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We construct solutions to the Johnson equation (J) by means of Fredholm determinants first, then by means of wronskians of order 2N giving solutions of order N depending on 2N -1 parameters. We obtain N order rational solutions which can be written as a quotient of two polynomials of degree 2N (N + 1) in x, t and 4N (N + 1) in y depending on 2N -2 parameters. This method gives an infinite hierarchy of solutions to the Johnson equation. In particular, rational solutions are obtained. The solutions of order 3 with 4 parameters are constructed and studied in detail by means of their modulus in the (x, y) plane in function of time t and parameters a1, a2, b1, b2.

Introduction

The Johnson equation was introduced in 1980 by Johnson [START_REF] Johnson | Water waves and Kortewegde Vries equations[END_REF] to describe waves surfaces in shallow incompressible fluids [START_REF] Johnson | A Modern Introduction to the Mathematical Theory of Water Waves[END_REF][START_REF] Ablowitz | Nonlinear Dispersive Waves : Asymptotic Analysis and Solitons[END_REF]. This equation was derived for internal waves in a stratified medium [START_REF] Lipovskii | On the nonlinear internal wave theory in fluid of finite depth[END_REF]. The Johnson equation is dissipative; it is well known that there is no solution with a linear front localized along straight lines in the (x, y) plane. This Johnson equation is for example able to explain the existence of the horseshoe like solitons and multi-soliton solutions 1 quite naturally. We consider the Johnson equation (J) in the following normalization

(u t + 6uu x + u xxx + u 2t ) x -3 u yy t 2 = 0, (1) 
where as usual subscript x, y and t mean partial derivatives. The first solutions were constructed in 1980 by Johnson [START_REF] Johnson | Water waves and Kortewegde Vries equations[END_REF]. Other types of solutions were found in [START_REF] Golinko | Nonlinear quasicylindrical waves: Exact solutions of the cylindrical Kadomtsev-Petviashvili equation[END_REF]. A new approach to solve this equation was given in 1986 [START_REF] Lipovskii | connection between the Kadomtsev-Petvishvili and Johnson equation[END_REF] by giving a link between solutions of the Kadomtsev-Petviashvili (KP) [START_REF] Kadomtsev | On the stability of solitary waves in weakly dispersing media[END_REF] and solutions of the Johnson equation. In 2007, another types of solutions were obtained by using the Darboux transformation [START_REF] Klein | Cylindrical Kadomtsev-Petviashvili equation: Old and new results[END_REF]. More recently, in 2013, other extensions have been considered as the elliptic case [START_REF] Khusnutdinova | On the integrable elliptic cylindrical K-P equation Chaos[END_REF].

Here we consider the famous Kadomtsev-Petviashvili (KPI) which can be written in the form :

(4u t -6uu x + u xxx ) x -3u yy = 0. ( 2 
)
The KPI equation first appeared in 1970 [START_REF] Kadomtsev | On the stability of solitary waves in weakly dispersing media[END_REF], in a paper written by Kadomtsev and Petviashvili. This equation is considered as a model for surface and internal water waves [START_REF] Ablowitz | On the evolution of packets of water waves[END_REF], and in nonlinear optics [START_REF] Pelinovsky | Self-focusing of plane dark solitons in nonlinear defocusing media[END_REF].

In the following, we will use the KPI equation to construct solutions to the Johnson equation, but in another way different from this used in [START_REF] Lipovskii | connection between the Kadomtsev-Petvishvili and Johnson equation[END_REF]. Indeed, these last authors consider another representation of KPI equation given by

(u t + 6uu x + u xxx ) x -3u yy = 0, (3) 
and so the transformations between solutions of (3) and ( 1) are different from these we use to transform solutions of (2) in solutions to [START_REF] Johnson | Water waves and Kortewegde Vries equations[END_REF].

