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We propose a finite element based discretization method in which the standard polynomial field is enriched within each element by a non conforming field that is added to it. The enrichment contains free-space solutions of the homogeneous differential equation that are not represented by the underlying polynomial field. Continuity of the enrichment across element interfaces is enforced weakly by Lagrange multipliers. In this manner, we expect to attain high coarse-mesh accuracy without significant degradation of conditioning, assuring good performance of the computation at any mesh resolution. Examples of application to acoustics and advection-diffusion are presented.

Introduction

The standard finite element method is based on continuous, piecewise polynomial, Galerkin approxi mation. This approach is optimal for the Laplace operator in the sense that it minimizes the error in the energy norm -the H1 semi-norm in this case. This property assures good performance of the computation at any mesh resolution, i.e., high coarse-mesh accuracy. However, good numerical performance at any mesh resolution is not guaranteed by the standard finite element method for other cases. Consequently, finite element computation can become prohibitively expensive in the presence of sharp gradients and rapid oscillations.

Numerous approaches to alleviating the above deficiency have been proposed. Inevitably, these are based on modifications of the classical piecewise polynomial Galerkin approximation. Among these ap proaches we note Galerkin/least-squares [START_REF] Hughes | A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations[END_REF] and related stabilized methods (SUPG/SD [START_REF] Brooks | Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[END_REF] and USFEM [START_REF] Franca | Stabilized finite element methods: I. Application to the advective-diffusive model[END_REF]), residual-free bubbles (RFB) [START_REF] Brezzi | Further considerations on residual-free bubbles for advective-diffusive equations[END_REF][START_REF] Franca | Residual-free bubbles for the Helmholtz equation[END_REF][START_REF] Franca | A two-level finite element method and its application to the Helmholtz equation[END_REF][START_REF] Franca | On the stability of residual-free bubbles for convection-diffusion problems and their approximation by a two-level finite element method[END_REF], variational multiscale (VMS) [START_REF] Hughes | Multiscale phenomena: Green's fun ctions the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods[END_REF], the partition of unity method (PUM) [5,[START_REF] Melenk | The partition of unity method finite element method: basic theory and applications[END_REF], and nearly optimal Petrov-Galerkin [START_REF] Barbone | Nearly H 1 -optimal finite element methods[END_REF]. More special-purpose approaches include the quasi-stabilized method [START_REF] Babuska | A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution[END_REF]6], finite increment calculus [START_REF] Oiiate | Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems[END_REF], subgrid modeling [21], and the residual based method proposed in [51]. Relationships between some of these approaches have been established and described in [16,[START_REF] Franca | Bubble fun ctions prompt unusual stabilized finite element methods[END_REF][START_REF] Franca | Unusual stabilized finite element methods and residual free bubbles[END_REF].

For the Helmholtz equation, PUM provides very accurate results at low wave resolutions, but suffers from severe ill conditioning that renders the method ineffective in practice. (It is still unclear whether a current implementation of PUM for acoustic waves [47] can circumvent this difficulty.)

Motivated by PUM, RFB, the FETI method for non-conforming domain decomposition with Lagrange multipliers [START_REF] Far | A Lagrange multiplier based on divide and conquer finite element algorithm[END_REF][START_REF] Far | A saddle-point principle domain decomposition method for the solution of solid mechanics problems[END_REF][START_REF] Farhat | Optimal convergence properties of the FETI domain decomposition method[END_REF]31], and recent work on discontinuous Galerkin methods (DGM) for second-order equations [3,8,9,52], we propose herein a discretization method in which the standard finite element polynomial field within each element is enriched by free-space solutions of the governing homogeneous, constant-coefficient, partial differential equation. These enrichments are easy to obtain, and are virtually independent of element geometry and polynomial order. Thus, features of the differential equation are included in the approximation. Like PUM, the number of such homogeneous solutions is determined in advance. Like RFB, but in contrast to PUM, the enrichment is added to, rather than multiplied by, the polynomial field. Consequently, the enrichment field is not continuous across element boundaries ab initio, and continuity is enforced weakly by Lagrange multipliers. In this manner, we expect to retain the high coarse-mesh accuracy of PUM, without significant degradation of conditioning. As in the DGM work cited above, we address a second-order partial differential equation directly rather than cast it as a first-order system. We also note that the enrichment being spanned by free-space solutions that are discontinuous across element boundaries, as proposed, is reminiscent of Trefftz approximations [START_REF] Cheung | Solution of Helmholtz equation by Trefftz method[END_REF][START_REF] Ihlenburg | Solution of Helmholtz problems by knowledge-based FEM[END_REF][START_REF] Jirousek | Wr6blewski, T-elements: state of the art and fu ture trends[END_REF][START_REF] Stojek | Least-squares Trefftz-type elements for the Helmholtz equation[END_REF].

The concept of finite element methods with Lagrange multipliers for enforcing boundary constraints is well known [2]. It has been successfully applied to the analysis of structural systems modeled by different types of elements [START_REF] O'leary | Finite element analysis of stiffened plates[END_REF], to the investigation of contact problems [START_REF] Simo | A perturbed Lagrangian formulation for the finite element solution of contact problems[END_REF], to the synthesis of independently discretized subdomains and mode led substructures [I, I 0,26,27], and to the design of fast, domain de composition based, iterative solvers [START_REF] Far | A Lagrange multiplier based on divide and conquer finite element algorithm[END_REF][START_REF] Farhat | The second generation of FETI methods and their application to the parallel solution of large-scale linear and geometrically non linear structural analysis problems[END_REF]31].

