alternative arguments are very useful in naming the
mutual contribution of premises. However, they remain descriptive, and the two
combinations are not clearly explained regarding both their definition and processing.
Consequently, the corresponding confidence aggregation rules have little justification
and lack consistency for different types. Ayoub et al. (2013) classified argument types
based on the degree of overlap between premises into alternative, disjoint, overlap
and containment. This is similar to Cyra and Gorski (2011)’s classification except
for overlap.

Drawing upon this work on argument type classification, we propose an approach
to formally define argument types as a part of the definition of the appropriateness
of sub-goals. Here, we use the same approach to extend the confidence assessment of
the single argument to the double-node argument. A typical double-node argument
is presented in Figure 8: goal A is supported by two sub-goals B and C. As in the
single argument example, confidence assessment parameters are annotated.

These parameters are:

• The appropriateness of sub-goals B and C (see expression below), including
the contributing weights, (wB→A, wC→A, simplified as wB, wC), the operator
for the argument type operator (< TY PE >), and the completeness of the
premises (the discounting factor v). Argument types are defined later in this
section.

apprA = (wB, wC , < TY PE >, v) (9)

• The trustworthiness of goals A: trustA = (belA, disbA, uncerA), B: trustB =
(belB, disbB, uncerB) and C: trustC = (belC , disbC , uncerC).
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4.2. Appropriateness of sub-goals in double-node argument

This subsection presents how the sub-goals in a double-node argument support
the top goal. For the single argument, we evaluated the contribution of a single sub-
goal. The contributing weight of the sub-goal was introduced in the previous subsec-
tion. When there are multiple sub-goals, their mutual influence on the higher-level
goal must be examined, and the distinction between disjoint and joint contributions
of sub-goals B and C must be made clear. Thus, we consider that sub-goals B and
C support the top goal A in four ways.

Based on D-S theory, we assign masses to model these four ways. Since there are
three statements (A, B and C), a three-dimension frame of discernment is adopted
Ω = ΩB×ΩC×ΩA (following the order of inference B,C → A), which is equivalent to
{(B,C,A), (B,C,A), (B,C,A), (B,C,A), (B,C,A), (B,C,A), (B,C,A), (B,C,A)}.
The subsets of Ω denote the possible inferences among A, B and C: e.g. {(B,C,A)}
stands for “when both B and C are false, A is false”.

All frames of discernment of trustworthiness and appropriateness need to be
unified as Ω = ΩB × ΩC × ΩA using the vacuous extension. For instance, the mass
in the frame ΩB × ΩA, mΩB×ΩA

1 ({(B,A), (B,A)}), given in Definition 3.3 turns to
mΩB×ΩA↑Ω

1 ({B} × ΩC × {A} ∪ {B} × ΩC × {A}), which is simplified as mΩ
1 ({B} ×

ΩC × {A} ∪ {B} × ΩC × {A}).
In our approach, the different ways that B and C support A correspond to four

“pure” cases: pure B alone, pure C alone, pure AND and pure OR. They will be
used as basic elements to present “mixed” complex arguments that are described
hereafter. The appropriateness of sub-goals for these “pure” cases are respectively
formalized as follows (the discounting factor v will be discussed later):

• Pure B alone: A exclusively depends on B. This case is equivalent to the single
argument with the weight of the sub-goal equal to 1.

mΩ({B} × ΩC × {A} ∪ {B} × ΩC × {A}) = wB = 1 (10)

wB is the contributing weight of B, denoting the degree that A depends on B.

• Pure C alone: A exclusively depends on C.

mΩ(ΩB × {C} × {A} ∪ ΩB × {C} × {A}) = wC = 1 (11)

wC is the contributing weight of C, denoting the degree that A depends on C.
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• Pure AND : B and C contribute to A with an AND logic gate.

mΩ({(B,C,A), (B,C,A), (B,C,A), (B,C,A)}) = wB×C→A = 1 (12)

wB×C→A denotes the degree of AND gate relation between B and C when they
contribute to A.

• Pure OR: B and C contribute to A with an OR logic gate.

mΩ({(B,C,A), (B,C,A), (B,C,A), (B,C,A)}) = wB+C→A = 1 (13)

wB+C→A denotes the degree of OR gate relation between B and C when they
contribute to A.