In fact, to obtain solutions to (1) from solutions to (2), we use the following transformation :

(x; y; t) → (x 1 = -ix -i y 2 t 12 ; y 1 = yt; t 1 = 4it) (4) 
In this paper, we give solutions by means of Fredholm determinants of order 2N depending on 2N -1 parameters and then, by means of wronskians of order 2N with 2N -1 parameters. So we construct an infinite hierarchy of solutions to the Johnson equation, depending on 2N -1 real parameters . New rational solutions depending a priori on 2N -2 parameters at order N are constructed, when one parameter tends to 0. We obtain families depending on 2N -2 parameters for the N -th order as a ratio of two polynomials of degree 2N (N + 1) in x, t and of degree 4N (N + 1) in y.

In this paper, we construct only rational solutions of order 3, depending on 4 real parameters; we construct the representations of their modulus in the plane of the coordinates (x, y) according to the four real parameters a i , b i , for 1 ≤ i ≤ 2 and time t.

Solutions to Johnson equation expressed by means of Fredholm determinants

Some notations are given. We define first real numbers λ j such that -1 < λ ν < 1, ν = 1, . . . , 2N ; they depend on a parameter ǫ and can be written as

λ j = 1 -2ǫ 2 j 2 , λ N +j = -λ j , 1 ≤ j ≤ N, (5) 
Then, we define κ ν , δ ν , γ ν and x r,ν ; they are functions of λ ν , 1 ≤ ν ≤ 2N and are defined by the following formulas :

κ j = 2 1 -λ 2 j , δ j = κ j λ j , γ j = 1-λj 1+λj ,; x r,j = (r -1) ln γj -i γj +i , r = 1, 3, τ j = -12iλ 2 j 1 -λ 2 j -4i(1 -λ 2 j ) 1 -λ 2 j , κ N +j = κ j , δ N +j = -δ j , γ N +j = γ -1 j , x r,N +j = -x r,j , , τ N +j = τ j j = 1, . . . , N. (6) 
e ν 1 ≤ ν ≤ 2N are defined by :

e j = 2i 1/2 M -1 k=1 a k (je) 2 k+1 -i 1/2 M -1 k=1 b K (je) 2 k+1 , e N +j = 2i 1/2 M -1 k=1 a k (je) 2 k+1 + i 1/2 M -1 k=1 b k (je) 2 k+1 , 1 ≤ j ≤ N, a k , b k ∈ R, 1 ≤ k ≤ N. (7) 
ǫ ν , 1 ≤ ν ≤ 2N are defined by :

ǫ j = 1, ǫ N +j = 0 1 ≤ j ≤ N. (8) 
As usual I is the unit matrix and D r = (d jk ) 1≤j,k≤2N the matrix defined by :

d νµ = (-1) ǫν η =µ γ η + γ ν γ η -γ µ exp(κ ν x + ( κ ν y 12 -2δ ν )yt + 4iτ ν t + x r,ν + e ν ). (9) 
Then we get :

Theorem 2.1 The function v defined by v(x, y, t) = -2 |n(x, y, t)| 2 d(x, y, t) 2 (10) 
where

n(x, y, t) = det(I + D 3 (x, y, t)), (11) 
d(x, y, t) = det(I + D 1 (x, y, t)), (12) 
and D r = (d jk ) 1≤j,k≤2N the matrix

d νµ = (-1) ǫν η =µ γ η + γ ν γ η -γ µ exp(κ ν x + ( κ ν y 12 -2δ ν )yt + 4iτ ν t + x r,ν + e ν ). ( 13 
)
is a solution to (1), depending on 2N -1 parameters a k , b k , 1 ≤ k ≤ N -1 and ǫ.