The remainder of this paper is organized as follows. The Discontinuous Enrichment Method (DEM) is presented in Section 2 as a general approach for improving finite element computation. Implementational issues related to static condensation of the enrichment field, approximation of Lagrange multipliers, treatment of Neumann and Robin boundary conditions, as well as numerical integration are outlined in Section 3. The application of DEM to the Helmholtz equation is described in Section 4, with suggested approximations, dispersion analyses, and numerical tests. Advection-diffusion is treated similarly in Sec tion 5. Conclusions are offered in Section 6. 

u : Q---+ IR such that st'u = f in Q, u = g on r. (I) (2)
Here, f : Q---+ IR and g : r---+ IR are given functions. We think of se as a second-order differential operator.

The method proposed herein may be generalized to problems with other types of boundary conditions (see Section 3.3).

Partition Q into ne1 non-overlapping regions Qe (element domains) with boundaries re (Fig. 1), e = 1, ... , ne!, i.e., Similarly, the union of element boundaries is denoted (6)

The element interfaces or interior element boundaries are (7)

Hybrid variational formulation with weak continuity

The variational form of the boundary-value problem (1) and (2) is stated in terms of the set of trial solutions "'I/= L 2 (Q) n H1 (iJ). These functions may be discontinuous across element boundaries. Similarly, the functions are not required to satisfy Dirichlet boundary conditions.

Inter-element continuity and Dirichlet boundary conditions are both enforced weakly by Lagrange multipliers in H-112(f). Following a procedure outlined in [15, Section 1.4], we introduce p E if/= H(div; Q), where

The normal traces of p on r e are taken as Lagrange multipliers. These well-defined normal traces p • n lie in H-112(f) [START_REF] Lions | Non-homogeneous Boundary Value Problems and Applications[END_REF][START_REF] Temam | Theory and Numerical Analysis[END_REF] and satisfy

(p • n, v) re = (\lv,p)f!' + ( v, div p) f!' . (9) 
Here, ( -, -) is the duality pairing between H-'12(r) and H112(r), and (-, • ) is the L 2 (Q) inner product. Subscripts on duality pairings denote domains of integration other than r, and subscripts on inner products denote domains of integration other than Q. 

L(v) = (v,j), Lb(q) = -(q • n,g)
for sufficiently smooth f and g.

( 11) ( 12) ( 13)
Several stabilized methods include jumps involving the boundary operator across element interfaces [START_REF] Douglas | An absolutely stabilized finite element method for the Stokes problem[END_REF][START_REF] Hughes | A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces[END_REF][START_REF] Hughes | Space-time finite element methods for elastodynamics: formulations and error estimates[END_REF]51]. Such terms are derived directly from the governing equations in VMS [START_REF] Hughes | The variational multiscale method -a paradigm for computational mechanics[END_REF]. The present formulation enforces continuity of the field itself. These terms are employed to obtain a local approxi mation of the global effect of phenomena unresolved by the mesh.

Weak form

The stationary point of the functional [START_REF] Bernardi | A new non conforming approach to domain decomposition: the mortar element method[END_REF] is obtained by setting its first variation to zero. In partitioned form, this leads to

a(v, u)-(p • n, v)-= L(v), r -(q • n, v)-= Lb(q).
r Here, v E 1/ and q E "'f/ are arbitrary variations of u and p, respectively. ( 14)

( 15)
The key stability conditions for mixed and hybrid formulations are described by Brezzi's theorem (e.g., [15, p. 42]). They need to be verified for the finite dimensional problem. These conditions limit the selection of finite element interpolations one can use for a certain application. Discretization of ( 14) and ( 15) leads to a typical 'zero' diagonal block [15, p. 74].

The corresponding Euler-Lagrange equations are

2-'u= f m Q, ( 16 
)
[u] = 0 on T int, (

) 17 
u= g on r, ( 18 
) p • n = 2-'bu on r. ( 19 
)
Here, [ •] is the jump at an element boundary. Eq. ( 19) provides an jnterpretation of the Lagrange mul tiplier. For example, if 2-'b is the normal derivative, then p = Vu in Q.

Galerkin approximation

We seek approximate solutions u h E 1/ h c 1/ of the form [START_REF] Chung | A method to generate generalized quadrature rules for oscillatory integrals[END_REF] Here, uP E f/P c H1 (Q) are standard, continuous, piecewise polynomial, finite element functions -the coarse scales in variational multiscale terminology, and uE E "YE is the enrichment field. Unlike the fine scales or bubbles, which fill a similar role, uE may be discontinuous across element boundaries. This allows us to circumvent both the difficulty in attempting to approximate the global fine-scale Green's function of the variational multiscale method, and the loss of global effects due to the restriction of residual-free bubbles to a vanishing trace on element boundaries. An added potential benefit is improved approximation of discontinuous solutions.

There is a great deal of flexibility in selecting f/ E in this framework. We assume that the approximation of particular solutions by f/ P is satisfactory. The enrichment should therefore contain solutions of the homogeneous partial differential equation that are not represented by the underlying polynomial field, a.k.a. the fine scales. We note that this interpretation of the fine scales differs somewhat from that of VMS or RFB. In the present method, the enrichment field may entirely capture homogeneous solutions, rather than merely enhance the polynomial field.

Weak enforcement of continuity permits the use of free-space solutions as bases for the enrichment. Consequently, potentially difficult, element-level boundary-value problems need not be solved, neither analytically nor numerically. The relatively simple, free-space solutions are applicable to practically any element polynomial order and geometry.

In summary, we employ the direct sum relationship 1/h = f/ P EB 1/' E , where u E E f/ E and f/ E is spanned by solutions of (21) that are not already represented in the polynomial basis. Since these functions are employed on an element level, we typically employ solutions of the constant-coefficient case, which are easy to obtain.

