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Abstract

This article is a part of a project investigating the relationship between the dynamics of
completely integrable or “close” to completely integrable billiard tables, the integral geom-
etry on them, and the spectrum of the corresponding Laplace-Beltrami operators. It is
concerned with new isospectral invariants and with the spectral rigidity problem for the
Laplace-Beltrami operators Ay, ¢t € [0, 1], with Dirichlet, Neumann or Robin boundary con-
ditions, associated with C! families of billiard tables (X, g;). We introduce a notion of weak
isospectrality for such deformations.

The main dynamical assumption on (X, go) is that the corresponding billiard ball map By
or an iterate Py = B{" of it posses a Kronecker invariant torus with a Diophantine frequency
wp and that the corresponding Birkhoff Normal Form is nondegenerate in Kolmogorov sense.
Then we prove that there exists o > 0 and a set = of Diophantine frequencies containing
wp and of full Lebesgue measure around wq such that for each w € = and 0 < § < §p there
exists a C! family of Kronecker tori Ay(w) of P, for t € [0,4]. If the family A, ¢t € [0, 1],
satisfies the weak isospectral condition we prove that the average action f;(w) on As(w) and
the Birkhoff Normal Form of P, at A;(w) are independent of ¢ € [0, §] for each w € =.

As an application we obtain infinitesimal spectral rigidity for Liouville billiard tables
in dimensions 2 and 3. In particular infinitesimal spectral rigidity for the ellipse and the
ellipsoid is obtained under the weak isospectral condition. Applications are obtained also
for strictly convex billiard tables in R? as well as in the case when (X, go) admits an elliptic
periodic billiard trajectory with no resonances of order < 4.

In particular we obtain spectral rigidity (under the weak isospectral condition) of elliptical
billiard tables in the class of analytic and Zs x Zy symmetric billiard tables in R?. We prove
also that billiard tables with boundaries close to ellipses are spectrally rigid in this class.

The results are based on a construction of C! families of quasi-modes associated with
the Kronecker tori A;(w) and on suitable KAM theorems for C! families of Hamiltonians.
We propose a new iteration schema (a modified iterative lemma) in the proof of the KAM
theorem with parameters, which avoids the Whitney extension theorem for C'*° jets and
allows one to obtain global estimates of the corresponding canonical transformations and
Hamiltonians in the scale of all Holder norms. The classical and quantum Birkhoff Normal
Forms for C! or analytic families of symplectic mappings (Hamiltonians) obtained here can
be used as well in order to investigate problems related to the quantum non-ergodicity of
C*>-smooth KAM systems.
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1 Introduction

This article is a part of a project (cf. [60]-[63]) investigating the relationship between the
dynamics of completely integrable or “close” to completely integrable billiard tables, the integral
geometry on them, and the spectrum of the corresponding Laplace-Beltrami operators. It is
concerned with new isospectral invariants and the spectral rigidity of the Laplace-Beltrami
operator associated with C! deformations (X, g;), 0 <t < 1, of a billiard table (X, g), where X
is a C°° smooth compact manifold with a connected boundary I" := 90X of dimension dim X =
n>2and t — g; is a C' family of smooth Riemannian metric on X.

Substantial progress in the inverse spectral geometry has been made by means of the wave-
trace formula [18], [20], [33, 34], [46], [74]-[78], and by its semi-classical analogue - the Gutzwiller
trace formula [47], [33, 34], [22, 23]. The wave-trace formula, known in physics as the Balian-
Bloch formula and treated rigorously by Y. Colin de Verdiere [7], J. Duistermaat and V.
Guillemin [13], V. Guillemin and R. Melrose [21] and S. Zelditch [77] (see also [8], [46], [56], [65],
[66]), as well as the Gutzwiller trace formula relate the spectrum of the operator with certain
invariants of the corresponding closed geodesics such as their lengths and the spectrum of the
linear Poincaré map.



It has been proved in [18], [74, 75], [33, 34], that for certain nondegenerate closed geodesics
one can extract the Birkhoff Normal Form (BNF) from the singularity expansions of the wave-
trace. S. Zelditch [76] - [79] and H. Hezari and S. Zelditch [27] have reconstructed the boundary
for a large class of analytic domains on R™ having certain symmetries. Hezari and Zelditch [28§]
have proven infinitesimal rigidity of isospectral deformations of the ellipse.

Spectral rigidity of closed Riemannian manifolds of negative sectional curvature has been
obtained by V. Guillemin and D. Kazhdan [19] (in dimension two), C. Croke and V. Shara-
futdinov [9] (in any dimension) and by G. Paternain, M. Salo, and G. Uhlmann [52] for closed
oriented Anosov surfaces. In order to link the spectrum of the Laplace-Beltrami operator with
the length spectrum of the manifold the wave-trace formula is used. The wave-trace formula is
especially useful for C'-deformations (X, g;) of a closed Riemannian manifold (X, go) with an
Anosov geodesic flow since every closed geodesic of (X, gg) is hyperbolic, hence, nondegenerate
and it gives rise to a C'* family of closed hyperbolic geodesics of (X, g;) for |t| small enough. This
reduces the problem of the infinitesimal spectral rigidity of Anosov manifolds to the injectivity
of a geodesic ray transform which has been proved for negatively curved closed manifolds of
any dimension [9] and for closed oriented Anosov surfaces [52]. Moreover, infinitesimal rigidity
implies spectral rigidity because of the structural stability. Non of these properties is valid for
deformations of a billiard table “close” to an integrable billiard table which makes the spectral
rigidity problem much more difficult in that case. The wave-trace method requires certain tech-
nical assumptions such as simplicity of the length spectrum (a non-coincidence condition) and
non-degeneracy of the corresponding closed geodesic and its iterates which are not fulfilled in
general.

The main dynamical assumption on (X, gg) in the present work is that the corresponding
billiard ball map or an iterate of it posses a Kronecker invariant torus (see Definition 1.1) with
a Diophantine frequency vector and that the corresponding Birkhoff Normal Form (BNF) is
nondegenerate in a Kolmogorov sense. Such Hamiltonian systems are said to be of Kolmogorov-
Arnold-Moser (KAM) type. The dynamics of such systems is quite complex. In particular, the
non-coincidence and the non-degeneracy conditions may not hold for the corresponding closed
geodesics. This makes the wave-trace method useless for such systems in general. On the other
hand, the Kronecker tori with Diophantine frequencies survive under small perturbations which
makes them the right objects to look for. For this reason we propose another method which is
based on the construction of C!-families of quasi-modes associated with these tori.

Du to the Kolmogorov-Arnold-Moser (KAM) theory, if the initial Hamiltonian system (¢ = 0)
is completely integrable and if it satisfies the Kolmogorov nondegeneracy condition, then a large
part of the invariant tori of the initial system having Diophantine frequencies w survive under
the perturbation for ¢ in a small interval [0,d9) and give rise to cylinders of invariant tori
t — A¢(w), 0 <t < 0y along the perturbation. The positive number Jy depends on the small
constant x and on the exponent 7 in the Diophantine condition (1.2). The aim of this paper
is to prove that the invariant tori form C'-families with respect to ¢ and that the value at
w of the corresponding Mather’s S-function does not depend on t, or equivalently that the
Birkhoff Normal Form (BNF) of the system at each torus As(w) does not depend on ¢ for any
C'-smooth isospectral deformation. Applications will be obtain in the following three cases: for
deformations of Liouville billiard tables, in the case of deformations of strictly convex domains
and in the case when gy admits an elliptic (broken) geodesic which has no resonances of order
< 4 and has a nondegenerate BNF.

Let us formulate the main problems that we are going to investigate. Denote by A; the



“geometric” Laplace-Beltrami operator corresponding to the Riemannian manifold (X, g;) with
Dirichlet, Neumann or Robin boundary conditions. This is a self-adjoint operator in L?(X)
with discrete spectrum accumulating at +o0o. The corresponding eigenvalues A solve the spectral
problem

{Atu = Au in X, (1.1)

Btu = O,

where Byu = u|r in the case of Dirichlet boundary conditions, Byu = t% Ir in the case of Neumann

boundary conditions, and Byu = %‘F — fu|r in the case of Robin boundary conditions, where
vi(x), © € Ty, is the outward unit normal to I with respect to the metric g; and f is a smooth
real valued function on I'.

The method we use is based on the construction of C'! smooth with respect to ¢ quasi-modes.
This method has been applied in [63] in order to investigate the spectral rigidity of the problem
(1.1) with Robin boundary conditions in the case when the metric g is fixed and t — f; is
a continuous deformation of the function appearing in the Robin boundary condition. Let us
formulate the isospectral condition.

Consider a union Z of infinitely many disjoint intervals [ay, bx] going to infinity, of length
0 (\/@), and which are polynomially separated.

More precisely, fix two positive constants d > 0 and ¢ > 0, and suppose that

(Hy) Z C (0,00) is a union of infinitely many disjoint intervals [ay, by, k € N, such that

e lim a; = lim by = 400,

. b —ayg
e lim = 0y
LT

e api1 — by > cb;d for any k € N.
Given a set Z satisfying (Hy), we impose the following “weak isospectral assumption”
(Hg) There is a > 1 such that  Spec(A:) Na,+o0) C T Vte0,1].

Note that the length of the intervals [ay, by] can increase and even go to infinity as k — oo but
not faster than o (\/@) Physically this means that we allow noise in the system. Using the
asymptotic behavior of the eigenvalues )\; as j — oo one can show that conditions (Hy)-(Hz) are
“natural” for any d > n/2 and ¢ > 0. By “natural” we mean that for any d > n/2 and ¢ > 0
the usual isospectral condition

Spec (A¢) = Spec(Ag) Vit e [0,1]

implies that there exists @ > 1 and a family of infinitely many disjoint intervals [ag, bi] such that
(H1)-(Hg) are satisfied — see [63], Lemma 2.2, for details. The exponent d depends on the level
spacing of the spectrum of Ag.

The elastic reflection of geodesics of (X, g¢) at I' determines continuous curves on X called
billiard trajectories as well as a discontinuous dynamical system on the corresponding coshere
bundle S; X — the “billiard flow” consisting of broken bicharacteristics of the Hamiltonian h;
associated to g¢ via the Legendre transform. The latter induces a discrete dynamical system
B, defined on an open subset BT' (depending on t) of the open coball bundle BT of " called



billiard ball map (see Section 2.1 for a definition). The map B; : ]§2k I' — BT is exact symplectic.
Fix an integer m > 1 and consider the exact symplectic map

Pt:BZnUt—)B:F

where Uy is an open subset of BT such that B} (U;) C B;T for any 0 < j < m. Given an
interval J C [0,1] we say that P, = B/", t € J, is a C! family of exact symplectic maps if for
every to € J and p? € Uy, there exist neighborhoods Jy C J of tg and V' C Uy, of p¥ such that
V C U, for every t € Jy and the map Jy 5t — Pt‘v € C®(V,T*T) is C*.

We are interested in Kronecker invariant tori of P; of Diophantine frequencies, which are
defined as follows.

We denote by T? the torus T? := R?/277Z% of dimension d > 1 and by pr : R? — T¢ the
canonical projection and we consider T¢ as a Z-module. A “distance” from a given a € T := T!
to 0 can be defined by

la|r := inf{|a| : a € pr~(a)}.

Fix k € (0,1) and 7 > n — 1 and denote by D(k,7) the set all w € T?*~! = R*1 /2777~ !
satisfying the “strong” (k,7)-Diophantine condition

K

(3252 k1)

The condition (1.2) is equivalent to the following one. There exists @’ € pr ~!(w) such that

‘(k,WHT = ]k1w1+~ . '+kn_1wn_1”ﬂ‘ > Vk = (kl, e, kn—l) S Zn_l\{()}. (1.2)

(X021 k1)

Obviously, if this condition is satisfied for one @' € pr ~!(w) then it holds for each @' € pr ~!(w).
We denote by D(k,7) the set all w € R"™ satisfying the following “weak” (k,7)-Diophantine
condition:

(&', k) + 2mkn| > V(k,ky) €Z" ' X Z, k #0.

> > &
(@, k)| = S k)
Thus the relation w € D(k,7) implies that & := (&, 27) € D(k, 7) for at least one (and then for
all) @ € prH(w).

The set D(k,7) (D(k,7)) is closed and nowhere dense in R"~! (R"), respectively. Moreover,
the union Up<x<1D(k,T) of (k,7)-Diophantine vectors is of full Lebesgue measure in R"~1
for 7 > n — 1 fixed, and D(x',7) C D(k,7) for 0 < k < k’. Denote by D%(k,T) the set
of points of positive Lebesque density in D(k,T), i.e. w € D°k,7) if the Lebesgue measure
meas (D(r,7)NV) > 0 for any neighborhood V of wg in R*~!. By definition, the complement of
D%k, 7) in D(k,T) is of zero Lebesgue measure. In the same way we define the subset D°(x, )
of points of positive Lebesgue density in 5(/{, T).

VkeZr, k+#0. (1.3)

Definition 1.1. A Kronecker torus of P, of a frequency w is an embedded submanifold Ay(w)
of BiT diffeomorphic to T" ! such that

(i) Bl (Ay(w)) is a subset of BT for each 0 < j <m —1;

(ii) Ay(w) is invariant with respect to P, = B}";



iii) The restriction of P, to Ay(w) is C™ conjugated to the translation R, : T 1 — T 1 given
(iii) jug g
by Ry(p) = ¢+ w.

This means that there is a smooth embedding f;, : T" ! — B;I such that Ay(w) =
ftw(T"1) and the diagram

Tn—l R Tn—l

J/ ft,w i ft,w (1'4)
Aw) 25 Aw)
is commutative.

Definition 1.2. By a C!-smooth family of Kronecker tori Ai(w) of Py, t € [0,0], with a frequency
w we mean a C1 family of smooth embeddings [0,8] > t — fi, € C°(T" L, T*T) satisfying (i)-
(iii) of Definition 1.1.

For each Diophantine frequency w € D(k,7) the embedding f;,, : T*~! — B;T is a Lagrange
embedding (see [26], Sect. 1.3.2). We simply say that each Kronecker torus A;(w) C B;T is
Lagrangian for such frequencies. Note that the map P, : Ay(w) — Ay(w) is uniquely ergodic
for w € D(k,T), i.e. there is a unique probability measure p; on Ay(w) which is P, invariant.
Evidently, its pull-back f{,(du:) by the diffeomorphism f;,, coincides with the Lebesgue-Haar
measure df of T"~!. The automorphism = — 5 of R"~! induces an isomorphism of groups
g:R=/2p7zn—1 — R*=1 /771 assigning to any frequency vector w the corresponding rotation
vector which will be denoted by w/2w. Hereafter we will deal mainly with frequency vectors
which is motivated by the extensive use of the Fourier analysis.

To any Kronecker torus A;(w) with a Diophantine frequency w € D(k,T) one can associate
three dynamical invariants as follows.

The first one is the average action on the torus, which corresponds to the Mather’s S-function
in the case of twist maps. Given g € ]§ZT we denote by

As(o) ::/( )fd:c
At (e

the action on the broken bicharacteristic 4;(0) “issuing from” gy := ¢ and “having endpoint” at
om = Pi(0), where &dz is the fundamental one-form on 7*X. Denote by X}, the Hamiltonian
vector field where h; is the Legendre transform of the metric tensor ¢g;. The broken bicharac-
teristic 4;(0) is a disjoint union of integral curves ~;(o;) of the Hamiltonian vector field Xp,
“Issuing” from p; := Bg(g) and “ending” at gj41 = Bg *1(p) and lying on the coshere bundle
Yt =S X = {h = 1} (for a more precise definition see Section 2.1). The vertices of 3;(g) can
be identified with ¢;, 0 < 7 < m, and we have

—_

m—

A=Y L G

J=0

Notice that 2A4;(p) is just the length of the broken geodesic in (X, g¢) obtained by projecting
the broken bicharacteristic 4;(¢) to X. In particular, A;(¢) > 0. By Birkhoff’s ergodic theorem

N-1
|
=—2 lim — Ay(PFo) = —2 A 1.
Bi(w) Glim o k:ZN +(PFo) /A o ey < 0 (1.5)

7



does not depend on the choice of ¢ € Ay(w). The function 5; can be extended as a convex
function in the case when n = 2 and P; is a monotone twist map. It can be related to the
Mather’s B-function 8 [70] (cf. also [69]) by the isomorphism 7 : R*~!/27Zn~1 — R—1 /771,
ie. By =pMoy.

Another invariant of a Kronecker torus A¢(w) with a Diophantine frequency is the Liouville
class on it which is defined as the cohomology class [f7,((dx)] € HY(T™"™!, R), where £da stands
for the fundamental one-form of T*I" (recall that f;, : T"~! — B;T is a Lagrange embedding).
Let eq,. .., en—1 be the canonical basis of R* ™! and s — ¢;j(s) = pr(se;), j = 1,...,n—1, be the
corresponding loops on T"~!. Then 'yf’w = frwocj, j=1,...,n—1, provide a basis of loops of
Hi(A¢(w),Z). In the dual basis of H!(T"1,R) we write [ff, (£dx)] as

) - ( [ e ] gdx) | 16

t,w t,w

The Birkhoff Normal Form (BNF) of P, is another invariant related to a Kronecker torus. To
each Kronecker torus A¢(w) with a Diophantine frequency w one can associate a BNF of P,
as follows. There exist an exact symplectic map x; from a neighborhood of T"~! x {I;(w)}
in T*T"~! to a neighborhood of A;(w) in T*I' a smooth function L; and a map R; such that
Ap(w) = x¢ (T x {I;(w)}) and

(X;IOPtOXt)(QOaI):(90+VLt(I)>I)+Rt(QDaI)> a(IlRt«O»It(w)):OVO‘GNn_la (17)

(see Sect. 3). The BNF of P, at the torus A(w) is said to be nondegenerate if the Hessian
matrix of L; at I = I;(w) is nondegenerate, i.e.

det 97 Ly (I;(w)) # 0. (1.8)
One can choose L; so that
Br(w) + Li(I}(w)) = (w, (w)) and VIL([}(w)) =w (1.9)

(see Lemma 3.5).

Given an interval J C [0,1] and a C! family of Kronecker tori J 3 t + As(w), we say that
(1.7) provides a C' family of BNFs in J if t — Yy, t — L; and t — R; are C' families with
values in the corresponding C'* spaces (see Definition 3.3).

Let [0,6) 3t — P; be a C! family of exact symplectic maps and 0 < § < 1. We are interested
in the following problems.

Problem I. Let Ao(wp) be a Kronecker torus of Py with a (Ko, T)-Diophantine frequency wo €
D(ko,T), where 0 < kg <1 and 7 >n — 1. Suppose that the BNF of Py at Ao(wo) is nondegen-
erate. Do there exist = C T" ! and 0 < § < & such that

1. wg € = and Z is a set of Diophantine frequencies of full Lebesque measure at wg which
means that meas (2 N W) = meas (W) + o(meas (W)) as meas (W) — 0 for any open
neighborhood W of wq;

2. For each w € Z there exists a C* family of Kronecker tori [0,6] 3 t — Ay(w) of P;.



A positive answer of this question is given by Theorem 1, item 2, and Theorem 3.2. The set
= is of the form (see Section 3)

E= | @ (1.10)

0<r<ki

where k1 < kg, wo € 20 and the set QU consists only of points of positive Lebesgue density for
any  fixed. Moreover, Theorem 3.2 gives a C! family of simultaneous BNFs associated with
the C' families of invariant tori

[0,0] 5t — Ay(w) Ywe QD

which means that the family of symplectic maps x, t € [0,4], is C! and for any fixed ¢ the map
xt provides a BNF (1.7) of P, at Ay(w) for all w € Q2 at once. These families are analytic in ¢
if the map ¢t — P, is analytic. We apply that to the following three situations

1. (X, go) is a nondegenerate Classical Liouville Billiard table as defined in Section 4. Then
the billiard ball map Py = By is completely integrable and the Kolmogorov non-degeneracy
condition is fulfilled. Hence Theorem 1, 7-2, and Theorem 3.2 hold for every invariant torus
of Diophantine frequency in this case.

2. (X, go) has an elliptic closed broken geodesic with m > 2 vertices of no resonances of
order < 4 and with a nondegenerate BNF (see Section 5). The corresponding return map
Py = Bj* has a large family of Kronecker tori with Diophantine frequencies, the BNF of
each of them is nondegenerate and one can apply Theorem 1, 1-2, and Theorem 3.2.

3. (X, go) is a locally strictly geodesically convex billiard table of dimention two (see Section
6). Then there exists a large family of Kronecker tori with Diophantine frequencies of the
billiard ball map Py = Bp. These invariant circles accumulate at the boundary SgI" of the
coball bundle B{I' and give rise of the so called Lazutkin caustics in the interior of X. Close
to SgI' the map Py = By is twisted. This implies that the BNF of Py is nondegenerate at
each Kronecker torus sufficiently close to SjI' and we can apply Theorem 1, 1-2, as well
as Theorem 3.2.

From now on we denote by = a set of Diophantine frequencies of the form (1.10) such that the
items 1. and 2. in Problem I are satisfied in =.

Problem II. Let (X, g;), t € [0,1], be a C! family of billiard tables satisfying the weak isospec-
tral condition (Hy)-(Hz). Consider a C* family of Kronecker tori [0,6] > t — Ay(w) of P; for
each w € Z. Are the functions t — pi(w), t = Li(w) and t — L;(I;(w)) independent of t € [0, J]
for each w € 27

Affirmative answer of this question is given in Theorem 1 and Theorem 2. This result can
be applied in the cases 1. — 3. listed above. The proof is based on the construction of C! families
of quasi-modes of the spectral problem (1.1) in Theorem 8.2. We present below the main idea
of the proof.

Problem III. Does the weak isospectral condition (Hy)-(Hs) imply the existence of a C* family
of Kronecker tori [0,1] 5 t — A¢(w) of P; all along the perturbation for each w € =7



This problem is closely related with a mysterious phenomena in the Hamiltonian dynamics
of close to integrable systems - the destruction of Kronecker tori with Diophantine frequencies
along a perturbation. The C' family of Kronecker tori ¢ — A;(w) exists in a certain interval
[0,d0) but it may cease to exist at ¢ = dg. Does the “weak isospectral condition” prevent the
tori from destroying? We give a positive answer of Problem III in the following two cases - in
the case 2. mentioned above if the elliptic periodic broken geodesic has no resonances of order
< 12 (see Theorem 5.2 and Proposition 5.3) and for the Lazutkin caustics in the case of a C*
deformation of a strictly convex billiard table in R? (see Theorem 6). The proof of these two
results is rather involved. It requires a KAM theorem and BNF theorem where the constant
€ appearing in the smallness condition essentially depends only on the dimension n and the
exponent 7 > n — 1 but not on the particular completely integrable Hamiltonian (see Theorem
9.8 and Theorem 9.11). We need as well suitable uniform with respect to ¢ global estimates of
the Holder C*-norms (£ > 1) of the functions L; in the BNF (1.7). These estimates are obtained
in Theorem 9.11.

Problem IV. Spectral rigidity under the weak isospectral condition.

We show in Proposition 2.2 that the variation Bt(w), w € =, can be written by means of a
suitable Radon transform at the family of Kronecker tori A;(w), w € E, applied to the “vertical
component” of the variation of the boundary I';. In particular, the equality 5;(w) = So(w),
t € 10,9], w € Z, obtained in Theorem 2 implies that the image of the Radon transform is zero
for any weakly isospectral family (see Theorem 3). Hence, to prove infinitesimal rigidity one
has to obtain injectivity of that Radon transform. In this way we obtain infinitesimal spectral
rigidity under the weak isospectral conditions for classical Liouville Billiard Tables of dimension
2 and 3 in Theorem 4.3 and Theorem 4.5. We obtain in particular that the billiard tables inside
the ellipse in R? and inside the ellipsoid in R? are infinitesimally spectrally rigid under the weak
isospectral conditions (H;) — (Hs). Infinitesimal spectral rigidity of the billiard table inside the
ellipse has been obtained by Hezari and Zelditch [27] under the usual isospectral condition using
the wave-trace method. Unfortunately infinitesimal spectral rigidity does not always apply
spectral rigidity as in the case of negatively curved manifolds because of the phenomena of
destruction of Kronecker tori with Diophantine frequencies.

As an application of Theorem 3 we prove in Theorem 4 spectral rigidity of analytic Zo @ Zo
symmetric billiard tables (X, g) of dimension two if one of the corresponding bouncing ball
trajectories is elliptic, it has no resonances of order < 4 and the Poincaré map is nondegenerate.

Problem V. Are classical Liouville Billiard Tables spectrally rigid?

It turns out (see Corollary B.6) that the map P = B2 is always Kolmogorov nondegenerate
(twisted) at the elliptic point for elliptical billiard tables (bounded by an ellipse). Moreover, ex-
cept of five confocal families of ellipses given explicitly by (A.73), the geodesic 7 is 4-elementary.
These two conditions are open in the C® topology, and applying Theorem 4 we obtain spectral
rigidity not only of such elliptical billiard tables but also of analytic Zo @ Zs symmetric billiard
tables close to them.

Problem VI. Estimates of the canonical transformation and the transformed Hamiltonian in
the KAM theorem in the scale of C* norms.
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In order to prove the main theorems in the first part of the article we need certain global
estimates (in the whole domain of frequencies) of the canonical transformations and the trans-
formed Hamiltonian in the KAM theorem in the whole scale of Holder norms. Such estimates
are obtained in Theorem 10.1, (iii), and in Theorem 11.22, using a new iteration schema, which
allows us to avoid the Whitney extension theorem for C*° jets.

Before giving the structure of the paper we would like to compare different features of the
spectral rigidity problem in the cases of negatively curved closed manifolds and of close to inte-
grable Hamiltonian systems.

negative curvature close to integrable

Anosov system KAM system
C' families of hyperbolic closed geodesics C' families of Kronecker tori
Labeled length spectrum Average action on the Kronecker tori,
Mather’s § function
Wave trace formula C! families of quasi-modes
Geodesic ray transform Radon transform on Kronecker tori
Structural stability of Anosov dynamics Phenomena of destruction of invariant tori
with Diophantine frequencies
Infinitesimal rigidity easily Passing from infinitesimal rigidity to

implies spectral rigidity spectral rigidity is a hard problem

We are going to describe now the structure of the paper.

In Section 2 we recall first the definition of the billiard ball map and then we formulate some
of the main results. We give as well a proof of Theorem 3 which reduces the spectral rigidity
problem to the injectivity of a suitable Radon transform.

In Section 3 we obtain by Theorem 3.2 a C! family of BNFs of P; associated with C! families
of Kronecker tori Ay(w), where w € Q2 ¢t € J, and J C [0,d0] is an interval. This family is
analytic in ¢ if the map t — P; is analytic. The theorem is based on the BNF obtained in
Theorem 9.11.

Section 4 is devoted to Liouville billiard tables of dimension n = 2 or n = 3. Liouville
billiard tables of dimension two were defined in [60, Sec. 2] by using a branched double covering
map. We give here an invariant definition of Liouville billiard tables in dimension two and we
prove the equivalence of the two definitions in Appendix B.1. Then we recall the definition of
Liouville billiard tables of classical type in dimension two. Infinitesimal spectral rigidity of such
billiard tables under the “weak isospectral condition” is obtained in Theorem 4.3. Infinitesimal
spectral rigidity of nondegenerate Liouville billiard tables of classical type in dimension three
is obtained in Theorem 4.5. Here we essentially use the injectivity of the corresponding Radon
transform which has been proven in [62]. In particular we obtain infinitesimal spectral rigidity
of the ellipse in R? and the ellipsoid in R3 under the “weak isospectral conditions”.

In Section 5 we consider C'! isospectral deformations [0,1] 3 ¢t — (X, g¢) of a given billiard
table (X, go) admitting an elliptic closed broken geodesic v with m > 2 vertices and we denote
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by Py := Bj' the corresponding Poincaré map. We suppose that v admits no resonances of
order < 4 and that the BNF of Py is nondegenerate. By the implicit function theorem there
exixts ¢ > 0 and a C! family of elliptic closed broken geodesic v, t € [0, 8), with m > 2 vertices
in (X,g;) having no resonances of order < 4 and such that the BNF of the corresponding
Poincaré maps P; are nondegenerate. Theorem 4 gives spectral rigidity for a class of analytic
Zo @ Zo symmetric billiard tables of dimension two. Then we address the following questions.
Suppose that the C' family of billiard tables (X, g;), 0 <t < 1, is weakly isospectral. Assume
that (X, go) admits a periodic elliptic broken geodesic 7y and that the corresponding local
Poincaré map is twisted. Does there exist a C' family of periodic elliptic broken geodesics
[0,1] 3t — v in (X, gt) along the whole perturbation? Do the corresponding local Poincaré map
remain twisted? Do the invariant tori Ag(w) associated to g give rise to C'! families of invariant
tori [0,1] ¢ — Ai(w) along the whole perturbation? We give an answer of these questions in
Theorem 5.2 and Proposition 5.3.

Section 6 is devoted to isospectral deformations of locally strictly geodesically convex billiard
tables of dimension two. Firstly we obtain in Proposition 6.1 a C'! family of BNF's for the billiard
ball maps B; in a neighborhood of S{T" in terms of the interpolating Hamiltonian ¢; introduced
by Marvizi and Melrose [46]. Then Theorem 6.2 gives an affirmative answer of Problems I-IIT
in the case of C'!' families (X, g;), t € [0,4], of locally strictly geodesically convex billiard tables
of dimension two satisfying the weak isospectral condition (Hy) — (Hg). Moreover, if (Xy,g),
t €[0,1],is a C*! family of billiard tables in R? equipped with the Euclidean metric and satisfying
the weak isospectral condition and if Xg is strictly convex then we prove in that X; remains
strictly convex for each ¢ € [0, 1] and we get an affirmative answer of Problem III for ¢ € [0, 1]
(see Theorem 6).

In Section 7 we reduce the problem (1.1) microlocally at the boundary. The main idea is
explained in the beginning of Section 7. Let f; = fi(-,A\) be a %—density on I' depending on
a large parameter A and with a frequency support contained in a small neighborhood of the
union of the invariant tori A;(w). We consider the corresponding outgoing solution u; of the
reduced wave equation (the Helmholtz equation) in X; with initial data f; and we “reflect it at
the boundary” m — 1 times if m > 2. To this end we use the outgoing parametrix of the reduced
wave equation which is a Fourier Integral Operator with a large parameter A\ (A-FIO). Taking
the pull-back to I of the last branch of the solution wu(-, A) we get a 3-density MP(A)f;, where
MP()) is a A-FIO of order zero at I' the canonical relation of which is just the graph of P;. We
call M?()\) a monodromy operator. In this way obtain that

(—A + )\Q)ut = ON(|)\|_N)ft, Biuy = ON(‘)"_N)ft

if and only if
MY fe = fu+ On (N f.

We are looking for couples (), f;) solving the last equation. To this end using the BNF of
P, we obtain a suitable microlocal (quantum) Birkhoff normal form of MP(\) for ¢t € J (see
Proposition 7.11 and Proposition 7.12 in Sect. 7.3). This enables us to ”separate the variables”
microlocally near the whole family of invariant tori Ay(w), w € QY and to obtain a microlocal
spectral decomposition of M?(\) in Proposition 7.15. Then the problem of finding X is reduced
to an algebraic equation i (\) = 14 On(|A|7Y) where s ()\) are suitable eigenvalues of M (\)
with eigenfunctions f;. In this way we obtain that A should satisfy (7.125) and (7.126) and

we solve that system of equations recursively. This is done in Section 8, where we obtain C*
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families of quasi-modes. Using these quasi-modes we prove item 3 of Theorem 1 which claims
that the function ¢ — ;(w) is independent of ¢ for Diophantine frequencies w provided that the
weak isospectral condition (Hp)-(Hy) is fulfilled. We are going to give the idea of the proof.

Sketch of the Proof.

We fix ¢ € [0,9), x > 0 and w € QY and we impose the following

Strong Quantization Condition on the torus Ay(w).  There exists an infinite sequence Mv(w)
of (q,\) € Z" x [1,00) such that ¢ = (k, k,) € Z" ' X Z and X = py > 1 satisfy

co'lal < py < eoldl

1.11
tim |48 (L), Li(L(w))) — (k+@,2w(k:n+ ﬁ))\ = 0. _—
|g|—o0 4 4

Here ¢y > 1 is a constant, (9,7) € Z", ¥ is related with the Maslov class of A;(w) and ¥y is a
Maslov index. It turns out that condition (1.11) is satisfied for each w in a subset =L C Q¥ of
full Lebesgue measure in Q¥ (see Lemma 8.1).

Now we fix w € Z% and denote by M C Z" the image of the projection of M(w) C Z"x [1, 00)
on the first factor. The set M will be the index set of the C! family of quasi-modes that we
are going to construct. To obtain a quantization condition for the tori Ag(w) for s close to t we
introduce for any ¢ € M the interval

Jg = [t,t+2[g|7].

Since the maps s — Ls and s — I are C! in a neighborhood of ¢ with values in the correspond-
ing C'* spaces (see Theorem 3.2 and Definition 3.3), the following quantization condition of the
tori Ag(w) is satisfied

Quantization Condition.  There exists a constant C' = C(w) > 0 independent of ¢ € M and
s € Jg such that

‘Mg(ls(w),Ls(Is(w))> - (k+ %,%(kn n g))( <O VgeM, seJ, (1.12)

Using this condition we construct C! families quasi-modes (u4(5)?,us4), ¢ € M, s € Jy, of order
M for the problem (1.1) such that (see Theorem 8.2)

(1) usq € D(As), lusgllz2(xy = 1, and there exists a constant Cjy > 0 such that

|Ausy — () gl < Carpag™(s) in LX),

Busglr = 0

for every ¢ € M and s € Jg;
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(2) We have
1 1
1q(s) = pg + cqo(s) + g1 (s)—g + -+ cqm(8) vz
g (1g)

where the functions s — ¢, j(s) are real valued and C! on the interval J, and there exists
a constant C’; > 0 such that |c, ;(s)| < C, for every g € M, 0 < j < M, and any s € Jg;

(3) There exists C' > 0 such that

() ol D)) < 1

for every ¢ € M and s € J;

(4) We have
k + 190/4 _

Mq(t)

We point out that the strong quantization condition (1.11) is needed only in the proof of item
(4). Items (1)-(3) follow from the weaker quantization condition (1.12). The estimate in (3) is
related to the nullity of the subprincipal symbol of the Laplace-Beltrami operator. Note also
that the quasi-eigenvalues Mq(s)2 are defined only in the intervals J, which shrink to ¢ as ¢ — oo.