As discussed in Section 4.1, not all arguments are “pure” cases. In fact, most
arguments are not. Therefore, we propose two “mixed” types: complementary and
redundant arguments. Then, three particular types (fully complementary and fully
redundant arguments, and disparate argument) are derived from these two types
for certain limit cases. These argument types are formally distinguished by the
definitions of the appropriateness of the sub-goals to the top goal. Similarly, the
discounting factor v, which evaluates the completeness of the available premises for
A, is taken into account in the following definitions.

• The complementary argument (C-Arg) is the combination of “Pure B alone”
(10), “Pure C alone” (11) and “Pure AND” (12). According to the constraint
of mass function, wB + wC + wB×C→A = 1 (before consideration of the dis-
counting factor v). Thus, wB×C→A = 1 − wB − wC , denotes the degree of the
complementarity between sub-goals.

Definition 4.1. The appropriateness of sub-goals for the complementary ar-
gument (C-Arg) is defined as:

appr{B,C}→A:
mΩ

1 ({B} × ΩC × {A} ∪ {B} × ΩC × {A}) = wB · v (Pure B alone)

mΩ
1 (ΩB × {C} × {A} ∪ ΩB × {C} × {A}) = wC · v (Pure C alone)

mΩ
1 ({(B,C,A), (B,C,A), (B,C,A), (B,C,A)}) = wB×C→A · v (Pure AND)

mΩ
1 (Ω) = 1− v

(14)

17



where v, wB, wC ∈ [0, 1], and wB×C→A = 1− wB − wC ≥ 0.

• The redundant argument (R-Arg) is the combination of “Pure B alone” (10),
“Pure C alone” (11) and “Pure OR” (13). Similarly, wB + wC + wB+C→A = 1.
wB+C→A = 1 − wB − wC , denoting the degree of the redundancy between
sub-goals.

Definition 4.2. The appropriateness of sub-goals for the redundant argument
(R-Arg) is defined as:

appr{B,C}→A:
mΩ

1 ({B} × ΩC × {A} ∪ {B} × ΩC × {A}) = wB · v (Pure B alone)

mΩ
1 (ΩB × {C} × {A} ∪ ΩB × {C} × {A}) = wC · v (Pure C alone)

mΩ
1 ({(B,C,A), (B,C,A), (B,C,A), (B,C,A)}) = wB+C→A · v (Pure OR)

mΩ
1 (Ω) = 1− v

(15)

where v, wB, wC ∈ [0, 1], and wB+C→A = 1− wB − wC ≥ 0.

• The fully complementary argument (FC-Arg). When wB×C→A = 1 for the com-
plementary argument (C-Arg), we call this argument fully complementary. It
corresponds to the “Pure AND” case (12). wB×C→A = 1 denotes full com-
plementarity between sub-goals. The appropriateness of sub-goals for FC-Arg
is:

appr{B,C}→A:{
mΩ

1 ({(B,C,A), (B,C,A), (B,C,A), (B,C,A)}) = wB×C→A · v = v

mΩ
1 (Ω) = 1− wB×C→A · v = 1− v

(16)

where v ∈ [0, 1]

• The fully redundant argument (FR-Arg). When wB+C→A = 1 for the redundant
argument (R-Arg), we call this argument fully redundant argument. It corre-
sponds to the “Pure OR” case (13). wB+C→A = 1 denotes the full redundancy
between sub-goals. The appropriateness of sub-goals for FR-Arg is:
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appr{B,C}→A:{
mΩ

1 ({(B,C,A), (B,C,A), (B,C,A), (B,C,A)}) = wB+C→A · v = v

mΩ
1 (Ω) = 1− wB×C→A · v = 1− v

(17)

where v ∈ [0, 1]

• The Disparate argument (D-Arg) is the combination of “Pure B alone” (10)
and “Pure C alone” (11). It can be seen as the limit case of redundancy when
wB×C→A = 0, or the limit case of complementarity when wB+C→A = 0. Then,
wB + wC = 1. The appropriateness of sub-goals for D-Arg is:

appr{B,C}→A:
mΩ

1 ({B} × ΩC × {A} ∪ {B} × ΩC × {A}) = wB · v
mΩ

1 (ΩB × {C} × {A} ∪ ΩB × {C} × {A}) = wC · v
mΩ

1 (Ω) = 1− v

(18)

where v, wB, wC ∈ [0, 1], and wB + wC = 1.