The approximation of the Lagrange multipliers as normal traces of a vector-valued function on element boundaries is well-established from previous work on hybrid methods (see [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF]Section 111.3] for an ex tensive discussion of definitions of "'ff h c "'f!} Implementational issues are outlined in Section 3.2.

The treatment of weighting functions is consistent with Eq. ( 20), namely, vh = v P + vE E 1/h and qh E "/f/'h. By the Galerkin method, we seek uh E 1/h and ph E "/f/'h such that V{ vh, qh} E 1/h x "/f/'h a(vh ,uh)-\Ph •n,vh) ; =L(vh), -(qh • n, vh) ; = Lb(q").

These equations may be decomposed as follows: Due to the discontinuous nature of 1/' E , Eq. ( 25) may be used to eliminate u E by static condensation on the element level (see Sections 3.1 and 5.1). This procedure provides a local (and hence economical) approxi mation of the global effect of the fine scales on the coarse scales. The fine scales are driven by the inner element residuals L( vE) -a( vE, u P ), and the inter-element and boundary discontinuities (ph • n, v E )-.

The discontinuous terms approximate the global nature of this effect at the cost of employing addition�! degrees of freedom. On the other hand, once the problem has been solved, the auxiliary field directly provides accurate (and continuous) gradient information at no added cost. For example, if 2'b is the normal derivative, then ph approximates '\lu in Q, see Euler-Lagrange equation [START_REF] Cheung | Solution of Helmholtz equation by Trefftz method[END_REF].

Implementation

Static condensation

More than merely a conceptual device, the local elimination of u E, leading to a u P -p formulation, is proposed as a practical procedure that simplifies and conditions the formulation, in order to reduce computational cost. Thus, the cost of solving the matrix problem that ensues from DEM is virtually independent of the dimension of u E. (This holds for fully efficient sparse solvers even without static condensation.)

The enrichment field generally contains several degrees of freedom in each element. Consequently, static condensation is presented in this section in terms of the discrete equations for simplicity. For advection-diffusion the enrichment may contain a single degree of freedom. Static condensation in terms of contin uous operators for this case is presented in Section 5.1.

Consider a partitioned form of the global system of discrete equations ( 27)

Here, u P , uE, and pare vectors containing the degrees of freedom of u P , u E, and ph, respectively. The matrices in ( 27) emanate from terms in the Galerkin equations according to the correspondence outlined in Table I.

Due to the continuity of u P , the arrays K P c and Kc P are empty except along the domain boundary r.

The global system is obtained from an assembly of element arrays. Assembly of the nodal polynomial degrees of freedom is conventional. The coefficients of the enrichment are generalized degrees of freedom, internal to each element. The constraint degrees of freedom are defined on element boundaries: vertices, edges, and faces in one, two, and three dimensions, respectively. The element array is [START_REF] Farhat | A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems[END_REF] with the obvious correspondence between global and element matrices. Note that for optimal results of the following procedure on the element level, the terms emanating from (ph • n, v P ) re and (qh • n, u P ) re should be retained in k P c and k c P , respectively, although in assembly they cancel out everywhere except along the domain boundary.

The enrichment degrees of freedom are eliminated on the element level to obtain where

){PP = kpp _ k PE ( k EE r 'k EP , kPC = k PC -k PE ( k EE ) -l k E C , kCP = kCP _ kC E ( k EE r 'k EP ' kCC = -kC E ( k EE r 'k E C .
Static condensation eliminates the zero diagonal block of the uncondensed matrix.

Table I Correspondence between the global matrices in [START_REF] Farhat | On a component mode synthesis method and its application to incompatible substructures[END_REF] and terms in the Galerkin equations Matrix Galerkin term a(vP,uP) a(vP,uE)

-(p h • n, vP) a(vE,uP) a(vE,uE) -(ph. n, vE) ; -(t/ • n, uP) -(t/ • n, uE) ; L(vP) L(vE) Lb(qh) 6 (29) (30) (31) (32) (33)
The global system for the resulting, reduced uP -p formulation is obtained as an assembly of the element arrays. This system is particularly well suited for iterative solution. (Results of preliminary numerical studies of the conditioning of the coefficient matrices are favorable, see Section 4.) The solution for the eliminated field is then obtained as a post process within each element.

Approximation of the Lagrange multipliers

An extensive survey of techniques for approximating Lagrange multipliers of the form employed herein, including references, theoretical results, constructions of discretizations, and examples of families of ele ments, is presented in [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF]Section 111.3] for two-and three-dimensional configurations.

Our only departure from the presentation of [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF] is a scaling of the Lagrange multiplier basis functions by a scaling factor s with the dimension of 2b. For a given 2, s is chosen so that the entries in the co efficient matrices corresponding to p and u are of the same order of magnitude, in order to improve the conditioning of the matrix equations. In the following we highlight a few specific examples of the ap proximation of Lagrange multipliers in two dimensions.

Consider Lagrange multipliers that are constant along the sides of a triangle. This is obtained in the present approach as normal traces of

" (x ) =s {c 1 + c3x } p ,y C 2 + C 3 Y ' (x,y) E Q e
on the sides of the triangle [START_REF] Raviart | Primal hybrid finite element methods for 2nd order elliptic equations[END_REF], originally denoted RT0. In this case div p " = const. in Q e . [START_REF] Franca | Residual-free bubbles for the Helmholtz equation[END_REF] A triangle with Lagrange multipliers that vary linearly along its sides, denoted BDM1 [START_REF] Brezzi | Two families of mixed finite elements for second order elliptic problems[END_REF], is obtained by considering nodes at the three vertices, with standard linear interpolation of nodal values of p " . The six nodal degrees of freedom of this element may be replaced by six normal components of p " on r e (two per side). However, the nodal representation is particularly well-suited for conventional finite element data structures.