Consider now the self-adjoint operator Az with Dirichlet, Neumann or Robin boundary
conditions and the corresponding spectral problem (1.1). The relation between the spectrum of
A and the quasi-eigenvalues p,(s)? is given by

1
Ii(w) +0(m) as |q| — oo.

dist(Spec (As),ﬂq(s)Q) < O g™ (s)

where C)/ is the constant in (1) and M is the order of the quasi-mode. We fix M > 2d + 2
where d > 0 is the exponent in (Hy). It follows then from (Hs) that the quasi-eigenvalues p4(s)?,
lg| > qo > 1, s € Jg, belong to the union of intervals

c c
Ay = {ak - ia,;d_l, by + ia;d_l] k>ky>1

where c is the positive constant in the third hypothesis of (H;). These intervals do not intersect
each other for k > ko > 1 in view of the third hypothesis of (H;). The function J; 3 s + p,(s)?
being continuous in J,; can not jump from one interval to another, hence, it is trapped in a
certain interval Ag. Then using the first and second hypothesis of (H;) we obtain

o) = )] < s o = 0] < 20, (= 1) = o) = o) = o ( 1)

for |q| > go where go > 1 does not depend on the choice of s € J,. This implies

) = lt) (140 (1)) wsao

uniformly with respect to s € J,. A detailed proof of this statement is given in Lemma 8.3.
Now using (4) we get

_kdo/a ko4 ko4 (1N _ oo (1 i~
Cq(s) = 11(s) _Mq(t)(1+0(1/]q\))_ g (t) * (\q!) Telw) + (|q!>’ "
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uniformly with respect to s € J;. In the same way we get from (3)

ky —9/4

Lo (Glo) =2m 0

3 = 7T7kn_19/4 o i = o i 00
S0l =t o () = reiG +o (i) 4

uniformly with respect to s € J,. Setting 1 := 1/|q| we obtain from the above equalities that

Liyn(Iy(w)) = Lyy (G +n) + 0(n) = Liyn (St + 1)) + o(n)
= Li(¢(1) 4+ o(n) = Li(Iy(w)) +o(n), n=1/]q| = 0.

Recall that the map [0,d] — L4(+) is C* with values in the corresponding C'° space. Hence,

) d _

Li(Ii(w)) = £Ls(ft(w))}s:t =0 VYwe :f_;.
On the other hand, =% is dense in Q¥ since any point of Q¥ is of positive Lebesgue density and
09\ Z has measure zero, and by continuity (the function I — L;(I) is smooth) we get this
equality for each w € Q0. The point ¢ has been fixed arbitrary in [0, ), hence, L;(I;(w)) = 0 for
every t € [0,6) and w € QV. Now differentiating the first equation of (1.9) with respect to t we
obtain

Be(w) = (w, I (w)) — Le(I(w)) = (VLi(Ie(w)), Le(w)) =0 Ve € 2

since VL;(I;(w)) = w. Hence, Bi(w) = Bo(w) for every t € [0,6) and w € Q. By continuity we
get the last equality for every ¢ € [0, 4] as well. O

We point out that the classical and quantum BNFs are analytic in ¢ if the perturbation is
analytic in ¢ which leads to analytic in ¢ quasi-modes. This can be used as in [15, 16] to extend
the results of S. Gomes and A. Hassell about the quantum non-ergodicity of C*°-smooth KAM
systems. Moreover, using Theorem 11.22 and the pseudodifferential calculus of operators with
symbols of finite smoothness [63], one may extend them to KAM systems of finite smoothness.

The second part of the manuscript is devoted to the KAM theorem and the BNF around
families of invariant tori in both the continuous and discrete cases. The main novelty in it can
be briefly summarized as follows

— the constant € in the smallness condition essentially depends only on the dimension of the
configuration space and on the exponent in the Diophantine condition;

— C* smooth (analytic) families of invariant tori ¢+ — A;(w) with Diophantine frequencies
are obtained;

— C* smooth (analytic) with respect to the parameter ¢ BNF is obtained around the union
of Ay(w);

— global estimates in the whole scale of Holder norms with universal constants are obtained.
To this end a new iterative schema is proposed. The Modified Iterative Lemma proven in
Sect. 11.9 provides in a limit smooth functions in the whole domain €2 (not only smooth
Whitney jets on the Cantor set ;) with a good control of the Hoélder norms.
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We need all these properties un the first part of the manuscript. The KAM theorems here are
based on Theorem 10.1 which is a KAM theorem for C* (k=0; 1) or analytic families of C'*®
smooth Hamiltonians H; in T™ x D with parameters w € () where H; are small perturbations of
the normal form N (I;w) := (w, I). The proof of the theorem, especially of the so called KAM
step follows that of J. Poschel [54] in the case of analytic Hamiltonians but it requires additional
work in order to adapt it to the case of C* families of Hamiltonians [0,1] 3 ¢ — C*(T" x D; Q).
For this reason we give a complete proof of the KAM step. Next we adapt the Iterative Lemma
in [54] to the case of smooth Hamiltonians. In this way one obtains an iteration schema which
gives in a limit C*° Whitney jets on €2,. The Whitney extension theorem in the C'*° case does
not provide in general global estimates of the Holder norms in € without loss of derivatives [14].
For this reason we provide another iteration scheme based on a Modified Iteration Lemma given
by Proposition 11.13, which involves Gevrey almost analytic extensions of certain cut-off Gevrey
functions. The 0 derivatives of such functions are exponentially small near the reals and one
can use Cauchy (Green’s) formula. This allows one to obtain a convergent iteration schema on
the the whole space of frequencies and to obtain the desired global (in 2) Holder estimates of
any order.

Using Theorem 10.1 we obtain a KAM theorem for C' families of Hamiltonians H; which are
perturbations of a given C! family of completely integrable nondegenerate in Kolmogorov sense
Hamiltonians HY. The family H} is given as follows. We consider a C! family of nondegenerate
real valued functions K; € C*(Q), t € [0, 0], in a domain £ C R"™, where by nondegenerate we
mean that the gradient map

Q5w VKt(W) € Dt = VKt(Dt)

is a diffeomorphism for each t € [0,]. We denote by HY € C*°(D;) the Legendre transform K;
of K; given by
HY(I) = K}(I) := Crit.val. eq{(w, I) — K;(w)}.

Then HY € C*(D;) is nondegenerate and (H)* = K;. Theorem 9.1 provides a result of
KAM type for C* families of Hamiltonians [0,6] > ¢ +— H, € C>(T" x D;) which is a small
perturbation of the family H?. The constant e in the smallness condition essentially depends
only on the dimension n and on the exponent 7 > n — 1 in the Diophantine condition (1.3). To
this end, given w €  we linearize HY at I = VH*(w) applying Taylor’s formula and sending
the nonlinear part of it to the functions with perturbation. The smallness condition and the
estimates in Theorem 9.1 are given in terms of suitable weighted Holder norms. In order to
obtain estimates in Holder norms with universal constants of a composition of functions with
HY*, we suppose that € is a strictly convex bounded domain in R™ and that ¢t — HP* is a Cck
family with values in C*°(Q,R), Q being the closure of Q. The idea is to use the interpolation
inequalities for Holder norms in R™ or in T™ x R™ which simplify a lot the estimates of higher
order Hoélder norms for the inverse function and for the composition of functions. The problem
about the composition of functions in Holder spaces is quite delicate. It has been investigated
recently by R. de la Llave and R. Obaya [42]. We can not use directly their results here since
we need estimates with universal constants. These estimates are obtained in Appendix A.4.
Theorem 9.5 is a counterpart of Theorem 10.1 in the discrete case for C! families of exact
symplectic maps P;. Theorem 9.5 is obtained from Theorem 10.1 using an idea of R. Douady [11].
The BNF of C* families of exact symplectic maps at C* families of Kronecker tori is obtained in
Section 9.4. We point out that the constant € in the corresponding smallness conditions (9.182)

16



and (9.188) essentially depend only on the dimension and on the exponent 7. Moreover, the
constants Cp, in the corresponding Holder estimates (9.183), (9.189), (9.190) and in Theorem
11.22 are universal. This makes these results especially useful in the case when the symplectic
maps P; have singularities. They can be applied for example for the billiard ball map B; near the
singular set S;T" in the case when (X, g;) is locally strictly geodesically convex and dim X = 2
(see Theorem 6.2).

Part 1
Isospectral invariants and rigidity

2 Main Results

Before formulating the main results we recall from Birkhoff [2] (see also [72]) the definition of
the billiard ball map B associated to a billiard table (X, g) with a smooth boundary I'.

2.1 Billiard ball map

Let (X, g) be a smooth billiard table wioth boundary I'. The “broken geodesic flow” given by
the elastic reflection of geodesics hitting transversely the boundary induces a discrete dynamical
system at the boundary which can be described as follows.

Denote by h the Hamiltonian on T* X corresponding to the Riemannian metric g on X via
the Legendre transformation and by h? the Hamiltonian on T*T' corresponding to the induced
Riemannian metric on I'. The billiard ball map B lives in an open subset of the open coball
bundle B*T = {(z,¢) € T*T : h%(z,€) < 1}. It is defined as follows. Denote by S*X :=
{(z,€) € T*X : h(z,€) = 1} the cosphere bundle, and set

Y =S5*X|p:={(z,6) € S*X : z €T} and ¥ := {(2,€) € ¥ : (&, v(z)) > 0}

where v(x) € T, X, x € T, is the outward unit normal to I' with respect to the metric g. Let
B*T" be closed coball bundle, i.e. the closure of B*I" in T*I". Consider the natural projection
7y ¢ X — BT assigning to each (z,71) € ¥ the covector (z,n|r,r). Its restriction to XT U X~
admits two smooth inverses

15 BT — ©F | 78(2,6) = (x,6%). (2.13)

The maps 7T§ can be extended continuously on the closed coball bundle B*T. Given o € ©*

we consider the integral curve exp(sX})(g) of the Hamiltonian vector field X}, starting at o. If it
intersect X transversely at a time 7' = T'(p) and lies entirely in the interior of S*X for ¢ between
0 and T" we set

J(0F) = exp(TX}p)(0F) € ©F.

Notice that J is a smooth involution defined in an open dense subset of ¥. In this way we obtain
a smooth exact symplectic map B : B*I' — B*I', given by B =ngoJ o 7r§, where B*I" is an
open dense subset of B*I'. The map J can be extended to a smooth involution of ¥ in the case
when X is a strictly convex billiard table in R™. In this case the billiard ball map is well defined
and smooth in B*I" and can be extended by continuity as the identity map on its boundary S*I'.
This case will be considered in more details in Sect. 6.
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Suppose now that ¢t — g; is a C' family of Riemannian metrics on X. For any ¢ we denote
the corresponding cosphere bundle by S;X := {h; = 1} and the corresponding open coball
bundle of T by BT := {h < 1}. Let m : ¥; — B;T be the natural projection and 7" :
BT — %F, ﬂéct (z,€) = (x,&) its inverses. Denote by J; the corresponding involution in
and consider the billiard ball map By : BiT — B;T. If (z,¢) € By, then (z,€) € B{T for
any t in a neighborhood of ¢y because of the transversality and one can show that the map
t = B, € C®°(BiT,BiI) is C*. In this way we obtain a C! family of symplectic mappings

t— (B : B;T' = B;T).

2.2 Main Results

Recall that Py admits a C* Birkhoff normal form at any Kronecker invariant torus Ag(w) with
a Diophantine frequency w (cf [43], Proposition 9.13). The Birkhoff normal form of Py at Ag(w)
is said to be nondegenerate if the quadratic part of it is a nondegenerate quadratic form. The
non-degeneracy of the Birkhoff normal form enables one to apply the KAM theorem. Recall that
DO(k, ) is the set of points of positive Lebesgue measure in D(k,7), defined in the Introduction.

Theorem 1. Let (X,q:), t € [0,1], be a C! family of billiard tables. Let Ao(wp) C BT be a
Kronecker invariant torus of Py := Bj* of a Diophantine frequency wy € D°(ko, 7). Suppose that
the Birkhoff normal form of Py at Ao(wg) is nondegenerate. Then there exists o = do(kg) > 0
such that the following holds.

1. There exists a C'-family of Kronecker invariant tori
[0,50) >t — At(wg) C B;T
of P, := B[ of a frequency wy.
2. For any 0 < § < &g there exists a set = C T" ' of Diophantine frequencies such that
wo € 5,
meas (B(wo, e) N E)
meas (B(wo, €))

=1—-0s(e) ase—0,

and for any w € Z there exists a C'-family of Kronecker invariant tori
[0,0] 5t — Ay(w) C BT

of P, := B[" of a frequency w.

3. If the the billiard tables satisfy the weak isospectral condition (Hy) — (Hz) then Bi(w), It(w)
and Li(I;(w)) are independent of t € [0,0] for any w € =.

We are going to apply this result for C'! deformations of the boundary keeping the Rieman-
nian metric fixed. Let X be a smooth compact manifold of dimension n > 2 with non-empty
boundary I' := dX which is smoothly embedded into a Riemannian manifold ()Z' ,g) of the same
dimension and without boundary. We say that (X;,g), t € [0,¢], is a C*! variation of (X, g) if
(X;,g) is a billiard table in (X, g) with boundary I'; = 8X;, Xo = X, and if there exists a C!
family of embeddings

[0,6] 3t — ¢y € C®°(I, X) (2.14)
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such that ¢(I') = T;. In this case we say that (Xy,g) is a C' family of billiard tables. Then
there exists a C! family of diffeomorphisms onto their images [0,¢] > t — ¥; € C*°(X, X) such
that Wy (X) = Xy, Wy|r = 9y, and ¥, is identity outside an open neighborhood of I' in X. The
family Wy can be constructed parameterizing a neighborhood of I' in X by the exponential map
(z,s) — exp,(sv(zx)) corresponding to the Riemannian metric g = gp in X, where v(z) is the
outward unit normal to I". In particular, we get a family of billiard tables (Xi,g), ¢t € [0,¢],
which are isometric to (X, g:), ¢+ := ¥jg. We say that a family of Kronecker invariant tori
[0,6) >t — Ay(w) C B*Ty is Cl-smooth if the family [0,d) > t — 9} (Ay(w)) € B*T is CL.
Consider the corresponding Laplace-Beltrami operator A; in (X3, g) with Dirichlet, Neumann
or Robin boundary conditions on I';. As a corollary of the main theorem we obtain

Theorem 2. Let (Xy,g), t € [0,1], be a C' family of billiard tables. Let Ao(wo) C B*T be a
Kronecker invariant torus of Py := By* of a Diophantine frequency wo € D°(ko, 7). Suppose that
the Birtkhoff normal form of Py at Ag(wp) is non-degenerate. Then there exists 0o = dp(kg) > 0
such that the following holds.

1. There exists a C'-family of Kronecker invariant tori
[0, (50) S5t — At(wO) C B*Ft
of P; := BJ" of a frequency wy.
2. For any 0 < § < &g there exists a set = C T" ' of Diophantine frequencies such that
wo € =,
meas (B(wo,e) N E)
meas (B(wo, €))

=1—-0s(e) ase—0,
and for any w € Z there exists a C'-family of Kronecker invariant tori
[0, 6] >t — At(CLJ) C B*Ft

of P; := B[" of a frequency w.

3. If the the billiard tables satisfy the weak isospectral condition (Hy)— (Hz) then Bi(w), It(w)
and Li(I;(w)) are independent of t € [0,0] for any w € =.

We shall denote by 6,1 : I't — R the vertical component of the variation I's of I'; which is
defined by

Vae T ara) = (b @) @) = (e @), @9

where v4(x) is the outward unit normal to I'; at = with respect to the metric g.

Let m : T*Ty — T’y be the natural projection. Given ( = (x,§) € B*T'y, we denote by
§t+ (¢) € T X the corresponding outgoing unit covector which means that the restriction of the
covector &' to TpTy equals &, hy(§) = 1, and (7 (€), ve(m(¢)))2 > 0, where (-, -), stands for the
paring between covectors in T X with vectors in T, X (see Sect. 2.1). In this case the second
part of Corollary 2 can be stated as follows.
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Theorem 3. Let (Xy,9), t € [0,¢], be a C'-family of billiard tables satisfying the isospectral
condition (Hy) — (Hs). Let [0,0) >t — Ay(w), 0 < & < ¢, be a C! family of invariant tori of
P, = B}™ with a Diophantine vector of rotation w. Then

m—1
j;) //;t(w) (<§?(C),w(m(4))> (0,T%) (ﬁ(())) ‘C=B{(p) du(p) = 0 (2.16)

for any t € [0,9).

There are three particular cases we will focus our attention at, namely, C! deformations
of nondegenerate Liouville billiard tables, deformations of a manifold having non-degenerate
elliptic periodic geodesics and deformations of strictly convex planar domains.

We shall prove a spectral rigidity result for analytic billiard tables of dimension two having
the symmetries of the ellipse provided that one of the bouncing ball rays of the initial billiard
table is elliptic, 4-elementary, and has a nondegenerate BNF. Define a class of billiard tables as
follows. Let (X,g), dim X = 2 be a Riemannian manifold of dimension two. Suppose that it
admits two commuting involutions J, k = 1,2, acting as isometries. Consider the family B of
billiard tables (X, g) in (X, g) such that the boundary I' = 0X of X is connected and invariant
with respect to Ji, k = 1,2. Then the set of fixed points of Ji, K = 1,2, in X defines a bouncing
ball geodesic v of any (X, g) € B. Denote by Ba, the set of analytic billiard tables which belong
to B.

Theorem 4. Let (X, g) € B. Assume that the broken geodesic y1 given by the set of fized points
of J1 in X is elliptic 4-elementary and that the corresponding Poincare map admits a non-
degenerate BNF. Suppose that (X;,g) € B, t € [0,1], is a C* deformation of (X, g) satisfying
the weak isospectral condition (Hy) — (Hz). Then 1 is a bouncing ball geodesic of (Xy,g) for
each t € [0,1] and Ty has a contact of infinite order to Ty at the vertexes of v1. In particular,
X1 = Xy if the boundaries 'y = 0X1 and I's = 0X5 are both analytic.

It turns out (see Corollary B.6) that the Poincaré map associated with the elliptic bouncing
ball geodesic 7, is always non-degenerate (twisted) for Liouville Billiard Tables in surfaces of
constant curvature. Let us fix the foci F} # F5 and consider the corresponding confocal ellipses.
Then, except of five confocal families of ellipses given explicitly by (A.73), the geodesic v is
4-elementary. Denote by £ the set of ellipses which do not belong to these families. A billiard
table in R? is said to be elliptical if its boundary is an ellipse.

Theorem 5. We have the following.

1. Fach elliptical billiard table with boundary in & is spectrally rigid in the class Ba, under
the weak isospectral condition (Hy) — (Ha);

2. Each billiard table X in Ba, with boundary sufficiently close to an ellipse I € £ in the C°
topology is spectrally rigid in the class Ban under the weak isospectral condition (Hy)—(Hz).

Theorems 4 and 5 are proved in Section 5.

Remark 2.1. To obtain the preceding results we use only the leading term of the quasi-mode.
Replacing the second condition of (Hy) with a stronger one

lima*/?(by, —ap) =0 as k— 400,
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where s € N is fized, and using an analogue of Lemma 2.5 [63], one can obtain further isospectral
tvariants, which could be used to remove at least one of the symmetries.

Consider a strictly convex billiard table X in R?. Lazutkin has proved that any fixed 7 > 1
and any 0 < k < kg < 1 there is a subset 0, C D(k,7) of positive Lebesgue measure consisting
(k, 7)-Diophantine frquences such that for any w € €2,; there is a Kronecker invariant circle A(w)
of the billiard ball map B of a frequency w (see [43] and the references there). Morreover, the
corresponding caustic C(w) - the envelope of the rays issuing from A(w) - is a closed smooth
convex curve lying in the interior of X. As k tends to 0 the invariant curves accumulate at the
boundary S*(T") of B*(T").

Theorem 6. Let X; C R%, t € [0,1], be a C family of compact billiard tables satisfying the
weak isospectral condition (Hy) — (Hz). Suppose that X is strictly convezx. Then

1. Xy is strictly convex for each t € [0,1]
2. There is a Cantor set Z C (0,1] consisting of Diophantine numbers such that
meas (2N (0,¢)) =e(1—0(g)) as e— 0"

and such thatVw € Z there is a C* family of Kronecker invariant circles [0,1] 3 t — Ay(w)
of By of frequency w,

3. YweZ andt € [0,1], Bi(w) = Bo(w), Li(Ip(w)) = Lo(Ip(w)), and Li(w) = Ip(w).

2.3 Proof of Theorem 3

Theorem 3 follows from Theorem 2 and the following statement.

Proposition 2.2. Let [0,0] > t — Ay(w) C B*Ty be a Ct family of invariant tori of P, = B
with a frequency w € Q0. Then

d 2 =
v m DS / o T @OV (G Qunlmele))| _,  diale)  (27)

for each t € 10,8] and w € QY.
We are going to use the following

Lemma 2.3.. Consider a C family of curves c: (—e, e) x [0,1] = X, cs(+) = c(s,+) : [0,]] — X,
such that c¢(0) := co(0) is a geodesic of the metric g and denote by l(s) := ly(cs) the length of
the curve cs(+) : [0,1] — X with respect to the metric g. Then

@) o wll) o
0= (o 5:09) ++ (o, 3:09):

where é(0) := 9%(0,0).

21



Proof. The Lemma follows from a straightforward differentiation of the length function I(s)
and the Euler-Lagrange equation. O

Proof of Proposition 2.3. Using the notations introduced just before Theorem 2 we set p(6,t) :=
fi(0), 6 € T" 1 where f; = frw - T»—! — B*T; is the embedding of the Kronecker torus
Ay(w) € B*Ty. Consider the function z : T"~! x [0,d] — T, given by

x(@,t) = Wt(p(97t)) - w(ﬂ'O(ft(e))vt)‘ (2'18>

where f;(0) := ¢7(fi(0)). Clearly, z € C*(T"! x [0,6], X) and x(6,0) = mo(fo(h)) for any
§ € T"!. Suppose first that m = 1, that means that P, = B;. By (1.5) we have

Bs(w) = —(27&1_1 /H‘"—l l(a:(@, s), ¢ (Rarw(0), s)) df

where [(z,2') is the corresponding length function which is well defined and smooth in a neigh-
borhood of the projection of Ay(w) x A4(w) in X x X.
First we prove (2.17) for t = 0. Setting 6 := Ror(0) and using Lemma 2.3 we get

1 d

) = oy [ |5 @O (Ran0). )| |09
— e [ (000, 52690 ) - (7 000,99, 50,90 ) ]| _ o
- (%;n_l /T <(7T'£—7r§) (p(e,())),g‘f(e,())>d9

2

= T (w5 (fo(0)),v(x(6,0))) g (%f(Wo(fo(e))a0)7’/(770(f0(9))> do.

where 7T§s : B*Ty — XF is the map defined in (2.13). In the variables (z,£) = fo(6), we get
2

s=0 T T (o))

e [ (€ vlmle) BT ()

where 6,I'(x) = <%—If(x,0), v(z)). The same argument holds for m > 2. Finally, to prove (2.17)
for any t € [0, ] we replace I'g by I'; and apply the same arguments. O

3 Birkhoff Normal Forms of C* deformations.

The aim of this section is to prove items 1 and 2 of Theorem 1. We shall obtain a C*, k € {0;1},
family of Birkhoff Normal Forms for the C* family of exact symplectic maps t — P, around
the corresponding invariant tori. This BNF will be used to construct a C* family of Quantum
Birkhoff Normal Forms. In order to obtain the BNF we will apply Theorem 9.11 to a suitable
CF family of exact symplectic mappings P; which will be constructed below.

Let [0,1] 3t — P, € C®(U,U) be a C* family of exact symplectic maps where U C T*T'
is an open set. Suppose that Py has a Kronecker torus Ag(wp) with frequency wyg € D(kg, T)
where 0 < kg < 1 and 7 > n — 1. Then Py admits a Birkhoff Normal Form (BNF) at Ag(wp)
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(cf [43], Proposition 9.13 and [63], Proposition 3.3) which means the following. There exists an
exact symplectic transformation ¥ : A — T*T, where A := T" ! x D ¢ T*T" ! and D is a
neighborhood of Ip(wg) given by (1.6), X(A) is a neighborhood of Ag(wp), X(T" ™ x {Ip(wo)} =
Ag(wp) and the exact symplectic map Py := X ! o Py o X has the form

ﬁo(ﬁ,r) = 0+ VK(r),r) + R(,r),
(3.19)
8O R(, Io(wo)) = 0, VO € T, Va € N1,

We are going to use the following definition of a generating function of a symplectic map. Denote
by pr: R*~1 — T"~! the canonical projection.

Definition 3.1. Let D C R™! be an open set and F € C®°(T" ! x D). The function S €
C®(R"! x D) given by S(z,r) = (x,7) — F(pr(x),r) is said to be a generating function of a
symplectic map P in T"~ ! x D if

o the map x — V,S(x,7) = v — V,F(pr(x),r) projects to a diffeomorphism of T"~* homoth-
ope to the identity for any fized r € D

o for any (0,7) € T" 1 x D

P(Q —V,.F(0,r), 7“) = (0, r— VoF(6, 7“))

Hereafter, we slightly abuse the notations identifying y = V,.F(6,r) € R*~! with its image
pr(y) € T~

Shrinking U if necessary we set U = X(A). We suppose that the BNF is nondegenerate,
which means that the Hessian matrix 02K (ro) is nondegenerate at ro = Ip(wp). Shrinking D
if necessary we suppose that the map VK : D — VK (D) C R"! is a diffeomorphism. Then
there exists 0 > 0 such that the exact symplectic maps P = X toPoyadmit for 0 <t <6 a
C? family of generating functions [0,0] 3 t — G; € C(R™! x D) such that

Gyi(z,7) = (z,7) — K(r) — Gy(pr(z),r) (3.20)

where the map t — Gy € C®°(T"! x D) is C!, pr : R®! — T"~! is the canonical projection
and
6?‘6‘0(0,]0((00)) =0 Vhe Tn_l, ae N1 (3.21)

On the other hand,
10502 (G(0,7) — Go(0,7))| < Capt Y(0,7) € T" x D(x), t € [0,6].

These inequalities allow us to apply Theorem 9.8. Consider the Legendre transform K* of K
in a ball B(wp,e) centered at wy and with sufficiently small radius 0 < ¢ < 1. Then VK™ :
B(wp,e) = VK*(B(wo,€)) becomes a diffeomorphism. Using Theorem 9.8 with k = ¢ = k1,
where k1 < ko is sufficiently small, we obtain a C* family of Kronecker tori [0,d1] 3 ¢ — Ay(wo)
of P, with a frequency wp, where d; = d;(k1) > 0. Following Lazutkin (cf [43], Proposition 9.13
and [63], Proposition 3.3) we obtain a C* family of Birkhoff Normal Forms of P, around the
tori A¢(wp) up to any order, which means the following. Fix N > 4. There exist C* families
of exact symplectic mappings t — x¥ € C°°(T"~! x D, T""! x D) and vector valued functions
t — Ii(wp) € D, t € [0,0;] (analytic in ¢ if the map ¢t — P; is analytic) with the properties
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o V(T x {I;(wo)}) = A¢(wp) for each t € [0, 61];

e the exact symplectic map ﬁto =Y to Po x? admits for each 0 < ¢t < §; a generating
function N
G(x,7) = (z,7) — Ki(r) — G} (pr(=),7), (3.22)

such that the maps ¢t — GY € C®(T"! x D) and t — K; € C*(D) are C* (analytic in ¢
if the map ¢t — P, is analytic) and

950°GY(0, I(wp)) =0 VO e T ! Va,B e N1 with |3] < 2N, (3.23)
and for each 0 <t < #;. Moreover, K; is a polynomial of degree 2N for each t fixed.

Let wo be a point of positive Lebesgue density in D(kg,7) ( wo € D°(kg,7) ), which means
that the Lebesgue measure meas (D(kg,7) N'V) > 0 for any neighborhood V of wy in R*~L.
Then wy € D°(k,7) for each 0 < k < kg. We suppose that 1 < €2 and for every 0 < k < k1 < 1
we set

Q(k) := B(wo,Vk), Q := D(k,7)NB(wo,vVE—k), QO := D%k, 7)NB(wo, VE—r) (3.24)
It follows from [43], Proposition 9.9, that

meas (Q(r) \ Q) p
meas (Q(k)) < Or. (3:25)

Moreover, meas (20) = meas (€2;). Set Dy(k) := VK;(2(x)) and A; = T" ! x Dy(k). Notice
that there exists ¢ > 0 such that D¢(k) C B(It(wp),cy/k) and (3.23) implies that for every
a, B € N*~! there exists Ca,p,~n such that

|05 (£0,)PG(0,7)] < Capnr™ YV (0,r) € T" ' x Dy(r), t€[0,61(k1)]

This inequality allows one to apply Theorem 9.11 taking ¢ = ex and 0 < k < k1, where € and
k1 are sufficiently small in order In this way we obtain the following

Theorem 3.2. (Birkhoff Normal Form) Let [0,6] >t — P, € C®(U,U), U C T*T, be a
Cl family of symplectic maps. Let Py have a Kronecker torus Ag(wg) with a frequency wo C
D°(ko,T), where T > n — 1. Suppose that the BNF of Py at Ao(wo) is nondegenerate. Then
there exists 0 < k1 < Ko and 61 = 01(k1) > 0 such that for each M > 0 fixred and 0 < k < k1 the
following holds

(i) For each w € Q0 there exists a C' family of Kronecker invariant tori [0,01] 3 t — Ay(w)
of P, with a frequency w;

(ii) There exists a C'-smooth with respect to t € [0,61] family of exact symplectic maps x; -
Ay — U and of real valued functions Ly € C*®(Dy(k)) and RY € C°(As) (analytic in t if
the map t — P, is analytic) such that

1. Ap(w) = x¢(T" ! x {I(w)}) for each t € [0,61] and w € QF, where I;(w) is given by
(16);
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2. The function R" 1 x D > (2,I) — ¢y(x,I) := (x,I) — Li(I) — RY(x, I) is a generating
function in the sense of Definition 3.1 of the exact symplectic map

PtO::XgloPtoXt:A%A;

3. VL : Dy — Q is a diffeomorphism, Ly = K; outside D} := VK (B(wo, VE — %Ii))
and VL;(w) = I(w) is given by (1.6) for each w € Q9;

4. RY is flat at T"" x Ef, where Eff := VL}(99).

5. |IVL = VEi|lm.pyw + VR m.Dye < Cona 6™ for each o, 8 € N*~1 and m € N.

Moreover, if the map t — P; is analytic in a disc B(0,d) in C, then the maps t — X,
t — Ly, t — RY, are analytic in a disc B(0,61) and the estimate in 5. holds fort € B(0,61).

To prove the Theorem we apply Theorem 9.11 taking N > M, o = ek and 0 < k < Ky,
where ¢ and k; are sufficiently small in order to satisfy (9.188).

Observe that each I € Ef is an element of positive Lebesgue density of Ef° since the map
VL;:Q(k) — Dy(k) is a diffeomorphism. For any 0 < x < k1 fixed, we extend I; as a C! family
of smooth functions setting

I(w) :==VL;(w) YweQ.

Then we have
P, 1) = (¢ + VL(I),I) + On(II = Li(w)|")

for each w € Q0 and N € N. This formula can be differentiated with respect to (¢, ) as many
times as we want. To summarize we give the following

Definition 3.3. We say that the C* family of exact symplectic maps Py, t € [0,4], admits a C'-
smooth family of nondegenerate Birkhoff Normal Forms associated with a C* family of invariant
tori Ay(w) with frequencies w € Q2 if item (ii) of Theorem 9.11 holds true.

Recall as well that the complement of Q0 in ) is of Lebesgue measure zero.

Setting

(1]

= J o (3.26)
0<Kr<K1

we prove items I and 2 of Theorem 1.
The advantage of working with QU instead of €2 is given by the following

Lemma 3.4. Let Q be an open subset of R%, d > 1. Let E C Q be a measurable set of positive
Lebesgue measure and let EY C E be the set of points of positive Lebesque density in E. Then
any smooth function f on Q which is zero on E° is flat at E, i.e. the equality f|go = 0 implies
O f|lgo = 0 for any k € N®. Moreover, the Lebesgue measure of E'\ E° is zero by construction.

Proof. The result is evident when d = 1. Suppose that d > 2. Let w = (w;,w’) € E°. By
Fubini’s theorem, for any neighborhood U; C R of w; and U’ C R%! of w' there is 2/ € U’
and a set of positive Lebesgue measure Vi C U such that (z1,2') € EY for any z; € V7. Then
f(21,2') = 0 for any 21 € V; and there is y; € Uy such that 91 f(y1,2’) = 0. By continuity we
obtain 8 f(w) = 0. In the same way we prove by induction that the restriction of 9% f to Q9 is
zero for any a € N%. ]
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We are going to give a relation between the function 3; defined by (1.5) and the restrictions
on QY of the functions I; and L; given by Theorem 3.2. As x; : A — U C T*T is exact symplectic
for each t € J :=[0,5(k)] there exists a C! family of functions ¥; € C°°(A) such that

X; (&dx) = Idp + dV,.

Notice that the generating functions ¢; of P are uniquely defined up to additive constants C;
such that the function J 3t — C, is C.

Lemma 3.5. Choosing appropriately the C* function J >t — Cy we obtain the following
(i) We have
(I, VL(I)) = Le(I) = Ae(xe(p, 1)) + Wi, I) = O(P (. 1)) + Ry (0, 1)
where the function R} is flat at T ' x EF for each t € J;
(ii) Bi(w) + Li(I1(w)) = (w, [(w)) Yw e teJ.
Proof.  The Poincaré identity implies
P} (&dx) = Edx + d A, (3.27)

where &dz is the fundamental one-form on T*T" and A;(p), p = x(p,I) € U is the action

At<p>=[()5dx
Fe(p

along the broken bicharacteristic 7;(p) strating at ;" (p) and ending at m; (P;(p)). Then we
obtain (P%)*(Idy) — Idp = d((Aox) 4+ ¥ — ¥ o P%. On the other hande, (P%)*(Idp) =
d(Li(I) — (I, VLi(I)) + R} (o, I)) where R} is a flat function at T" ! x Ef and we obtain (i).
To prove (ii) we use (1.5). O

4 Infinitesimal spectral rigidity of Liouville billiard tables

A Liouville billiard table of dimension n > 2, is a completely integrable billiard table (X, g)
admitting n functionally independent and Poisson commuting integrals of the billiard flow on
T*X which are quadratic forms in the momentum. It can be viewed as a 2"~ '-folded branched
covering of a disk-like domain in R”™ by the cylinder T"~! x [-N, N], N > 0.