All of the above argument types are derived from the two basic types: the redun-
dant argument and the complementary argument. The fully redundant/complementary
argument can become disparate by continuously changing the values of weights. Ta-
ble 2 compares the different classifications of argument types. As this table shows,
our proposed classification encapsulates all of the argument types mentioned in re-
lated work.

4.3. Trustworthiness of sub-goals in double-node argument

The trustworthiness of a goal is given in the Definition 3.1. In order to aggregate
the two types of confidence assessment measures for sub-goals B and C, the trust-
worthiness must be in the frame of discernment Ω = ΩB × ΩC × ΩA. With the help
of the vacuous extension, the trustworthiness of sub-claims B and C are:

trustB :


belΩB({B}) = mΩB↑Ω

2 ({B} × ΩC × ΩA) = belB

belΩB({B}) = mΩB↑Ω
2 ({B} × ΩC × ΩA) = disbB

mΩB({B,B}) = mΩB↑Ω
2 (Ω) = uncerB = 1− belB − disbB

(19)
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Table 2: Comparison of different proposals for argument classification

Govier
[2013]

Cyra and Gorski (2011) Ayoub et al.
[2013]

Guiochet et
al. [2015]

Proposal in
this paper
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rg
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m

en
t

T
y
p

es

Convergent - - FR-Arg

T
y
p

e2

A-argument/ Alternative/

- Combination
of

A,C-argument

Overlap/
Contain-

ment

Alternative R-Arg

C-argument/

- Combination
of

A,C-argument

Disjoint - D-Arg

- - -
Complementary

C-Arg

Linked Type1 - FC-Arg

Linear se-
quential

- - Simple
argument

Simple
argument

trustC :


belΩC ({C}) = mΩC↑Ω

3 (ΩB × {C} × ×ΩA) = belC

belΩC ({C}) = mΩC↑Ω
3 (ΩB × {C} × ΩA) = disbC

mΩC ({C,C}) = mΩC↑Ω
3 (Ω) = uncerC = 1− belC − disbC

(20)

Where belB, disbB, belB + disbB, belC , disbC , belC + disbC ∈ [0, 1].

4.4. Confidence aggregation for complementary arguments

All confidence assessment parameters for sub-goals have been identified for the
double-node argument. Different argument types have different behaviors in terms of
their contribution to confidence in A. This section addresses confidence aggregation
for complementary arguments. The aim is still to calculate the trustworthiness of
the top goal A (belA, disbA, uncerA) based on the combination of the appropriateness
of sub-goals to A (14) and the trustworthiness of sub-goals (19) and (20). The
combination is based on Dempster’s rule. Regarding mass definitions for confidence
assessment parameters, the issue of combination conflict is avoided by how masses
are defined.

The masses of assessment parameters m1, m2 and m3 are considered as indepen-
dent pieces of evidence. According to Dempster’s rule, only two pieces of evidence
can be combined at the same time. However, given the associativity of Dempster’s
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rule (Shafer, 1976), the order of combinations does not change the result. As equa-
tions for the trustworthiness of B, m2 (19) and C, m3 (20) have a similar form, they
are combined first (m23 = m2 ⊕m3); then we combine intermediate results with the
appropriateness of sub-goals for the complementary argument m1.

There are nine possible combinations of the masses m2 and m3 for trustworthiness
B and C, leading to nine focal sets for mass m23. For all combinations, the conflict
factor K is 0. This intermediate, combined result is presented in Table 3. Because
all of the intermediate results are useful in the next step, masses are presented in
this table.