Approximations for quadrilaterals are defined in terms of natural coordinates in a square reference domain that is aligned with the axes. In case the approximation is specified in terms of the normal com ponents on the element sides, the mapping to the physical domain is performed by the change of variables known as Piola's transformation [15, p. 97] so that the normal components are preserved. Otherwise, when nodal values are used in conjunction with integration according to the right-hand side of (9), standard isoparametric mapping may be employed.

Consider Lagrange multipliers that are constant along the sides of a square reference domain. This is obtained in the present approach as normal traces of

" (x ) = s { c1 + c 2 x } p ,y C3 + C 4Y (35) 
on the sides of the square [START_REF] Brezzi | Efficient rectangular mixed finite elements in two and three space variables[END_REF] originally denoted BDFM1 and which coincides with RT0 for rectangles. In this case div p " = const. in Q e , as for RT0. The normal trace is constant, as required, and the approximation can be specified by the four normal components of p " on the boundary.

Neumann and Robin boundary conditions

So far, we have considered only the case of Dirichlet boundary conditions. Here, we propose a for mulation of our method that preserves the structure of the element-level matrices [START_REF] Farhat | A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems[END_REF] and [START_REF] Farhat | Optimal convergence properties of the FETI domain decomposition method[END_REF] Here, g : r D ____, IR, a : r R ____, IR, and f3 : r R ____, IR are given functions. Eq. ( 37) represents a Robin boundary condition, as well as a Neumann condition in the special case a= 0.

We extend p to r R as follows:

"'f! ={p IpE H(div; Q), p • n = -f3 on r R} • The functional ( 1 0) is modified 1 1 II (u,p) = 2 a(u, u) + 2. (au, u) r R -(p • n, u) ; -L(u)-Lb(p).
This leads to the modified weak form

a(v,u)+ (au,v) r R -(p• n,v) ; =L(v), -(q • n, u) -= Lb(q). r (38) 
(39)

(40) (41) 
Here, q E "/f/0 = {q I q E H(div; Q), q • n = 0 on rR}. 

The discretization of the above formulation retains the element-level matrices [START_REF] Farhat | A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems[END_REF] and [START_REF] Farhat | Optimal convergence properties of the FETI domain decomposition method[END_REF]. The as sembly process now has to account for the enforcement of the values of p • n on r R as essential boundary conditions, in the same manner that Dirichlet boundary conditions are enforced in conventional finite element methods. In other words, the element-level degrees of freedom associated with p • n on r R are not assembled into the global coefficient matrix. Instead, for inhomogeneous data (/3 =F 0), they lead to the usual terms on the right-hand side. This discretization process is summarized in Table 2, which outlines the modification of Table 1 to account for Neumann and Robin boundary conditions.

Integration

Recall the selection of enrichment functions that are free-space homogeneous solutions, i.e., satisfying (21). This property leads to an alternate form of integration, namely [START_REF] Hughes | Space-time finite element methods for elastodynamics: formulations and error estimates[END_REF] Table 2 Correspondence between the global matrices in [START_REF] Farhat | On a component mode synthesis method and its application to incompatible substructures[END_REF] cf. (11). Integration in element domains is replaced by integration along element boundaries. Similarly, integration of the constraint terms is performed along element boundaries rather than in element domains, see Eq. ( 9). The enrichment functions are chosen among solutions of the homogeneous form of the partial differ ential equation, which may vary rapidly. For this reason, integration of terms involving the enrichment functions may require more care than standard finite element polynomials. Various procedures for the integration of oscillatory functions, e.g., [11,[START_REF] Chung | A method to generate generalized quadrature rules for oscillatory integrals[END_REF][START_REF] Evans | A comparison of some methods for the evaluation of highly oscillatory integrals[END_REF], may be employed for this purpose.

Application to the Helmholtz equation

The Helmholtz operator, describing time-harmonic acoustic and electromagnetic waves, may lose el lipticity with increasing wave number, since in that case the bilinear form no longer induces a norm. This is related to the pollution effect, in which finite element solutions of the Helmholtz equation differ significantly from the best approximation [START_REF] Babuska | A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution[END_REF]6,[START_REF] Bouillard | Influence of the pollution on the admissible field error estimation for FE solutions of the Helmholtz equation[END_REF][START_REF] Gerdes | On the pollution effect in FE solutions of the 3D-Helmholtz equation[END_REF], due to spurious dispersion in the computation. In practical terms, this leads to an increase in the cost of the finite element solution of the Helmholtz equation at higher wave numbers.

The Helmholtz equation is governed by the indefinite operator f!?u = -!}.u-k 2 u, with given wave number k. The weak operator in this case is a(v, u) = (\i'v, 'Vu)--(v, k 2 u). The corresponding boundary operator is the normal derivative, namely f!?bu = n • \i'u. A nattfral choice for the scaling factor is s = k.

Element-level basis functions for uE that satisfy (21) for constant k are plane waves of the form exp(ik • x ) , where lkl = k. For a plane wave propagating in the 8-direction in two dimensions,

k T = k[cos 8, sin 8].
Since the dominant directions of propagation cannot generally be anticipated, a likely implementation of DEM for acoustics is based on an enrichment that is spanned by an even number of plane waves such that for every wave going in one direction there is another one going in the opposite direction. In this case, the complex exponential representations of plane waves can be replaced by real valued trigonometric basis functions. Use of such functions simplifies the formation of the matrices as sociated with the enrichment. An additional consequence of this alternative representation is that in this case, a conjugated formulation with sesquilinear operators is equivalent to a non-conjugated formulation with bilinear operators. Finally, we note that regularization of the enrichment could be needed to circumvent potential element level resonance at resolutions below two points per wavelength. If needed, a procedure proposed in [START_REF] Farhat | A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems[END_REF] for regularizing subdomains can be incorporated in the DEM formulation to regularize elements and thereby overcome this difficulty.