Solutions to the Johnson equation by means of wronkians

We use the following notations :

φ r,ν = sin Θ r,ν , 1 ≤ ν ≤ N, φ r,ν = cos Θ r,ν , N + 1 ≤ ν ≤ 2N, r = 1, 3, (14) with 
Θ r,ν = -iκν x 2 + i( -κν y 24 + δ ν )yt -i xr,ν 2 + 2τ ν t + γ ν w -i eν 2 , 1 ≤ ν ≤ 2N. ( 15 
) W r (w) is the wronskian of the functions φ r,1 , . . . , φ r,2N defined by

W r (w) = det[(∂ µ-1 w φ r,ν ) ν, µ∈[1,...,2N ] ]. ( 16 
)
We consider the matrix D r = (d νµ ) ν, µ∈[1,...,2N ] defined in [START_REF] Wu | Some new exact solutions for the twodimensional Navier-Stokes equations[END_REF].

Then we have the following result Theorem 3.1

det(I + D r ) = k r (0) × W r (φ r,1 , . . . , φ r,2N )(0), (17) 
where

k r (y) = 2 2N exp(i 2N ν=1 Θ r,ν ) 2N ν=2 ν-1 µ=1 (γ ν -γ µ )
.

Then the solution v to the Johnson equation can be rewritten as

v(x, y, t) = -2 |det(I + D 3 (x, y, t))| 2 (det(I + D 1 (x, y, t))) 2 .
With [START_REF] Zhou | Recyclable amplification protocol for the single-photon entangled state[END_REF], the following link between Fredholm determinants and wronskians is obtained det(I + D 3 ) = k 3 (0) × W 3 (φ r,1 , . . . , φ r,2N )(0) and det(I + D 1 ) = k 1 (0) × W 1 (φ r,1 , . . . , φ r,2N )(0).

As Θ 3,j (0) contains N terms x 3,j 1 ≤ j ≤ N and N terms -x 3,j 1 ≤ j ≤ N , we have the relation k 3 (0) = k 1 (0), and we get : 6), ( 5) and ( 7).

Theorem 3.2 The function v defined by v(x, y, t) = -2 |W 3 (φ 3,1 , . . . , φ 3,2N )(0)| 2 (W 1 (φ 1,1 , . . . , φ 1,2N )(0))
+ i( -κν y 24 + δ ν )yt -i xr,ν 2 + 2τ ν t + γ ν w -i eν 2 ), 1 ≤ ν ≤ N, φ r,ν = cos( -iκν x 2 + i( -κν y 24 + δ ν )yt -i xr,ν 2 + 2τ ν t + γ ν w -i eν 2 ), N + 1 ≤ ν ≤ 2N, r = 1, 3, κ ν , δ ν , x r,ν , γ ν , e ν being defined in(
4 Study of the limit case when ǫ tends to 0

Rational solutions of order N depending on 2N -2 parameters

An infinite hierarchy of rational solutions to the Johnson equation depending on 2N -2 parameters is obtained. For this, we take the limit when the parameter ǫ tends to 0. We get the following statement :

Theorem 4.1 The function v v(x, y, t) = lim ǫ→0 -2 |W 3 (x, y, t)| 2 (W 1 (x, y, t)) 2 ( 18 
)
is a rational solution to the Johnson equation. It is a quotient of two polynomials n(x, y, t) and d(x, y, t) depending on 2N -2 real parameters ãj and bj , 1 ≤ j ≤ N -1 of degrees 2N (N + 1) in x, t and 4N (N + 1) in y.

Families of rational solutions of order 3 depending on 4 parameters

Here we construct families of rational solutions to the Johnson equation of order 3 explicitly; they depend on 4 parameters. We only give the expression without parameters and we give it in the appendix because of the length of the solutions. We construct the patterns of the modulus of the solutions in the plane (x, y) of coordinates in functions of parameters a i , b i , 1 ≤ i ≤ 2 and time t.

The role of the parameters ai and b i for the same integer i being the same one, one will be interested primarily only in parameters a i . The study of these configurations makes it possible to give the following conclusions. The variation of the configuration of the module of the solutions is very fast according to time t. When time t grows from 0 to 0, 01, one passes from a rectilinear structure with a height of 98 to a horseshoe structure with a maximum height equal to 4. The role played by the parameters a i and b i is the same one for same index i. When variables x, y and time tend towards infinite, the modulus of the solutions tends towards 2 in accordance with the structure of the polynomials which will be studied in a forthcoming article.