Next, we combine masses for the appropriateness of sub-goals, m1 (14) with
intermediate masses, m23. Combined masses are denoted as m1−3. As some of the
subsets of combinations are the same, they contribute to the same new focal elements.
The masses of these subsets are added up following Dempster’s rule (K = 0). For
instance, the mass of the focal set {B,C,A} is calculated as follows:

mΩ
1−3({B,C,A}) = m1 ⊕m23

=mΩ
1 ({B} × ΩC × {A} ∪ {B} × ΩC × {A}) ·mΩ

23({B} × {C} × ΩA)+

mΩ
1 (ΩB × {C} × {A} ∪ ΩB × {C} × {A}) ·mΩ

23({B} × {C} × ΩA)+

mΩ
1 ({(B,C,A), (B,C,A), (B,C,A), (B,C,A)}) ·mΩ

23({B} × {C} × ΩA)

=wB · v · belB · belC + wC · v · belB · belC + (1− wB − wC) · v · belB · belC
=belB · belC · v

(21)

Belief in A (belA) is calculated by adding up all the masses of all the focal sets
that contribute to the mass mΩ↓ΩA({A}) after marginalization.

belA =belΩA({A}) = mΩ↓ΩA({A}) =
∑

Q⊂Ω,Q↓ΩA={A}

mΩ(Q)

=mΩ
1−3({B,C,A}) + mΩ

1−3({B,C,A}) + mΩ
1−3({B,C,A})+

mΩ
1−3({(B,C,A), (B,C,A)}) + mΩ

1−3({(B,C,A), (B,C,A)})
=[belB · wb + belC · wC + belB · belC(1− wB − wc)]v

(22)

Similarly, disbelief (disbA) and uncertainty (uncerA) in A are calculated and
presented below.
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Table 4: Aggregation rules for complementary arguments

Types Aggregation rules

C-Arg


belA = [belB · wB + belC · wC + belB · belC(1− wB − wC)]v

disbA = {disbB · wB + disbC · wC + [1− (1− disbB)(1− disbC)](1− wB − wC)}v
uncerA = 1− belA − disbA

disbA =belΩA({A}) = mΩ↓ΩA({A}) =
∑

Q⊂Ω,Q↓ΩA={A}

mΩ(Q)

=mΩ
1−3({B,C,A}) + mΩ

1−3({B,C,A}) + mΩ
1−3({B,C,A})+

mΩ
1−3({(B,C,A), (B,C,A)}) + mΩ

1−3({(B,C,A), (B,C,A)})
=[disbB(1− wC) + disbC(1− wB)− disbB · disbC(1− wB − wC)]v

={disbB · wB + disbC · wC + [1− (1− disbB)(1− disbC)](1− wB − wC)}v
(23)

uncerA =mΩA({A,A}) =
∑

Q⊂Ω,Q↓ΩA={A,A}

mΩ(Q)

=1− [belB · wb + belC · wC + belB · belC(1− wB − wc)]v−
[disbB(1− wC) + disbC(1− wB)− disbB · disbC(1− wB − wC)]v

=1− belΩA({A})− belΩA({A})

(24)

Confidence aggregation rules for the complementary argument with two sub-goals
are developed (presented in (22), (23) and (24)). The trustworthiness of the top
goal A (belA, disbA, uncerA) can be deduced based on these aggregation rules (see
Table 4).

4.5. Confidence aggregation for redundant arguments

As sub-goals can support the top goal in various ways, confidence propagation in
redundant arguments is unlike complementary arguments. However, the procedure
to calculate confidence aggregation rules is the same as described in the previous
section. We assume that the double-node argument shown in Figure 8 is a redundant
argument. The trustworthiness of the top goal A (belA, disbA, uncerA) is calculated
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Table 5: Aggregation rules for redundant arguments

Types Aggregation rules

R-Arg


belA = {belB · wB + belC · wC + [1− (1− belB)(1− belC)](1− wB − wC)}v
disbA = [disbB · wB + disbC · wC + disbB · disbC(1− wB − wC)]v

uncerA = 1− belA − disbA

based on the combination of the appropriateness of sub-goals to A, m1 (15), and
the trustworthiness of sub-goals m2 (19) and m3 (20). Since masses m1 and m2 are
combined, we can use the results shown in Table 3.

Once this is done, the calculation is similar to the one used for the complementary
argument presented in the previous section. We directly give confidence aggregation
rules for the redundant argument in Table 5.