Liouville billiard tables of dimension two were defined in [60, Sec. 2] by using a branched
double covering map. Here we give an invariant definition of Liouville billiard tables in dimension
two. The equivalence of the two definitions is proven in Appendix B.1.

Definition 4.1. A Liouwville billiard table is a smooth oriented compact and connected Rieman-
nian manifold of dimension two (X, g) with connected boundary T' = 0X such that the following
two conditions are satisfied:

(a) There exists a smooth quadratic in velocities integral of the geodesic flow I : TX — R that
is invariant with respect to the reflection at the boundary TM|r — TM]|r, & — £—2g(v, &),
where v is the outward unit normal to I'. In addition, we assume that the metric g does
not allow global Killing symmetries;
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(b) There is no point xog € I' and a constant ¢ € R such that g;,(&,&) = cly(€,€) for any
€Ty, X.

In view of Theorem 7 in Appendix B.1 there exists a double covering map with two branched
points,
7:C— X, (4.28)

where C' denotes the cylinder (R/Z) x [N, N], N > 0, coordinatized by the variables = and y
respectively, so that the metric 7*(g) and the integral 7*(I) have the following form on C,

dg*> = (f(z)—q(y))(da® + dy?) (4.29)
dI? = «adF?+ Bdg?

where o # 0 and g are real constants and

dF? == (f(z) — q(y)) (aly) da” + f(z) dy?) . (4.30)

In other words, the integral dI? belongs to the pencil of dg? and dF?. Here f € C*®(R) is
1-periodic, ¢ € C*°([-N, N]), and

(i) fiseven, f>0if z ¢ 1Z, and f(0) = f(1/2) = 0;
(i) ¢ is even, ¢ <0 if y # 0, ¢(0) = 0 and ¢ (0) < 0;
(iii) f®R)(1/2) = (=1)%¢¥)(0), I = 0,1, for every natural k € N.

In particular, if f ~ > 727, frz®* is the Taylor expansion of f at 0, then, by (iii), the Taylor
expansion of g at 0 is ¢ ~ > 50, (—1)*frz®*. A Liouville billiard table is said to be of classical
type if it satisfies the following additional conditions,

(iv) the boundary I of X is locally geodesically convex which amounts to ¢'(N) < 0;
(v) f(z) = f(1/2 — x) for any = and f is strictly increasing on the interval [0, 1/4];

Remark 4.2. Note that in contrast to [60, Sec. 2] we do not assume that the functions f and
g are analytic Morse functions.

The points Fy := 7(0,0) and F» := 7(1/2,0) on X are the two branched points of the covering
map 7 : C — X. All other points on X are regular values of 7. The preimage of any regular value
consists of two points. Note also that 7: C — X commutes with the involution on the cylinder
C induced by the map o : (z,y) — (—z,—y). The fixed points of this involution are precisely
the singular points (0,0) and (1/2,0) of the covering map 7. One can see that any Liouville
billiard table possesses the string property which means that any broken geodesic starting from
the singular point F} (F») passes through Fy (Fy) after the first reflection at the boundary and
the sum of distances from any point of I to F}; and F» is constant [60]. In particular, the only
Liouville billiard table in R? equipped with the Euclidean metric is the interior of the ellipse.
Thus Liouville billiard tables can be regarded as a natural generalization of elliptic billiards to
curved space. In view of condition (v) in the definition of the Liouville billiard tables of classical
type, there is a group I(X) = Zs @ Zo acting on (X, g) by isometries. This group is generated
by the involutions o1 (z,y) = (z, —y) and o2(x,y) = (7 — z,y) of the cylinder.
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The construction of Liouville billiards of dimension two involving the covering map 7 was
generalized to any dimension in [61, §5.3] (cf. also [62, §3]). As in the two dimensional case,
one defines the subclass of Liouville billiards of classical type in a similar way. An important
example of a Liouville billiard table of classical type is the interior of the n-axial ellipsoid in R"
equipped with the Euclidean metric. More generally, there is a non-trivial two-parameter family
of analytic Liouville billiard tables of classical type of constant scalar curvature K having the
same broken geodesics (considered as non-parameterized curves) as the ellipsoid [61, Theorem
3]. This family includes the ellipsoid (K = 0), and Liouville billiard tables on the sphere (K = 1)
and in the hyperbolic space (K = —1).

In what follows we will apply Theorem 3 to Liouville billiard tables of classical type in
dimensions two and three for obtaining several new isospectral results. The main idea is to
interpret the integrals in (2.16) as values of a suitable Radon transform which is one-to-one.

Let (X,g) be a Liouville billiard table of classical type. The group of isometries of (X, g)
has a subgroup I(X, g) isomorphic to (Z/2Z)™. One can extend (X, g) to an open Riemannian
manifold (M, g) so that any isometry in I(X, g) can be extended to an isometry of (M, g). In this
way, the group of isometries of (M, g) contains a subgroup I (M, g) isomorphic to I(X, g). Denote
by Symm (M, g) the class of C*°-smooth billiard tables (Y, g), Y isometrically embedded in M,
so that any isometry in I(M, g) is an isometry of (Y, g). Recall from Sec. 2 that §,': ' — R
is the vertical component of the variation v : I' — TM Ir, where ¢y = id and T'y = ¢4(Tg) is a
Cl-deformation of I' = I'g and (X3, g) is the billiard table with boundary I'y = 0.X;.

Theorem 4.3. Let (X, g) be a Liouwville billiard table of classical type dimension 2 and let (X, g),
t € (—e,¢), be a C'-family of billiard tables in Symm (M, g) satisfying the weak isospectral
condition (Hy) — (Hz) and such that Xg = X. Then §,I' = 0.

This means that any Liouville billiard table of classical type (X, g) is infinitesimally spec-
trally rigid in Symm (M, g) under the weak-isospectral condition (H;) — (Ha).

Proof of Theorem 4.3. The theorem follows from Theorem 2 as in the proof of Corollary 1.4
n [63]. A first integral of B in B*T is the function Z(x,¢) = f(x) — &2 the regular values h of
which belong to (¢(N),0) U (0, f(1/4)) (see [60], Lemma 4.1 and Proposition 4.2). Moreover,
for each regular value h € (q(IV),0) the corresponding level set Ly : {Z = h} consists of
two connected circles which are invariant with respect to B, having rotation numbers w =
+p(h). By Proposition 4.4 [60], the rotation function p is smooth and strictly increasing in
an interval (¢(N),q(N) + ¢), and we obtain a diffeomorphism p : (¢(N),q(N) +¢) — (0,wp).
Then the Kolmogorov non-degeneracy condition is satisfied in that interval. Hence, one can
apply Corollary 2 to any Kronecker invariant circle Ag(w), with a Diophantine vector of rotation
w = p(h) € (0,wp).

We are going to interpret (2.16) as a value of a suitable Radon transform. The Leray form
on the invariant circle Ag(w) C Ly, is

dx

.| e
_ dx

R £<0.

Since w € (0,wp) is Diophantine and the Leray form is invariant with respect to B, there exists a
constant c(h) # 0 such that A\, = ¢(h)duo, where dug is the unique probability measure on Ag(w)
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which is invariant with respect to B. Setting K := 7y, (6,I't) we consider the corresponding
Radon transform which assigns to each circle Ag(w) = {(x,y(h)) : z € T}, h = p~!(w), the
integral
R(fow) = [ (et ) Kom .
Ap(w)
We have
_h—qN)
& (ay
&l pih) f@)—q(N)’
hence,
1
Ki(x
Ric(holw) = (W)= [ A1 N).0),
| Vi "

where K (z) = K(x)/+/f(x) — q(N). Since K is invariant with respect to the group of isometries
I(X) then so is K and applying (2.16) for t = 0 we get

1/4 K (o) 1(1/4) Ko
= 171' xr = 215 A .
0_0/ f(x)_hd O/ e (4.31)

for any h € (q¢(N), q(N)+¢) such that p(h) € D(k,7), where Ko = (K1/f")of~! € LY(0, f(1/4)).
On the other hand, the right hand side of (4.31) is analytic in h € (¢(N),0) and the set
of h = p71(w), w € D(k,7) N (0,wp) is of positive measure, and we obtain (4.31) for any
h € (¢(N),0). Differentiating (4.31) with respect to h at h = ¢(N) we get

f(1/4)
Ko(s)

—F—(s— “*ds =
S_q(N)( g(N))™" ds =0

0

for any k € N, which implies K2 = 0 since the set {(s—¢(N))™* : k € N} is dense in L(0, f(1/4))
and K> is continuous in (0, f(1/4)). This completes the proof of the theorem. O

In order to apply Theorem 2 to Liouville billiard tables of dimension three we need to ensure
that the following Kolmogorov nondegeneracy condition is satisfied. Consider a Liouville-Arnold
chart which consists of an open set U of the phase space of the billiard ball map B and a
symplectic map (¢,I) : U — T™ x D, D being an open subset of R", giving “action-angle”
coordinates on U, i.e. B is given by the map (¢, I) — (¢ + VK(I),I) in these coordinates. The
Kolmogorov condition means that the map VK : D — D* := VK(D) is a diffeomorphism. We
are interested in maximal charts with this property. It turns out that Liouville billiard tables
of classical type of dimension two are always non-degenerate in a Kolmogorov sense close to
the boundary [60]. The non-degeneracy property of Liouville billiard tables of classical type of
dimension three has been investigated in [62].

It is proved in [62] that any Liouville Billiard Table of classical type of dimension 3 admits
four not necessarily connected maximal Liouville-Arnold charts Uj;, 1 < j < 4, of action-angle
variables in B*I". Two of them, say U; and Us, have the property that any unparameterized
geodesic in S*T" can be obtained as a limit of orbits of B lying either in U; or in Uy (then
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the corresponding broken geodesics approximate geodesics of the boundary). Moreover, in any
connected component of U; and U, there is such a sequence of orbits of B, while any orbit of B
in U3 and Uy is far away from S*I'. In other words, the charts U; and Us can be characterized
by the property that there is a family of “whispering gallery rays” issuing from any of their
connected components. For this reason the two cases j = 1,2 are referred as to boundary
cases. Denote by JF3 the set of all regular invariant tori A € F lying either in U; or in Us. We
say that a Liouville Billiard Table is Kolmogorov nondegenerate if B satisfies the Kolmogorov
nondegeneracy condition in Uy and Us. It is shown in [62], Theorem 5.1, that any analytic 3-
dimensional Liouville billiard table of classical type having at least one non-periodic geodesic on
the boundary is Kolmogorov nondegenerate. An example of such billiard tables is the ellipsoid.

It is proved in [62], Theorem 4.4, that the Radon transform is one-to-one for Liouville billiard
tables of classical type of dimension 3. More precisely, we have

Theorem 4.4. [62] Let (X,g), dimX = 3, be a Liouville billiard table of classical type. If K €
C(T) is invariant under the group of symmetries G of I' and the Radon transform Ry (A) =0
for any A € Fy, then K = 0.

We point out that Liouville billiard tables of classical type are smooth by construction but
they are not supposed to be analytic.
Using Corollary 2 and Theorem 4.4, we obtain as above the following

Theorem 4.5. Any nondegenerate Liouville billiard table of dimension 3 of classical type (X, g)
is infinitesimally spectrally rigid in Symm (M, g) under the weak-isospectral condition (Hy) —
(Hz).

This means that if (X, g), t € (—¢,¢e) is a Cl-family of billiard tables in Symm (M, g)
satisfying the weak isospectral condition (Hy) — (Hz) and such that Xy = X, then 6,I" = 0.

A smooth deformation (X¢,g), t € (—¢,¢), is said to be flat at t = 0 if (2.14) is C*° smooth
with respect to ¢ in an interval (—&,¢) and the vertical component of k-th variation §*T" is zero
for any integer k > 1, where

k
o (z) = <(jt) ¢t‘t0($)aV(~T>> , xzel.

Corollary 4.6. Let (X,g) be a classical Liouville billiard table of dimension 2 or a classical
non-degenerate Liouville billiard table of dimension 3 and let (X4, g), t € (—¢,¢), be a C*°-family
of billiard tables in Symm (M, g) satisfying the weak isospectral condition (Hy) — (Hz) and such
that Xg = X. Then the deformation is flat at t = 0. In particular, Ty = Ty fort € (—e,e) if the
family is analytic with respect to t.

In the case of the ellipse similar results have been obtained by Hezari and Zelditch [27] under
the usual isospectral condition using the wave-trace method.

5 Isospectral deformations in the presence of elliptic geodesics.
Let (X, g) be a smooth billiard table with boundary I" := dX. Consider a C'-smooth family

0,1] 5t = (X, g¢) (5.32)
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of Riemannian metrics on X with gg = ¢g. Suppose that (X, g) admits an elliptic closed broken
geodesic v with m > 2 vertices. Denote by {B’(p): 0 < j < m — 1} the corresponding periodic
trajectory of the billiard ball map B. Then p = (x, ) € B*I is a fixed point of the local Poincare
map P = B™ which is symplectic. Recall that ~ is elliptic if p is an elliptic fixed point of P
which means that the eigenvalues of the linear Poincaré map dP(p) : T,I' — T,I" are all distinct,
different from one and of modulus one, hence,

Spec (dP(p)) = {e™%: 1 <j<n—1},

where 0 < ¢1 < -++ < ¢p—1 < 7. Set ¢ = (¢1,...,¢Pp—1) and fix a positive integer N. The linear
Poincaré map dP(p) is said to be N-elementary if the scalar product

(p, k) ¢ 277

for any integer vector k = (ki,...,k,—1) € Z" ! such that 0 < |k1| + -+ + |ky—1| < N. We say
as well that v admits no resonances of order less or equal to N.

From now on we fix N > 4 and suppose that v9 = 7 is elliptic in (X, go) and that it admits
no resonances of order less or equal to N. By the implicit function theorem there exists 6 > 0
such that the following holds. There is a unique C* curve [0,8) > ¢ — p; € T*T starting from
po = p such that p; € BT is an elliptic fixed point of P, = B for any t € [0,0). Moreover, the
linear Poincare map dP;(p;) is N-elementary. The eigenvalues of P; have the form exp(i¢;(t)),
where 0 < ¢1(t) < --- < ¢p_1(t) < 7 and the map t — ¢(t) := (¢1(t),...,dn_1(t)) is C in
[0,0). Moreover, P; admits a Birkhoff normal form of order [N/2] > 2 ([a] denotes the integer
part of a € R) in suitable polar symplectic coordinates which will be described below.

In order to avoid eventual singularities at ; = 0, j = 1,...,n — 1, we fix 0 < ¢y < 1 and
ro > 0, and set

D=D(co) :={r=(r1,..., 1) ER" 1 : 0< cor| <|rj| <ro, 1<j<n—1}. (5.33)
and A := T"! x D. Denote by pr: R®~! — T"~! the canonical projection.
Proposition 5.1. (Birkhoff Normal Form). For any 0 < & < 0 there exists

- a C'-family of exact symplectic transformation [0,8] 3t — (Xt : A = Uy := x¢(A)) , where
U C BiT is an open set

- a C'-family of polynomials K; € Rin/g (81, - - - s En—1] with real coefficients of n—1 variables
&1,...,&—1 and of degree [%]

- a C*-family of real valued functions Gy € C*®(A)
such that the following holds

1. the function Gy € C**(R""! x D) defined by Gu(w,r) := (@,r) = Ku(r) = Gulpr(0),1) is
generating function of the symplectic map Py := X; "o Proxy in T" 1 x D,

2. for any a, B € N1 there exists Cp 5 > 0 such that

N+1

10500G(0,7)| < Caplr|™2 1A

for any t €10,6], (6,7) € A, and

31



3. lil’n,«_m }Zt(e,?”) = pPt-

The first condition is satisfied for N > 2 and |r| < rg < 1 in view of the estimate in 2.
and the inverse function theorem. Multiplying G; by a smooth cut-off function of the form
fo(r) = f(r/ro) where f is compactly supported in the unit ball and f(r) = 1 for |r| < 1/2
we obtain a smooth function with support contained in the ball of radius rg. Notice that the
estimates of 2 still hold for the function Gy fy with constants C, g depending on f but not on
T0-

The polynomial K; is the so called Birkhoff polynomial,

VE:(0) = ¢(t)

and (r,0) are local polar symplectic coordinates. The construction of the Birkhoff normal form
follows from that of Moser [51] (see also [37], Lemma 3.3.2).

The Birkhoff normal form of P, is said to be nondegenerate if the Hessian of K; at 0 does
not vanish, i.e. det 3>K;(0) # 0. We say as well that P, is a twisted map at p; in this case.
Suppose now that Py is twisted. Choosing d > 0 sufficiently small we obtain by continuity that
P, is twisted for any ¢ € [0, 0], i.e.

det 92K;(0) #0 Yt e|0,d]. (5.34)

Then VK; : D — D} := VK;(D) is a diffeomorphism for any ¢ € [0, ] provided that ro < 1.
Denote by @ : A — A the corresponding non-degenerate completely integrable map defined by
Qi(0,1) := (0 + VKy(r),r). The set of frequency vectors of @Q; is €, := Dj. This is an open
cone-like set in R"~! with vertex at ¢(t).

The remaining of this Section is devoted to the spectral rigidity of the Kronecker tori in a
vicinity of an elliptic geodesic. We address the following questions. Suppose that the C! family
of billiard tables (X, ¢:), 0 < ¢ < 1, is weakly isospectral. Assume that (X, go) admits a periodic
elliptic broken geodesic g and that the corresponding local Poincaré map is twisted. Does there
exist a C'! family of periodic elliptic broken geodesics [0,1] 3 ¢t — ~; in (X, g¢) along the whole
perturbation? Do the corresponding local Poincaré map remain twisted? Do the invariant tori
Ao(w) associated to vy give rise to C! families of invariant tori [0,1] > ¢t — A4(w) along the
whole perturbation? We give an answer of these questions in the following Theorem.

Denote by B(a,e) = B" !(a,€) the ball of radius € and center a in R*~1. Recall that the
functions f;(w), I;(w) and L(I) are defined by (1.5), (1.6) and (1.7) respectively.

Theorem 5.2. Let (X,g;), t € [0,1], be a C' family of billiard tables of dimension n > 2
satisfying the weak isospectral condition (Hy) — (Hz). Suppose that (X, go) admits a closed
elliptic broken billiard trajectory o with m > 2 vertices. Suppose as well that the corresponding
linear Poincare map dP(po) is N > 8 elementary and that P = B™ is twisted at pyg. Then there
exists 69 > 0 such that for any interval I =[0,9], 0 < § < 0y the following holds.

(i) There exist a C'-family of elliptic fized points I >t — p; € BiT' of P, = BI", the corre-
sponding linear Poincaré map dP,(p;) is N-elementary and P, is twisted at p,. Moreover
foranyt eI and |a] < & —1

9OV I (0) = 9*V Ko (0). (5.35)
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(i) There is a set = of positive Lebesque measure consisting of Diophantine frequencies such

that
meas(Z N B(4(0),¢€))

&0 meas(B(6(0), ¢))
and for any w € = there is a C family of Kronecker invariant tori I >t — Ay(w) C BT
of P, of a frequency w.

=0

(111) Br(w) = Bo(w), Li(Ip(w)) = Lo(Io(w)), and I;(w) = Iy(w) for any t € I and w € E.
It follows from (5.35) that the function [0,d0) 3 t — ¢(t) = VK;(0) is constant, i.e.
Vit e [0,00), Spec(dP;(pt)) = Spec(dPy(po)). (5.36)

A natural question is to describe the largest interval I, if it exists, for which Theorem 5.2 holds.
The answer is given by

Proposition 5.3. Let N > 12. Then there are only two possibilities that may occur.
(1) the conclusion (i) — (iii) of Theorem 5.2 holds with I = [0, 1]

(ii) there is 0 < 09 < 1 such that Theorem 5.2 holds in any interval I = [0, 6] with 0 < § < dy
and the limit set

250 = lim {ptv B(Pt)7 U 7Bm_l</)t>}
t—do
intersects the boundary of B5 I'.

The case (i) means that there is a generalized (glancing to the boundary at certain point)
geodesic issuing from the limit set X5,. If the billiard tables (X, g¢), t € [0, 1], are locally strictly
geodesically convex then each generalized geodesics of (X, g;) lies entirely on I' and the second
case can not occur.

We are going to prove Theorem 4, Theorem 5.2 and Proposition 5.3. Firstly using Theorem
9.11 we will obtain a KAM theorem for the C' family of symplectic maps ]3,5 given by Proposition
5.1. To this end we will determine the convex set €2, fix the parameters x and o, and then estimate
the corresponding quantities By which appear in Theorem 9.11.

Consider the C! family of exact symplectic mappings P, in A = T"! x D with generating
functions

Gi(z,7) == (z,r) — K;(r) — Gy(pr(x),1), (x,r) e R*! x D, (5.37)

given by Proposition 5.1. Recall that t — K; is a C'-family of polynomials with real coefficients
of n — 1 variables and of degree [%}, iLe. Ky € Rynyg(&1y--.,8n-1), whilet — Gy € C°(A) is a
Cl-family of real valued functions with support in B(0,rg) such that

18502GH(8,7)] < Caplr| s 17 (5.38)

for any t € [0,6], (6,7) € A, and , 3 € N*~ 1,
There exists a constant 4 > 1 such that

Vit s €0,0], [|Ki — Ksll o < Alt — s, (5.39)
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where the norm is taken in CIN/2/(B(0,1)). The map P, is twisted, then by continuity P; remains
twisted for any ¢ € [0, ] provided that ¢ > 0 is sufficiently small. Choosing ¢ > 0 small enough,
there exists € > 0 such that the Legendre transform K} of K; given by (9.146) is well defined in
B(4(0),e) and
VK] :B($(0),e) = V; :== VE; (B(¢(0),¢))

is a C1 family of diffeomorphisms with respect to ¢ € [0, 6], where V; is a neighborhood of 0.
Moreover, the corresponding inverse maps are VK, : V; — B(¢(0),¢), hence, VK; o VK = id
on B(¢(0),¢) for any t € [0,6]. In particular the inverse map of dVK;(0) : R*~! — R"~1 is
AV KT (¢(t)).

We are ready to define suitable convex sets of frequencies 2. Choose e = (e1,...,e,-1) €
R"~! such that

1 .
200<\ej\<%, j=1,....,n—1, (5.40)

where 0 < ¢y < 1/4n is fixed in (5.33) and set e* := dVK;(0)e. Given 0 < ag < e and 0 < g < 1
we consider for any 0 < a < ag the cube of center ¢(t) + ae* with sides of length 2npa defined by

Q=Q(t,a) = {w ER™: jw; — ¢4(t) —aej| <moa, 1 <j<n-— 1},

Obviously, Q(t,a) C B(4(0),¢) for ag < ¢, hence, VK is well defined and smooth on the convex
set Q(t,a). Denote by I, , the set of all s € [0, 6] such that |t — s| < mpa. Denote by D, the
connected component of the set

{T’Z(Tl,---,rn—ﬂéR"*l:co<]rj\<a/n,1§j§n—1}

containing ae. Then D, is a convez open set and ae € D,. We claim that there exist 0 < ag < 1
and 0 < np < 1 such that for any 0 < a < ag, t € [0,9] and s € I; o the following relation holds

D*(t,a) == VK (Qt,a)) € D, C D, (5.41)

where D is defined by (5.33). Indeed, for any w € (¢, a), using Taylor’s formula up to order three
for the function w — VK (w) at w = ¢(t) and the identity VK (¢(t)) = VK (VK (0)) =0 we
obtain

VK (w) —ae| < Ama+ |[VEK;(w) — a(dVET)(o(t))e|

IN

aCn((A + B)no + Ba)
where C), depends only on n, A > 0 is the constant in (5.39) and

B: =1+ sup ||VK} .
Sup IVES lc2@(st) )

Then the inclusion D*(¢,a) C D, follows from (5.40) choosing 1y and ag so that
Cn((A+ B)no + Bag) < ¢ < 1/2n.

On the other hand, the inequalities coa < |rj| < a/n, j =1,...,n— 1, imply co|r| < coa < ||
and we obtain the second inclusion in (11.273), which proves the claim.

Set A%(t,a) := T"1 x D*(t,a) for s € I;,. The relation (11.273) allows one to apply
Proposition 5.1 in D*(¢,a) for any ¢ € [0,6] fixed, where the parameter of the deformation s
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varies in I ,. We point out that both €(¢,a) and D, are convex open sets which allows us to
apply Theorem 9.11 and to obtain the corresponding Hélder estimates.

Fix 7 > n — 1 and choose K = na in the Diophantine condition (1.2), where 0 < n < no.
Denote by €2, the set of all w € Q(t,a) N D(r, k) such that dist(w, R"~1\ Q) > k. There exists
0 < m = c(n,7)ny, where 0 < ¢(n,7) < 1 depends only on n and 7 such that the Lebesgue
measure of € ,; is positive for any ¢ € [0,d], 0 <7 < n; and a € (0, ap]. Indeed, it follows from
[43], Proposition 9.9 that

meas (Qt,a) \ Qpa) < C TIE meas (Q(t,a)), (5.42)
0

where the positive constant C' depends only on n and 7, and we take ¢ = 1/C. Let us fix
0 < 1 < n and denote by Qgﬂ the set of points of positive Lebesgue density in €2, (see Sect.
9.4).

Theorem 5.4. Let [0,0] > t — P, be a C! family of symplectic mappings with generating
functions Gy given by (5.37), where Ky € Ry (&1, .., &n—1] while Gy € C*°(A) satisfies (5.38)
with N > 4. Then for any t € [0,0] there exists a C-family of exact symplectic maps

Lia3s— (xs: A%(t,a) — A°(t,a))

and of real valued functions Ly € C*°(D*(t,a)) and Ry € C°(A*(t,a)) such that for any s € I; 4
the following holds

1. ég(x,l) = (2,I) — Ls(I) — Rs(pr(x), ) is a generating function of P? := x5! o P, oxs
VL, :D*(t,a) = Q(t,a) is a diffeomorphism

Ry is flat at T x VL)

L e

for any m € N there exists a constant Cy, > 0 independent of a € (0,ap] and t € [0, 9] such
that the following estimates hold

N-3

103 (a0.) 05t (xs — id)| + |03 (ad.) o, (xi ' —id)| < Ca™ 5

on A’(t,a), and
N+1

(a07)?(VLs(I) — VE,(I))] < Crpa™ 1 (5.43)
on D*(t,a) for any s € Iy 4 and |a] + |B] < m.
Moreover, if VK(0) = VKy(0) for any t € [0,6], then for any 0 < a < aq there exists a C*-

family of exact symplectic maps x5 : A°(0,a) — A%(0,a) in I = [0, 6] and of real valued functions
Ly € C®(DY(0,a)) and Ry € C*(A%0,a)) such that 1.) - 4.) hold for any s € I and t = 0.

Proof. To prove the first part of the Theorem we apply Theorem 9.11 to the C' family of
symplectic mappings Iy, 2 s = Ps € C*°(A%(t,a),A%(t, a)).

Let us estimate the corresponding quantities B; for ¢ > 1 defined by (9.179)-(9.181). First
of all the constant A in (9.187) can be fixed by

A= sup ||82KtHC[N/2](IB(O,1))'
te[0,6]
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Given ¢ = m + p with m € N, and 0 < o < 1 we get by (11.273) that for any s € I;

HGSH&AS(t,a);F» < HGSH&T"*XDQ;R < HGSHm—&—l,T”ﬂxDa;n-

The second inequality follows from the fact that D, is convex. On the other hand,

IGsllmi1mn-1xpge = sup |05 (k0r)P Gellco(rn—1xpy)
|a]+]B8|<m+1

and using Proposition 5.1, 2, we obtain [|Gsllgasa)ym < Cm a™3 for any s € I; .. We choose
0= Ko < Kk, where N > 4. Then

N-3
1Gslleas(t,aye < KOCrpa T

_N+5
for any s € I 4, where C}, = Cp,n~ "2 . Moreover,

10° Kslle.as (taym < N0 K

1B, < ClO* Kl oz so.n)

and
Si(VET) < sup. A+ IVE; ler@@o.e)) A+ IVElloemoo).)))-

Thus for any ¢ > 1 we obtain
By < koCy T
where Cy > 0 depends neither on a € (0,a0] nor on ¢t € [0,6]. Choosing ap < 1 we get
By < erpA™*, which gives (9.188). Applying Theorem 9.11 we obtain 1-4.
The equality VK;(0) = VKy(0) means that ¢(t) = ¢(0) which implies Q(¢,a) = (0, a).
Then one can take I;, = [0, 6] in (11.273) which implies 1-4 in [0, d]. O

Proof of Theorem 4. The set of fixed points of J; in X; € B defines a bouncing ball geodesic
in (X¢, g) which is preserved by Jo. We are going to apply Theorem 5.4 to the Birkhoff Normal
Forms of the local Poincaré maps P; associated to ~;.

Let t — p; be a C! family of fixed points of P, = B?. Denote by p; = (21,,0) = Bl (py),
j =1, 2, the corresponding periodic orbit of B;. Fix ¢t € [0, ]. Denote by U C Xa neighborhood
of the vertices x; and x; 1 of ;1 such that J,(U) = U, k = 1, 2. Denote the restrictions of the
two involutions to I'yNU by J; and Js and by jj :T*(INU) — T*(I'yNU) the corresponding lifts.
The set Ty N U has two connected components I/, j = 1, 2, and J;(I'}) = I'} while Jo(I'}) = I'2.
Since Ji and Jy act as isometries and commute with each other, using the definition of B; in
Sect. 2.1, we obtain that the involutions jj, 7 = 1,2, commute with each other and also with
Bt.

Denote by Z the union of Q¢ ye, 0 < ao. For any w € = we set A}(w) = Ay(w)
and A?(w) = By(A¢(w)). Then Jl(AJ( ))s 1,2, are also invariant circles of P, = B? of
frequency w € E and AJ(w) = Jl(AJ( ) Jj= 1 2, while A2 = JQ(Al( )). To prove it we
use the following argument. Since dim7T™*I'; ; = 2 the KAM circle A (w) divides T*T'; ; into two
connected components, and it contains the elliptic fixed point p;; = (2 ,0) of P in its interior

|| IA

a
J
or

D;. Moreover, jl(pj) = pj, hence, J1(A (w)) contains pr; in its interior J;(D;) as well. On the

36



other hand, .J; preserves the volume form of T*T; 1, hence, Ag (w) intersects jl(Ag (w)). This
implies Al(w) = J1(Al(w)), since P; acts transitively on both of them. In the same way we
prove that A2(w) = Ja(Al(w)).

Recall that the family T, t € [0, 1], is given by a C! family of embeddings 1 € C>®(T', X),
where ¢,(I") = T';. Without loss of generality we suppose that vy = idp is the identity at T
Notice that that the vectors %(m) and v¢(¢(z)) provide a base of th(x)f( for any € I', hence,

oYy

ox

where t — A(t,-) € C*°(T") is continuous on [0, ] and the function 0, is defined by (2.15) and
it belongs to C>°(I';). We are going to show that the function 6,1 is flat at zy .
Using Corollary 3 and the symmetry with respect to J; given above we obtain

Va €T, i(z) = Mt x) - (2) + 5, Te(ve(2)) e (ve(2)) (5.44)

/A 6Ol BT ) dlo) = 0 (5.45)
ACY
for any w € =, with 0 < a < ag. Moreover, the functions

p = filp) == (& (p),ve(mi(p)) s p = hu(p) := 6, T4(mi(p))

are invariant with respect to the involution Ji. Let us parametrize I'} by its arclength y € [—c, c]
so that y(x¢1) = 0 and denote by (y,n) the corresponding local coordinates in 7%I'; ;. Then
Ji(y) = —y for any y. For any invariant circle A}(w), w € =, there is y(w) > 0 such that
T (A} (w)) = [~y(w), y(w)]. Notice that fi(y,n) = (& (y,n),»u(y)) > 0 for (y,n) € A}(w) since
A}(w) is contained in B}(I';). On the other hand, hi(y,n) = hi(y) depends only on y. We are
going to show that there exists an infinite sequence (y;)jen C (0,c¢) such that limy; = 0 and
hi(y;) = 0. Indeed, suppose that h¢(y) # 0 in (0,b) for some b > 0. Take w € = such that
0 < y(w) < b. The function h:(y) is even because it is invariant with respect to Ji, hence it will
not change its sign in the interval [—y(w),y(w)]. Then h:(y,n)f:(y) will not change its sign on
A} (w) and it is not identically null, which contradicts (5.45). This proves the existence of an
infinite sequence {y;};en such that hy(y;) =0, y; # 0 for any j € N and limy; = 0. Now there
exists an infinite sequence (y;)jen C (0,b) such that y; < v < y;+1 and %(y}) = 0, and so
on. This implies that the Taylor series of hy(y) vanishes at y = 0. In particular we obtain that
xtj = xo,j since A(t,x; ;) = 0. Hence, the function I'y 3 & — §,I'y(z) is flat at @ = z¢ 1.

Take local coordinates x : F(l) — R in the neighborhood F(l) of zp,1 in I' = T’y such that
x(zo,1) = 0 and consider the equation

%ut(az) = —A(t,ue(x)) (5.46)
with initial data ug(x) = z. This problem has a unique solution u(z) for ¢ in a neighborhood
of 0 and z in an open interval V' C R containing = 0. Moreover, u; : V — R is a C! family
of local diffeomorphisms. Consider the C'! family of embeddings vy = ¢y o us : V — X. The set
v¢(V') is an open neighborhood of xo; in I';, v; gives a local parametrization of I'; in v;(V') and
vo(x) = x. Using (5.44) and (5.46) one obtains that the map

Vaox— o(x) =0, (ve(x))ve(ve(2))
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is flat at 2 = 0 for any s € [0,4]. Then for any ¢ € C°°(X), the function

V32— plu(z) - o(z) = / dip (v, (1)) 05 () ds

is flat at = 0 which means that I'; is tangent to infinite order to I'g at z¢ 1 for ¢t > 0 sufficiently
small. Replacing I’ by 'y, ¢ € [0, 1], we complete the proof of the Theorem. O

Proof of Theorem 5. Corollary B.6 implies that the Poincaré map associated with the elliptic
bouncing ball geodesic 7 is always non-degenerate (twisted) for elliptical billiard tables. Fix the
foci Fy # F». Except of five confocal families of ellipses given explicitly by (A.73), the geodesic
71 is 4-elementary. The two conditions are open in the C° topology and the Theorem follows
from Theorem 4. |

Proof of Theorem 5.2. It follows from Theorem 5.4 that for any 0 < a < a9 < 1 and
w € 4, with kK = na there is a C' family of Kronecker invariant tori Iig o 5 = Ag(w) of
P,. Moreover, Corollary 2 implies that I (w) = [;(w) and VL4(I;(w)) = VL;([(w)), hence,
OV Ls(It(w)) = 0¥V Li(I;(w)) for any o € N*~1 in view of Lemma 3.4. Then for any w € Q¢ ,
s € It and o € N1 of length |a| < N/4 — 1 using (5.43) we obtain

09V K (I(w)) — 08VE (L, (w))] < |09VE(Ii(w)) — 89V Ly(I,(w))|

+ 0PV (Ii(w)) — 97V Li(It(w))]
< Ca i ol < Cat.
Taking s = ¢ + a there is t(a) € [t,t + a] such that

d

| OVE(L(w))| < Car,

s=t(a)

where the positive constant C' is independent of a € (0,a¢) and w € Q?,;-;- Let a — 0. Then
Qf . C Q(t,a) shrinks to ¢(t), hence,

li I, : Q0 =
lim sup{|L(w)| : w € Ry} =0

and we get
d
—0“VK, =
dta +(0)=0

for any ¢ € [0, 6]. This implies (5.35) in that interval. By assumption N > 8, hence (5.36) holds
for t € [0, 0].