Conclusion

We have constructed solutions to the Johnson equation, starting from the solutions of the KPI equation what make it possible to obtain rational solutions. These solutions are expressed by means of quotients of two polynomials of degree 2N (N + 1) in x, t and 4N (N + 1) in y depending on 2N -2 parameters.

Here we have given a new method to construct solutions to the Johnson equation related to previous results [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF][START_REF] Gaillard | Families of Rational Solutions of Order 5 to the KPI Equation depending on 8 Parameters[END_REF] .

We have given two types of representations of the solutions to the Johnson equation. An expression by means of Fredholm determinants of order 2N depending on 2N -1 real parameters is gen. Another expression by means of wronskians of order 2N depending on 2N -1 real parameters is also constructed. Also rational solutions to the Johnson equation depending on 2N -2 real parameters are obtained when one of parameters (ǫ) tends to zero. The patterns of the modulus of the solutions in the plane (x, y) and their evolution according to time and parameters have been studied in the figures 1, 2, 3, 4, 5.

In another study, we will give a more general representation of rational solutions to the Johnson equation. It can be written without limit at order N depending on 2N -2 real parameters. We will prove that these solutions can be written as a quotient of polynomials of degree 2N (N + 1) in x, t and 4N (N + 1) in y.

2 is a solution

 2 of the Johnson equation which depends on 2N -1 real parameters a k , b k and ǫ, with φ r ν defined in (14) φ r,ν = sin( -iκν x 2

Figure 1 .

 1 Figure 1. Solution of order 3 to (1), on the left for t = 0, a 1 = 0, b 1 = 0, a 2 = 0, b 2 = 0, ; in the center for t = 0, a 1 = 10 3 , b 1 = 0, a 2 = 0, b 2 = 0; on the right for for t = 0, a 1 = 0, b 1 = 10 3 , a 2 = 0, b 2 = 0.

Figure 2 .

 2 Figure 2. Solution of order 3 to (1), on the left for t = 0, a 1 = 10 3 , b 1 = 0, a 2 = 0, b 2 = 0, ; in the center for t = 0, a 1 = 0, b 1 = 0, a 2 = 0, b 2 = 10 6 ; on the right for for t = 0, 01, a 1 = 0, b 1 = 10 3 , a 2 = 0, b 2 = 0.

Figure 3 .

 3 Figure 3. Solution of order 3 to (1), on the left for t = 0, 01, a 1 = 0, b 1 = 0, a 2 = 10 6 , b 2 = 0, ; in the center for t = 0, 1, a 1 = 10 3 , b 1 = 0, a 2 = 0, b 2 = 0; on the right for for t = 1, a 1 = 10 3 , b 1 = 0, a 2 = 0, b 2 = 0.

Figure 4 .

 4 Figure 4. Solution of order 3 to (1), on the left for t = 0, 1, a 1 = 0, b 1 = 0, a 2 = 10 6 , b 2 = 0, ; in the center for t = 1, a 1 = 0, b 1 = 0, a 2 = 10 6 , b 2 = 0; on the right for for t = 10, a 1 = 10 3 , b 1 = 0, a 2 = 0, b 2 = 0.

Figure 5 .

 5 Figure 5. Solution of order 3 to (1), on the left for t = 10, a 1 = 0, b 1 = 0, a 2 = 10 6 , b 2 = 0, ; in the center for t = 100, a 1 = 10 6 , b 1 = 0, a 2 = 0, b 2 = 0; on the right for for t = 10 3 , a 1 = 10 5 , b 1 = 10 3 , a 2 = 0, b 2 = 0.

Appendix The solutions to the Johnson equation can be written as

with A 3 (x, y, t) =