4.6. Aggregation rules for particular argument types

In Section 4.2, three argument types (FC-Arg, FR-Arg, and D-Arg) were intro-
duced to supplement the two basic types. As mentioned in that section, these three
types refer to particular cases where the weights of sub-goals are equal to a limit
value. In this subsection, we determine their confidence aggregation rules based on
rules for complementary and redundant arguments.

• The fully complementary argument (FC-Arg):

For the fully complementary argument, wB×C→A = 1, i.e. wB = wC = 0. The
trustworthiness of A, trustA = (belA, disbA, uncerA) can be calculated with the
formula:

trustA :


belA = belB · belC · v
disbA = [1− (1− disbB)(1− disbC)]v

uncerA = 1− belA − disbA

(25)

In this case, the way that sub-goals B and C contribute to confidence in goal A
becomes a “pure AND”. In contrast, disbelief propagates as an OR logic gate
from sub-goals to the top goal. These characteristics are, in turn, consistent
with the initial definition based on an AND logic gate.

• The fully redundant argument (FR-Arg):
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For the fully redundant argument (FR-Arg), wB+C→A = 1, i.e. wB = wC = 0.
The trustworthiness of A, trustA = (belA, disbA, uncerA) can be calculated with
the formula:

trustA :


belA = [1− (1− belB)(1− belC)]v

disbA = disbB · disbC · v
uncerA = 1− belA − disbA

(26)

In this case, the way that the sub-goals B and C contribute to confidence in
goal A becomes a “pure OR”. In contrast, disbelief propagates as an AND logic
gate from sub-goals to the top goal. These characteristics are also consistent
with the initial definition based on an OR logic gate.

• The disparate argument (D-Arg):

For both complementary and redundant arguments, if the wB×C→A and wB+C→A

decrease (i.e. wB and wC increase) to wB×C→A = 0 and wB+C→A = 0 (i.e.
wB + wC = 1), the aggregation rules for complementary and redundant argu-
ments become the same:

trustA :


belA = (belBwB + belCwC)v

disbA = (disbBwB + disbCwC)v

uncerA = 1− belA − disbA

(27)

In this case, B and C contribute independently to the top goal A with their
own weights. Confidence aggregation rules are the weighted sum of the trust-
worthiness of sub-goals.

4.7. Sensitivity analysis

This section presents the sensitivity analysis used to evaluate the behavior of
confidence aggregation rules. The aim is to determine whether they are consistent
with the corresponding argument types, and to validate propagation operators.

The analysis uses a tornado graph. This simple statistical tool shows the posi-
tive or negative influence of basic elements on a main function. Taking the function
f(x1, ...xn), where values X1, ..., Xn of variables xi have been estimated, the tor-
nado analysis consists in the estimation (for each xi ∈ [Xmin, Xmax]) of the values
f(X1, ..., Xi−1, Xmin, Xi+1, ...Xn) and f(X1, ..., Xi−1, Xmax, Xi+1, ...Xn), where Xmin

and Xmax are the maximum and minimum admissible values of variables xi. Hence
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for each xi, there is an interval of possible variations of function f . The tornado
graph presents ordered intervals visually. In our case, we estimate the confidence in
A, m(A), with corresponding intervals for v, belB, belC , disbB, disbC , wB and wC .

We take the example of the double-node argument to analyze the confidence
aggregation rules for both complementary (see Table 4) and redundant (see Table 5)
arguments. The basic values (Xi) and intervals [Xmin, Xmax] for each parameter
are shown in Table 6. The basic values (Xi) are given arbitrarily and the intervals
[Xmin, Xmax] are deduced as a function of the requirements applied to parameters in

the formulas: beli, disbi, wi, v ∈ [0, 1], and
n∑

i=1

wi ≤ 1. For instance, the interval for

wB is [0,0.9], because wC = 0.1 and the sum of them should not be more than 1.

Table 6: Values and intervals chosen for the sensitivity analysis

v belB belC disbB disbC wB wC

Basic value Xi 0.9 0.5 0.8 0.2 0.1 0.4 0.1
[Xmin, Xmax] [0,1] [0,0.8] [0,0.9] [0,0.5] [0,0.2] [0,0.9] [0,0.6]

With the basic values above, the trustworthiness of A are (belA, disbA, uncerA) =
(0.432, 0.207, 0.361) for the complementary argument, and (0.657, 0.09, 0.253) for the
redundant argument. These values denote the position of the vertical axis in the
corresponding tornado graphs. To determine the sensitivity to belB, we retain the
basic values for all other variables and only calculate the values belA for belB = 0
and belB = 0.8: this gives values for the confidence in A [0.072, 0.648] for the
complementary argument, and [0.432, 0.792] for the redundant argument. The same
approach is applied to the other parameters. The results of the analysis are presented
in Figure 10.