We are going to define the set of frequencies = as a union of Qg’n. Recall that kK = na, where
0 <n <m = c(n,7)n. Moreover, 2(0,a) depends on the choice of e* := dVK;(0)e, where
dV K;(0) is an isomorphisme of R"~! and e satisfies (5.40), hence, (0, a) depends as well as on
the parameter 0 < ¢y < 1/4n defined in (5.33). Now varying the parameters 0 < ¢o < 1/2n,
e satisfying (5.40), 0 < a < ap and 0 < n < m = ¢(n,7)ny we denote by = the union of the
corresponding sets Qgﬁ. The set of frequencies = satisfies (ii) by construction in view of (5.42).
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Using the second part of Theorem 5.4 and Corollary 2 in I = [0, d] we complete the proof of the
Theorem. a

Proof of Proposition 5.3. Denote by 0 < §p < 1 the supremum of all 6 > 0 such that (i),
Theorem 5.2 holds in [0,4]. Suppose that dp < 1 and that X5, C Bj I'. Fix p in the limit set
tli%l pt. Then Ps, = B is well-defined and smooth in a neighborhood of p. By continuity, p
—00

is a fixed point of Ps, and (5.36) holds true for ¢ € [0, dp]. Hence, p is an elliptic fixed point of
Ps, and there are no resonances of order less or equal to N. Now Proposition 5.1 provides a C*
family of Birkhoff normal forms of P; in an interval ¢ € [0,y + €], where € > 0. On the other
hand, (5.35) implies that 0?K;(0) = 0?K(0) for t € [0,50[ since N > 12. By continuity, this
equality is true for ¢ € [0,dp]. Then P, is twisted for any ¢ € [0,d¢ + €], provided that ¢ > 0
is sufficiently small. Applying Theorem 5.4 we show as above that (i) and (i7) in Theorem 5.2
hold in [0, dp + €]. This contradicts the choice of §y. If 69 = 1 and ¥; C Bj T, then (i) holds in
[0, 1] and Theorem 5.4 holds in I = [0, 1]. O

6 Isospectral deformation of locally strictly geodesically convex
billiard tables of dimension two.

The aim of this Section is to prove Theorem 6. More generally we consider isospectral deforma-
tions of a billiard table (X, g) in an ambient Riemannian manifold ()N( ,g) with a locally strictly
geodesically convex (with respect to the outward normal) boundary I' = 0X. This means that
if a geodesic s — (s) of ()~( ,g) is tangent to I at s = 0 then the order of the tangency is exactly
two and y(s) ¢ X for 0 < |s| < 1. The behavior of the billiard ball map near S*T" is investigated
by Melrose [48] and Marvizi and Melrose [46] in the more general context of pairs of glancing
surfaces.

Consider the hypersurfaces ¥; := S*X and dig 1= T*X’F in T*X. Set fi = h — 1, where
the Hamiltonian h is just the Legendre transform h(z,§) = g% ()&, of the Riemannian metric
defined locally by g(z,v) = gij(x)v'v? and denote by f2 € C>®(T*X) a smooth function which
is constant on the fibers (f2(z,£) = fa(z)) and such that fa(z) > 0 for z in the interior of X,
fa(x) < 0 in the exterior of X and fa(z) = 0, df2(x) # 0 for x € I'. Then the hypersurfaces
¥, j = 1,2, are just the zero level sets of the non-degenerate Hamiltonians f; (df; # 0 on
Y; = {f; = 0}). One can show that I is locally strictly geodesically convex with respect to the
outward normal to I' if and only if the following relation holds

fi(e) = fa(0) = {f1, f2}(0) =0 = {f1,{f1, f2}}(0) <O and {fo2,{f2, f1}}(0) >0, (6.47)

where {, } is the Poisson bracket related to the canonical symplectic two-form & of T*X. In
particular

K:={0eT"X: filo) = f2(0) = { /1. f2}(e) = 0}
is a smooth submanifold of T*X of co-dimension two. The characteristic foliations of the two-
form (TJ‘E given by the non-parametrized integral curves of the hamiltonian vector fields of f;
J

define two involutions J; in a neighborhood U of the glancing manifold K in 3 := ¥; N Y. For
any o € U\ K, the point J;(0) € U is just the second point of intersection of the characteristic of
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LTJ|EJ_ passing through p with U. The set of fixed points of J; is just K. Moreover, (6.47) implies
that the differentials of J; are linearly independent at any point of K. The billiard ball map is
given by the composition J := J20J1 : U — U. Moreover, jj*wg = wy, where wy, := (I)‘Z. Then
the billiard ball map J preserves w‘z as well. Notice that the map J is smooth in U but the
two-form w‘z is degenerate at K. To make the later symplectic one considers the quotient space

U/J> of U by the action of J2. In our case it is given by the closed co-ball bundle BT c T*I
equipped with the canonical symplectic two-form. Let 7 : U — U/Jo = B'T be the canonical
projection. Then the billiard ball map is represented by the boundary map B = mo Jy o7,
where 7 is defined by (2.13). We call B a billiard ball map as well.

A local normal form of the pair of involutions J;, j = 1,2, and of the two form w has
been obtained by Melrose [48] in a neighborhood of any point of the glancing manifold K. This
normal form leads to a local symplectic normal form of the billiard ball map B at any point of
the projection 7(K) = S*I" (see also [31], Theorem 21.4.8). N

Consider a C! family of Riemannian metrics [0,00] 2 t — g; in X and suppose that I'
is locally strictly geodesically convex in (X, go) with respect to the outward normal field at
I'. Choosing 0 < § < Jg_sufficiently small we obtain by (6.47) that I' remains locally strictly
geodesically convex in (X, ¢g¢) for any ¢ € [0,d]. We denote by ¥;; = {f;+ = 0}, j = 1,2, the
corresponding pairs of glancing hypersurfaces. Here fi; + 1 is the Hamiltonian corresponding
to the Riemannian metric g; via the Legendre transform and fs; = fa2, hence, both families of
Hamiltonians are C' smooth with respect to t. Moreover, f;; satisfy (6.47) for ¢t € [0,6] and
we denote by K; the corresponding glancing manifolds. Consider the corresponding C' family
of billiard ball maps B, : Uy — BT, t € [0,0], where U; are suitable open subsets of B;T'. The
map B; is exact symplectic and smooth in Uy, and it is extended by continuity as the identity
map on S*I". Using the construction of the local symplectic normal form of B, at S*I' in [48]
and the interpolating Hamiltonian introduced by Marvizi and Melrose [46] we obtain below a
C! family of Birkhoff Normal Forms of By, t € [0, 4].

From now on we suppose that dim X = 2 and we denote by 27l the length of I' with respect
to the Riemannian metric g;. Set A; := T x (Iy — €,l; + €), where ¢ > 0 will be chosen bellow
small enough. Denote by pr: R — T the canonical projection.

Proposition 6.1. Let (X, g:), t € [0,6], be a C! family of connected locally strictly geodesically
convex billiard tables in X. Then there exists

(1) a C*-family of exact symplectic transformation [0,8] > t — Xy € C® (A, V;), where V; :=
Xt(Ay) C T*T is a neighborhood of ST, Xt(T x {l;}) = S;T and X¢(T x (I — e,1;)) C B;T,

(2) a C*-family of real valued functions ¢ € C®(R) and Gy € C§(Ay), t € [0,6], with
Ct(lt) =0 and C{(lt) <0

such that the following holds
(i) the function Gy € C*°(R x R) defined by

ét(m,r) = xr — g(t(r)

Njw

— Gi(pr(x),1)

is a generating function of the symplectic map P = )Z;l oBioxy in T x (I, —e,ly),

(ii) Gy is flat at r = l;, which means that 02G(0,1;) = 0 for any 0 € T and o € N.
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The function Zt =(rox; s an interpolating Hamiltonian of By in the sense of Marvizi and
Melrose [46], which means that for any ¢ € C*°(T"T"), the function

po By — poexp (Z%XE)
is flat at S;T', where t — exp(tXZ) is the flow of the Hamiltonian vector field XE of E on T*T.

Proof.  The proof of the Proposition is based on a local normal form of pairs of glancing hyper-
surfaces near the glancing manifold obtained by Melrose in [48]. Consider the two involutions
Jjt associated to the characteristic foliations of ¥;; = {f;; = 0} in a neighborhood U; of the
glancing manifold K; in X := X3, N Xg; for ¢ € [0,5]. In this way one obtains a C! family of
billiard ball maps given by the compositions J; = Jot 0 J1¢ : Uy — Uy and By = w0 Ji 4 © 7rt+ .
Arguing as in the proof of [31], Theorem C.4.8, we first obtain a C! family of normal forms
of the two involutions Jj;. More precisely, following the first part of the proof of that theo-
rem we get a C! family of diffeomorfisms U,V o Uy, where V is a neighborhood of a point
20 = (29,0,2%) € R?"~2 such that

U loJi0 \T’t(zl, 29,2) = (21 + 22, —22,2") + On(2)),
\Tlt_l oJat0 ‘T/t(zla 29,2") = (21, —22,2)

for any N € N. In order to do this we consider an asymptotic expansion of \Ilt in formal power
series Wy(z1, 29,7) = S W, k(21,2")25. The functions W, x(21,2') are obtained by solving linear
systems of ordinary differential equatlons (see the proof of [31], Theorem C.4.8). In this way
we obtain that the maps t — \Tlt’k € C®(V) are C! smooth, and then using Borel’s extension
theorem we get a C'!' smooth family of maps v, : V — U, such that

Wy(21, 22, 2 Z\Ptk 21,7)75] < Cnla| V.

Then following the proof of Theorem 21.4.4 in [31] (see also [17]) one finds a C! family of
diffeomorphisms W; defined by ¥, L. W — U, where W is a neighborhood of a point ¢° =
(29,2%,0,6%) € T*R™1, U := ¥, 1(W) is an open neighborhood of the glancing manifold K
in Y14 M X9 and such that

p

(U (wly,) = dwr Ad(E]) + 232, day, A déy

\Ijt o jl,t o \Ilgl(xlpx,7§17§/) = (I‘l + 517‘/1:/7 _5176,) + Et(l‘,&) )
(6.48)

\Ilt o j?,t o \I/t_l(atl,x/,&,fl) = (1.171./7_5175/)

Vj €N, 0 Ri(x,0,¢) =

We mention just for information that the formal power series are not convergent in general
even when the hypersurfaces are analytic. It has been proved in [17] that for any ¢ fixed the
corresponding functions in (6.48) belong to the Gevrey class G? of index two if the glancing
hypersurfaces are analytic.
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Suppose now that ¥;; = St*)? and ¥o; = T*)?‘F. Then U; is an open subset of Sf)ﬂF.
Choosing normal to I' coordinates with respect to the metric ¢g; one can assume that locally

S16Ws Y1 m) = Yo and fo i (Ys Yns 0, 0) = 1 + 61(Y, yn, ), Where t = qi(y, yn,n) is a C!
family of quadratic forms with respect to n = (91,...,7,—1) and ¢/(y,0,n) is the Hamiltonian
corresponding to the induced metric on I' via the Legendre transform. In these coordinates U; can
be identified with the set of (y,yn,n,n,), where y, = 0, (y,n) are local coordinates in T*T" near
a point @) € S;T and n2 + ¢;(y,0,n,7,) = 1, while K; C Uy is given by y, = 1, = 0. Moreover,
T2t(y, 0,1, =) = =T (y,0,m,mn) and 7 (y,m) = £1/1 — ,(y,0,n) for (y,n) € B;T. Setting

\Ijt(ya 7, 77n) = (IL‘t (y7 m, nn)v gtl(ya 7, nn)7 52(1/7 m, 77n))

where 12 + q:(y,0,7,7,) = 1 one obtains from the third relation of (6.48) that x; and & are
even functions of 7, while &; is odd. Then there exists a C' family of functions t — (2, &) €
C>®(T*R"!) such that

\Ijt(yv 07 m, 77n) = (ft(ya m, 77721)a 77n£t1 (y» 7, 77721)7 g;(ya 7, 77721))a

where 72 4 ¢;(y,0,7) = 1.
We define a C! family of diffeomorphisms y; by
Xe W) = @y, 1 7n) s Tiner (U0, 7)€L (9,0, 7))

where 7, := 1 — q,(y,0,7). Then X; : V. — V; := x¢(V) C T*T is a C! family of symplectic
mappings, i.e.
n—1 n—1
Xi(Q_ dy; Adng) =) daj A dg,
j=1 Jj=1
where V' C T*R"~! is an open neighborhood of a given point (2°,0,¢Y) and we get the following

symplectic normal form of the billiard ball maps

%;1 o Bt o %t(xlvx,)fhé-/) = (fL']_ + \/a)x/aglaé-/) + Rt(l',é),

where t — R, € C°(T*R" 1 T*R" 1) is a C! family of maps such that GglRt(x,O,f’) =0 for
any j € N. The interpolating Hamiltonian Z} is defined by the &; component of x; L.

aﬁ(yvn) = (1 - Qt(ya 0, 77))5151(%777 1- Qt(y,om))2-

As in [46] and [58] one obtains that ¢; is uniquely defined modulo a flat function on S;T.
We suppose now that dimI' = 2. To obtain the Hamiltonian ¢; we find action-angle coordi-
nates of (; as in [58]. To simplify the notations we drop the index ¢. Denote by M, the closed

curve {p € T*T' : ((p0) = u} in T*T where u varies in a small neighborhood of the origin. For any
0 € M, consider the map R> t — exp(tXZ)(Q) € M, and denote by 27II(u) its period. Let

S be a section transversal to My in T*I". It is equipped with local coordinates S 3 o0 — u = E(g)
Denote by O the discrete group in R x S generated by

RxS 3 (t,u) — (t+ 2nTl(u)),u), u=C(0).

Let (R x .S)/O be the corresponding factor space. It is a symplectic manifold equipped with the
symplectic two-form dt A du and the mapping

RxS > (to) — exp(tXE)(g) e T°T
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lifts to a symplectic diffeomorphism from (R x S)/O to a neighborhood of M. Making suitable
symplectic change of the variables

0 =t/I(u), r=g(u),

in R x S we can suppose that O is generated by (0,7) — (6 + 27, r) while the symplectic
two-form becomes df A dr. Then ¢'(u) = —II(u) which yields

r(u) =1 — /O 1) ar, (6.49)

where [ = length(I") /27. Denote by ((r) the function inverse to r(u).

We have obtained symplectic coordinates (0;(x,&),r(z,§)), t € [0,6], in a neighborhood of
the boundary S;T in the co-ball bundle of I" with values in T X R such that S;T = {r, =;} and
B} C {r; <l;}. The map t — (6;,7;) € C(T*T")) is C! by construction. The exact symplectic
map By is generated in this coordinates by the function ét. ]

Recall that the functions f;(w), I;(w) and L(I) are defined by (1.5), (1.6) and (1.7) respec-
tively.

Theorem 6.2. Let (X,q;), t € [0,6], be a C' family of compact locally strictly geodesically
convex billiard tables of dimension two satisfying the weak isospectral condition (Hy) — (Ha).
Then

(i) There is a Cantor set = C (0, 1] consisting of Diophantine numbers such that

meas (2N (0,¢))

=1-0@E%) as e—0F
£

and for any w € Z there exists a C' family of Kronecker invariant circles [0,8] 3 t — Ay(w)
of Bt of frequency w,

(ii) Yw € E and t € [0,0], fi(w) = Bo(w), It(w) = Ip(w) and Li(Iy(w)) = Lo(Ip(w)),
(iii) Iy = ro and the function ( — (o is flat at ro for any t € [0, 0].

We are going to prove Theorem 6.2. Firstly, using Theorem 9.11 we will obtain a suitable
KAM theorem and a BNF at the corresponding family of invariant circles for the C' family of
symplectic maps ]5t given by Proposition 6.1. To this end we will determine the convex set €2, fix
the parameters k and p, and then estimate the corresponding quantities By and A which appear
in Theorem 9.11. .

Consider the function K; := —2(2 in [I, —&,1)]. Fix € > 0 so that ¢/(r) < 0 for (r,t) €
[lt—e, 1] x[0, 8], and denote by K/ the Legendre transform of K} in an interval [0, ag, 0 < ag < 1.
One can easily show that the family ¢ — K} can be extended as a C! family of smooth odd
functions [0,0] > t — K; € C*([—ap,a0]). Indeed, the function K; admits an asymptotic
expansion of the form

= 1
Ki(r) = —Z i (lt—r)%+kuk(t) as r S,
k=1 2
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where u, € C1([0,6]) and wu(t) = (—g(lt))% > 0. Moreover, this asymptotic expansion can
differentiated infinitely many times with respect to r. Recall that for any ¢ € [0, 4] fixed the
derivative K’ of K} satisfies the identity K}(K;'(w)) = w for any w € (0,ap]. Moreover,
KiK' (w)) + K} (w) = wK}'(w), K}'(0) = l;, and we easily obtain the asymptotic expansion

o0
1
K;(T) ~ Z 2]{:7_‘_1 W2k+1 'Uk(t) as w \ 07
k=0

where vy, € C1([0, 9]),
w(t) =1, wvi(t) =—ui(t)™? = —(=¢(l) 7> <0,

and so on.
Fix 7 > 1, set Q(a) := [a/2,2a], choose x, = a? and denote by ,(a) the set of Diophantine
frequencies [a/2 + a2, 2a — a?] N D(k, 7). It follows from [43], Proposition 9.9, that

meas (Q(a) \ Qx(a))

k= Ca’ .
meas (Q2(a)) s¢ ¢ (6:50)

Choose ag > 0 so that the Lebesgue measure of Q,(ag) is positive and denote by Q2 (a) the set
of points of Q,(a) of positive Lebesgue density. We have

D(t,a) == K} (Qa)) = [l + v1(t)a®/4 + O(a*), I; + 4v1(t)a® + O(a)] C [l — e, 1] (6.51)

for0 < a <ap < 1. Set A(t,a) = TxID(t,a). We are ready to announce the corresponding KAM
theorem for the C'' family of symplectic mappings [0,6] 3 t ++ P, with generating functions G
satisfying (¢) and (¢7) in Proposition 6.1.

Theorem 6.3. For any a € (0, ag| there exists a C*-family of exact symplectic maps
[0,6] 5t (x¢ : A(t,a) = A(t, a))

and of real valued functions [0,6] 3 t — L; € C*°(D(t,a)) and [0,d] > t — R, € C°(A(t,a))
such that for any t € [0,0] the following holds

1. G%x, 1) = oI — Ly(I) — Ry(pr(z),1) is a generating function of PO := x;to P, o,

2. L; : D(t,a) — Qa) is a diffeomorphism with inverse Ly’ : Q(a) — D(t,a), where L} is the
Legendre transform of Ly

3. Ry is flat at T x L}'(22(a))
4. for any integer N > 1 and m € N there exists a constant C = Cy, ny > 0 independent of
a € (0,a0] and t € [0, 6] such that the following estimates hold

3

‘ag(/fﬁw)’BU;l(Xs —id)| + \ag(ﬁaw)%;l(xfl —id)| < Ox2N-m=i

s

on A(t,a), and

(rgr) @0~ Ki0)| < 0¥ (6.52)

on D(t,a) for any t € [0,d] and m € N.

44



Proof. We are going to apply Theorem 9.11 to the C! family of symplectic mappings [0, 8] >
t— P, € C*°(A(t,a),A(t,a)) given by Proposition 6.1.

Let us estimate the corresponding quantities B, for m € N and X defined by (9.179) - (9.181)
and (9.187). The constant A can be fixed by

X=X = sup [|K{ |p(t.aye = Coa™" = Cor™?, (6.53)
t€[0,0]

where Cj is a positive constant independent of a. Given £ = m + p with m € N, we get by
(11.273) that for any ¢ € [0, ) the following inequality holds

G|

LA(ta);k < ||Gt Hm—l—l,TXD(t,a);n'

since D(¢,a) is an interval. Moreover,

IGlmi1mxma = sup (105 (50r)°Gillcorxn(t,a))-
|| +[B]<m+1

Fix N > 2. Tt follows from Proposition 6.1, (ii), and the definition of D(¢,a) that

e

8N+4 __ AN+2
LA(ta)k < Cm,Na = C’m,Nﬂ

2N+5/4

for any ¢ € [0, 6], where C,, y is a positive constant. Choosing ¢ = & < Kk we obtain

1Gelleagaye < Chror* /4
for any t € [0, §]. Moreover,
15 lepay < 1K lms1pam < Cma™" = Cp a2 (6.54)
and

* * -1 *
Se(VK™) < S (T+ VK o1 (—anao)) L+ IVEL llct(—agae)) < Cm

where C,, is a positive constant. Thus for any m € N we obtain from (9.179) - (9.181) that
B, < C!BY < Cy o kN = Oy ko R2N/A (6.55)

where C),, C/, > 0 depends neither on a € (0,ag] nor on t € [0,6]. Choosing ap < 1 we get
By < espA~* for any a € (0,ag) since N > 2 and X\ = Cox~ /2, which gives (9.188). Applying
Theorem 9.11 we obtain 1-4. In particular, taking into account (6.53) - (6.55) we obtain from
(9.190) the estimate

sup  sup
te[0,6] 1€D(t,a)

d\" :
(ndl> (LY(I) — K)(I))| < CLe2NFIN (A4 K72) < Cpr?NmHa

for any m € N, where C/, and C,, are positive constants. a
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Proof of Theorem 6.2. It follows from Theorem 6.3 that for any 0 < a < a9 < 1 and
w € QY(a) with xk = a? there exists a C! family of Kronecker invariant tori [0, 6] > t — As(w) of
B;. Corollary 2 implies that I;(w) = Ip(w) and Li(Iy(w)) = L{(Lo(w)). Notice that

limsup{l;(w) — l; : w € [a/2,2a]} = 0.

a—0

Then

It — lo| < limsup{L(w) —; : w € [a/2,2a]} + limsup{Ip(w) — 70 : w € [a/2,2a]} =0
a—0 a—0

hence, I; = Iy for any t € [0,d]. Moreover, the function w — Lj(Ip(w)) — Li(Ip(w)) is flat at the
set QY(a) in view of Lemma 3.4. Then for any w € Q9(a), ¢t € [0,6], and any m € N using the
equality I;(w) = Ip(w) and the estimate (6.52) with N = m we obtain

|(d/dD)™ (K{ — Kp) (Io(w))| < [(d/d])™ (K{ — L) (It(w))|
+ [(d/dl)™ (Kq — Lp) (To(w))]
< COrY*=Call2

Taking the limit as a ~\, 0 we obtain that the function K; — Ky is smooth in [rg, 79 + €] and
flat at rg. Then ¢; — (o = (3K;/2)%/® — (3K/2)?/? is also flat at 79. The set of frequencies Z is
defined as the union of Q0(a). O

Proof of Theorem 6. It remains to show that I'; is strictly convex for any ¢ € [0,1]. To do this
we are going to use an argument from [58]. To simplify the notations we will omit the index
t e [0,1]. N

Consider the interpolating Hamiltonian ((z,€&) = ¢(X (z,&)) of B, where the function ¢
and the symplectic transformation Y are given by Proposition 6.1. For any r with |r| small
enough the level set

M(r) = {(z,§) e T'T: ((x,¢) =1}
is an “circle” and we set

v(r) = /M(r)d(Z‘M(T)) (6.56)

where r — d(z|M(T)) is a smooth family of 1-forms on M (r) such that d(z‘M(T)) (XZ) =1. One
can consider z‘ M(r) 353 multivalued function on the circle M(r) which is well defined on the

corresponding covering space R — M (r) so that
{2} = dz(Xp) = 1. (6.57)

It is easy to show that the set of Taylor coefficients of v(r) at » = 0 is algebraically equivalent
to the set of Taylor’s coefficients of ((I) at I = [. Indeed, performing the symplectic change of
the variables (z,&) = X(p,I), (p,I) € A, and using (6.57) we easily get

(1)) = 2.
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Denote by R, the function inverse to I — ((I). Then (6.56) implies
v(r) = 27R/(r) (6.58)

and we obtain that the Taylor coefficients of v(r) at » = 0 determine those of ( at I = ¢ and
vice versa.

The Taylor coefficients of v(r) at r = 0, also called integral invariants, have been investigated
by Sh. Marvizi and R. Melrose [46]. They are given by integrals on I" of certain polynomials of
the curvature x(x) of I and its derivatives. In particular, (4.6) in [46] and (6.58) yield together

R(0) = —% / (@) da (6.59)
1 T
RU0) = g /0 (9(2)* + 8x(z) 33 ()2)da (6.60)

(see also [70]).
Suppose now that X; is strictly convex for 0 < ¢ < ¢ but only convex for ¢ = §. Consider
the function R (r) inverse to r = (;(I). Then Theorem 6.2, (ii7), yields

Ri(r) = Ro(r) + On(rY) asr—0
for any N € N and we obtain
R, (0) = Ry(0), RY(0) = Ry(0), s €[0,bp). (6.61)

Denote by x¢(z) > 0, x € T'y the curvature of I'; and define f5 by fi(x) = mt(a:)*l/:"’ fort < ¢
and f5(x) = ks(x)"V/3 if k5(x) # 0 and f5(z) = 0 if ks(z) = 0. The second equality of (6.61)
and (6.60) yield together

| fi(z) Pdz < C, s€[0,0). (6.62)
Ty

where C' is a positive constant. On the other hand, the first equality of (6.61) and (6.59) imply
that for any ¢ € [0,0) there exists a; € I'; such that

™

kilzy) > C) = ( Rg(0)>3/2 > 0.

lo

Then fi(x;) < 01—1/3 for t € [0,6), and using Taylor’s formula and (6.62) we obtain the estimate
L 0a@ B+ 5@ Pae < Co s €l0.0),
t

where Cs is a positive constant. Let [0,6] > ¢ — ¢y : I' — R? be a C! family of embeddings
such that I'g = ' and ¢4(I') = ;. Then {f; o4y : t € [0,0)} is a compact subset of L?(T)
and we obtain that fs o5 € L?(T) as well. On the other hand, I's is convex but not strictly
convex, hence the curvature its curvature ks is a non-negative function and it has a zero of at
least second order at a point zg € I'. Then

| fs(x) | > C |z —m |23

in any local coordinates in a neighborhood of zg in I's. Hence fs ¢ L?(I') which leads to a
contradiction. This implies that I'; is strictly convex for any ¢ € [0, 1]. a
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7 Microlocal Birkhoff Normal Form of the monodromy operator

Starting from the BNF in Theorem 3.2 we are going to find a microlocal (quantum) Birkhoff
normal form (shortly QBNF) at the union of the invariant tori Ay(w), w € 92, of the correspond-
ing microlocal monodromy operator for the family of Laplace-Beltrami operators A; in X with
Dirichlet boundary conditions. A similar QBNF has been obtained in [63] for perturbations of
the function in the Robin boundary conditions around a single Kronecker torus. In contrast to
[63] the BNF of the tori here is nondegenerate which simplifies the construction.

Let us present the main steps in the construction. At first we reduce the problem to the
boundary and introduce the corresponding microlocal monodromy operator M?(\)(A), t € J.
The reduction to the boundary is obtained by a variant of the reflection method for the wave
equation which consists in the following. Given a suitable function f(-;A) on I' depending on
a large parameter \ the frequency support of which is contained in a small neighborhood of
the union of the invariant tori A;(w), we consider the corresponding outgoing solution of the
reduced wave equation (the Helmholtz equation) in X and we reflect it at the boundary m — 1
times if m > 2. After each reflection at the boundary we consider the corresponding branch
of the solution u; of the Helmholtz equation given by the outgoing parametrix. We denote by
M;(\)f the restriction at I' of the last branch of the solution u;. We call My(\) a monodromy
operator. By construction, the function f(-,\) on I' gives rise to an asymptotic solution u(-, A)
of the Dirichlet problem of the Helmholtz equation

(=A¢ + X)uy = ON(’/\|7N)ft, ur = ON(W*N)ft,

or a quasi-mode (A, u;) of the Laplace-Beltrami operator with Dirichlet boundary conditions
when |[|us]|z2 = 1 if and only if

MY\ f = f+On(IATN)f.

The family of operators MP(A)()\), t € J, is a C! family of Fourier Integral Operator with a
large parameter A (A-FIO) the canonical relation of each of them being the graph of P,. For
this reason we recall in Sect. 7.1 some properties of the \-FIOs associated with a C' family of
Lagrange immersions. The reduction to the boundary and the construction of the microlocal
monodromy operator is done in Sect. 7.2.

Our next goal is to "separate the variables” microlocally near the whole family of invariant
tori Ay(w), w € QY. This is done in Sect. 7.3. To this end we use the Birkhoff normal form of P,
given by Theorem 3.2. First we conjugate M?(\) with a microlocally unitary A-FIO T;()\) the
canonical relation of which is the graph of the symplectic transformation x; given by Theorem
3.2. In this way we obtain a A-FIO W;(\) the canonical relation of which is just the graph of
PP (see Proposition 7.11). Then we obtain a microlocal Birkhoff normal form W2()) of W;())
by conjugating it with a suitable A-PDO and solving at any step the corresponding homological
equation. In this way we separate microlocally the variables near the whole family of invariant
tori. This means that the amplitude of W ()\) does not depend on the angular variables but
only on the action variables at the family of invariant tori, which allows us to obtain a microlocal
”spectral decomposition” of W;(\) near the family A (w), w € QU. At any step the corresponding
phase functions and amplitudes are C' with respect to the parameter ¢.
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7.1 (" families of PDOs and FIOs with a large parameter ).
7.1.1 (! families of symbols and \-PDOs .

Let M9 be a smooth paracompact manifold of dimension d. We are going to define a class of
C! families of pseudo-differential operators depending on a large parameter A (shortly A-PDOs)
acting on the half-density bundle O3 (M®) of M?. The large parameter A will belong to the set

D :={AeC: |ReA >Cp, ImA| < Ci}, sup |\ = +o0, (7.63)
AeD

where Cpy, C1 > 0. One can switch to the semi-classical setting by introducing i := 1/A.
Let us first define the symbols we are going to deal with. Given an interval J C R we define
a C! family of symbols J 53— a; of order 0 in T*R? as a map

JxD — CE(TRY),  (t,\) — az(-,\),
such that
~ The map J 3t — a;(-,\) € C®°(T*R?) is C! for any \ € D fixed;

— The support supp a;(-, \) is contained in a fixed compact subset of 7*R? independent of
(t,\) € I x D;

— For any a, 8 € N¢ there exists a positive constant Cq,p such that
07070 ar(w, & V)| < Cag

for every (t,\) € I x D, (z,¢) € T*R? and k € {0,1}.

In this case we say that a; is a C'* family of symbols in SO(T*R?x D) with respect to the parameter
t € J. We set SP(T*RY x D) = WSO(T*R? x D) for p € R and denote by S~ (T*R? x D) the
residual set N,>0S P(T*RY x D). We say that

T3t > ag A (7.64)
JEN

is a C'! family of formal symbols of order 0 if for any j € Nthe map J 3t + ayj € C>=(T*RY) is
C' smooth and the support supp aq ;j is contained in a fixed compact subset of T*R? independent
of (t,j) € I xN. A C* family of symbols J >t +— a; € S°(T*R? x D) is said to be a realizations
of the C' family of formal symbols (7.64) if for any N € N and «, 3 € N? there exists a positive
constant Cy o g such that

sup \afag;af (at(az,f,)\)— at,j(z,g)xi)‘ < CrnaslN ™ (7.65)
(t,z,6\)EJXT*RIXD

=

Il
=)

J

for k € {0,1}. Symbols admitting an asymptotic expansion of the form (7.65) for any N are
said to be classical. We denote by SSI(T *R% x D) the class of the classical symbols. Any C*
family of formal symbols of order zero admits a C'! family of realizations by Borel’s theorem.
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Proposition 7.1. Any C! family of formal symbols (7.64) of order 0 admits a realization as a
C' family of symbols J > t — a; € SO(T*R? x D). Moreover, if a; and a, are two C family of
realizations of (7.64) then J >t a; — a), € S™P(T*RY x D) is a O family for every p > 0.

We give a prove of Borel’s theorem in Appendix A.3.
We say that the family of operators J > ¢ — Op (a;) with Schwartz kernels

A\ Az— L1
Kopa(an N = (5] ([ X ateende) aoltalt  (roo)

is a O family of A-PDOs of order zero acting on %—densities if J >t a, € SOT*RYxD)isaCl
family of symbols. We say thlat a family of operators J > t — A; acting on the smooth sections
of the half-density bundle Q2 (M%) of the manifold M? is a C' family of »-PDOs if it is given
by a C! family of \-PDOs with Schwartz kernels of the form (7.66) in any local coordinates.
7.1.2 (! families of \-FIOs.