One dimension: Pr2-P1

Here, we consider standard two-noded linear interpolation (P1) of uP, and enrichment that is spanned by two plane waves propagating in the positive and negative axis directions. The Lagrange multipliers are also linear in the element with nodal values that enforce inter-element continuity.

Dispersion analysis

We consider a uniform mesh of elements of size h with nodes at xA = Ah, A E Z. The two fields of the statically condensed uP -p formulation decouple in this case, simplifying the analysis.

We start with the polynomial field. Consider an exact solution representing an outgoing plane wave with nodal values given by [START_REF] Ihlenburg | Solution of Helmholtz problems by knowledge-based FEM[END_REF] We assume corresponding nodal values of the finite element polynomial field of the form [START_REF] Jirousek | Wr6blewski, T-elements: state of the art and fu ture trends[END_REF] where u� = u P (xA ) • The dependence of the approximate wave number of the polynomial field, kP, on wave resolution (G = 2nj(kh) points per wavelength) is determined by the analysis of a standard three-node stencil.

The P1-2-P1 DEM element yields the following equation for the uncoupled u P field at interior node A:

-( ( 1 + (kh)2 /6) sin(kh)-kh ) u� _ 1 + 2 ( ( 1 -(kh)2 /3) sin(kh)-khcos(kh) )u� -( ( 1 + (kh)2 /6) sin(kh)-kh )u�+l = 0. 

-2 ( ( 1 + (kh)2 /6) sin(kh)-kh) cos (�h)+ 2 ( ( 1-(kh)2 /3) sin(kh)-kh cos(kh)) ,

Thus, the plane wave dispersion relation for the polynomial field is

khcos(kh)-(1-(kh)2/3) sin(kh) cos ( kp h) = -------,�-'------,-----'---- kh-( 1 + (kh)2 /6) sin(kh) (50) 
The approximate wave number e is purely imaginary for resolutions over two points per wavelength since cos (�h

) < -1, kh < 1t (51) 
indicating strong damping of the polynomial field. Fig. 2 shows the variation of the imaginary part of kP with wave resolution. In the limit of high resolution, we have We assume corresponding nodal values of the finite element constraint field in the form [START_REF] Raviart | Primal hybrid finite element methods for 2nd order elliptic equations[END_REF] where PA = p h (xA). Recall, p is defined as a d-dimensional vector, so that in this case it is a scalar. The dependence of the approximate wave number of the constraint field, kc, on wave resolution is again de termined by the analysis of a standard three-node stencil.

The P1-2-P1 DEM element yields the following equation for the uncoupled p field at interior node A -PA-t + 2cos(kh)p A -PA+t = 0.

Substituting (54) leads to 0 = -1/ exp (ikch) + 2cos(kh)-exp (ikch), = -2cos (kch) +2cos(kh).

Thus, the Lagrange multipliers are free of dispersion in one dimension.

(

) (56) 55 
In one-dimensional Dirichlet problems with homogeneous equations (i.e., f = 0), the polynomial field vanishes completely. In this case, the enrichment uE, and hence the resulting total field u h , is exact (and continuous).

Numerical results

We consider a problem in an interval of length a for the homogeneous Helmholtz equation (f = 0).

Dirichlet boundary conditions, u(O) = 1 and u(a) = exp(ika), are specified so that the exact solution is

u = exp(ikx). ( 58 
)
The interval is discretized by a uniform mesh of the P1-2-P1 elements described in the beginning of this section. A series of tests was performed for ka = 10 and 30, with resolutions down to 0.42 points per wavelength. As expected, in all the tests performed, uP was zero and uE was exact, to the limit of machine preCiSIOn.

Figs. 3 and4 show examples of solutions, obtained at a resolution of 6.28 points per wavelength, for ka = 10 and 30, respectively. Results obtained by the Galerkin method are shown for comparison. Spurious dispersion of the Galerkin method is evident in both cases. The degradation at ka = 30 is a manifestation of pollution.

We now consider an inhomogeneous problem in order to highlight the role of the polynomial field. In this case f = -2-(kx)2, and Dirichlet boundary conditions, u(O) = 1 and u(a) = 1 + exp(ika), are speci fied. The exact solution 1. 5 r-----,---r-----,---; is not contained in the finite element space. As before, a series of tests was performed for ka = 10 and 30, with resolutions down to 0.42 points per wavelength. In all the tests performed, the DEM solution was continuous and nodally exact, to the order of machine precision.

Fig. 5 shows an example of a solution to the inhomogeneous problem for ka = 10, at a low resolution of 3.77 points per wavelength. The DEM solution is virtually indistinguishable from the exact solution in the entire interval. The particular solution is shown in Fig. 6. The polynomial field u P provides a good ap proximation of the piecewise linear nodal interpolant of the particular part of the exact solution.

These features of the DEM solution are retained when we reduce the resolution to a very low value of 1.26 points per wavelength (still at ka = 10, Figs. 7 and8).

We now increase the wave number, ka = 30, keeping the resolution at the same value (1.26 points per wavelength). The DEM solution provides an excellent representation of the exact solution in the entire domain (Fig. 9). The particular solution is shown in Fig. 10. The polynomial field u P provides an excellent approximation of the particular part of the exact solution.

The resolution is reduced further to an extremely low value of 0.42 points per wavelength (still at ka = 30, Figs. 11 and12). The DEM solution retains nodal exactness, and although now distinguishable from the exact solution inside the elements, still provides a good approximation of the exact solution in the entire interval, considering the resolution.