All of these graphs show that v has the most influence. When v = 0, confidence
in A is 0. The structure of aggregation formulas shows that v remains the common
factor in formulas after multiple combinations. This is consistent with the idea of
using a discounting factor. Thus, v is the most sensitive point. In terms of inter-
pretation, v is used to measure the overall reliability of sources, or the completeness
of premises, and it makes it possible to evaluate all of the sub-goals as a whole. In
general, we assume that v = 1, indicating that complete confidence in sub-goals leads
to complete confidence in the top goal. In the inverse case (v 6= 1), we should be
very cautious in determining the value of v.

The trustworthiness of B has more impact on the trustworthiness of A than that
of C in all six graphs. This is consistent with the higher weight of B compared to
C. Comparing the impacts of B and C for the two types of arguments, the difference
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Figure 10: Tornado graphs for two types of double-node arguments
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in the impact between B and C for the complementary argument is greater than
for the redundant argument. This indicates that confidence in the top goal of a
complementary argument relies more on the confidence in each of the sub-goals.
Both trustB and trustC must be increased to effectively maximize trustA.

Furthermore, an interesting consequence for the redundant argument is that when
the weight wB increases, confidence in A decreases (see Figure 10 (d)). When wB =
0.9, then belA = 0.432. This is due to the constraint that wB+C→A = 1−wB−wC . In
other words, increasing wB reduces redundancy. Therefore, confidence in A declines.
This implies that, for redundant arguments, increasing the redundancy of B and
C (i.e. decreasing wB and wC) increases confidence in A. This result shows that
the correct interpretation of the weights wB or wC relies on both the impact of
trustB or trustC on trustA, and a representation of the degree of redundancy (or
complementarity for the complementary argument).

This sensitivity analysis shows that the behavior of aggregation rules is consis-
tent with our expectations regarding the influence of each of the parameters on the
trustworthiness of the top goal (trustA = (belA, uncerA, disbA)). Intuitively, the dif-
ferent impacts of the appropriateness of sub-goals on trustA differentiates how trust-
worthiness is propagated in complementary and redundant arguments. Generally,
the complementary argument is more sensitive to variation in assessment measures.
Given the same values for all measures, belief (belA) in the top goal of a complemen-
tary argument is lower than for a redundant argument, whereas disbelief (disbA) and
uncertainty (uncerA) are always higher.

A specific difference relates to the impacts of wB and wC shown in graphs (a)
and (d). This indicates that variation in the weights of sub-goals can also strengthen
or weaken an “AND gate” or an “OR gate” (the complementarity or redundancy
of sub-goals) and is a reflection of the original idea of defining mixed propagation
operators: B alone, C alone and pure AND/OR.

5. Generalization of confidence propagation to the N-node argument

It is common for an argument to have more than two premises. In this section,
we study confidence propagation and related issues applied to the N-node argument.
The aim is to broaden the application of our approach.

5.1. Re-structuring the n-node argument

In order to employ the same approach to developing aggregation rules and to
avoid, to the maximum extent, introducing new uncertainties, we require every
branch in the n-node argument to belong to only one argument type. Complemen-
tary and redundant premises cannot be mixed to support the same goal. However,
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{System X} is acceptably safe

Test results are correct Test process is correctFormal verification is 
passed

{System X} is acceptably safe

Test is conclusiveFormal verification is 
passed

Test results are correct Test process is correct

G1

G2 G3 G4

G1

G2 G3 *

G3 G4

< < R-Arg > >

< < C-Arg > >

Figure 11: Re-structuring an argument for confidence propagation

the argument needs to be modified. For example, in Figure 11, the top goal “G1:
System is acceptably safe” is supported by three sub-goals. They are, respectively,
“G2: Formal verification is passed”, “G3: Test results are correct” and “G4: Test
process is correct”. Formal verification and testing are two different techniques that
are used to validate and verify, for instance, compliance with system safety require-
ments. The evidence related to these two techniques may have some degree of re-
dundancy (R-Arg). However, G3 and G4 are premises related to testing, and are
typically complementary (C-Arg). In this case, these premises are regrouped and
new intermediate goals are proposed (G3∗ to the right of Figure 11).