Consider a C! family of exact Lagrange immersions
w:A—T*M?  tel0,d], (7.67)

which means that the map [0,6] > t — 13, € C®°(A, T*M?) is O, 4, is an immersion and the
pull-back +} (£dz) of the canonical one-form &dx of T*M¢? is exact for each ¢ € [0,6]. Then there
exists a C'! mapping [0,8] 3 t — f; € C(A) such that

1 (Edx) = dfy t€]0,0]. (7.68)

Fix t € [0,6]. Recall from [12] and [31] that a real valued phase function ®;(z,#) defined in a
neighborhood of a point (z°,0%) € R x RN with dy®;(x°, 8°) = 0 is nondegenerate at (20, °) if
rank d, g)dg®;(2°,6°) = N. (7.69)

Then there exists a neighborhood V' C RY x RN of (2°,0°) such that (7.69) holds for any
(x,0) € V and
Ccpt = {(x,@) eV :dgd; = 0}

is a smooth manifold of dimension d. Moreover, the differential of the map
1P, : C<1>t = (x,@) — (m,dz(I)(x,H)) < Acpt = Zq;t(Cq>t) (7.70)

is of rank d and shrinking V' if necessary we obtain that Ag, is an embedded Lagrangian sub-
manifold of T*M¢. We say that the nondegenerate function ®;(x,6), (z,6) € V, defines locally
the Lagrange immersion s : A — T* M if there is an open subset W; C A such that

1 : Wy = Ag, is a diffeomorphism. (7.71)

We can take ®; = ®4(x) depending only on the coordinates h (N = 0) if the corresponding
Lagrangian manifold is “horizontal” which means that the projection to the base is a local
diffeomorphism. The collection (2; ' (As,), zgtl o 1) provides the Lagrangian immersion 4 : A —
T*M¢ with an atlas of local charts. Given an interval .JJ C [0, 8] we say that a C' map J >t —
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®; € C°(V,R) is a C! family of nondegenerate phase functions generating locally the C! family
of Lagrange immersions (7.67) in J if for any ¢ € J the phase function ®; is nondegenerate
in V and (7.71) holds. Such C! families of phase functions can always be constructed locally.
Consider the function ® := (kt o z;tl o zt)*(CI)t) on zt_l(Aq,t) where & : Cp, — R? x RY is the
inclusion map. Observe that

D) = (15 o) (kt (‘?td (?;da))

=1 (ki o1))" (Grde) ) =i (€de) = dfs
and we choose ®; so that ®* = f; on 2; ' (Ag,), where f; is defined in (7.68).
Given a C! family of classical amplitudes [0,6] > ¢t — a; € Sq (V x D) such that a; = 0 for

t ¢ J we consider the O family of oscillatory %—densities

d+2N

Toy oy (2, ) |da|3 = (i)m+

iXDy(z,0) 1
- </sz e az(z, 0, \) de) \dz|? (7.72)

with the convention that there is no integration when N = 0. Notice that the function [0,0] >
t > Ip,q, € C®°(M?) is C! for each \ € D fixed. Its oscillation is detected as A — oo by the
corresponding semi-classical wave front set. Integrating by parts one obtains WF (I, 4,(-, A)) C
As,, where WF), is the frequency set (or semi- classical h-wave-front with i = 1/X) (cf. [1], [10],
[80], [24]). A (global) C! family of oscﬂlatory -densities is given by

Z 01 1 (T, ) ) |dz|2 (7.73)

where ‘I>j are nondegenerate phase functions in V; C R? x RNi such that 1y I(Aq)j), 7=12 ..,
is a locally finite covering of A with open sets for each ¢ fixed. t
We denote the class of these oscillatory f—densmes by I™(M?, Ay; Q2(M 4)) or simply by
I™(M? Ay). In order to simplify the notatlons we denote the immersion % : A — T*M? by A,.
To any oscillatory integral us(z, A) of the form (7.72) one can associate a principal symbol
A

eMi g, where oy = (%yﬂou ® ooy (7.74)

t—o1pisaC 1 family of sections of the half-density bundle Q%(A) and o2 is a section of the
Keller-Maslov bundle M (A;) for each ¢ fixed (cf. [12, 47, 24]).
In any local chart the half-density part o1 can be written in terms of the nondegenerate
phase functions ®; and the leading part ag of the amplitude ¢ in (7.72) as follows
1

(Zt_l o 'L<I>t)*(01,t) = atyo‘dcq)t P (7.75)

(cf. [31], Sect. 25.3), where dc,, is a Leray form on Cg,, i.e. dc,, = kf (JC%) is the pull-back
via the inclusion map & : Cp, — R% x RY of a form JC% such that

~ 0Dy 0P,
d N d—— d— =d d do - A dOp .
C<1>z 90, VANREIRAN 90 x1 N\ Ndxg N\ dbp A\ N dbn
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Given for any t a suitable system of coordinates u = (p1,. .., 1q) on Cyp, extended to a neigh-
borhood of Cg, one obtains

dC‘I’t =byduy N--- Ndug with

1 (7.76)
by .

. dri N+~ ANdxgNdOy A --- NdOy ‘D(H,(‘Pt)g)
dps A -+ Ndpg NAGGEN - N dFE D(z,0)

More generally, given a vector bundle E over M9, we denote by I™(M?, Ay; Q%(M ) @ E) the
corresponding class of oscillatory %—densities of order m with values in the space of sections
I'(E), and by S™ (A, Q%(A) ® M(A;) ® Ey) the corresponding class of symbols, where E; is the
lifting of E to A;.

Given two manifolds Mj, j = 1,2, we denote by w; the corresponding canonical symplectic
forms on T (M) and consider the symplectic manifold 7 (Mz) xT™* (M) equipped with the exact
symplectic form we—wi. A C?! family of (exact) canonical relations Cy, t € [0, 8], “from T*(M;) to
T*(My)” is given by a C! family of (exact) Lagrange immersions 1; : C — T*(Mz) x T*(M;). To
any C! family of (exact) canonical relations C; one associates a C'! family of (exact) Lagrangian
submanifolds C; of T*(Mas x M) defined by the exact Lagrange immersions 7} : C — T™(May x M)
where 1, = j01 and

7T (Mg x My) — T*(Mz) x T*(My), g(x2,21,82,&1) = (22,82, 21, —&1). (7.77)

We use the same notations as in [31], Sect. 25, for the corresponding classes of A-FIOs. Given
vector bundles E; on M; and a C! family of exact canonical relations C; from T* (M) to T*(M>)
we say that

At : Cgo (Ml,Q%(Ml) & El) — O (MQ,Q%(MQ) ® EQ)

is a C'! family of \-FIOs of order m if the family of the corresponding Schwartz kernels K 4, is a
C' family of oscillatory %—densities belonging to I™ (MQ x My, Cy; Q32 (M3 x My) @ Hom(Eq, Eg))
The composition of A-FIOs with exact canonical relations having transversal and more generally
a clean composition can be defined in the same way as in the case of classical FIOs [24, 47].
The microlocal calculus is even simpler since the amplitudes are uniformly compactly supported

with respect to 6. In particular we have the following analogue of Theorem 25.2.4 [31] (see [12],
[24])

Theorem 7.2. Let P; be a C' family of classical A\-PDOs of order 0 acting on %—densities mn
My with principal symbol p; and subprincipal symbol c;. Let C; be a C family of exact canonical
relations from T*(My) to T*(My) with Schwartz kernels K a, € I*(Ma x My,C}; Q%(MQ x My))
with principal symbols €Mta,. Suppose that p; vanishes on the projection of C; to Xo. Then P, Ay
is a C family of \-FIOs of order k — 1 with kernels Kp, 4, in I*1 (Mg x My, Cy; Q%(Mg X Ml))
and principal symbols

Mt (i_lﬁxpt ot + ctat)

where Xy, is the Hamiltonian vector field of py lifted to functions in T*(My x M) and Lx,, is
the Lie derivative.
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7.1.3 Quantization of C' families of billiard ball maps.

The aim of this section is to construct a family of monodromy operators quantizing billiard ball
maps of a C! family of billiard tables. The monodromy operators will arise as boundary values
of the microlocal outgoing parametrizes Hy()\) : L2(I') — C*®(X), ¢ € [0,4], of the Dirichlet
problem for the Helmholtz equation. We will construct H;(\) for ¢t € [0,9] as a C! family of
A-FIOs satisfying asymptotically the Helmholtz equation at high frequencies (|\| — 00), i.e.

VN eN, (Ar—X)H(MNu=0x(N"M)u (7.78)

in a neighborhood of X in a smooth extension (X,g;) of the Riemannian manifold of (X, g;).
Hereafter, B
On(IA7Y) + LA(T) — L*(X)

stands for a C' family with respect to ¢ of operators A;(\) : L2(T) — L2(X) depending on
A € D such that
1AWl 2 < Cn(1+ AN

for each t and A € D where Cy > 0 is a constant independent of ¢ and of A. Moreover, u are
suitable “initial data” on I'. Set

AN:={(s,p) eRxT'T: pelU, —c<s <Tu(p)+ 2}, (7.79)

where U is a compact subset of the domain of definition E{;F of the billiard ball map By,
0<e<1l,and T3 : U — (0,400) is the “return time function” which assigns to each p € U
the time of the first impact at the boundary, i.e. the smallest positive s = T;(p) such that
exp(sXp,) (7 (p)) € &; . Recall from Sect. 2.1 that h; is the Hamiltonian corresponding to the
Riemannian metric g; via the Legendre transform, X}, is the corresponding Hamiltonian vector
field, and the map 7;" : B*T' — X is defined by (2.13). In particular, exp(sXp, ) (7, (p)) lies on
the cosphere bundle B B N

Y= 5X ={(z,§) e T" X : hy(z,&) =1}. (7.80)
The FIOs Hy(\), t € [0,9], will be associated to the C' family of canonical relations C; in
T*X x T*T given by the C' family of immersions

wi A= T*X X T*T, (s, p) = (exp (sXn,) (7 (p)), p)- (7.81)

Choosing ¢ > 0 sufficiently small we suppose that the set U in (7.79) is a connected open subset
of T*T" such that

e U is contained in B;T for any ¢ € [0,4];
e Ti(p) < To(p) + ¢ for any t € [0,6] and p € U.

Then T} is a smooth function on U, its image is a compact interval and there exist 0 < a < b
such that T3(U) C [a,b] for any t. Moreover, Lemma A.1. in [63] implies that

Y=jg0u: AT (X xT).

is a C'! family of exact Lagrangian immersions which will be denoted by C}, t € [0,5]. We choose
the corresponding function f; in (7.68) to be just the action fi(s, p) = 2s on the bicharacteristic
arc associated with u(s, p) € C¢, where (s,p) € A CR x T*T".
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Our aim now is to define the immersed Lagrangian manifold C; locally by a nondegenerate
phase function. Fix t° € [0, 4] and take o° = (2°,9°,£0, —n°) € Cjo. Choose a smooth submani-
fold MY of X of dimension n — 1 passing through z" and transversal at 2° to the geodesic of g

starting from y° with codirection (n°)7. Consider the symplectic map x; : U — T* MO defined
in a neighborhood U? of p = (y°,1°) in B;T by

xi(p) = (o exp(s(p)Xn,) o7 )(p), pe U’ C BT,

where s(p) > 0 is the arrival time at T*X|p0 and w(2/, 2, &', &) = (2/,&). If MY =T, this is
just the billiard ball map B; defined in Sect. 2.1. Denote by C;(t C T*(M x T') the Lagrangian
manifold corresponding to the canonical relation Cy, := {(xt(p),p) : p € U%}.

Let J >t — x4 = (2}, 74,) € C®°(O,R") be a C! family of normal coordinates to M with
respect to the metrics g;, where J C [0, d] is an interval containing t° and O is a sufficiently small
neighborhood of z°. For any fixed ¢t € J we have M°NO = {x, = 0} NO and the normal vector
field to MY N O associated to g; and determined by £°(v4(z")) > 0 becomes v; = (0,...,0,1) in
these coordinates. Then the Hamiltonian A; is of the form

hi(w, &) = &5 + 1e(2,€) (7.82)

in these coordinates, where J 3t — 7 is a C'' family of smooth functions in a neighborhood of
(20, &Y. If 2° € T, we take MY to be a neighborhood of 2° in T, then r,(2’,0,¢") = hd (2, &) is
the Hamiltonian corresponding to the induced Riemannian metric g on T.

Following the proof of Hérmander [31], Proposition 25.3.3, we can find local coordinates
y € R" 1 in a neighborhood of 4° in I" such that projection C;(to > (2, ¢, y,n) — (2',n) € T* R
is a local diffeomorphism in a neighborhood of (2%, £%,4°,7%). Shrinking .J if necessary we obtain
that the map C}, > («/,&,y,n) — (2/,n) € T*R""! is a local diffeomorphism as well for any
t € J. Then there exists a C! family of smooth functions ¢9 defined in a neighborhood V' of
(%, n°%) in R*1 x R"~1 such that

2%

det 970

(',n) #0 for (2/,n) € VO. (7.83)

and
graph (x:) = {(«', (&) (', m); (80); (@, ), m); (2',m) € V°} (7.84)

(see [31], Theorem 22.2.18). Then solving a suitable Hamilton-Jacobi equation we obtain a C'!
family of nondegenerate phase functions

(I)t(xv Y, 77) = th(«fﬂ, 77) - <y7 77> (785)
in a neighborhood of (z%,¢%,7%) in R® x R"~! x R"~! generating locally C; in a neighborhood
Cj, of oo where ¢y(2/0,m) = ¢{(2/,n). In particular, we have

&
oz'on

det (z,m) # 0 in a neighborhood V of (x°,n°). (7.86)

We summarize this construction as follows.
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Lemma 7.3. There exists an open interval interval J C [0,9] containing t°, local coordinates
y € R" 1 in a neighborhood of y° in T and independent of t, a neighborhood VO C R" ™1 xR*~1 of
(2% 1°) and a C* family of function ¢) € C(V°) satisfying (7.83) and such that the following
holds

1. the function ®%(2',y,n) = ¢9(z',n) — (y,n) is a local generating function of the Lagrangian
manifold C}, C T*(M° x T) for every t € J;

2. the Lagrangian manifold C, is defined in a neighborhood of po by a phase function

Qi(z,y,m) = ¢e(x,m) — (y, M),

where ¢¢(x,n) is a local solution of the Hamilton-Jacobi equation

arn¢t(xa 77) = \/1 - ’f't(.%', 8x’¢t(xa 77)) ) ¢t<$/? 0, 77) = ¢g(x,a 77)? (787)
and ry is given by (7.82).

3. there exists a neighborhood V.C R™ x R"~! of (2°,1°) such that the family of functions
J3t— ¢y € C®(V,R) is C' and (7.86) holds for anyt € J.

In particular,
(2, y,m) = ¢ (@', 1) — {y,n) + zndy (z,n), (7.88)

where J >t — ¢} € C®°(V,R) is a C! map. We take ¢?(2',n) = (', n) if the image of go by the
involution in (7.77) belongs to X} x U, which means that 2° = (3°,0) and £° = (") ™.

In order to obtain the Maslov part of the principal symbol picked up by the ph~ase functions
constructed by the Lemma we need the following. Fix t° € [0, ], take g° = (z°,7°, €0, —7j°) € Cro
and denote by M MO the corresponding submanifold transversal at ¥ to the geodesic of gz startlng
from " with codirection (7°)* and by Xt U9 — T*MDO the corresponding symplectic map. Let J
be the corresponding interval about t° and ®4(Z, 7, 77) = ¢+(Z,7)— (7, 7), t € J, the corresponding
C' family of phase functions given by Lemma 7.3. Suppose that 7 € J N J # () and that there
exists ¢ € A such that

£(Q) € ChNCY.

Lemma 7.4. There exists a neighborhood I C J N J of T and a neighborhood V' of ¢ in A such
that the function u:V x I — 27 defined by

p(o,t) = sgu ()t (z,n) — sgn (&} )7 (&, M),

Zt(p) = 19 (SU’ (gbt)%(l" 77)7 77) =13, ('%v (ggt)%(ff, 77), 77)
is constant on V x I.

Proof. The assurtion follows from an argument in [13] using Hérmander’s index o (M1, Ma; Ly, Lo) €
Z of four Lagrangian spaces M1, Ma, L1, Lo in the Lagrangian Grassmannian A(n —1), where Ly
and Ly are transversal to both M; and My in T*R™! (see [12], Definition 3.4.2). It is known
that o is locally constant and continuous with respect to all the variables (My, My, Ly, La). Set
1-(¢) = (u, (¢r)l,(u,v), (p7)h(u,v),v) € T*X x T*T" where ¢, t € J, is the phase function in
Lemma 7.3 corresponding to the coordinates z; : O — R"™. Take a section M in X passing trough
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the point v and transversal to the geodesic starting from 9,¢,(u,v) € I' and havig a codirection
vT. We can suppose that M = {z,, = g(2’)} in these coordinates with some smooth function g.
Let us change the x coordinates in a neighborhood of M by 2z’ = 2’ and 2, = x,, — g(2’) and set
Yi(z,m) = ¢1(2', 20 + g(2'),m). Consider the (local) symplectic transformation x¥ : T*T' — T* M
defined by B

0(\ — (0 0 + *

Xt (p) = (7 o exp(s{(p) Xn,) o 7" )(p), p€Uo C BT,

for ¢ sufficiently close to 7, where s?(p) > 0 is the arrival time at 7% Xy, and 7°(2/, 2, &', &) =
(2/,€). Then (2/,n) — ¥(2',0,m) is a generating function of x? in the sense of (7.84). Given
(x,y,7m) € Cs, in a neighborhood of (u, d,¢-(v),v) with x € M, we obtain as in [13] p. 69

sgn (®,)7, (2', g(2'), y,n) = sgn (Ye)y, (2',0,m) = sgn (V, Hy; (dx?)~1(V))

where sgn (M, Ms; L) is defined in [12], Definition 3.4.3, V' = {(§2/,6¢’) : 6z’ = 0} is the vertical
space (the tangent space to the fiber) and Hy is the horizontal space {(dz,6¢’) : 6¢' = 0} for
the local coordinates x; in O used in the construction of ®;. Repeating this procedure in O for
the phase function &Jt obtained by Lemma 7.3 corresponding to the coordinates z; : O — R",
we obtain

sgn (q)t)gn (.%', Y, 77) — sgn ((T)t)%ﬁ(§7 g? m
= sgn (V, Hy; (dx9) (V) — sgn (V, Hy; (dx9) (V) = 20 (Hy, Hy; (dx9) "1 (V), V)

where H, is the horizontal space {(02',6¢") : 6¢" = 0} for the corresponding local coordinates
Z¢ : O — R™ used in the construction of ®;. This shows that u is idependent of ¢ and of g in a
small neighborhood of (7, (). O

Using the phase functions obtained in Lemma 7.3 one can define the space of A-FIOs corre-
sponding to the C! family of canonical relations C;. We are looking for solutions Hy(\) of (7.78)
with Schwartz kernels in 1~/ 4()? x T,C;). To any C! family of nondegenerate phase function
®(x,y,n) of the form (7.85) generating C; in a neighborhood of a point gy = (2°,3°,£%, —n%) € ¢’
(®; is given by Lemma 7.3) there is a C! family of classical amplitudes

bt(l’ﬂ?a >‘) ~ bO,t(xyn) + bl7t($,n))\71 + ..

such that the Schwartz kernel of H;()\) can be written microlocally near gy as a C! family of

oscillatory %—densities

A

n—1 .
I<I>t(55,y, )\) — (%) (/Rnl elA(bt(m’y’n)bt(%??, )‘)dn) |d$|1/2|dy|1/2. (7.89)

(see (7.72)).

Notice that the Hamiltonian p; in 7%(X x I') obtained by lifting of the principal symbol
hi — 1 of the operator A"2A; — 1 vanishes on C;. Thus to compute the principal symbol of
(A¢ — A2 Hy (M) we can use Theorem 7.2. Note also that the corresponding subprincipal symbol
is ¢t = 0.

We are going to define suitable sections o1 and o2, of the half density bundle and of the
Keller-Maslov bundle of C;. The lifting of the Hamiltonian vector field X, to T*X x T*T is
Y; = (X},,0) and its flow ST restricted to C; is given by

ST(x,&,y,m) = ST (exp(sXp) (75 (y,m), y,m) = (exp((s + ) Xn, ) (7 (y, 1)), y, 1) (7.90)
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for any (z,&,y,n) € C;. The volume form [; on C; given by the pull-back by #; of
ds A (dyr Adny) A=+ A (dyn—1 A din—1) € Q(A)

is invariant with respect to the flow S} or equivalently, the Lie derivative Ly, 5y vanishes. Then
the Lie derivative of the 3-density g := ’j*(ﬁo)‘% € |9 2 (C;) with respect to X, is zero. Recall
that j is given by (7.77) and that X, is the Hamiltonian vector field of h; — 1 lifted to functions
in T*(X x I'). We set B N

o1t = bO,tO'O,zh b(],t € CSO(CQ) (7.91)
The relation between 60775 and the principal part by of the amplitude b; in (7.89) is obtained in

[63], (A.23). More precisely, let us denote by 1, = n:(x, ') the local solution of £ = (¢)", (x, 1)
obtained by the implicit function theorem and set

~6,t(x7 5/) = 50715(7(1_1 (1‘, éla fn))a
where 7 : C; — Y, C T*X is the projection m (x,y,&,—n) = (z,€). Then [63], (A.23), yields

g/ ’ /
bos (e, mu(a, €)) = 2108 oo (e, €))]
N

in a neighborhood of (20, ¢%), where &, = \/1 — ry(z,¢').

The Keller-Maslov bundle M (C;) of C{ admits a natural trivialization by locally constant
sections. Recall from Hormander [30], p. 148, that a section of the line bundle M (C}) is given
by a family of functions fs, : C(’bt — C, where @, is a nondegenerate phase function generating
locally C; at Cg, = 10,(Ca,) (see (7.70)) such that fz = i fo on Cé; N Cq,- The function

e = pig g, 1S defined by

N

(7.92)

((sem (@0)fp(w,5,0) = N) = (sgn (@)}, 5.6) = N)) . (7.98)

N

M@@t(g) =

where 0 € RV, § € Rﬁ, (®4)p(x,y,6) =0, Z@t)év(x,y, 5) =0 and ¢ = 19,(z,y,0) = zgt(x,y,g) €

/ / N s / /
C(E N Cg,. Moreover, u o0, € Z and it is constant on each connected component of Cgt NCs,-

The section will be called “natural” if fp, are constant functions taking values in {i¥ : k € Z}.
In our case M(C;) can be trivialized in a band |s| < e using the phase functions ®; given by
Lemma 7.3, where ¢{(z/,n) = («/,n). Then (®¢); (y,0,y,7) = 0 in view (7.88) and we get
sgn (@t);;n(y, 0,y,m) = 0. This yields a natural trivialization of the Keller-Maslov bundle in a
band C' N {|s| < €} for some € > 0, choosing a locally constant section which equals 1 in that
band. In particular, the Lie derivative Ly, 02 vanishes for each ¢. This argument holds whenever
C'|s=0 is a conormal bundle of a smooth submanifold (see [30] Sect. 3.3 and [13], p. 65).

Using Lemma 7.4 one can obtain a natural section o9 of M(C{) which is independent of ¢
in a small neighborhood of t° for any t° € [0,8]. The section o2 of M(C}) can be described
as in [13], [30] and [47] as a Maslov index of a suitable path. Let o1 = (20,9°,£%, —n%) € Clo
and (29,¢%) = exp(TXhtO)(yO,no). Let M be a submanifold transversal to the corresponding
geodesic in 2¥ and let ®; be a C! family of generating function of C, in a neighborhood of o
given by Lemma 7.3. Consider the path 4; on C; defined by

m1(Fe(s)) = exp(sXn,) (m (y°,n")), s € [0,T].
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We have
30(0) := 00 = (4°,5% (n°)",—n°) € Clols=0 and F(T) = g1 € Cjo.

Choose a partition 0 = sy < 51 < -+ < s, = T and phase functions ®;;, j = 1,...,k, as in
Lemma 7.3 generating locally C; in a neighborhood of ;(s;) for ¢ in a small neighborhood of °
and such that

%t([sj*b 8]]) - Cépt’j, (I)t,k = (I)t and ®t,1($/7 07 Y, 77) = <.’,U/ - Y, 77>
Then trivializing M (C;) in a neighborhood of g1 by the phase function ®; we get

(o2t)a, = i*TY),  where

k=1 (7.94)

(580 (@1, (Gel53)) — s (Peg1)yy (Gi(5,)) ) € Z.
=1

—_

.

Now Lemma 7.4 implies that p(7;) is independent of ¢ € I where I is a sufficiently small
neighborhood of t° in [0, 6]. In other to construct 02,4 one can use finitely many paths 7; since
Cwo is compact, hence I can be chosen to be common for all the paths. We set

op = 014 X 02 = bt 004 X 024

According to Theorem 7.2 the oscillatory integral (A; — A2)K g, (x,y, ) belongs to I3/4(X x
I',C}) and its principal symbol is just the Lie derivative Ly, oy multiplied by (\/27)3/* since the
subprincipal symbol of the Laplace-Beltrami operator is 0. Moreover, the Lie derivative with
respect to Y of the sections oo and o9 vanishes, hence, the transport equation Ly,o; = 0
becomes

(SY)*bo.+ = bo - (7.95)

Multiplying by with a suitable cut-off function, which equals 1 in a neighborhood of CiNT*(X xT),
we can suppose that l~)0 has a compact support with respect to (s,y,n7) € A. In this way we
obtain a C*! family of A-FIOs Hp;()\) with Schwartz kernels in I7Y4(X x T,C)) such that the
Schwartz kernel of (A; — A2)Ho¢(\) belongs to I™/4(X x T',C}). Repeating this procedure we
get an operator Hj () such that Hy(\) + Hi(X) solves (7.78) modulo a A-FIO of order —5/4
and so on. The initial data 50| s=0 will be determined by Lemma 7.5 below.

Denote by 1} : C>®(X) — C=(T) the operator of restriction i (u) = wp. We would like
to represent ¢ microlocally as a A-FIO. To this end, denote by A the conormal bundle of the
graph of the inclusion map o : I' — X and by R = N ™! the corresponding inverse canonical
relation. In other words,

R = {(w,{;x,g) ETTxT*X : er,gzg\m}.

The operator - can be considered microlocally as a A-FIO with Schwartz kernel of the class
I'AT x X, R; Q%) which means that the composition ;. o A(\) belongs to that class for any
classical A-PDO A()\) of order 0. Moreover, its principal symbol can be identified with (\/27)/*
modulo the corresponding 1-density (see [63], Sect. A.1.4). In what follows, we shall investigate
the composition ¢f. H;(\) of A-FIOs. Firstly, notice that the composition R o C; of the corre-
sponding canonical relations is transversal (see [63], Sect. A.1.4). Recall that m : C; — T*X
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and my : C; — T"T are given by mi(z,y,§, —n) = (z,€) and ma(z,y,&, —n) = (y,n). Denote by
dv(p) := dy A dn the symplectic volume form on T*I'. Recall that v (x) € T, X ‘F is the unit
inward normal to T related to the metric g; and that 77 (z,€) = (z,£5) € ©F for (x,€) € B;T.
Moreover,

<€tiayt>(x7§) = <€ti(x7§)’yt(x)> =+V1- T‘t(l‘,fl)

in the normal coordinates used in Lemma 7.3. Using (7.91) and (7.92) and the theorem about
the composition of A-FIOs one obtains

Lemma 7.5. The composition of canonical relations R o C; is transversal and it is a disjoint
union A°UCY of the diagonal A° in U x U (for s = 0) and the graph Cy of the billiard ball map
B :U — B(U) (for s=1T). Moreover,

G Hy(N) = P\ 4 Ge(\) + On (A 7M), (7.96)

where Py(\) is a C' family of classical \-PDOs on T of order 0 and G¢()\) is a C' family of
A-FIOs with Schwartz kernels in I°(T,T,CY). The principal symbol of the operator P,(\) can be
identified with

bo(my () UET v (p)) T2 dv ()2, peU. (7.97)
The principal symbol of G¢(\) can be identified with

boo (w1 (my (p)) 2065, va) (p)| 712 e [do(p) |/ @ ), p € By(U), (7.98)

where A, = f% &dz is the action along the integral curve v of the Hamiltonian vector field Xy,

starting from m, (B; *(p)) and with endpoint 7; (p) and o} is a natural section of the Maslov

bundle M(CY). Moreover, for each t° € [0,8] one can choose o, to be independent of t in a
neighborhood of t°.

The Lemma is proved in [63], Sect. A.1.4.

Let W(A) be a classical A-PDO of order 0 with frequency set in U and principal symbol
Wo(p), p € U. We take W()) as initial data of Ho(\) as s = 0 setting P;(A) = ¥(A) in Lemma
7.5. Recall that by satisfies (7.95). On the other hand

(«',€') = By(y,n) ifand only if m;'(2,0,67) = ST (7,1 (y, 7))
where T is the return time function. Then (7.95) and (7.97) imply
bo(myH(2,0,€7)) = bo((m3 (. m)) = Woly, n) 2l (0T, v)(y, )"/

Then parameterizing C{’ by the variables (y,7) € U and using (7.98) we write the principal
symbol of G¢(\) as follows

1

+ vy , 2
o(Ge(N) = Toly,n) ’<€t|—<j7;t;(3>t(éfg)’)|l/2

where A (y,n) = f% &dx is the action along the integral curve ~; of the Hamiltonian vector field

AW | gy A di|2 @ o), (7.99)

X}, starting from ;" (y,n) and with endpoint 7, (B;(y,n)).
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In the same way, using Lemma 7.5 we determine the initial conditions of Hj () and so on.
In this way we obtain a C! family of A\-FIOs

Hy(N) = Ho,(A) + H1(A) + -+ (7.100)

with Schwartz kernels in I~Y/4(X,T,C}) satisfying (7.78) and such that P;(\) = ¥()\). From
now on, to simplify the notations we drop the corresponding %—density. Denote by F;(\) a C!
family of classical A-PDOs of order 0 on I' with principal symbols Fy; € C’é’o(gzk I') such that

Eo(p) = (&, ) (0|7 = (&, v) ()2 (7.101)

in a compact neighborhood of U in BfT. Then using Egorov’s theorem, (7.99) and (7.101) we
obtain ¢{. H(\). We summarize this construction in the following

Proposition 7.6. The C! family of \-FIOs operators t — Hy()\) gives for any half density in
f in L3(T) a family of solution uy = Hy(\)f of

(A¢ = N)ue = On (A7) .
Moreover,
R H(N) = TN+ G(A) +Ou(AY), Ge(N) = E(N) TGV E(N) (7.102)

where Ey(X\) is a family A\-PDOs of order 0 which are of elliptic microlocally in a neighborhood
of WF,\(¥), the principal symbol of GY()\) can be identified with

Wo(p)e MO |du(p)|2 @ 0], pE U, (7.103)
and o} could be chosen to be independent of t in a small neighborhood of any t.

In particular, the frequency set WF’ of G¢()\) is contained in B;(U) x U.
We are going to estimate the L2-norm of u; = Hy()\)f, where f is a %—density on I'. Consider
the L2-adjoint operator Hy(\)* of H;()\) which is well-defined for any A € D fixed as an operator

from L?(X) to L?(T'). Moreover, it can be considered as a A-FIO associated with the canonical
relation C; ! the Schwartz kernel of which belongs to I~Y/4(TI', X, (C;!)’). As in [63], Sect. A.1.4,
we obtain

Proposition 7.7. The family t — Cy(A\) := Hy(A\)*Hy(\) : L2(T) — L*(T') is a C' family od
classical N\-PDOs of order 0. The principal symbol of Ci(X) can be identified with by

Cor(y,n) = /R\go(svy,n)ﬁdsv (y,n), (z,n) € U.

Moreover,
Cot(y,m) = Tely, mIES ve) ([ Woly, m)1>,  (y,m) €T,
where Ty is the return time function. In particular, there exists C > 1 such that
CHYN) fllrzwy < IHoA) Fllzzixo < CIYA) fllz2m
for each (t,\) € ]0,9] x D.
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7.2 Reduction to the boundary

The reduction to the boundary is a variant of the reflection method for the wave equation. We
shall describe it in the case of Dirichlet boundary conditions. In the case of Neumann and more
generally of Robin boundary conditions it is done in [63].

Denote by (X, g;) a C* extension of (X, ¢g:) and by h; the Hamiltonian corresponding to
gi via the Legendre transform. Consider a C' family of Kronecker invariant tori [0,0] > ¢t —
Ay(w) € BT of By having frequencies in the set QO of points of positive Lebesgue density in
Qe = (Q—r)ND(K,7), where Q = B(wp,€), 0 <k <e/2<1land 0<§ <1 For0<ik1
such families of Kronecker invariant tori of B; are provided by Theorem 3.2. Denote by

T/ = U{B/(A(w)) : we ) C BT
the cooresponding union of the invariant tori of P; o B;fj for 0 < j < m and set
T = U{’Ej, 0<j<m.

Fix tp € [0,0] and choose open sets U; C V; C T*T for 0 < j < m and a sufficiently small
interval J C [0, 0] around ¢o such that

TIcU;ccVycc B and  By(Vj) € Ujq
foreachte Jand 0 <j<m—1and
UoUU,, C Vi, cC BT

for each t € J. The relation U CC V means here that U C V where U is the closure of U. We
suppose that the C! family of exact symplectic mappings

Jot— B

admits a C! family of BNFs in a neighborhood U of V in the sense of Definition 3.3 (see also
Theorem 3.2). In other words, we suppose that there exist C'-smooth with respect to t € J
families of exact symplectic diffecomorphisms y; : A — x¢(A) C U and of real valued functions
Li € C*(D) and R} € C*°(A) where A = T""! x D and D = VL;j () such that for each t € J
the following holds

L Vo C xi(A);
2. Ay(w) = x¢ (T ! x {I;(w)}) C Uy for w € Q0, where I;(w) is given by (1.6);
3. The function
R x D3 (z,I) — ¢¢(x, 1) := (x,I) — Ly(I) — RY(x, 1)
is a generating function of the exact symplectic map
PY:=x;loPoxi: A— A

in the sense of Definition 3.1;
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4. VLy : D — Q is a diffeomorphism and L; = L, outside D' := VL} (Q — £/2);
5. RY is flat at T"! x Ef, where Ef = VL;(Q2).
Chose the A-PDO W¥(\) giving the “initial data” of the operators H;(A) in (7.102) such that
WEF\(¥ —1d))NV,; =0 V0<j<m. (7.104)
Recall from Proposition 7.6 that
BH () = ¥() + Go(N) + Our (A7)

where Gy()\) is described in (7.102) and (7.102). Take now a classical A-pseudodifferential oper-
ator A-PDO W,(\) such that

WF\(¥g) C Vo and WF, (¥ —1d)N T, = 0.
Consider the “outgoing” solution of the Helmlotz equation
(Ar = N)uy = On (NN f (7.105)
for A € D and t € J with “initial data” Wo(A)f which is given by u; := HP(\)f, where
HOO) = Hi(\) To(N).