1. 5,----,----,----,----,------- 1. 5,-----,-----,-----,-----,--------- x/a To summarize the DEM results of the inhomogeneous problem, we observe continuity and nodal ex actness, to the order of machine precision, in all cases. In most of the computations the DEM solution is virtually indistinguishable from the exact solution in the entire interval. This property diminishes only at the extremely low resolution of 0.42 points per wavelength.

Qr4-BDFM1 quadrilateral

Next, we consider quadrilaterals with standard four-noded bilinear interpolation (Q1) of uP, represented schematically in Fig. 13. The enrichment is spanned by four plane waves propagating in the positive and negative axis directions. We employ the BDFM1 approximation of Lagrange multipliers that are constant along the sides of the element [START_REF] Franca | Stabilized finite element methods: I. Application to the advective-diffusive model[END_REF].

The above choice of directions of propagation for the enrichment is motivated by the known perfor mance of the standard Galerkin method with continuous piecewise polynomials [39]. The standard method performs best on structured meshes when element diagonals are aligned with directions of propagation. The worst performance is in the case of propagation along element sides.

Dispersion analysis

In two dimensions, we consider a uniform mesh of elements of size h, aligned with the global axes, with vertices at xA = (mh, nh), m, nE 7l.. . The two fields of the statically condensed uP-p formulation again de couple in this case, simplifying the analysis .

• • l �------------� 1 • • Fig. 13. Schematic of the Q 1 -4-BDFM 1 quadrilateral.
The nodal points of the bilinear polynomial interpolation of uP are at the vertices of the mesh xA.

Consider an exact solution of the Helmholtz equation, representing a plane wave oriented at an angle e to the mesh (not to be confused with the angles of the plane wave enrichment, which in this case are 0, n/2, n, and 3n/2). Values of the exact solution at the nodal points are u( xA ) = ( exp(ikhe)) "'( exp(ikhs))" .

Here, e =cos 8 and s = sin 8. The dependence of the approximate wave number of the polynomial field, kr, on the orientation and wave resolution is determined by the analysis of a standard nine-node patch (Fig. 14). The dispersion analysis reveals that, as in one dimension, there is strong damping of the poly nomial field. The dispersion analysis of the constraint field, which is related to normal derivatives, is less conventional. The connectivity of the piecewise-constant edge constraints leads to a seven-edge stencil in either the x-or y-directions (e.g., Fig. 15). We associate edge values of the piecewise constant constraints with the middle of each edge, with coordinates XA = (mh, nh). The gradient of the exact solution is iuk. Consequently, we assume edge values of the constraint field to be in the form

PA • n = i( exp(ikche))"' ( exp(ikchs))"k • n. ( 61) 
Here, PA = p"(xA) and n is the outward unit vector normal to the element boundary.

The dependence of the approximate wave number of the constraint field, kc, on the orientation and wave resolution is determined by the analysis of a combination of four seven-edge stencils, two in the x-direction and two in the y-direction (Fig. 16).

This yields the following plane wave dispersion relation for the constraint field:

e (kh ( cos(kh) -cos (kc he )) cos (kc hs /2) + sin(kh) sin (kc he ) sin (kchs /2))

+ s (kh ( cos(kh)-cos (kchs)) cos (kche/2) + sin(kh) sin (kchs) sin (kche/2)) = 0. The constraint field exhibits excellent dispersion properties at angles up to 1 oo from the direction of any of the four plane waves in the enrichment at all resolutions (Fig. 17). At larger angles, there is a deterioration at very low resolutions (G < 4 points per wavelength).

Numerical results

The favorable dispersion results outlined above are supported by accurate solutions that are obtained by several numerical tests. In the following, we report on some of these tests, and compare the conditioning of the proposed discretization method with that of PUM.

We consider a problem in an a x a square, discretized by a uniform 10 x 10 mesh composed of the Q1-4-BDFM1 elements described in the beginning of this section (Fig. 18). Inhomogeneous Robin boundary conditions are specified so that the exact solution is a plane wave propagating in a given direction.

The error for a plane wave oriented almost along the x-axis (8 = 0.01°) is shown in Fig. 19. In this case, one of the angles of the enrichment practically coincides with the direction of the solution, and the error of DEM is four orders of magnitude smaller than that of the standard Galerkin method. The enriched method retains its superior performance, albeit to a lesser degree, even when the direction of the solution differs significantly from all of the angles of the enrichment (at an angle of no, see Fig. 20). The error in the enriched method is now a factor of two to four smaller than the Galerkin method. Clearly, the situation for DEM will improve when the enrichment is refined by adding plane wave di rections. It is striking that in both cases the enriched method seems to exhibit no pollution (the error appears to depend only on resolution, not ka), in contrast to the Galerkin method. This feature may stem from the lack of accumulation of dispersion due to the discontinuous nature of the DEM ap proximation.

The conditioning of the coefficient matrices is presented in Fig. 21 (for a plane wave at no and ka = 20). The Q1-4-BDFM1 DEM element is in the condensed uP -p form with diagonal scaling to account for the different orders of the two fields. The improvement of DEM over PUM (with four plane waves in the enrichment) is evident, a factor of over 104 at a resolution of 10, with a distinctly lower increase rate. There is a degradation in the conditioning of the enriched method compared to the Galerkin method at a given resolution, which is expected. Yet, this degradation is not prohibitive in absolute terms. As a matter of fact, the conditioning of the enriched method appears to be of the same order as that of the Galerkin method for a given accuracy.