5.2. Confidence aggregation for n-node arguments

For n-node arguments, the process is complex due to the number of combinations
of assessment parameters. As the number of premises increases, the calculation
increases exponentially, and includes the combination of masses and the simplification
of the expression for non-linear polynomials. Regarding the former, for an argument
with 2 to n premises, the number of possible combinations is shown in Table 7.
Thus, it is better to have general confidence aggregation rules for n-node arguments
for both types of arguments.

We propose an inductive approach to deduce confidence aggregation rules. The
three-step process for single and double-node arguments is repeated for an argument
with three sub-goals: B, C and D. Due to space limitations, we refer the reader to
(Wang, 2018) for a thorough presentation of the formula deduction.

This shows that aggregation rules for double-node and three-node arguments have
a similar structure, indicating that aggregation rules for any n-node argument (for
n > 1) should be developed based on the same approach. Thus, we induct that
the general confidence aggregation rules for n-node complementary and redundant
arguments are as shown in Table 8.
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Table 7: Number of possible combinations to develop aggregation rules

N #C1 #C2 #Ctotal

2 9 36 45

3 27 135 162
...

n 3n 3n(n + 2) 3n(n + 3)

C1: combination of the trustworthiness of sub-goals, C2: combina-
tion of the appropriateness of sub-goals to the top goal with the
results of C1, Ctotal: total combinations

Table 8: Aggregation rules for n-node arguments supporting A

Types Aggregation rules

C-Arg


belA = [

∑n
i=1 beliwi + (1−

∑n
i=1 wi)

∏n
i=1 beli]v

disbA = {
∑n

i=1 disbiwi + (1−
∑n

i=1 wi)[1−
∏n

i=1 (1− disbi)]}v
uncerA = 1− belA − disbA

R-Arg


belA = {

∑n
i=1 beliwi + (1−

∑n
i=1 wi)[1−

∏n
i=1 (1− beli)]}v

disbA = [
∑n

i=1 disbiwi + (1−
∑n

i=1 wi)
∏n

i=1 disbi]v

uncerA = 1− belA − disbA

Where n > 1, beli, disbi, wi, v ∈ [0, 1], and
n∑

i=1

wi ≤ 1
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6. Related work

Several other studies have examined the question of confidence assessment in
safety cases. They mainly address the problem from two perspectives. One approach
focuses on providing more qualitative justification (Kelly and Weaver, 2004; Hawkins
et al., 2011; Menon et al., 2009; Ayoub et al., 2012). A second trend, which is closer
to our work, is the development of quantitative approaches. An excessive increase in
the number of arguments increases the complexity of the confidence estimation, and
quantitative tools can be helpful for analysts. According to Nair et al. (2015a), quan-
titative approaches to evidence assessment are sometimes used in critical domains.
Menon et al. (2009) note that there is a demand to combine and propagate confidence
measures within an argument. These studies suggest that the issue of quantitatively
assessing confidence in an argument has become an interesting topic for researchers
in recent years. Concerning quantitative approaches, most work is based on Bayesian
Belief Networks (Guo, 2003; Denney et al., 2011; Hobbs and Lloyd, 2012) and D-S
theory (Cyra and Gorski, 2011; Ayoub et al., 2013; Duan et al., 2014; Nair et al.,
2015b). Guiochet et al. (2015) put forward a mixed approach using both methods.
Yuan et al. (2017) adopt subjective logic, in which confidence measures are also re-
lated to belief in D-S theory. In general, non-probabilistic approaches are preferred
for assessing arguments, as most evidence evaluations are imprecise and based on
expert knowledge. Nair et al. (2015b) provide a method for extracting and propa-
gating expert judgments using D-S theory. This method is based on the confidence
argument proposed by (Hawkins et al., 2011). Nevertheless, they do not consider
inference types when aggregating information. Ayoub et al. (2013) introduce four
argument types (alternative, disjoint, overlap and containment) and provide corre-
sponding formulas to combine confidence in arguments; however, there is little detail
given regarding how to deduct formulas. Cyra and Gorski (2011) provide a practical
confidence propagation method to extract expert judgments. They transform deci-
sion and confidence levels into belief parameters (belief, disbelief, and uncertainty).
Six types of arguments are proposed, based on the work of Govier (2013), but the
parameters that relate to each of the types are not easy to interpret. Graydon and
Holloway (2017) review several other quantitative approaches to the assessment of
confidence in safety arguments. While they find them very interesting, the authors
conclude that none of the methods can be applied in practice. This is due to vari-
ous limitations, such as a lack of consideration of “counter-evidence” (Ayoub et al.,
2013), sensitivity to the arbitrary scope of hazards (Cyra and Gorski, 2011), and the
problem of extracting expert judgments (Nair et al., 2015b).