Recall that On(|A|7Y) : L?(I') — L%(X) stands here for a family of operators
Ay(N\) : L2(T) — L*(X)

such that
[A(M)llz2 < On(L+ [ADTY

for each t € J and A € D where Cy > 0 is constant independent of ¢ and of \. Then
it HY(A) = Wo(A) + G (A)Wo(A) + Onr(JA )

since WF) (¥ —Id)¥) = 0 in view of (7.104).
To satisfy the “boundary conditions” on U! in the case when m > 2 we use the reflexion
method. Let WU;(A) be a classical A-PDO such that

WF\(¥;) V4 and WF,\(¥; —1d)NTU; = 0.

Set
Hi (A) = Hi(N\)W1(N)Gi(N)Po(N)

and consider B
ug(A) = Ht(/\)f = H?(A)f - Htl()\>f-

Then u; satisfies (7.105) and it satisfies microlocally the Dirichlet boundary conditions on Uyj.
Notice that WF (¢ (us)) C UpNUs. Similarly if m > 2 one can treat the boundary conditions in
U; for any 0 < j < m which leads to a solution u; = Hy(\) f satisfying the boundary conditions
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microlocally in U; for each 0 < j < m. Let ¥;()), 0 < j < m — 1 be a classical A-PDO such
that B
WF, () € V; and WF,(T, —1d) N T; = 0.

We set HY(\) = Hy(\)Wo(N) if m =1 and

HW\f = T::(—lvﬂﬁ (\)f where (7.106)
H{(A) = Hi(A)¥m-1(N)Ge(A)Tm-2(A) - Ge(A)To(A)
if m > 2. Then uy satisfies (7.105) and
WF )\ (211 (ue)) € Up N By(Upp—1) CC Vi
More precisely,
i (u') = Wo(N)f = M(A)f + On(A™N) f
where M;(\) := —G¢(A)¥q(N) for m = 1 and
M) = ()" G\ W1 (A) -~ Gr(A) o ()
if m > 2. Taking into account (7.102) we obtain M;(\) = E(\)"*MP(A\)E()\), where
MP(A) = (1)1 QeN) W1 (V) - Qe(\) Wo (M) (7.107)

Moreover, using Proposition 7.6 and the theorem about the composition of A-FIOs (here we use
it in the simple case of canonical transformations) and parameterizing graph(F;) C V, x Vp by
its projection on Vy we obtain that for each ¢ € J the principal symbol of M?()) is given by

(—1)" L exp(iAAy (. £))|dv(p)|? © o,

over Uy, where

[y

Az, €)=Y Aal,€]), (2],&) = Bl(x,¢€),
J

3

I
o

is the action along the corresponding broken geodesic and o}, is a “natural” section of the
corresponding Keller-Maslov bundle which can be chosen to be independent of t € J.
Let 1o(\) be a classical A-PDO of order zero such that

WEF' (o(N\) € Uy and  WF'(gho(\) —Id) N T = 0.
We summarize the above construction by the following

Proposition 7.8. Let v\ € L*(T) and u; ) = ﬁt(/\)¢o(>\)vt,,\ where (t,\) € J x D. Then

{ (At — )\Z)Ut)\ = ON()\;N)ut’)\ R
ULy = ON()\;N)ut’A
if and only if
(MP(N) = 1d)go(Nvia = On(AT™) v (7.108)
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The structure of the monodromy operator M ()) is given by

Proposition 7.9. The canonical relation of MY ()\) := Ey(\)My(A)Ey(\)~! is given by the graph
graph (P;) C Vi, x Vg of the symplectic map P, = B} : Vo — Vi, which is C! with respect to
t. The family J >t — MP(\) of classical \-FIO of order 0 with a large parameter A\ € D is
C! smooth with respect to t € J. Parameterizing graph P; by its projection on Vi fort € J, the
principal symbol of M (\) becomes

o(M?) = (=1)™ Lexp(iAAi(x, €)) |dv(p)|* @ o,

over Uy, where o, is a “natural” section of the corresponding Keller-Maslov bundle which does
not depend on t € J.

7.3 Quantum Birkhoff Normal Form

Using the C! family of exact symplectic transformations y; given by Theorem 3.2 we identify
the first cohomology groups H'(Ay(w),Z) = HY(T" Y, Z) = Z" ! for w € Q2 and t € J, and
we denote by ¥y € Z"! the Maslov class of the invariant tori A;(w). Notice that ¥y € Z"1
does not depend on t € J and w € Q2. Consider as in [6] the flat Hermitian line bundle L
over T"~! associated to the representation ¢ : Z"~! — SU(1) of the fundamental one group
T (T""1) = Z"! defined by o(k) = exp (i5(o,k)), k € Z" (see [38], Sect. 1.2). More
precisely, L is the quotient of R*~1 x C by the action of Z"~! given by k.(z,2) = (z+27k, o(k)z).
Then sections s of L. can be identified canonically with smooth functions § : R*~! — C such
that

3z +27k) = 200RF(2) VeeR™ kezr (7.109)

An orthonormal basis of L?(T"~!, 1) is given by ey, k € Z"~!, where
ex(z) = exp (i(k +vY0/4,x)).

We quantize the family of exact symplectic transformations y; : A = T""! x D — T*T as in [6],
Sect. 5 and [63], Sect. 3.3. Denote by Cy, the graph of x; in T*T' x T*T"~! and by C, = (Cy,)
the corresponding Lagrangian submanifold of T*(T'x T"~!), where j is defined in (7.77). Consider
the class of A-FIOs T;(\) : C°°(T" 1, L) — C°(T,C) of order 0 associated with the canonical
relation Cy,. The Schwartz kernel K7, (5 of Ti(A) belongs to the class I°(I x T",C} s p3 (L)),
where po : T' x T?~! — T"~! is the projection on the second factor. Recall from [6], Sect. 5, that
the principal symbol o(K7,)(A) of K7,y can be canonically identified with a smooth function
in 7*T"~!. Indeed, o(K,T)()) belongs to the symbol class S°(C},, M(C;,) ® m35(L)), where
mo C;a — T 1 x D and m 07 : Cyi — T™! x D is the restriction at Cy, of the projection
T*T x T*T"1 — T*T"~! on the second factor while " is the dual bundle to L (the base
manifold of L and L/ here is T"~* x D instead of T"~'). On the other hand, M(C},) = m3(L)
and using the parametrization of C;(t given by 7o we identify the above class of symbols with
ST ! x D,L ® L) which can be canonically identified with C§°(T"~! x D) since L ® L’ is
trivial (cf. [29], Chapter I, 3.7). This allows us to obtain a A-FIO T;(\) of order 0 associated to
the canonical relation C,,, which is microlocally unitary over AY := T x DY where D is a

neighborhood of Ui yEf in D and

Ef = VL () = ()
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has been defined in 4, Theorem 3.2. This means that
WE/(T;(A\)*Ty(A) —1d) N A° = 0.

Trivializing the %—density bundle of C;, by W;’d@’%, where dv is the symplectic volume form

on T*T"! we take the principal symbol of T;()\) to be equal to one in T" ! x D° modulo a
Liouville factor exp(iAW;(¢, I)), where the function W, is real valued. Consider the C'' family
of A-FIOs of order zero

M} = T\ MP (N T(N) - C°°(T* 1 L) — C=(T" !, L).
The corresponding canonical relation C; is just the graph of P? = x; ' o P, o x; i.e.

Ce:={(P/(p),p) : p € A}. (7.110)

Denote by C, the corresponding Lagrangian submanifold of T*(T"~! x T"~!). Using the theorem
about the composition of A-FIOs in the special case of canonical transformations we obtain that
the Schwartz kernel of M} ()\) belongs to I9(T"~1 x T"~1 C/; M(C]) ® End (L)). Let us find its
principal symbol, parameterizing C’ by the variables p = (¢, I) € A.

Lemma 7.10. The principal symbol of M}(\) is given by
o (MP)(N) = (1) exp(iAfi)seo ® 00 @ |do(p)|"?

where sy 0 15 a C' family of smooth function in T"~' x D such that stolp, 1) =11in T x DO,
dv(p) the symplectic volume form on T*T"~ !, oq is a natural section of the Keller-Maslov bundle
M (Cy) independent of t and

fi(o, I) = A(xe(p, 1)) + Ui(0, I) — Uy (P, 1)), (o, I) €T ! x D. (7.111)

Proof. Notice that End (L) = L ® L/ is trivial as a bundle over T"~! x D, hence, smooth
sections can be canonically identified with smooth functions in T"~! x D. Then parameterizing
C; by the variables p = (p,I) € A and using the A-FIO calculus and Proposition 7.9 we obtain
the principal symbol of M} (\). To prove (7.111) we write microlocally the Schwartz kernels
of the corresponding A-FIOs in as oscillatory integrals of the form (7.89) with suitable phase
functions and then we evaluate the phase function of the composition at the stationary points.
The claim that o is natural and independent of ¢ follows from the fact that the section o}, in
Proposition 7.9 is natural and from the composition law of FIOs. O

Recall that the Lagrangian manifolds C; are generated by the C ! family of functions Oy (z,y,I) =
¢¢(x, I) — (y,I), where
ou(a.1) = (2. T) — Ly(I) ~ RY(2. )

satisfies 3-5 in Sect. 7.2 (see also Definition 3.3 and Theorem 3.2).

Proposition 7.11. We have
T MOOTHA) = 6™/2W3(\)
where ¥ € Z is a Maslov’s index independent of t € J and

J3t— Wi\ : C®(T" L L) —» C™®(T" 1, L)
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is a O family of A-FIOs of order zero with canonical relations given by the graph of PP over A.
Moreover, the Schwartz kernel of Wy(\) is of the form

— n—1 .
Wiz, y, \)|dz|? |dy|? = (21) (/ MO @D=WI) (2, T, ) d]) \dz|3|dy|?,  (7.112)
s Rn 1
where t — wy = Z;io wyj 18 a C' family of classical amplitudes 2m-periodic with respect to x

and wyo(x, 1) =1 for (z,I) € R*! x DO,

Proof.  The Schwartz kernel of M}()\) can be written in the form (7.112) with a phase
function C' + ®4(x,y, I), where C' is a constant since ®; is a globally defined generating function
of C{. We are going to show that C' = 0. Indeed, the exponent on the Liouville factor picked up
by these phase functions is

C+ <17VLt(I)> _Lt(I)+ <I7VIR?(907I>> _Rg((pal) :fE(SD7I)7

then taking (¢,I) € Ef and using Lemma 3.5, (7.111) and the equality R?‘Et

C = 0. Trivializing the Maslov bundles M (C;) by the C! family of phase phase functions ®;
we get (09)e, = exp( 7r291) for some 1 € Z independent of ¢ since oy does not depend on t.
We set 9 = ¥ + mm. Moreover, by (7.75) and (7.76) we obtain that ‘dc&)‘ = dzdl. Hence,
weo(z, I) = s¢0(pr (z),I) =1 for each (x,1) € R" 1 x DO. O

= 0 we get

In the case of Neumann and Robin boundary conditions we have ¥ = ¥.
Our aim is to make wy j(z, /) independent of the angle variable = for I € Ef conjugating
Wi()\) by a suitable C* in ¢ family of A-PDOs which are elliptic on T?~! x D°.

Proposition 7.12. There exists a C' family of »-PDOs J >t — Ay()\) of order 0 acting on
C®(T" L, L) and a C* family of \-FIO J >t — W2()\) of the form (7.112) such that

Wi(NA(A) = AW + Zi(N) (7.113)
where

(1) the full symbols of Ay(N\) and of WP () are
c(A)(p, I,N) = ai(p,I,N) Z)\ Tal (0, 1,)) and
s(W)(p. IA) = pe(I,N) ~ ZY%(I)
j=0
where J 3t — ai(p,I,)\) and J >t — p(I,\) are C* families of classical symbols and

al(p, 1) =1 and p(I) =1 for I € D°,
(2) J>t— Zi(A) is a C* family of A\-FIOs of order O of the form (7.112) with symbols

o0

Si(e, L) ~ > A8 (p, 1)
j=0

such that the functions Sg, j >0, are flat on T" ! x EF.
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Proof. The proof of the proposition is similar to that in [5] and [63]. First, comparing
the symbols of order —j of the left and the right hand side of (7.113) we shall derive the
corresponding homological equation. Set

9 (x,I) = L(I) + Ry(z, I).

We write the Schwartz kernel of the operator W;(A)A:(\) of the form (7.112) with amplitude

n—1
uia.1,0) = (;ﬁ) [ 1, € Nz, T, el

which belongs to C°°(T"~! x D) for each A fixed. Changing the variables we write u(z, I, \) of
the form

<2> / e MMy (2, T+, Nag(v + z + Ky (I,m) + Hy(x,1,m),1,\) dndv,
i R2n-2

where Ki(I,n) := fol ViL(I + sn)ds and Hy(z,I,n) := fol ViRi(z,I + sn)ds. Note that
K(1,0) = VL(I). Moreover, 3?85Ht($,1, 0) = 0 for each I € EF and any «,3 € Z"!
since the function I — Ry(x, ) is flat at EF for every x € R"! in view of 5, Sect. 7.2. Using
the Taylor formula for the amplitude at v = 0 and integrating by parts we get

o0

ug(z, I, \) ~ Z wl (x, )™
j=1

where

w@) = Y (D} (I +n) 8 af(w + K(Lm) + Hule, Tm), 1)]

r+s+ly|=j

[n=0 "

In the same way we write the Schwartz kernel of A;(\)W?()) in the form (7.112) with amplitude
qi(z, I, \) given by the oscillatory integral

n—1
(A> (N / (Me=26= D)= (RED =8N gy (1. €, \)déds
27T RQn—Q

Changing the variables we obtain ¢; = ¢ + ¢}, where ¢?(x,I,\) = au(x, I, \)p:(I,\) and
¢ (z,1,)) is given by

n—1
<2)\> pe(I, ) / e~ IMwm) [ag(z,m+ I + Htl(x, v, 1), ) —ai(x,n+ I, \)] dndv ,
i RQn—2

where H} (x,v,1) = fol V.Ri(z +7v, I)dr. Moreover, all the derivatives of H} (z,v, I) vanish for
I € E¥ since the function I — Ry(x,I) is flat at EF for every x € R""1. In this way we obtain
for any j > 1 that

S, I) = al(¢ + VL(I),I) = al (¢, 1) — pl(I) — Fi(p,I,t), (7.114)

where F7 is a polynomial of 83816 al and 816 pt for I < j and |a| + |B] < 2j and of 815 L, for
18] <25+ 1.
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We are looking for functions a{ and pi([) such that Sg(w, I)=0on T" ! x EF. We shall
solve this equation recursively with respect to j changing the variables by I = I;(w), w € Q,
and we consider ) as a subset of R"™1. Set f(p,w,t) := al(p, [(w)), c(w,t) := p](I;(w)) and
F(p,w,t) := FI(p, I;(w),t). Then we get the homological equation

flo+ww,t) = flo,I,t) = clw,t) + Flp,w,t), weQ. (7.115)

We are looking for smooth functions f and ¢ on T"~! x Q and Q respectively, which solve (7.115)
for every w € Q0. We have the following

Lemma 7.13. Let J >t — F(-,-,t) € C®°(T" ! x Q) be a C' family of functions such that
F(p,w,t) = 0 for each w € Q. Then there exist C* families functions J > t — f(-,-,t) €
C®(T" 1 x Q) and J >t — c(-,t) € C°(Q) such that the function

((p,(.d) — S(‘vpawat) = f(cp—i—w,w,t) - f(@vIJ:) - C<w7t) _F<907w7t)
is flat at T 1 x Q0 for each t fized.

Proof. Given g € LY(T"!) we denote by gx, k € Z"!, its Fourier coefficients. For any
k € Z"! we have

Se(w,t) = fulw,t) (ei<w7’<> - 1) — e(w,t) — Fy(w,t).

We set ¢(w,t) = —Fy(w, t), which gives So(w,t) = 0. We are going to find Sy (w,t) for k # 0. To
this end we choose ¢ € C§°(R) such that

0<¢<1, ¢(x)=1for |z| <7/5 and ¢(z) =0 for |z| > 7/4.

For any 0 # k € Z" ! set
(@) =Y d((w —2mj) k[ "w7).

JEZ
We have |k|"x~t > k71 > 1, hence, ¢((z — 27j)|k|"x™1) = 0 for j # [2],, where [z],/27 € Z
is the unique integer such that —7 < z — [z], < 7. Then ¢(z) = ¢({x}|k|"x~!), where
{2} = 2 — [z];. Fix k # 0 in Z"! and consider the smooth function

; 1
w = zp(w) =1 — R 4 SR+ K)o ((w, K)) -
Lemma 7.14. We have

|z (W)] >

1
> glﬂ}(l + k)77 VweQ. (7.116)

Moreover, .
zn(w) =1 =R v e, (7.117)

Proof. Let Q! be the set of all w € € such that
/6 < [{(w R} [R[TH < 7
and Q2 the set of all w € Q such that

[{(w, k)Y K" < /6.
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For every w € Q! we have
. .1 4 2 .,
[1 = exp(ifk, w))| = 2[sin(5 {{w, BIN] 2 —[{{w, k)} = w1 + k)7

This implies
1
|2k (w)] > §/<;(1 + k)" VweQl

If w € 2, then ¢ ((w, k) = ¢ ({{w, k)}k|"x~1) = 1, hence,

Re (zx(w)) = or(1+ (k)77

W =

which proves (7.116). Moreover, for any w € Q, we have ¢y, ((w, k)) = ¢ ({{w, k)}k["x™') =0
in view of (1.2), which implies (7.117). O

Let us go back to the homological equation (7.115). For every k # 0 we set

fk(w, t) := —IZC:Z;;) )

Using Lemma 7.14 we obtain that the function

(0, 1) = flp,w,t) = Z Fi(w, t)e @k

kezn—1

belongs to C°°(T"~! x ) for any ¢ fixed and the map J >t — f(-,-,t) € C®°(T"! x Q) is CL.
Hence, the map J 3>t — S(-,-,t) € C®°(T" ! x Q) is C! as well. Moreover, Fj(p,w,t) = 0 for
each w € QY and k € Z"! and using (7.117) we obtain that that S(p,w,t) = 0 for w € Q0.
Now Lemma 3.4 implies that the function w — S(p,w,t) is flat at QO for each ¢ and t fixed.
Now using This completes the proof of Lemma 7.13. O

Using Lemma 7.13 we find o/ and p/(I) such that B?Stj(cp,l,t) = 0 for every I € EJ and
a € Z" 1. Using Lemma 7.1 we find C! of realisations Si(¢,I,\) and py(I,\) of the formal
symbols and such that which completes the proof of Proposition 7.12. |

We are looking for C! families of solutions ¢ — (\(t),v(t)) of the equation (7.108) of the
form

v(t) = Es(N) TN A (Ae(t)
for t € J. In view of Proposition 7.12, e(t) should satisfy the equation
eI WONe(t) + ™28, (Ne(t) = e(t) + On(IA"N)e(?). (7.118)

Natural candidates for e(t) are the sections ey, k € Z"~!. Since A\ € D may be complex, we
consider almost analytic extensions of order M > 2N + n + 2 of the functions ¢?, p; and S} in
¢ =& +in, where £ € D and |n| < C. The almost analytic extension of ¢} is given by

@Y (2, & +in) = Ly(& +in) + Re(z, € + in)
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where
Li(&+in) Z O Le(§ )% (a!)™t and Ry(x, € + in) Z O¢ Re(z, &) (in)* ()™t
la| <M la] <M
It is easy to see that
et (x, € + in) = O(In|™).
Moreover,

0207 Ry(w, & +in) = Onr (1€ — EF[M) . Inl < C, (7.119)

for o, B € N"~! since R; is flat at R"~! x Ef. In the same way we obtain almost analytic
extensions (g, ¢, A) of S/ and p!(¢) of pl, ¢ := & +in, such that

Acpl(E+in) =O(n™), 02020:S](x,& +in) = Oqp(In™ 1), (7.120)
for a, B € N1 |8] < M. Moreover,
0¢0)S] (9,6 +im) = O (I — Ef|N) (7.121)

for |n| < C, and supp CStj C K, supp p{ C K for j € N, where K is a fixed compact subset of
—L. We have as well pY(¢ + in) = 1 whenever ¢ € DO.

Proposition 7.15. For each t € J we have

WPNer(p) = exp (=i (e, (k+do/9A))
N . (7.122)
(32w (U + d0/9X) A7) enlp) + On (I Her(y)
j=0
and
SiNew(p) = On (NN + |Ef = (k + 9/ 1N) en(e) (7.123)

where A € D and k € 7" 1.

Proof. The proof of the proposition is close to that of Proposition 3.11, [63] but we give it
for the sake of completeness. We have

WO(Ner(z) = éx(z) e ot @)

—J A 1 & iNz—y+w (z j
XAV <27r> Z /Rzn 2 eMe=yrwi@Sene) k) pl (1Y dl dy + Oy (1A N-— D er(z),
j=0

where A € D and
1
wy(z,&,m) = /0 Vedt (z,& +mn)dr, & = (k+00/4)/N\, me=1— (k+o/4)/A

If |k| > Co|A| and Cy > 1 (Cy depends only on the compact set K € R"! such that supp p/ C
K for every j € N) then |nx] > 1 and we can integrate by parts with respect to y gaining
On(IAI7N1). Suppose now that |k| < Co|A|. We have

[Tm ((k + Po/4)/A)| < ’(;' for |k| < Co|A\| and X € D. (7.124)
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Then deforming the contour of integration we obtain

W2Ner(p) = exlp) e ktdo/D/)

N n—1
A . .
X Z A < ) / eﬂA(u’”)pg(v—l-(k:—i-190/4)/)\) dudv + On (N Der(e),
R2n—2

j=
which implies (7.122).

To prove (7.123) we write Si(A)eg(x) as an oscillatory integral as above, and then for |k| <
Cyp|A| we change the contour of integration with respect to y by

y—v=y—a—w(z,(k+/4) /N1 — (k+Do/4)/N)

while for |k| > Cy|A| we integrate by parts to gain Oy (|A[~™~1). This implies, using (7.124),
that

St(Ner(p) = ex(ip) e AR U+00/0/3)

N n—1
% Z <)‘> / 71/\<vI (k+390/4)/X) S]( ))\ I dI dw + ON(‘)\’ N-— 1)ek(90)
j:O 27T R2n—2

Since M > 2N + n + 2, taking the Taylor expansion of order N of the function

[0,1] 3 5 — ¥(s) := 87 (ip, (k + 9o /4) /A) + (I — (k + 9o /4) /)
at s = 0 with an integral reminder and using (7.120) and (7.124) we get

S, T) = Y 08S](p, (k+00/4) /NI = (k+190/4) /M) /! + Tn(p, 1) + O(A N7
la<N]|
where the reminder term is
1 .
Tn(o ) =(N+1) Y / (1— )V OSI (o, + s(k + 0o/4)/A) (I — (k + 9o/4)/N)* /al ds.
ja|=N+1"0

We have A
005{ (i, (k + 00/4)/A) = O (1EF — (k+ 9/HA"1[V41) | Xe D,

for every N € N and o € N*~1 in view of (7.121).
To estmate the reminder we integrate N 4 1 times by parts with respect to v in the corre-
sponding oscillatory integral with amplitude

N+ ¥ / (1= )NORS] (o, T + s(k + 0o/4)/N) (T — (k + 9o/4)/N)" /ol ds
la|=N+1
and we estimate it by Cx|\|7¥~!. This implies (7.123). O
Proposition 7.15 suggests that we should look for pairs (\, k) € D x Z"~! such that [A| > 1
and o

1~ (0407 <

(7.125)
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where C' > 0 is a constant. Then (7.122) and (7.123) imply

WENer(p) = exp (= iALi((k+Yo/9A7))
N
(0 (k+90/HX ) AT ) erlp) + Ox(A Hen()
=0

and
St(Nex(p) = On (A7) en(w)
Thus taking e = ey, in (7.118) we obtain
N
exp ( — XLy ((k + Do /DAY + ’L7r19/2) (Z Pl ((k + 90 /4)A1) )\_j> ex(9)
7=0
= On (A7 Der(w)

for every N € N. Recall that p (& +in) = 1 if ¢ € D°. Then for |\| > 1 and t € J we can write
the above equation as follows

= 2mk,m + 79/2

+ 7L0g< Z (k+190/4> )—I—ON(P\\_N_l)

(Y

(7.126)

where k, € Z and Logz =In|z| +iargz, —7 < argz < .
Hence, to construct quasi-modes we have to find pairs (A, k) satisfying both (7.125) and
(7.126).

8 (' families of quasi-modes and iso-spectral invariants

Givent € J and w € Q9 the formulas (7.125) and (7.126) suggest that the quantization condition
of the Lagrangian torus A¢(w) should be of the form

k+99/4

M) = (k +90/49)| + AL .

) — 21k, m — /2| < C

for some C' > 0, where I;(w) € Ef is the corresponding action on the torus A(w), (k, k,) € Z"
and A € D. To obtain iso-spectral invariants from C'-families of quasi-modes we need a stronger
quantization condition which will be formulated below.

8.1 Quantization condition

Fix t € J. The quantization condition corresponding to a Lagrangian torus A;(w) with a
frequency w € Q0 will be given by means the following Lemma.
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Lemma 8.1. Given t € J there is a set 2, C QO of full Lebesque measure in QO such that the
following holds.

For any w € EL. there is an infinite sequence Mv(w) of (¢, \) € Z™ x [1,00) such that

q=(kky) €Z"xZ, A= ug > 1 satisfies cy'lg| < /12 < ¢olq| with ¢g >0,  (8.127)

and
v v
. 0 _ 20 =~ =
Jim ’uq (It(w),Lt(It(w))) <k+ : ,27T<k‘n n 4))‘ 0. (8.128)
Proof. Denote by =L the set of all w € QY such that
o2knIy(w) # Li(I;(w))k for each 0 # (k. k,) € Z"1 x Z. (8.129)

We claim that the complement Q0 \ =L of = in Q0 is of Lebesgue measure zero. Suppose the

contrary. Then there is 0 # (k, k,) € Z"~! x Z and a set of positive Lebesgue measure R; C QY
such that
271']{?”],5(&)) = Lt(It(W))k Yw € Ry.

On the other hand, the map 2 3 w — [;(w) = VLj(w) € D is a local diffeomorphism with
inverse I — VLi(I) by 4, Theorem 3.2, hence, the set RY := {[;(w) : w € R} is of positive
Lebesgue measure in R"~!. Moreover,

onk,I = Ly(I)k YI¢€R? (8.130)

and R := {VLi(I): I € RY} by definition. Let I° € RY be a point of positive Lebesgue density
in RY. Set w® = (wY,...,w0 ;) :=VL(I° € QY. Differentiating (8.130) with respect to I at I°
and using Lemma 3.4 we get 27k, = kjw?, for j =1,...,n — 1, which contradicts (1.2). Hence,
the Lebesgue measure of Q¥ \ Z¢ is zero. On the other hand, (8.129) implies that for any w € Q2
the trajectory

ML), Le(I(w))) (modZ™) : A>1} ¢ R/Z"

is not periodic, hence, it is dense on the torus R™/Z"™ which implies that there exists an infinite
sequence (gj, \j);en satisfying (8.128). The inequality in (8.127) follows from (8.128) since the
continuous function

w = [|(Ie(w), Le(Le(@)) | = [[(VLg (@), Le(V Ly (@)

does not vanish on the compact set Q¥ in view of (1.5) and (1.9). O

We point out that the set Zf, and the sequence M (w) may depend on ¢.

From now on we fix w in the set =L given by Lemma 8.1 and denote by M C Z" the image of
the projection of M(w) C Z" x [1,00) on the first factor. M will be the index set of the C?
family of quasi-modes that we are going to construct and (8.128) - the quantization condition
for s = t. To obtain a quantization condition for the tori As(w) for s close to t we consider for
any q € M the interval

Jg = [t,t+2lq|7"].
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Getting rid of finitely many elements ¢ € M we suppose that J, is contained in J C [0, d] for every
q € M. Recall from Theorem 3.2 that the maps s — Ls € C*°(D) and s + I, € C®°(Q;R" 1)
are C'! on the interval J. Then using (8.127) and (8.128) we obtain that there exists a constant
C = C(w) > 0 independent of ¢ € M and s € J; such that

’ug(ls(w),Ls(]s(w))> - (k+%,27r<kn+§))‘ < C VgeM, seJ, (8.131)

The quantization condition (8.131) will be used below to construct a C' quasi-mode with an
index set M for s € J,, ¢ € M. Condition (8.128) is not needed for the the construction of the
quasi-mode, but it is essential for the proof of Lemma 8.4 below.

8.2 Construction of C!' families of quasi-modes

Fix a positive integer M > 0. For any ¢ € M with |q| > ¢o > 1 we are going to construct a
family of quasi-modes of order M depending on s € J; such that the corresponding family of
quasi-eigenvalues s — 14(s)? belongs to C1(J,).

Theorem 8.2. For every q = (k,k,) € M and s € J, there exists a quasi-mode (j14(s)?, usq)
of As of order M such that

(i) tgq € D(A) and fuggl2cx) = 1:

(11) There exists a constant Cpy > 0 such that

|Ausy — B2(s)usy]| < Carug(s) in LX),
(8.132)

for every g € M and s € Jy;

(iii) We have

1 1
fq(s) = Ng +cq0(s) +cqu(s)—5 + -+ cqm(s) g7, where
K (k1g)

(iv) The functions s — cq;(s) are real valued and C* on the interval Jy;

(v) There exists a constant C; > 0 such that |cq j(s)| < C}, for every g € M, 0 < j < M,
and any s € Jg;

(vi) There ezists C > 0 such that

o (S0 e 2)| <

for every g € M and s € Jy;

(vii) We have
k+399/4

o) = Ii(w) + 0<i> as |q| — oo.
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Proof. We are looking for a perturbation A = fi4(s) of puf) satisfying (7.126) which means

that
Nq(S)Ls<k:;(9;)/4) - %Log( +Z (k+190/4> uq(s)_j>

= 2 (o + g) + OM(W)
1

uniformly with respect to ¢ € M and s € J,. Introducing a small parameter ¢, = (,ug)_ we are
looking for

pe(s) = ug +cq0(8) +cqi(s)eg+ - - cq7M(s)sé\4 ,
(8.133)
Cq(s) = Ig(w) + bq,0<3)5q +-- bq,M(S)EéWH(S) + bq,M+1(3)5éw+2
such that
Yo

pa()G(s) = h+

M
o) La(Ga(s)) = 2m(ka+5) 1 Log (14 D2 G ()ngls) ) + Onrlel ™).
j=1

(8.134)
We are going to find p4(s). Using (8.133) we write
pq(s)Cq(s) =k —do/4 = ZE )+ cq.i(s)Ls(w) — W,;(s)]
+ (]1\/[+1 [(eqttg)bgnr+1(8) — Wy nr+1(s)]
where
Wq,O(s) =k+ 190/4 - :ugls(w) )
Wyi(s) =— Car(8)bys(s) for 1 < j < M, and
7.5 (5) +Z X g, (5)bq,s(5) J (8.135)
r+s ]
q,M+1 Z Z qu
1=0 r=M—1

Expanding L((,(s)) and pg(cq(s)), 1 <j < M, in Taylor series at ¢ = I5(w) up to order M we
obtain from (8.134) the following linear systems

bg.j(s) + cqi(s)Is(w) = We;(s)
Ls(Is(w))eq,j(s) + (Wi bgj(s)) = Vo;(s),
for 0 < j < M, and we put by ar+1(s) = (gqptg) "Wy n+1(s), where W, j(s) is given by (8.135),

and V, ;(s) is a polynomial of ¢, ,(s) and by, (s) with 0 < r,r’ < j —1 and with C' with respect
to s coefficients. By (1.5) and (1.9) the corresponding determinant is

D)) = La(Ts(@)) — {Ts(), w) = —Ba(w) = 2 /A Ao >0
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and we obtain a unique solution (cq ;(s),bq,;(s)), 0 < j < M — 1. More precisely,
cq.j(8) = D(Is(w)) ™" [Vg(s) — 2m{w, W (s))]

bg,j(8) = Wo,i(s) — cq,j(8)Ls(w).

(8.136)

We have
qu()(s) =k+ 190/4 - ,u(q]IS(w) = 0(1),
(8.137)
Vgo(s) = 2wk, — m9/2 — ugLs(Is(w)) =0(1), ge M,

uniformly with respect to ¢ € M and s € J,, in view of (8.131). Hence, by 0(s) and ¢4 0(s),
q € M, are C! in J, and uniformly bounded. By recurrence we prove that b, ;(s) and ¢, ;(s),
q € M, are C! in J, and uniformly bounded with respect to ¢ € M and s € J,. To evaluate
bg,1+1(s) observe that equy = 14+ O(gy).
For such p4(s) the quantization condition (8.131) gives the estimate
LD (5) = 1) + O (pyle)™)
Iq(s)

uniformly with respect to s € .J;. Then Proposition 7.15 for N = M implies that (A = p4(s), ex)
satisfy (7.118) and we obtain that

[Ausg — mg(s)usgll < Carpg™(s)  in LX),
IBusgll < Carpg™(s) in LX(I).
In order to prove the property (i) and to satisfy the boundary conditions in (ii) exactly we follow

the proof given in [63], Sect. 3.6.3, using Proposition 7.7. The property (vi) follows from the
second equation of (8.134). To prove (vii) observe that

Wq,O(t) =k+ 190/4 — uglt(w) = 0(1)
Vyo(t) = 2mky, — /2 — ,uth(It(w)) =o(1)

as |g| — oo in view of (8.128). Then (8.136) implies that ¢,0(t) = o(1) and b, o(t) = o(1) and
we obtain

k4 v9/4 1
k+ do/4 = ((w) = L(w) + bgo(t)eq + O(Eg) = L(w) + 0(*) as |q| — oo.
1ig(t) lal
This completes the proof of the Theorem. a

8.3 From quasi-modes to isospectral invariants

We are going to complete the proof of Theorem 1. The items (i) and (ii) have been proven
in Sect. 3. We are going to prove item (iii) which states that the functions 8:(w), I;(w) and
at(It(w)) = L¢(I;(w)) are independent of ¢ € [0, §] for any w € = provided that the billiard tables
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satisfy the weak isospectral condition (H;) — (Hz2). Recall that the set = is of the form (3.26),
hence, it suffices to prove the statement for each w in Q° C Z.

Given a € R we say that a family of functions f, : J, = C, ¢ € M, is o(|g|*) as ¢ — o0
uniformly with respect to s in J, if

lim (Iql‘o‘ sup !fq(S)I) =0.

q—o0 s€Jq

We say that “f;, = O(|q|*) uniformly with respect to s in J,” if there is C' > 0 such that
lg|=*|fq(s)| < C for any ¢ € M and s € J,;. The isospectral condition implies

Lemma 8.3. Suppose that (H1) — (Hz) holds. Fix an integer M > 2d > 0. Then

q(s) = pg(t) = o(1) as g — o0

) = t) (140 (1)) asaroo

lq|

and

uniformly with respect to s € Jj.