The advection-diffusion equation is governed by the non-symmetric operator Sfu = -\7 • (K'Vu) +a• 'Vu, with given diffusivity K > 0 and flow velocity a. The bilinear operator in this case is a(v, u) = ('Vv, K'Vu)� + (v,a •'Vu). The corresponding boundary operator is the flux, namely Sfbu = Kn •'Vu. A natural choicg for the scaling factor is s = I al. The numerical formulation cannot be derived from the Lagrangian ( 1 0), but nonetheless it is based on the weak form ( 14) and [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF]. Element-level basis functions for u E that satisfy (21) are a constant and, for constant coefficients, exp(a • xjK). Since the constant is already contained in the underlying polynomial space, a likely imple mentation of DEM for advection-diffusion is based on an enrichment that is spanned by the single ex ponential basis function in each element.

Let u E be spanned by a single enrichment basis function N; in each element Here, x() E r e is a reference point that is chosen to satisfy a. x() >a. X Vx E Q e , so that 0 <N e E � I. restricted to the element. Employing this expression in (63) and substituting into (24) and ( 26) leads to a uP p formulation that does not require inversion of a matrix operator.

Numerical results

We consider a one-dimensional problem in an interval of length L for the homogeneous advection diffusion equation (j = 0). Dirichlet boundary conditions, u(O) = 1 and u(L) = 0, are specified so that the exact solution is exp(a(x -L)/K)-1 u = __::... ..:. .. . -:-----: : --f-C-:-----:-- exp(-aL/K) -1 • (67)

The interval is discretized by a uniform mesh of 10 P1-1-P1 DEM elements. A series of tests was performed with element Peclet numbers, a= ahj2K, up to 106. As expected, in all the tests performed, the DEM solution is continuous and exact to the limit of machine precision. We now consider an inhomogeneous problem in order to highlight the role of the polynomial field. In this case f = 2(ax-K) with homogeneous Dirichlet boundary conditions. The exact solution exp(a(x-L)/K)-exp( -aLjK)

1 -exp( -aLjK) (68) 
is not contained in the finite element space. As before, a series of tests was performed with element Peclet numbers up to 106. Fig. 24 shows an example of a solution to the inhomogeneous problem at a low value of a = 1. The DEM solution is virtually indistinguishable from the exact solution in the entire interval. The particular solution is shown in Fig. 25. The polynomial field u P provides an excellent approximation of the piecewise linear nodal interpolant of the particular part of the exact solution.

We now consider the advection dominated case with a= 106. The DEM solution provides an excellent representation of the exact solution in the entire domain (Fig. 26), including the thin boundary layer. The particular solution is shown in Fig. 27. The polynomial field u P provides an excellent approximation of the particular part of the exact solution. 

Conclusions

In this paper we present the discontinuous enrichment method, in which standard finite element poly nomials are enriched by discontinuous functions. The enrichment within each element is spanned by free space solutions of the constant coefficient, homogeneous, partial differential equation that governs the problem that is being considered. Continuity across element boundaries and Dirichlet boundary conditions are enforced weakly by Lagrange multipliers. The Lagrange multipliers are taken as normal traces of a vector field on element boundaries, according to well-established procedures for hybrid methods.

Due to the discontinuous nature of the enrichment, it is eliminated from the formulation by static condensation on the element level, prior to assembly. Thus, the cost of solving the matrix problem that ensues from DEM is virtually independent of the dimension of the enrichment. Elimination of the en richment leads to a simpler formulation. The condensed problem is expressed in terms of the polynomial field and the Lagrange multipliers. The enrichment within each element is recovered after the solution as a post-processing step.

Examples of application of the proposed methodology to time-harmonic acoustics and advection diffusion are presented. In the case of acoustics the enrichment is spanned by plane waves. The number of plane waves and their directions are determined in advance. In the two-dimensional implementation de scribed herein, an underlying bilinear field is enriched by four plane waves aligned with the axes. The Lagrange multipliers have piecewise constant normal components on element boundaries. Dispersion an alyses demonstrate the good performance of the DEM element. These properties are confirmed by accurate solutions on numerical tests, which also indicate adequate conditioning of the formulation.

An investigation of the application to advection-diffusion problems leads to similar conclusions. The enrichment in this case is spanned by a single exponential function in each element, so that element-level static condensation is a scalar operation. Preliminary numerical results are promising.

All indications in this work point to DEM as a cost effective computational choice for cases in which standard finite elements run into difficulties. We anticipate that for such problems the proposed method ology can attain a given accuracy with the same order of conditioning as the standard Galerkin method, but at significantly lower cost.

2.

  The discontinuous enrichment method for an abstract Dirichlet problem Let Q c !Rd be a d-dimensional, open, bounded region with smooth boundary r. For simplicity, we consider the following Dirichlet boundary-value problem: find

  denote the union of element interiors by nel Q = U Qe .

Fig. I .

 I Fig. I. Domain Q partitioned into element domains Q'.