From another perspective, our work is an application of D-S theory on safety or
risk assessment. Similar applications aim to overcome the issue of the lack of precise
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data. Démotier et al. (2006) was one of the first paper to deal with uncertainties in
dependability analyses, presenting an application in the water treatment. However
this paper only considered uncertainties on basic input data (failure rates, latency),
and not uncertainties in the logic itself (only pure OR and pure AND gates
were considered and not mixed gates, which is one of the major originality of the
present paper). Abdallah et al. (2014) model and combine statistical observations
(probabilistic uncertainty) and expert assessment (epistemic uncertainty) to predict
the centennial sea level for future flood risk analysis. The combination is a nominal
application of Dempster’s rule.

7. Conclusion

In this paper, we studied the issue of the justification of safety assurances in crit-
ical systems via an evidence-based approach. In particular, we focus on the quanti-
tative assessment of confidence in safety cases. We propose a confidence propagation
model that integrates different inference types. Our systematic approach uses D-S
theory to develop the confidence propagation model. First, we identify the factors
that influence confidence in an argument; they are formally defined as trustworthi-
ness: trust = (bel, uncer, disb) and appropriateness: appr = (wi, < TY PE >, v).
These definitions are specified in more detail as a function of different argument
structures (simple and multi-node), and inference types (complementary and redun-
dant). Corresponding confidence aggregation rules are developed, and finally they
are generalized into aggregation rules for n-node arguments.

This study concerns a relatively novel subject that combines quantitative un-
certainty assessment with subjective reasoning. The proposed approach overcomes
many of the limitations identified in the literature regarding the definition and ag-
gregation of confidence measures. Nonetheless, several issues remain to be resolved:

• How to include counterarguments in the confidence assessment? In this paper,
we only consider safety cases with positive evidence. To be more compatible
with other safety argument notations, the implications of counterarguments
should be developed.

• How to combine expert opinions? We made the assumption that only one
expert judgment is given for a statement and therefore do not need to com-
bine several judgments. But combining expert judgments for a same statement
may face two major issues: conflict an dependency. To deal with the second
issue it is commonly admitted that the combination rule used must be idempo-
tent. Some rules, like the cautious rule (Denœux, 2008), the cautious-adaptive
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rule (Kallel and Le Hégarat-Mascle, 2009) or the idempotent conjunctive and
disjunctive rules (Klein et al., 2018) have this property

• How to integrate the proposed model into a comprehensive framework that
encompasses confidence parameter determination through to final decision-
making? We proposed a framework in a previous paper (Wang et al., 2017),
which is based on a transformation of qualitative expert opinions into quantita-
tive belief parameters, and then back to qualitative values for decision making.
Many issues remain open; in particular we plan to explore a qualitative ap-
proach from the experts opinions to the decision.

• How our approach could be included in a certification process? Currently,
for instance, for hardware, we must demonstrate that a system is “acceptably
safe” by calculating failure rates or probabilities. When it comes to software,
process-based approaches applying best practices are used to ensure integrity.
This paper proposes an approach to make explicit the rationale of combining
these best practices and their impact on confidence on the system integrity.
Many benefits can be induced, such as allowing more flexibility in the choices
of the best practices, or even including new technologies usually avoided in
safety critical domain.
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