Proof. Tt is easy to see that for any ¢ € M and s € J,, the distance from p,(s)? to the
spectrum of Ay can be estimated above by

ds,q = }Spec (AS) - :U’q(S)Q‘ < C’M Nq(s)iM
Indeed, if d, 4 # 0 the spectral theorem and (8.132) yield

1
d's7q

> (A -1 > [[(A 2 -1 #q(S)M
2 [1(As = 1q(8)7) 7l 2 [(As = g(s)Jus g™ = =5
M
Then Theorem 8.2 and (8.127) imply that for any ¢ € M, [g| > qo > 1, and s € J, there is
Asq € Spec (Ag) such that As 4 > pg(s)?/4 > (2¢9) 2|q|? and

| Xsq — 1q(s)?] < CA M2 (8.138)

where C' = 2M (). Now using (Hs) we get for any ¢ € M with |¢| > g0 > 1 and s € J, an
integer k = k(s,q) > 1 such that
Noq € lak, bi]. (8.139)

Fix 7 so that M > 2y > 2d > 0. Then choosing qo sufficiently large we obtain from (8.138) and
(8.139) that for any ¢ € M with |g| > qo and s € J; the quasi-eigenvalue y,(s)? belongs to the
interval

Iy = [ag — ga,j,bk + ga,j] , (8.140)

where k = k(s,q) and ¢ > 0 is the constant of the third assumption of (Hj). In particular,

c _
bk(q,s) > Nq(t)Q - 5%(2,@ > Cl|‘]’2 - CQ?

for some positive constants C; and Cy, which implies that lim k(s, ¢) = oo as ¢ — oo uniformly
with respect to s € J;. On the other hand, using the third assumption of (H;), the relation
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by, = ar(l 4+ o(1)) as k — oo, which follows from the first two assumptions in (H;), and the
inequality v > d, we get
c _ c _ c _ c _ —d _
(ags1 — 5%11) — (b + 5@,{7) = (ag+1 — bg) — 5%11 - 5%7 > e —ca,” >0

for any k > ko, where kg > 1. This shows that the intervals I} in (8.140) do not intersect each
other for k > ky. Choose gp > 1 so that k(s,q) > ko for any ¢ € M with |g| > go and s € J,
(recall that k(s,q) — oo as |g| — oo uniformly with respect to s € J;). The function p,(s)? is
continuous on J, (even C'), hence, it can not jump from one interval to another when |q| > qo.
Consequently, k(s,q) does not depend on s for |g| > qo. We have proved that for any ¢ € M
such that |¢| > qo there is k = k(¢q) € N independent of s such that

c

QQﬂ} Vs e, (8.141)

c _
,uq(s)2 € [ak — §ak7,bk +

Moreover, k(q) — oo as ¢ — oo and we obtain

c _ 1
Ha(8)” 2 arg) = 50,7 2 Jak(g

for |g| > go > 1 and s € J,. Thus for |g| > go > 1 we obtain

114(5) = 1a(8)] < 11q () 11q()? = pa(8)?] < 20,057 (i) — ang) + gy ) 1= 4

where C' > 0 is independent of ¢ and of s € J,. Now (H;) implies that ¢, — 0 as ¢ — oo. Hence,
q(s) — pg(t) = o(1) as ¢ — oo uniformly with respect to s € J,. Moreover,

M@%:%@(L+dn):udﬂoﬁﬂ<ﬂ>> as ¢ — 00

1q(t) lq

uniformly with respect to s € J, since pg(t) > ,ug/Z > (2¢0) 7Y q| for |q| > qo > 1. O

Consider the function ¢t — f;(w) = (w, It(w)) — Lt (Ix(w)).
Lemma 8.4. Suppose that (Hy)— (Hsy) holds. Then Bi(w) = Bo(w) for anyt € [0,5] and w € QV.

Proof. We are interested in the variation

@wy:%@@y

Fix t € [0,8) and choose w in the set =L given by Lemma 8.1. Consider the quasi-mode of order
N > 2d + 2 > 2 constructed by Theorem 8.2. Now Lemma 8.3 and Theorem 8.2, (vii), imply
together that

s _k+190/4_ k+v99/4 _k+190/4 o i I w o i
W)= T MO T o) ) (rq|> Bile) + (\q|> (8.142)

as |q| — oo and uniformly with respect to s € J;. On the other hand Theorem 8.2, (vi), yields

Lo (Gy(s) = 2n =0/

—2
e +O(lq|%)
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uniformly with respect to s € J, and using Lemma 8.3 we obtain as in (8.142) that

L (Cq(s)) = L (G4(t)) + 0 (V;) as ¢ — 00 (8.143)

uniformly with respect to s € J;. Then setting n := 1/|q| — 0 we obtain by (8.142) and (8.143)
the equality

Lin(In(w)) = Lt (Co(t +n) + 0(1) = Ligy (Gt + 1) + o(n)
=Lt (Cq(t)) +o(n) = Lt (It(w)) + o(n).
We have used also that the map [0,5] — Ly € C°°(D) is C*. Hence,

Li(L(w)) = diiLs(It(w))\S:t —0 Vwezt. (8.144)

On the other hand, Z¢ is dense in Q¥ since any point of Q¥ is of positive Lebesgue density and
Q9 \ E% has measure zero, and by continuity (the function I — L;(I) is smooth) we get (8.144)
for any w € Q0. The point ¢ has been fixed arbitrary in [0, §), hence, (8.144) holds true for every
t €10,9) and w € QY. Now differentiating ;(w) with respect to ¢ we obtain

Br(w) = (w, I(w)) = Li(Iy(w)) = (VLi(L(w)), [(w)) =0 Vw € O

since VL;(I;(w)) = w. Hence, Bi(w) = Bo(w) for every t € [0,6) and w € Q0. By continuity we
get the last equality for every ¢ € [0, 4] as well. O

Recall that Q0 is a set of points of positive Lebesgue density. Differentiating the equality

(w, It(w)) = Le(I1(w)) = Br(w) = Po(w) = (w, lo(w)) — Lo(Io(w))

with respect to w € Q0 and using Lemma 3.4 we get I;(w) = Ip(w). Then plugging it in the
expression of f¢(w) we obtain E,; = Ej o as well as the equality Li(I) = Lo(I), I € E.p. This
completes the proof of Theorem 1. O

Part 11
KAM theorems and Birkhoff Normal Forms

9 KAM theorems

In this Section we prove KAM theorems and obtain BNF for C* smooth families of Hamiltonians
t — H; or exact symplectic maps ¢ — P;. The main novelty in it can be briefly summarized as
follows

e The constant € in the smallness condition depends only on the dimension of the configu-
ration space and on the exponent in the Diophantine condition;
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e C* smooth families of invariant tori ¢ — A4(w) with Diophantine frequencies are obtained;
e C* smooth with respect to the parameter ¢t BNF is obtained around the union of A;(w);

e Uniform estimates in the whole scale of Holder spaces are obtained. To this end a new
approach to the iterative schema is proposed. The Modified Iterative Lemma proven in
Sect. 11.9 provides in a limit smooth functions in the whole domain  (not only on the
Cantor set ) with a good control of the Holder norms. In particular, it avoids the
Whitney C*° extension theorem.

In order to formulate the main results we recall the notion of the Legendre transform. Let
D c R% d > 1, be an open set. We say that a real valued function F & C*(D,R) is non-
degenerate if

VF:D — D*:= VF(D) C R? is a diffeomorphism. (9.145)

The Legendre transform F™* of F' is defined by

F*(§) := Crit.val. zep{(z,&) — F(z)}

which is equivalent to
F(z)+ F*(&) = (x,), where x € D and £ = VF(z) € D*. (9.146)

It is easy to see that F* € C°°(D*,R) and that VF* : D* — D is the inverse to the map
(9.145). Moreover, D** = D and F** = F.

The real valued function F' defines a non-degenerate (in Kolmogorov sense) completely inte-
grable Hamiltonian in T¢ x D. Hereafter, T¢ := R%/277Z¢. The corresponding Hamiltonian flow
is given by (s,0,r) — (0 + sVF(r),r). The frequency vector of the restriction of the flow to
the invariant torus T¢ x {r} is w = VF(r) € Q := D* and the corresponding rotation vector is
w/2m. We work here with frequency vectors instead of rotation vectors because they are more
adapted to the Fourier analysis. One can parameterize the invariant tori by their frequency
vectors w € {2 since F' is non-degenerate. We are interested below in families of non-degenerate
completely integrable Hamiltonians F;, ¢t € [0,4], with frequency vectors in a fixed open set
Q c R To this end we consider a family of non-degenerate functions F € C°°(2) and define
F; as the Legendre transform of F}* in D, := VF;*(§2). The advantage is that the set of frequency
vectors is independent of the parameter ¢. In particular, the Diophantine conditions will be the
same for all ¢. The same discussion holds as well for families of completely integrable exact
symplectic maps.

This part is organized as follows. The basic KAM theorem is proved in Sect. 10.

9.1 KAM theorems for C* families of Hamiltonians

Let Q C R” be an open convex bounded set, k € {0;1}, and 6 > 0. Denote by Q the closure of
Q in R”. Consider a C* family H%* of real valued functions

0,6 5 ¢ — H(-,#) = H"(-) € C*(0,R)
satisfying the non-degeneracy condition

VHY : Q — Dy := VHY*(9Q) is a diffeomorphism. (9.147)
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The corresponding family HY of Legendre transforms
[0,8] >t — HY = H** € C>(Dy,R)
is C% as well and H} satisfies (9.145) on D for each t. Consider a C* family H of perturbations
[0,0] 5t — H(-,t) = Hi(-) € C*(A,R)

of HY where A; := T™ x D;.
Let us introduce the arithmetic conditions on the frequency vectors. Fix x > 0 and 7 > n—1,
and denote by D(k,7) the set of all w € R™ satisfying the (k,7)-Diophantine condition

VO£ keZ" : |(w k)| > —

> (9.148)
Lk

Denote by Q, the set of all (k,7)-Diophantine vectors w € € such that the distance from w to
the complement R™ \  of Q is > k. We will often use the following notation

Q+r = {weR": dist(w,Q) < k}
(9.149)
Q—r = {weQ: dist(w,R"\ Q) > k}.

Then Q. = D(k,7) N Q — k.

In order to formulate the smallness condition we need the following notations. Firstly we
define weighted C'* Holder norms as in [53]. Given £ >0, 0 < x < 1, and a domain D C R", we
denote the weighted (with respect to the small parameter ) C*-norm of u € C*(T" x D,RF)
evaluated at T™ x D by

HUHZ,’H‘WXD;K = H“ © U*@H Ct(ox (TP x D)) (9.150)
where || - ||ce is the corresponding Holder norm (see Sect. A.1) and o, : T x R" — T" x R" is
the partial dilation o, (6,r) := (0, kr). If £ € N then

Wlypep. = S sup  [05(kB)Pu(8, )],
[l = sup_,  sup "
where | - | is the Euclidean norm. In the same way we introduce the norm ||ullg,p.. for u €
CY(D,R¥). We set as well
lulle,px = sup ||ull¢—m, Dy, Where m € N. (9.151)
0<m<rt
If D is convex, then ||ull¢,p.x = ||ulle,p:x- Given £ > 1 and a family of functions
u:={uy € C(,R): t€]0,d]}
we set
/-1
Se(u) == sup (1+ [Jugllcre)) (1 + ”ut”c[(g)). (9.152)

0<t<d

This expression arises when one evaluates the C*-norms of a composition of functions the form
ft o ug with uy = VKP* (see Appendix, Sect. A.4.2). If Q is conver then [utllcey < llutllon@
for 0 < ¢ < p and the function £ — Sy(u) becomes increasing in [1, +00).
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Fix 99 > 1 and set
lo:=214+2+429 and L(m):=2m(t+1)+4y, m=>0. (9.153)
Given 0 < o,k < 1 and m > 0, we denote by A", the expression

A = Sup (QN0*Hy Neqmy, ppsw + I1He = Hy legm) avim) (9.154)

and set
A = Spmy+1(VH) AD, . (9.155)

Here §?HJ(I) is the Hessian matrix of HY at I € D;. The role of the small parameter o is to
compensate the norm of the Hessian matrix which could be very large. The function m — A,,,
m > 0, is increasing when € is convex.

Let @} := exp (sXm,), s € R, be the flow of the Hamiltonian vector field X, with Hamil-
tonian H; in A; = T™ x D;. Recall that for any w € Q the map R, : T — T" stands for the
translation R, () = ¢ + w (mod 27). Fix k € {0, 1}.

Theorem 9.1. There ezists € = e¢(n,7,99) > 0 depending only on n, 7 and Yy such that the
following holds.

Let Q C R™ be an open convex bounded set, 0 < o < k < 1 and Q. # 0. Let H** be a
C* family of real-valued functions [0,8] > t — HY* € C>®(Q,R) satisfying (9.147), and let
[0,6] >t — Hy € C®(A,R) be a C* family of Hamiltonians such that

Sto(VH™) A = sup (o0 B iy pee -+ 1 = HYlto ) Sto(VH™) < con. (9.156)

Then there exists a C* mapping [0,6] >t — U = (ﬁt, YZ) € C™(T" x Q; T™ x Dy) such that

(i) for any w € Qy, [0,6] > s — Ay(w) = U, ,(T") is a CF family of Kronecker invariant tori
of the Hamiltonian vector fields Xy, with a frequency vector w, where Wy, = V(- w).
Moreover, for any w € Q, and s € R the following diagram is commutative

™ By
ilpt,w J/\Ilt,w

Aw) 25 Ay(w)

(i1) for any m € {0} U[1,+00) the following estimates hold

92(r0.)° (Ui w) — ¢)| < cmfj;
~ A, AN™ (9.157)
0550 (Te(pse) = VH* ()| < On (1 + Q)

for each t € [0,6], (p,w) € T" x Q and o, B € N" with |a| + [B](T +1) < m(r + 1) + 1,
where the constant C,,, > 0 depends only on n, T, Y9 and m.

(iii) supp ((Uy, Vi) — (id, VH*)) € T" x (Q — #/2).
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Remark 9.2. If P is analytic with respect to t in the disc B(0,a) :== {t € C : |t| < a} and
(9.156) holds for t € B(0,a), then ¥ and ¢ can be chosen to be analytic with respect to t in
B(0,a). Moreover, for any a, 5 € N" of length |a| + |B|(T+1) <m(T+1)+ 1 and 0 < a1 < a,
the estimate (9.157) holds true for t € B(0,a1), where the supremum with respect to t in the
definition of Ay, is taken in B(0,a).

Proof. The idea of the proof is given by Poéschel in [54]. It can be summarized as fol-
lows. Let us fix w € Q set r = VH*(w) + I and apply Taylor’s formula up to order two
to the function I — HY(VH*(w) + I) at I = 0. Then the afine linear with respect to
I term is just Ny([;w) = e(w) + (I,w) and we put the quadratic term in the perturba-
tion. Multiplying the perturbation by suitable cut-off functions we obtain a Hamiltonian
Hy(0,1;w) = N(I;w) + P,(0, I;w), where t — P, € C®°(T" x R" x Q) is C*¥ and P, are compactly
supported with respect to (/;w). The smallness condition allows one to apply Theorem 10.1.
The main difficulty in the proof is to obtain the corresponding estimates in C¢, ¢ > 0. We devide
the proof in several steps.

Step 1. Construction of the Hamiltonian f[t(H,I;w). Given w € Q — k/4 and I in the ball
B™(0, 0) C R™ of center 0 and radius g, we set r = VH*(w) + I. Choosing € = ¢(n, 7,9) < 1/9
in (9.156) we will show that

VHY(w)+ 1€ D; and
weQ—r/4, I€B0,0) — . (9.158)
VH)(VH(w)+1) € Q — g

for each ¢ € [0,0]. Fix t € [0,6]. The smallness condition (9.156) implies that [|0?H||co(p,) <
er/o since Sy, (VHY) > 1. Then for each w € Q — k/4 there is a positive number ¢ < p such
that for any I € B"™(0, c) the following relation holds

VH(w)+ 1€ D; and
c ks (9.159)
Using the notations (9.149) one obtains
VHY(VH (W) +1) € (Q—k/4) + k/9 = (Q — r/8) — K/T2
for any I € B™(0,c¢). If ¢ < o, then there exists ¢ < ¢/ < p such that (9.159) still holds for each
I € B"(0,c). This proves (9.158). Then Taylor’s formula yields
1
HO(r) = ey(w) + (I, w) + / (1 — $)(O2HO(VH ™ (w) + s)I, T) ds.

0

for w € Q — K/4 and I € B™(0, g), where e;(w) := HY(VHY*(w)).
In order to apply Theorem 10.1 we need suitable cut-off functions.

Lemma 9.3. For any open set U C R"™ and 0 < € < 1 there exists a smooth cut-off function
YU € C5°(R™,[0,1]) such that v =1 on U — ¢, y¥ =0 on the complement of U + ¢, and

e g < Co
for any £ > 0, where the positive constants Cy = C(¢,n) depend only on £ and n.
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The proof of the Lemma is given in the Appendix, Sect. A.4.1.

Denote by 1., € C§°(R",[0,1]) the function given by Lemma 9.3 with U = Q — /2 and
e = k/4. Then ¢, =1 on Q — 3k/4, 1, = 0 on the complement of Q — k/4, and

[Ville < Co (9.160)

for any ¢ > 0, where the constants Cy = C(¢,n) depend only on ¢ and n. Let QZQ be the cut-off
function given by Lemma 9.3 with U = B™(0,30/4) and € = p/4. Then the support of v, is
contained in B™(0, 0), ¥, = 1 on B"(0, ¢/2), and

1ellep < Co (9.161)

for any ¢ > 0, where the constants Cy = C(¢,n) depend only on ¢ and n.
It follows from (9.158) that the function

1 ~
PY(I;w) := /0 (1 — s)(O*HY(VHY (W) + sI)I, ) (W), (I) ds,

is well defined and compactly supported in B"(0, o) x §. Setting
PO, I;w) == (Hy — HY)(0, VHY (W) + Dtpe(w)p(I) and P, := P? 4+ P},
we consider the Hamiltonian
Hy(0,I;w) = e(w) + (I,w) + Pi(0, ;).

We have B
Hy(0, VHY (w) + 1) = Hy(0,T;w) (9.162)

for I € B"(0,0/2) and w € Q — 3x/4.
Step 2. Holder estimates of P;. For any £ > 1 we are going to evaluate the weighted norm
I1Plesre := 1P 0 orll ey s U = o (T x B™(0,0) x ),

K

introduced in (10.204). In order to estimate ||P?||¢r,. we set I' := B™(0,0) x (2 — 8x/9),
Ft = B”(O, Q) X Dt,

1
QNI,r) :/ (1—s)PHX(r + sI)ds
0
and QV(I,7) = (Q}(I,7)I,I) for (I,7) € Ty. Then we write
PY(I,w) = (@)t (1) QYL VH ().

The function QY o (id, VH?*) belongs to C*°(T'), where I is convex. Then using Remark A.2,
(9.160) and (9.161) we obtain

1P 0 < CellQF 0 (id, V™)l g;g,-
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Proposition A.12, 3, and Remark A.13 imply for any ¢ > 1 the estimate
1QF o (id, VAP leigw < Cel@Pllersion Se(VH™),
where the norm || - || is defined in (9.151). Using (A.22) and the inequality 0 < ¢ < Kk we obtain
1Q?lersien < Ce®1Q;]
as |I| < p for (I,r) € I';. This inequality implies

IQ?

leriion < Ce @ Qi lerismn < Ce o 10*H lle, Dy

tPon < Co 0|0 HY e, pyin

and we obtain
1P lezom < Co0® 10°Hlle, i Se(VH).

On the other hand || P40 < [P} e, since 0 < ¢ < x < 1 and by the same argument we get

1P o < CellHe — Hlle,,05e(VH).

Finally we obtain

HPtHE;Q,H <y (92 \Hatho

le.pes + IHe = Hllean) Se(VH™). (9.163)
Step 3. Application of Theorem 10.1 . The estimate (9.156) gives

1Pl tg:0n < CA0Se,(VH) < Cegk. (9.164)

This allows us to apply Theorem 10.1 to the Hamiltonian (6, I) — Hy (0, I;w). Set ¥, = (U, V),
where U, = U; and V; = (VH*) o ¢y + Vi, where (Uy, Vi, ¢¢) are given by Theorem 10.1. Notice
that ||Vz||co < cep in view of the estimates in (ii), Theorem 10.1, where the constant ¢ depends
only on n, 7 and ¥y, and taking € < min(1,1/c)/2 we obtain V;(6;w) € B™(0,p/2) for any
0 € T" and w € Q — k. In the same way we get ¢(w) € Q — 3x/4 for w € Q — k. In particular,
Po(Ve(6;w)) = 1 and ¢r(¢r(w)) = 1 for any (6,w) € T" x (2 — k).

By (10.207) and (10.208), we have

|doU(0;w) — Id| < Ci(n,1,99)e < 1/2

for (0,w,t) € T" x Q x [0, a], choosing € sufficiently small. Now Remark 10.3 implies that for
any w € €, and ¢ € [0, ] the Lagrangian manifold A;(w) := ¥¢(T";w) is a Kronecker invariant
torus of H; of a frequency vector w satisfying (i) in Theorem 9.1.

Step 4. Estimates of U, and V;. The estimates (ii), Theorem 10.1, imply (ii) in Theorem 9.1
using the estimates of || P[4, given above. To estimate the derivatives of

Vi - VHY =V, + (VH>) 0 ¢ — VH>*
we use (ii), Theorem 10.1 and the following

Lemma 9.4. For any m € {0} U [1,+00) the following estimate holds

A (AN
[(VHE) o 61 = VH [ < O =" (1 " ;) .
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Proof. The proof of the lemma is based on higher order Holder estimates of a composition
of functions given in the Appendix. We write

VH (¢r(w)) = VHY (W) = u(w) - ve(w)

where
1
ut(w) = ¢pr(w) —w € My »(R) and vy(w) = /0 (O°H{")(w + s(dr(w) — w)) ds € My n(R).

Theorem 10.1 and (9.163) imply

. AY, \
6t — id||ma < cmTSam)(VHO )

where

* * £(m)—1 *
Sem) (VH) (1+[|[VH|1) ) (L+ [IVH o))

= sup
0<t<6
is increasing with respect to m € N since {2 is convex. Moreover, (9.156) yields ||¢; —id|lp < Cek.
Notice that v; is well-defined and C* smooth in the convex set Q. Indeed, the image of {2 under
the map w — w + s(¢¢(w) — w) is contained in 2 when € < 1/2C since supp (¢¢ —id) C Q2 — /2
and ||¢: —id|jo < K/2.
Let m = 0. Then
0 0% Ab 0% 0% A 0 Ao
[(VH™) o ¢ — VH || coy < CO?SKO(VH WVH o) < CO?SZO‘i’l(VH ) = CO?
since €} is convex.
Let m > 1. Using Remark A.2 we get

IVH" 0 ¢ — VH*

mQk < Cm(H(bt - ide,R";HHUtHCO(Q) + [l — idHCO(Rn)Hthmﬂ;ﬁ)‘

We obtain as above

lp¢ — idllm,znsellvelloo ) < Cm752(m)(VHO WV H lor @)
A Am

< Cn =Sy (VHY) = C
, )41 ( ) .

since € is convex. On the other hand, Proposition A.9, 3, applied to f = (id + s(¢ — id)) o o,
and g = 0?HY* € C*°(Q, M, »,(R)) yields

[vtllm0m < Cm(l + |lpr — id”??n_l)
X (IVH" [l (1 + (|6 = id]l1) + [VE™[[2llée — idl i)

where the corresponding C* norms of VH are evaluated on . Then

. A9 Aq\m—1 .
90~ idllonqer velmese < ™2 (14+75)" S0 (VH™)

< (ITE i (1422 4 IV E 7 S50y (V)
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The interpolation inequalities (A.8) and Remark A.2 yield for any r,s > 1 and f € C"™*~1(Q)
the estimate || f||, || flls < Crsll fll1]l fllr+s—1, where C;. s > 0 depends only on r, s and n. Applying

this inequality to f = VK and using the convexity of 2 we obtain
Sty (VHO)[VH 1 < ConSty s (VH®) < CoSymyn (V)

and
St (VHOVE |2 < ConSymy 11 (VH).

On the other hand AJS,,(VH") < ekp by (9.156) and AY < A% for m > 0 by definition and
we obtain

. .Am .A1 m
— n < - -
[¢r — id|[comnm)llvellm,an < Cm 0 (1+ 0 )

This completes the proof of the Lemma. O

Statement (iii) follows from the definition of U and V using Theorem 10.1. O

9.2 KAM theorem with parameters for symplectic maps

We are going to prove an analogue of Theorem 10.1 for symplectic maps. More precisely, given
a CF family of “small” exact symplectic perturbations (6,r) — P;(6,7;w) of the translation
0,r) = R,(0,7) := (6 +w,r) with a Diophantine frequency w, we are going to find a C* family
of Kronecker invariant tori of P(6,7;¢;(w)), where t — ¢ is a C* family of diffeomorphisms
close to the identity map. Moreover, we will estimate the C™, m € N, norm of ¢; — id, and of
the displacement of the Kronecker tori with respect to the corresponding inperturbed tori.

Let Q C [0,2m)""! be an open convex set. We identify { with an open convex subset of
T 1. Fix k € {0,1} and gy > 0 and consider a C* family of exact symplectic maps

[0,8] 2t — Pi(-;w) € C®°(T" 1 x B"10, gg), T" ' x R"™1)

depending smoothly on a parameter w € 2. We suppose that P;(-;w) is defined by a generating
functions Gy(+;w) of the form

Gi(0,r;w) := (0, 7r) — (w,7) — Ge(0,7;w) (9.165)
ie.
PO —w—V,Gi(0,r;w),1;,w) = (0,7 — VoGi(0,r;w),7)

for any (6,7) € T"* x B"1(0, 09) and w € 2 and that the C? norm of Gy(-;w) is sufficiently
small. If Gy = 0 then P;(-;w) becomes a translation with w, namely, R, (6,7) = (6 + w,r). In
general we consider G; as a small perturbation depending smoothly on the frequency w as well.
Thus the perturbation is a real valued function (6, I;w,t) — G(0, I;w,t) defined in A x Q2 x [0, 4],
where A :=T" x B(0, gg). Hereafter, we assume that

G € C*([0,6]; C°(A x Q)) (9.166)

with k = 0 or k = 1, i.e. the map t — Gy := G(-,t) € C®(T" ! x B(0, pg) x Q) is C*-smooth
on the interval [0, ¢].

87



Given ¢ > 0 and 0 < ¢,k < 1 we denote by ||G¢||¢,0, the weighted Holder norm

G|

liok *— HGt O 0o,k CZ(O’;}{U(AXQ)) (9167)

where o0, is the partial dilation o, (¢, I;w) := (¢, oI; kw) and the Hélder norms are defined
in Section A.1. Note that the function £ — ||G¢||s,0. is increasing in the interval [0, +00) since
the set B(0, pp) x 2 is convex.

Fix 7 > n—1and k € (0,1), and define Q, as the set of all (k,7)-Diophantine vectors
satisfying (1.2) and such that dist (w, T" "1\ Q) > &, i.e.

Qe =D(k,7)NQ — k. (9.168)

Recall that Jg, ¢p and ¢(m) are defined in (9.153). The following statement is a counterpart of
Theorem 10.1 in the case of exact symplectic mappings.

Theorem 9.5. There is a positive constant € = €(n, T,v%y) depending only on n, T and on 9
such that for any § >0, 0 < kK <1 and 0 < o < pg the following holds.

Let P, be a C* family of exact symplectic maps with generating functions G, satisfying (9.165)
and (9.166) and such that

sup [|Gilleg1:0 < et (9.169)
t€[0,0]

Then there exists a C* family of maps

0,8] 2t ¢y € C°(Q),  [0,6] 3t Uy = (U, Vi) € C¥(T" L x ;T x B0, 0))
such that

(i) supp (¢r —id) C Q2 — k/2, supp ((Ut, Vi) — (id,())) C T ! x (2 —r/2);

(ii) For each w € Q, and t € [0,8] the map Wiy := Vy(,w) : T 1 — T x B(0,0) is a
smooth embedding, A¢(w) = Wy, (T 1) is an embedded Lagrangian torus invariant with
respect to the exact symplectic map given by P, 4,,)(0,1) := P(0, I; ¢1(w), ), and

Pigw) © Viw=Yiwo Ry, on T

(iii) For any m € N there is Cy, > 0 depending only on m, n, 7 and 9y such that for any
a, B € N" with |a| + |B|(7 4+ 1) < m(7+ 1) + 1 the following estimate holds

‘33‘(&(%)5(@(9;0;1) - 9)| + o7t ’33(/&&,))6%(0;@))‘ + k1 ’(ﬁ@w)ﬁ(gbt(w) - w)}
(9.170)
< Cn (QK‘)_l HGt”K(m)-ﬁ-l;gﬁ

uniformly in (0,w,t) € T x Q, x [0, 4].

If P, is analytic with respect to t in a disc B(0,a) then so are U, V and ¢.
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Proof. To simplify the notations we fix k = 1. The first step in the proof will be to modify P,
by multiplying Gy by suitable cut-off functions without changing the corresponding estimates.
This allows us to work with compactly supported functions. To this end we use the cut-off
functions 12@ and 1, constructed in the previous sub-section by means of Lemma 9.3. We set
GHO, T;w) := Gy(0, T; ou){bvg(l)w,.C (w) and denote by P! the exact symplectic map with generating
function

é%(@,r;w) =(0,r) — (w,r) — G%(H,T;w).

The function £ — [|G¢||p;p is increasing in the interval [0, +00) since the set B(0, pg) x € is
convex. Then using (A.22) one obtains

I1G e < CellGellegye

where Cy depends only on n and ¢. In particular, it follows from (9.169) that
||aglsgrad G%Hl;g,ﬁc < C’1||aglsgrad Gtllg—1:0 < Crek
which allows one to apply Lemma A.15. Hereafter
sgrad Gt (0,15 w) = (V,GL(0,7;w), —VeG1 (0, r;w))
is the simplectic gradient of G}. We have
PO, rw) = (0 +w,r) for (r,w)¢ B"1(0,70/8) x (2 — r/4).
Moreover,
PHO,rw) = Py(0,r;w) for (0,7;w) € T" ' x B"1(0,0/2) x (2 — k)

since G = Gy on that set. This allows us to replace G; by G} and P; by P! in the theorem.
From now on we suppose that

supp Gy C A" := T x B0, 0) x (Q — k/4).

Set
Nowon (1) == (w, ) + wpry, (w,wp) € QX I, I=(m3m),

Using an argument of Douady [11] (see also Theorem 1.1 [57] and Theorem 3.1 [58]), we are
going to find a C' family of Hamiltonians

(0,0n,r,1m) = H (0,00, 7, mn;w,wpn) = (w,T) + wprpn + he(6,0,,7;5w0) (9.171)

in T" x R™ depending smoothly on parameters (w,wy,) € Q x I with the following properties -
h: is “small” and the corresponding Poincaré map is given by P; at any energy surface. Then
we will apply Theorem 10.1 to the family Hy. We set y = (/,y,) € R", (0,0,) = pr(y) € T",
n=(,n) = (r,r) and @ := (w,wy) € Q:=Q x I. We shall denote by X, the energy surface
Y :={H; =c} C T"xR" for ¢ € R and by 7. : T" "' xR"~! — ¥.N{6, = 0} the corresponding
inclusion map, i.e.

1(0,7) = (0,0,7, (c — (w,r) — he(0,0,7;50)) /wy,).
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Proposition 9.6. There is a C' family of Hamiltonians
Ht(eanaa) = N(TJ(T/) + ht(9777/;w) ) ht € COO(Tn X Rn_l X Q) ) weNx (7T737T)7

such that

27
(i) P, =171 o O, o1, for any ¢ € R, where 1. is the corresponding inclusion map and ®f,
x € R, is the Hamiltonian flow of Hy,

(ii) supp (hy) C A” ;= T" x B"1(0, 0) x Q and the following estimate holds
1Pellearon < CellGillerr,ariom
for any £>2 and 0 < o,k < 1, where T" x R*1 x Q, C;, > 0 depends only on ¢ and n.
(1i1) hi(0,m';w) =0 for |0,] < /2.

Proof. Choose n € C*°(R) such that 0 < n < 1, n(s) = 0 for |s| < 1/4 and n(s) = 1 for
|s| > 1/2. Consider the family of exact symplectic maps s — P7 in A = T" 1 x R ! for s € R
having generating functions of the form

G5 (0,r;w) = (0,7) — s{w,r) — n(s)Ge(0,rw), (0,7;w) € R™H x R x Q.

We have Pf = Q° o W, where Q°(0,r;w) = (6 + sw,r) and the generating function of W is
0,7y —n(s)G(0,m;w). Set G(0,r;w,t) = G¢(0,r;w) and denote the symplectic gradient of G
with respect to (0,r) by

sgrad G(0,m;w,t) := (V,G(0,r;w,t), —VG(0,1;w,1)).

Notice that
PO,r;w) = (0+sw,r) Vse[-1/4,—1/4]

(9.172)
Pi0,rw) = P(b,rw) Vse (—oo,—1/2]U[1/2,+00).
Denote by
dpPy
& = dst o(PH)7!, seR

the corresponding vector field and set v(f, s, r;w) = (w,0). Then
&0, rw)=v0,s,rw)=(w,0) Vse (—oo,—1/2]U[-1/4,1/4] U [1/2,+00).
We set &(0,s,m;w) = &(0,r) where (0,s) € T" 1 x [0,1].
Lemma 9.7. We have & (0, r;w) = (w,0) for s € [0,1/4] U [1/2,1] and
supp (& —v) C A" :=T""! x (0,1) x B"1(0, o) x Q.
Moreover, the following estimates hold
oy (& = v)llearpw < Celloy 'sgrad Gi(s;w)llearsp.m

where £ > 1 and Cy > 0 depends only on £ and n.
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Proof. We have & = v + dW;/ds o (W§)~!. By Lemma A.14 the support of W —id is
contained in A’. The estimates of dW;’/ds and (W;?)~! follow from Proposition A.12, Lemma
A.14 and Lemma A.15 taking into account (9.169). To obtain the corresponding estimates for
the composition dW; /ds o (W;)~! we use Proposition A.12. O

Notice that the one-form +(£7)df A dr is exact, where df A dr = E;:ll df; A dr; is the standard
symplectic two-form in 7*T"~! and 2(v) is the inner product with the vector field v. This follows
from the identity

u(&)do A dr = (Pf)*(d% (F7)" (rdf) — d(u(&)rdf))

since (P7)*(rdf) — rdf is exact. Let hj be a primitive of
1(& —v)dO A dr = —dhj
(9.173)
hi(0,0;w) = 0.