1

  II(u,p) = 2 a(u, u)-(p • n, u) ; -L(u)-Lb(p) (I 0) Allowing for discontinuities, the bilinear operator a(•, •) is defined over element interiors Q, satisfying Here, 2-'b is the boundary operator corresponding to 2-'. Terms representing the data are

  a(v P , u P )+ a(vP , u E )-(ph• n, v P ) ; = L(v P ), a(vE , u P )+ a(vE , u E )-(ph• n, v E ) ; = L(v E ), -(qh . n, u P ) -(qh . n, v E )-= Lb(qh).

  in the presence of Neumann and Robin boundary conditions as well. (Radiation boundary conditions that are employed to truncate unbounded domains are often expressed as Robin boundary conditions.) Consider a partition of the domain boundary r = r Du r R, where r D n r R = 0. We assume that the Dirichlet boundary condition on the entire domain boundary (2) is replaced by u =g on T0, ,'l'bu + ti.U = fJ On FR.

  and terms in the Galerkin equations, accounting for Neumann and Robin boundary conditions Matrix Galerkin term a( vP, uP) + (auP, vP) r . a( vP, uE) + (auE, vP) r . -(ph. n, vP) r o a(vE, uP) + (auP, vE) r . a(vE,uE) + (auE,vE) r . -(ph. n, vE) rintur o -(l• n, u p ) r o -(1• n, uE) r,"'ur0 L(vP) + ({3, vP) r . L(vE) + ({3, vE) r . Lb(qh)

  ( ( 1 + (kh )2 /6) sin(kh) -kh) / exp (i� h) + 2 ( ( 1 -(kh )2 /3) sin(kh) -kh cos(kh)) -( ( 1 + (kh)2 /6) sin(kh)-kh) exp (i�h),

( 52 )

 52 Fig. 2. Damping in polynomial field in one dimension.

Fig. 3 .

 3 Fig. 3. Homogeneous problem in one dimension, ka = 10, 6.28 points per wavelength.

Fig. 4 .

 4 Fig. 4. Homogeneous problem in one dimension, ka = 30, 6.28 points per wavelength.
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Fig. 5 .

 5 Fig. 5. Inhomogeneous problem in one dimension, ka = 10, 3.77 points per wavelength.

Fig. 6 .

 6 Fig. 6. Particular solution of inhomogeneous problem and u P in one dimension, ka = 10, 3.77 points per wavelength.

Fig. 7 .

 7 Fig. 7. Inhomogeneous problem in one dimension, ka = 10, 1.26 points per wavelength.

Fig. 8 .

 8 Fig. 8. Particular solution of inhomogeneous problem and u P in one dimension, ka = I 0, 1.26 points per wavelength.

Fig. 9 .Fig. 12 .

 912 Fig. 9. Inhomogeneous problem in one dimension, ka = 30, I .26 points per wavelength.

Fig. 14 .

 14 Fig. 14. A nine-node patch.

Fig. 15 .

 15 Fig. 15. A seven-edge stencil, centered around a degree of fr eedom that corresponds to the derivative with respect to x. The piecewise constant edge values are associated with the middle of each edge.

Fig. 16 .

 16 Fig. 16. A twelve-edge stencil composed of four seven-edge stencils.

Fig. 17 .

 17 Fig. 17. Dispersion in constraint field at various resolutions, G = 2rc/(kh).

Fig. 18 . 16 Fig. 19 .

 181619 Fig. 18. Problem statement.

  x) = L u;N;(x), x E Q e . e=l (63) The enrichment basis function in each element should be scaled to preclude excessively high numerical values in convection-dominated regimes. This is accomplished by simply employing (64)

  5.1. Static condensation Substituting Eq. (63), and vE =N e E in Q e and zero elsewhere into Eq. (25) provides the element-level equation (65) where all operators are restricted to element e. Thus e = 1, ... , nel (66) exploiting the fact that SfN e E = 0. (Note that for N e E defined in (64), (Kn • \i'N e E ,Nnre =(a• n,Nt)re.) The above expression provides a representation of u E in the element in terms of the loading, and uP and p h

Figs. 22

 22 Figs.22 and 23 show examples of solutions, obtained at a= 0.5 and 5, respectively. Results obtained by the Galerkin method are shown for comparison. There is an error in the Galerkin solution even at a rel atively low value of a = 0.5 (Fig.22), before the onset of spurious oscillations at a = 1. Spurious oscilla tions pollute the Galerkin solution at a = 5 (Fig.23).

Fig. 22 .Fig. 23 .

 2223 Fig. 22. Homogeneous problem in one dimension, rx = 0.5.

Fig. 24 .Fig. 25 .

 2425 Fig. 24. Inhomogeneous problem in one dimension, rx = I.

Fig. 26 .

 26 Fig. 26. Inhomogeneous problem in one dimension, rx = I 06.

Fig. 27 .

 27 Fig. 27. Particular solution of inhomogeneous problem and uP in one dimension, a= 106.

  The Euler-Lagrange equation (19) is now replaced

by p• n=f!! bu on T;ntU To, p• n=f!! bu+ au On TR.

For Neumann boundary conditions (a= 0) the definition of p is unchanged.

[START_REF] Hughes | A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces[END_REF] 
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We briefly comment on the relative cost of using Q1-4-BDFM1 DEM elements, by simply counting the number of degrees of freedom employed on a given mesh. We consider a problem in a square domain, discretized by a uniform mesh of n x n elements. Such a mesh has �n + 1 ) 2 vertices and 2n(n + 1) edges.

Solving this problem with Q1 Galerkin elements employs (n + 1) vertex degrees of freedom. The stat ically condensed Q1-4-BDFM1 DEM elements require (n + 1 ) 2 vertex degrees of freedom and 2n(n + 1) edge degrees of freedom. This observation is essentially independent of the local dimension (i.e., the number of plane wave directions) of the enrichment. Thus, for n » 1, there are three times more DEM degrees of freedom than Galerkin. PUM has nodal degrees of freedom, but there are dim uE degrees of freedom per node (with the added effect of degrading sparseness). Thus, there are dim uE times more PUM degrees of freedom than Galerkin. For example, the numerical tests in [47] employ 18-36 plane wave directions. In such cases, there are six to 12 times more PUM degrees of freedom than DEM!

Application to advection-diffusion

Advection-diffusion describes many transport phenomena and serves as a model for fluid mechanics. The computation of convection-dominated transport phenomena by standard methods is fraught with difficulties, primarily spurious oscillations.