The first equality in (9.173) means that

ohi\ (0 I\ .
(arh;>—(_f 0) 6 ).

The second one combined with Lemma 9.7 implies that supp (h;) C A’ and

helle.arson < C(106helle,nr0 + 11(001) e

e?A,;Q)H
< Ci(119ehtlle.ars0m + (00 htlle—1,a7,0x)
< CEHGtHHLA’;Q,K'

We denote as above y = (v, yn) € R™, where y,, = 27s, (0,0,) =pr(y) € T", n= (7', n,) =
(ry7y), and set

n/2
ey, 13 w) i= BTy s w), Hy(y, myw,wn) = (w,7') + wntin + b (y, 05 w).

Let N(n;w,wy) = (w,n') + wpny be the corresponding normal form. The Holder norms of
H; — N = h; have been estimated above which proves (ii).
Notice that h7(0,7) =0 for s € [0,1/4] U [1/2,1] since & (0, r;w) = (w,0) there. Then

he(0,mp,mw) =0 VO, €[0,7/2]U[rm,27]
which gives (iii). To obtain (i), consider the Hamiltonian vector field Xy, given by
W(Xp,)dy Adn = —dH(y,n).
By (9.173) we get

Qv Hy(0, Y, 7, 70)s — 09 Hy (0, Y, 7, 70)) = (D hY" ™ (0,7) + w, —Bph?™/*™ (0,1)) = €2/*™ (0, 7).
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Moreover, O, Hi(0,yn,r,7) = wy. Setting PF(0,r) = (pf(0,7r),q¢;(6,7)) we obtain that the
Hamiltonian flow ®; of H; is given by

OF (0, Y, s 1) = (D777 (0,7), Yn + 3w, 77O, 7), G52, Yy 7y )

for x € R, where t — ¢, is a C! family of smooth functions. This yields
27

<I>t“’7 (0,0,r,r,) = (pgl 0,r),2m, qt1 0,r), qé(ﬁ, 0,7,7r)).

This implies (i) and completes the proof of the proposition. |

In particular, we have
HhtHEoA”;g,n < Ceko

for ¢t € [0, a], where C' > 0 depends only on ¢y and n. Then Proposition 9.6 allows us to apply
Theorem 10.1 to the perturbation H; of N in T™ x B™(0, ) X €2, where € := Q X (7, 37). Denote
by

Uy = (Up, Vi, dr) : T x B™(0, 0) x @ = T" x B™(0,0) x O
the map given by Theorem 10.1. To obtain the map W, fromN\i/t we use an argument of Douady
[11]. Fix w € Q, and t € [0,6]. Then @ := (w,27) € Q, := D(k,7) N (Q — k), where D(k,7) is

given by (9.148). By Theorem 10.1 there exists a C ! family of Kronecker invariant tori A;(@) of
the flow ®;(-; ¢¢(w)) of the Hamiltonian Hy(-; ¢+(@)) with a frequency vector @ lying on a certain
energy surfaces ¥, := {H; = ¢;}. Moreover,

(Ut(y +aw; @), Vi(y + 23 @)) = &} (fft(y, @), Vi(y, @); ét(u?)) (9-174)
for any x € R and y € T". On the other hand, ®f is of the form
OF (Y, s 15 06 (@) = (24(, 4, 13 ), Y + 2w, (2,9, 75, 3))
since OHy/0n, = wy, hence, the last coordinate f]t,n of U, satisfies the equality
Ut,n(y + a0, @) = f]M(y; @) + zwy,

for any y € T™ and x € R. Then Vyﬁtm(y +x0;w) = VyUm(y;(D), and since the flow = — z@
is ergodic on T™ (recall that @ is a Diophantine frequency) we get

VyUin(y; @) = VyUpn(0;0) 1= at(Q)

for any y € T™. The function T" > y — U, (y;@) € T is determined up to a translation and
we fix it by Up,(0;@) = 0. Then Uy, (y;@) = (a(@),y) and a4(©) € Z". On the other hand,
|V, Ui(y; @) — 1d| < C(n,7,90)e in view of (10.208) and (10.207). Taking ¢ = e(n,7,7p) small
enough we obtain that a; = (0,...,0,1) and Uy ,(y; @) = y,. Now we set

\I’t(gvr) = (Ut(e’w)a Vt(eaw)) = p(ﬁt(ev 07@)7 ‘25(9707(:}))7 ¢t(w) = (gt(a)% W= (w, 277)7

where p is the projection given by p(6, 6,,r,r,) = (6,7).
Using Proposition 9.6 one obtains that for each w € Q,, the torus



is a Kronecker invariant torus of P; 4,(,) with a frequency vector w and we obtain (ii). Moreover,
(9.157) implies (9.170). To prove the analyticity with respect to ¢ we use Cauchy theorem at
any step of the construction. This completes the proof of Theorem 9.8. O

9.3 KAM theorems for C* families of symplectic maps

The aim of this section is to obtain C* families of Kronecker invariant tori of C* families of
exact maps close to the family (6,r) — (6 + VKy(r),r), t € [0, 9].

Let © C [0,27]"! be an open convex set which we identify with an open convex subset of
T"~!. Fix k € {0,1} and consider a C*-family of real-valued functions

[0,6] 2t — K € C*(Q,R)
satisfying the non-degeneracy condition
VK] :Q — D;:= VK[ (Q) is a diffeomorphism. (9.175)

where Q is the closure of Q. For any t € [0, 4] the Legendre transform K; : D; — Q of K} is in
C*°(D¢,R) and it satisfies the non-degenerate condition (9.145). Moreover, the corresponding
family of functions [0,6] > t — K; € C®(Dy,R) is C* smooth. We set A; := T"! x D; and
denote by

Q : Ay — Ay, Qt(H,r) = (H—I—VKt(r),r) (9176)
the corresponding family of exact symplectic maps on A;. The frequency vector of Q); on the
invariant torus T" ! x {r} is w = VK;(r) € Q.

We consider a C*-family of exact symplectic maps

[0,6] 2t — P, € C®(A, T" ! x R™™1) (9.177)

close (J;. We suppose that P, is defined by a generating function G, of the form

Gi(0,7) == (0,r) — K¢ (r) — Ge(6,7) (9.178)
which means that
P(0 — VKi(r) = V,.Gi(0,7),r) = (0,7 — VoG(0,7))
for any (0,7) € Ay. We suppose as well that the map
0,6] 5t — Gy € C°(T" ! x Dy, R)

is C* smooth with k =0 or k = 1.

We assume as well that the C? norm of G; is sufficiently small. Then the inverse function
theorem implies that the map 6 — 0 — V,G¢(0,r) is a diffeomorphism of T"~! for any fixed
r € Dy and P, is well defined.

Denote by R; the exact symplectic map with generating function (8,r) — (6,r) — G¢(6,r),
ie. R0 — V,Gi0,r),r) = (6,7 — VoG¢(0,7)). One can show that P, = R, o Q; on A; (see
Lemma A.16).
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Given g,k € (0,1) and m > 0 we set

By, == sup (&*N0*Killeomy+1,0 + NG elotm)+1,00) » (9.179)
0<t<§
where ||G¢||¢a,x == |Gt o 05]\01(0;1(&)), oy is defined by oy (z, &) = (x,k€), and
lulle,pie = sup ||ulle—m,Dss-

0<m</

Recall that 9y, £o and £(m) are defined in (9.153). The sequence BY,, m > 0, is increasing by
definition.

To formulate the smallness condition in the KAM theorem below we need as well the notation

* * -1 *
Se(VK™) := Sup I+ IVElove) A+ IVE; lcrq) (9.180)

introduced in (9.152). This in an increasing sequence with respect to ¢ € [1,400) since 2 is
convex. For any m > 0 we set

B = B, Semy+2(VE™). (9.181)

Theorem 9.8. There exists € = e(n, 7,99) > 0 depending only on n, 7 and Yy such that the
following holds.

Let Q C T be an open convex set, [0,0] >t — K; € C®(Q,R) a CF family satisfying (9.175)
and let 0 > 0 and Kk > 0 be such that 0 < p < k < 1 and Q. # 0. Consider a C* family of exact
symplectic maps [0,0] > P, € C™®(A;, T" 1 x R*™1) with generating functions Gy of the form
(9.178) such that

B3Sey+1(VEK™) = Sup (QN0*Killtg+1,005 + NGelleos1,80m) Stor1(VE™) < cor.  (9.182)
<t<

Then there is a CF family [0,8] 2t — fi = (ug,v¢) € C°(T ! x Q; T x Dy) such that

(i) for any w € Qy, [0,6] 2 s = M(w) = fr(T"Y) is a C* family of Kronecker invariant
tori of of Py with a frequency vector w, where fi, := fi(;w), and the following diagram is

commutative
Tn—l Ry r]rnfl

\L ft,w \L ft,w

Mw) 25 Aw)

(ii) for any m € {0} U [1,+o0) the following estimates hold

0300, (i) ~ )| < Con
” (9.183)
B, B
(0. (i) - VR @) < Cn2 (1452)

for any (p,w) € Tt xQ, t € [0,6], and multi-indices o, B € N*~1 with |a|+|8](T+1) <
m(7 + 1) + 1, where the constant Cp, > 0 depends only on n, T, ¥y and m,
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(iti) supp ((us,ve) — (id, VK;) € T" ! x (Q — K/2).
If P is analytic with respect to t in a disc B(0,a) then so are u and v.

We note that the C! families of invariant tori Ai(w), t € [0,d], given by the theorem are
uniquely defined.

Proof. The proof is similar to that of Theorem 9.1 and we give only the main steps in it. We
are going to apply Theorem 9.5. To this end we will firstly construct the function G¢(6,r;w) in
(9.165).

Step 1. Construction of the generating function ét(ﬁ,r;w). Given w € Q — k/4 and [ the ball
B"1(0, 0), we set » = VK}(w) + I. Choosing € = €(n,7,0) < 1/9 in (9.182) we obtain as in
the proof of of Theorem 9.1 the following relation

VK}(w)+I€ D, and
YweQ—r/4, YI € B0, 0), ) (9.184)
VK (VK] (w)+1)eQ— 3"

By Taylor’s formula we obtain

where

GUIw) = / 1(1 — $)(O*K(VK} (w) + sI)I,T)ds
0

and
GHO, T;w) == G4(0, VK] (w) + I).

It follows from (9.184) that the functions GY and G} are well defined for I € B" (0, ¢) and
w € Q — k/4. Denote by Py, : Ay — T 1 x R"! the exact symplectic map defined by means
of the generating function

(0.1) = Cowl0,1) = (6,1) — (w0, 1) — GIT;w) — GH0, I5)
= Gi(0,VK; (W) + 1) = (0, VK} (w)) - Ki(VE; ()
and set 1, (0,1) = (0, VK (w) + I).
Lemma 9.9. For any w € Q — /4 the map P, : Ay — T x R*! s well defined and
Pio =195 o Pioty
on T"~! x B"1(0, o) provided that the constant € = e(n, T,9q) in (9.182) is sufficiently small.

Proof. The smallness condition (9.182) implies that HV(;V[@W(Q,I) — Id,|| < Ce for
0, I;w) € T x B"1(0,0) x (2 — k/4), where C = C(n) depends only on the dimension
n and Id,, € M,,(R"™1) is the identity matrix. Choosing € = e(n, 7,) sufficiently small we ob-
tain that the map 6 — ¢ = Vléw(Q, I) is a diffeomorphism on T" ! for any fixed I € B"~1(0, o)
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and w € Q — k/4, hence, P, is well-defined. Notice that V]ét’w(e, I = Vrét(ﬁ, VK (w)+1I)
and VoG (0,1) = VoG (0, VK] (w) + I) — VK;(w). Then

(Y 0 Proo) (Ve Ge(0, VE; (W) + 1),1) = (8, VeGy(8, VK (w) + I)).
On the other hand,
(P 0h,) (VeGi(0, VK (W) +1),1) = Pi(V,Gi(8, VK] (w) + 1), VK] (w) + I)
= (0,VeGi(0, VK] (w) + 1))

and we obtain that ), o P;,, = P; 01, since the map 6 — Vrét(ﬂ, r) is a diffeomorphism. O

Step 2. Holder estimates ofNét. We are going to apply Theorem 9.5 to the family of exact
symplectic maps P;(-;w) := P; (). To this end we evaluate the weighted norms of G and Gj.
We have GY = QY o (id, VK7}), where

QUI;r) = /1(1 — sWOPK(r 4+ sI)I,I)ds
0

is well defined and smooth in T, T := B""1(0, 0) x (2 — x/4). As in the proof of Theorem 9.1
we obtain that

QP llerion < Ce@®l10° Kille, Dy

Since € is convex and K} € C*°(Q2) using Proposition A.12, 3., and Remark A.13 as in the proof
of Theorem 9.1we obtain for any £ > 1 the estimate

IG Nl egn < Ce0® 10° Kille,pysn Se(VE™).

‘E;g,n < Hth

Moreover, |G} Lo < CollGellenSe(VEK™) since 0 < p < k < 1 and we obtain

1G N0 + 11GEllesom < Ce (0% 102Ky

.0 + |Gyl

loam) Se(VK™). (9.186)

Step 3. Applying Theorem 9.5. Now (9.182) gives
”G?||£o+1;g,f€ + ||Gt1||10+1;9ﬁ < BoSep+1(VK™) < epr.

This allows us to apply Theorem 9.5 to the family of exact symplectic maps P;(+;w) = ]Btw()
Set Wy = (ug,vy), where uy = Uy, vy = (VK)o ¢y + Vi and (U, Vi, ¢4) are given by Theorem
9.5. Notice that ||V;||co < cep in view of the estimates in (ii), Theorem 9.5, where the constant
c depends only on n, 7 and ¥, and taking ¢ < min(1,1/c) we obtain V;(§;w) € B" (0, o) for
any § € T" ! and w € Q — k. In the same way we get ¢ (w) € Q — k/4 for w € Q — k.

Now Lemma 9.9 implies that for any w € €, and ¢ € [0,4] the Lagrangian manifold
Ay(w) := ¥ (T" 1 w) is a Kronecker invariant torus of P; of a frequency vector w satisfying
(i) in Theorem 9.8.
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Step 4. Estimates of uy and vy.
The estimates (ii), Theorem 9.5, imply (ii) in Theorem 9.8. To estimate the derivatives of

,Ut_VK: :W+(VK:)O¢t—VK:
we use (ii), Theorem 9.5 and the following Lemma which is an analogue of Lemma 9.4.

Lemma 9.10. For any m € N the following estimate holds

[(VKY) 0 ¢t = VE{ |m0ix < Cm? (1 " Ql> .

To prove (iii) we use suitable cut-off functions in w given by Lemma 9.3. o

9.4 Birkhoff Normal Forms for C*-families of symplectic maps

Let Q@ C [0,27]""! be an open convex set which we identify with an open convex subset of
T" 1. Fix 7 > n — 1 and denote by xo(f2) the supremum of all 0 < x < 1 such that the set
Q. = D(k,7) N Q — & is of positive Lebesgue measure. Given 0 < k < ro(Q2) we denote by 0
the set of points of Q, of positive Lebesgue density. Recall that w € QU if the Lebesgue measure
of Q,,NU is positive for any neighborhood U of w. Then €, \ Q0 is a set of measure zero. Recall
that £y and ¢(m) defined in (9.153), i. e. £y := 27 + 2 4+ 2¢y and £(m) := 2m(7 + 1) + 4y for
m > 0.

We are going to use as well the notations B,, and Sy(VK}) introduced in (9.181) and (9.180).

To construct a BNF we have to deal with the second differential d’K; of the Legendre
transform K; of K. We denote by §*K;(I) its Hessian matrix. Its norm could be very large,
as in the case of the billiard ball map close to the boundary, and to measure it we introduce a
parameter A > 1. More precisely, we suppose below that

sup [|0?Kil|2,p,n < A < 00, (9.187)
te[0,6]

where A > 1.

Theorem 9.11. There exists € = €(n,7,9) > 0 depending only on n, T, and ¥y such that the
following holds.

Let Q C T ! be an open convex set and 0 < o < k < ko(Q). Let [0,8] 2t — Kf € C®°(Q,R)
be a C* family satisfying the non-degeneracy condition (9.175) and suppose that its Legendre
transform K satisfies (9.187). Let [0,6] > P € C®(Ay, A), be a C* family of exact symplectic
maps defined by generating functions Gy(0,r) = (0,r) — K(r) — G4(6,r) such that

By < eorA™t (9.188)
Then

(i) there exist C*-smooth with respect to t € [0, 6] families of exact symplectic maps x; : Ay —
A; and of real valued functions Ly € C*®(Dy) and RY € C®(A;) such that
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(a) (p,I) = (o, 1) — Ly(I) — RY(p,I) is a generating function of PY = x; ' o Pioxs;

(b) VL, : D; — Q is a diffeomorphism, L, = K; outside D} := VK;(Q — x/2), and
VLj(w) = I;(w) is given by (1.6) for each w € QO;

(c) RY is flat at T" 1 x VL (Q0;

(i1) For any t € [0,0] and m € N the following estimates hold
lo O = id) ez + o O = i) lm,auim

’ (9.189)
< 2 B T A+ 0Kl

and
IVL; = VEillm.Diw + |0xV R lm.Dis

Cm m
< ? Bm+1)\2 (>\ + H82Kt||m+1,Dt§H) ’

(9.190)

where the constant C,, > 0 depends only on n, T, Y9 and m.
Ifé is analytic with respect to t, then so are x, L and RP.
Before proving the Theorem we observe that

Remark 9.12. (Birkhoff Normal Form) Let k = 1. Then for any w € QO the map
[0,0] 3t = Ag(w) := xo(T" ! x {L;(w)})

provides a C' family of invariant tori of Ps with a frequency vector w and taking into account
Lemma 3.4 we obtain

P)(p. 1) = (¢ + VL(I). 1) + On(II = VLi(@)[")

for any N € N . Moreover, the last formula can be differentiated N — 1 times with respect to
(p,I). Hence, Theorem 9.11 gives a simultaneous Birkhoff Normal Form of P, on the invariant
tori Ay(w), where t € [0,6] and the frequency vectors w are in Q0. Recall as well that the
complement of Q2 in Q, is of Lebesque measure zero.

Proof of Theorem 9.11. Without loss of generality we consider only the case when £k = 1. We
devide the proof in several staps.

Step 1. Writing A¢(w) as graphs. For any w € ,; and ¢ € [0, 4] the Lagrangian manifold
A(w) == {(w(O;w), v (O;w)) : 0 € T}

given by Theorem 9.8 is a Kronecker invariant torus of P; of a frequency vector w satisfying
(i) of Theorem 9.8. Firstly we will solve the equation ¢ = u;(6,w) with respect to 6 and get
the respective estimates of the solution. To this end we consider the map w; : A — A defined
by wi(0,w) = (ut(0,w),w), where A = T" 1 x R""!. Recall from Theorem 9.8, (iii), that
supp (wy —id) C T* ! x (Q — k/2). Tt follows from (9.183) and (9.188) that

lo ! (wr —id) |1 = [hwr — i1 < Cre < (20 —2)7"
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choosing € = €(n, 7, 9g) small enough (recall that C; depends only on n, 7 and ¥y). Then applying
Proposition A.11 we obtain a solution 6;(¢,w) = @+1:(¢,w) of the equation ¢ = u(0,w), where
(p,w) € T" 1 x Q. Then suppey C T* ! x (Q — k/2) and
C
||¢t||m;n S 7mBm (9.191)
Ko

for any m € N, where the constant C), > 0 depends only on n, 7, ¥y and m. Setting ﬁ’t(@, w) =
’Ut(et(gpa (U), w) and -
Fi(p,w) := =VK/(w) + Fi(p,w)) (9.192)

for (p,w) € T ! x Q we write
M) = {(p, Filp,w) : o € T" '} = {(, VEF (W) + Fi(pyw)) : o € T}, w € Q. (9.193)
Notice that that supp F; € T" ! x (Q — x/2). We are going to prove that

C
1F |l < ?mBm; (9.194)

for any m € N, where the constant C,, > 0 depends only on n, 7, ¥9 and m. To this end we
write

Ft((pvw) = (Ut(QO,W) - VKf(w)) + (Ut(et((P,W),CU) - ’Ut((paw))'

The estimate of v(p,w) — VK (w) follows directly from (9.183) using the inequality By < By <
ek < p. To obtain the estimate of the second term of (11.221) we write

1
(O, ),0) — i) = [ ()i + 510, )) ulpr) .
0
Then one uses (A.9), Proposition A.12, 2, and (9.188) as well.
Denote by p : R*~! — T"~! the natural projection.

Lemma 9.13. There is a O family of real-valued functions hy € C®°(R" 1 x Q) and I; € C®(Q)
in t € [0,0] such that hY(z,w) := hy(x,w) — (z, [(w)) is 2m-periodic with respect to x and

(i) V(z,w) € R x O, Vohi(z,w) = Fi(p(z),w),
(i) Vi hd(z,w) =0 and I;(w) = VK;(w) for w ¢ Q — K/2,

N C,
(iii) thHm;n + |1 — VK; Hm;n < ?mBm

for m € N | where C,, is a positive constant depending only on n, 7, ¥g and m.

Proof. To obtain h; we consider the function

he(#,w) = / o = /0 (Fy(p(sz),w), z)ds = (VKf(w),@—i—/O (Fi(p(sz),w), z)ds

for (z,w) € R"1 x Q, where 7, = {(sz, Fi(p(sz),w)) : 0 < s < 1} and o = {dux is the canonical
one-form on T*R"~!. In view of (9.194), the function QY(z,w) := hy(z,w)— (VK] (w), x) satisfies
the estimate

Cm
HQ?Hm,n < ? B (9.195)
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for m € N. We set _
Iij(w) = h(2mej,w) /2T, w e,

where {e1,...,e,_1} is the canonical basis in R®~!. Then (9.195) implies
* Cm
11t = VE |l < ? B, (9.196)

for m € N and ¢ € [0, 4].
As A¢(w) is a Lagrangian torus for w € Q,, we get

Vy e R hy(z+y w) — h(z,w) = / o (9.197)
lt(wvy)

where I(z,y) = {(z + sy, Fi(p(z + sy),w)) : 0 < s < 1} and o is the pull-back to A(w) of the
fundamental one-form Idzx. The integral in (9.197) is equal to

1 ~ ~
/ o= / (Fulple + sy).w),y)ds = (Fup(a),w),y) + O(),
lt(:r?y) 0

and we obtain Vyh(z,w) = F,(p(z),w) for any w € Q.. In particular, the function Vyh(z,w)
is 27-periodic with respect to x and we get

Vwe Qp, VaeZ' ' hy(z +2ro,w) — hy(z,w) = hy(2ra, w) — hy(0,w) = (2ma, I(w)).

Consider the function B B
h?(w,w) = h(z,w) — (z, [1(w).

It is 27-periodic with respect to z for w € €, and hY satisfies the estimates (9.195) in [0, 8] x
R"~! x . We are going to average hY on T"~! using the following

Lemma 9.14. There exists f € C°(R" ™) with supp f C [r, 7x]"~! such that

Z flx —27k) =1

kezn—1
for each x € R"~1.

Consider the function

W (zw)= > (fh))(z —27k,w).

kezn—1

It is 27-periodic with respect to z by construction and h?(z,w) = hd(z, w) for (z,w) € R" 1 x Q.
Moreover, hY satisfies (9.195) in [0, 8] x R*~! x . We set

he(z,w) = b (z,w) + (z, I(w)).
Recall that
dist (2., R"71\ Q) > k.
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Then multiplying hY and I; — VK; by a suitable cut-off function which is equal to one on Q—3x /4
and zero outside Q — k/2, we can assume that h(z,w) = (z, VK] (w)) and I;(w) = VK (w)
outside Q — k/2 (see Lemma 9.3). This proves (i7). The statement (iii) follows from (9.195),
the definition of AY and (9.196). O

Step 2. Inverting 1.
Lemma 9.15. Choosing € = €(n, 1,%y) > 0 small enough one has the following for each t € [0, 9].

1. The map I; : Q — Dy is a diffeomorphism and its inverse wy : Dy — € satisfies the
estimates ||wy — VEKi||1 p,.x < Coek and

C
lwi = VEi|lmpyw < ?m BN (A + |02 Killm, Dyirc ) (9.198)
for any m € N,. Moreover, wy = VK, outside the set 52 = VEK;(Q—kr/2).
2. For any x € R"™! the map Q > w — Vihi(z,w) € Dy is a diffeomorphism.

Proof. We are going to show that the map Q 5 w — [;(w) a diffeomorphism. To this end we
write

Iy = (id+¢) o VK], ¢ := (I — VK{) o VK.
Moreover, Lemma 9.13, (9.187) and (9.188) imply

loells < 1 = VE [lo + 1e = VEF |11+ [|VE 1) < Cer™

where C' = C(n,T,99) > 0. Recall that I; = VK] outside Q — x/2, hence supp ¢ C D;. Then
choosing 0 < € < 1/(2C) and applying Proposition A.11 we obtain that id + ¢; : R*~1 — R~}
is invertible and that (id 4+ ¢;)~! = id + ¢4, where supp; C D;. Hence, I;(Q)) = D; and
I; : Q — Dy is a diffeomorphism with inverse

thVKtO(id-f—wt)ZDt—)Q.

Lemma 9.16. For any m € N, there exists C,, > 0 depending only on m, n, 7 and 9y such

that o
@t llmp < 7’“ B X" N+ |0 K|l m—1,Dy55) -

Proof. The support of ¢; is contained in the closure of D} := VK;(Q — x/2). Set 2r; :=

dist (D}, R"~1\ D;) and fix I° in ﬁi . Applying Remark A.2 to the restriction of K; to the closed
ball B(I° r;) as well as Proposition A.12, (9.187) and (9.188) one obtains

(<01 2u(D) < Cry (14 102K Zoch, )
% (1 = VE; sl O Kill ooy + 1T = VE ot 102K elbm-1,0000)

Cm m—
< 7 B, A ! ()‘ + ||82Kth—l,Dt;H)7
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for (I,t) € B(I° 1) x [0,8] and 8 € N*~1 |3| = m € N,, where C!, > 0 depends only on m and
n and C,,, > 0 depends only on m, n, 7 and 9J9. On the other hand, ; = 0 outside D} which
completes the proof of the Lemma. This argument will be used many times in the sequel. O

Proposition A.11 applied to id + ™1, o 0, implies that supp); C ﬁ:, ||| co < Coe/A and

Con ) o1
||7/’th,n < 7 By A 1(>‘ + H82Kth—17Dt;f€)

for m € N*. In particular, ||d¢||co < Cye. Consider
1
wt(I) - VKt(I) == / d(VKt)(I+ S’l[)t(l))@bt(_[) dS, Ie Dt.
0

The support of wy — VK, is contained in Etl. Moreover, [|wi — VKi||co(p,) < Coek, and using
Remark A.2 and Proposition A.12 one obtains as in the proof of Lemma 9.16 the estimate

1(£0)*(wi — VK)o < CollO® Killco(py) 14t

+ CmHT/}tHCO (1 + ||dwt”glo_1) (”82Kt”1,Dt§HHdthm—lﬁ + ||82Kth,Dt;H

|dvel|lcopy))

for any m € N, and a € N*~! with |a| = m . Then using (9.187), (9.188) and the previous
estimates we obtain (9.198). The estimate ||dw; —dV K¢ co(p,) < Ce follows from (9.198) with
m =1 and (9.188). We are going to prove that for each z € R"~! the map Q > w — V, hi(z,w)
is a diffeomorphism. To this end we fix = and we write the map w — V hi(z,w) as follows

Vehs = (id + p}) o VK], ot == (VohY + I, — VK}) o VK.
Then supp ¢; C ﬁi and
letller < (IVahfller + e = VE||cr) (1 + (|82 K¢]| o) < Cre/A

and we complete the proof of 2 as above. O

Step 3. Construction of x;. The second statement of the Lemma implies that there is a C°-
foliation of T"~! x D; by Lagrangian tori

A(w) = {(p(z), Vohi(z,w)) : 2 € R}, weq,

which is a smooth extension of the family of the Kronecker invariant tori (9.193) of P;. Notice
that I;(w) is the action along the basis of cycles [y j(w)], ..., [Ve,n—1(w)] of Hi(A¢(w),R), where
V.5 (w) = {(p(s2me;j), Vyhi(s2mej,w)) : 0 < s < 1}. Indeed, it follows from the definition of Ay
that I;(w) = Vyhi(z,w) — V (2, w), where hY is 27-periodic in x and we obtain

Ii(w) = </ o,... ,/ U) (9.199)
7,1 (w) Yt,n—1(w)



for w € Q. Now we set ®4(x, ) = hy(x,wi(I)). Then
(I)g(.f,]—) = <:L',I> - q)t<$7l) = _h?<m7wt<1))

is 2m-periodic with respect to z, and it has a compact support in T?~! x D,. Moreover, it follows
from Lemma 9.13, Lemma 9.15, Remark A.2 and Proposition A.9 that

108 lm s < Con (14 el il ) (1S llmslldecellcogm

11,110 K llm—1,D050 + (1]

Chn -
S ? Bm)\Q 2()\ + HaQKth,Dt;n)

(dwt - dVKt) ||m71,Dt;I€>

1,k

for t € [0, 6] and m € N, where C,, depends only on m, n, 7 and 9. This implies

Cm

||0;15grad<l>?|]m7mm < 0 Bm+1)‘2m ()‘ + ||62Kt”m+1,Dt;n) (9.200)

for ¢t € [0,9] and m € N, where C,,, depends only on m, n, 7 and . In particular, one obtains
by means of (9.187) and (9.188) that

oy, tsgrad @ |1 a,.x < ce/A (9.201)
for t € [0, d], where ¢ = ¢(n, 7,99) > 0. Using Lemma A.14 we obtain
Lemma 9.17. Choosing € = €(n, T,%y) > 0 small enough we have the following

1. ®; is a generating function of a symplectic transformation x; : T ' x D, — T ! x D,
and the map [0,0] >t — x; € OF(Ay, Ay) is CL;

2. xt(Ap(w)) = T x {I(w)} for any w € Q and t € [0,6];

3. x¢t —id and Xt_l — id are compactly supported in T" ! x Ei, where D} = VK;(Q — k/2)
and they satisfy the estimates (9.189). Moreover,

loz Oc = id) [ + oz (x = id) [ aim < ce/X.

Proof. Using Lemma A.14 one obtains a symplectic transformation x; : T"~! x D; —
T x R*~! defined by

xe(Vi®(0,1),1) = (0,Ve®,(0,1)), (0,I) TV 1 xR L
Notice that the map
Dy 51— Vo®:(0,1) =1+ Veh?(0,w(I)) € Dy
is a diffeomorphism since the map Q > w — Li(w) + Veh{(0,w) = Vohi(0,w) € Dy is a dif-

feomorphism in view of Lemma 9.15, 2, hence, x;(A;) = A;. For any w €  and any 6 we
have

(0, Vh(0,w)) = (0, VoP:(0, I(w))) = xt(V1Pe(0, It(w)), It (w)),
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hence, Ay(w) = xi(T""' x {Iy(w)}). Moreover, xi(p, [i(w)) = (¢, Li(w)) = (p, VK] (w)) if
dist (w, R*~1 \ Q) < /2, hence, the support of both y; — id and x; ! — id is contained in
T 1 x ﬁ;. The estimate (9.189) follows from (9.200) and Lemma A.14. 0

Step 4. Estimates. Consider the exact symplectic map PP = x; 'P,x:. Using Lemma A.16 we
write P, as a composition P, = W;Q¢, where W; is the exact symplectic map defined by the
generating function (x,r) — (x,r) — G¢(z,r) and Q¢(0,r) = (0 + VK (r),r). Then

Pto = WtOQt7

where

WP = x; Wi+ X7 ' WiQi (g ' —id)Q

Lemma 9.18. The exact symplectic map WP, t € [0,6], admits a generating function of the
form

such that the map [0,6] >t — GY € C*°(A) is C!, supp (dG?) C T ! x 52 and

_ C
lox sgrad G lm.acn < ?:Bm+1k2m(/\+ 10 Kl m1,D,5x)

for any m € N, where C,,, depends only on m, n, 7 and .

Proof. We have

WP —id = (Wi —id+ (x; ' —1d)W,) + Qi(xe —id)Q;
(9.202)

+(We —id + (' —1)We) o (Qi(xe —id)Q; ).

We estimate the C" norms of it term by term. Notice that the support of each term is contained
in T~ x ﬁ;
Lemma A.14 and (9.188) imply ||o, 1 (W; —id)||1.4,.x < Ce/A and

_ . Cnm
Hanl(Wt _ld)Hm,At;ﬁ < 7Bm
oK

The last estimate, Lemma 9.17, 8, and Lemma A.12, 2, imply

1, — . C
low O = id)Wellm, sy < ?:Bmﬂ)\gm()\ + 107 Killm+1,01:) -

and
ot (¢! = id)Williapm < ce/A.

Using the argument in the proof of Lemma 9.16 first to (x; —id)Q; ! and then to Q;(x; —id)Q; "
we obtain the estimate

_ N Cm, m
Ho';qut(Xt - ld)Qt 1”m,At;n S EBm—&-l)\Q ()\ + ‘|82Kt||m+1,Dt;n)-
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This yields the estimate of the first line of (9.202). To obtain the estimates for the composition
in the second line one uses the preceding estimates and the argument of Lemma 9.16. It remains
to apply Lemma A.14 in order to complete the proof of the Lemma. |

Step 4. Proof of (i). Now Lemma A.16 implies that the function
ég(az,I) = <$7I> - Kt(I) - G?(SO7I)

is a generating function of P?. The function GQ is uniquely defined modulo a constant depending
only on t which is chosen appropriately in order to obtain a C'-smooth the map t — GY. Set
Li(I) := Ky (I) — GY(0,1) and Ry(6,1) = GY(0,1) — G9(0,1). We have

P x {Ii(w)}) = (xi " o P)(Ae(w)) = X7 (Ae(w)) = T x {Iy(w)}
for any w € €, which implies
I(w) = Vo RY (2, L(w)) = VoG (2, (w)) = T(w)

for any such z € R"~!. On the other hand, R?(0,I) = 0, hence, RY(6,1) = 0 on T" ! x Ej,,
where E ,, := I;(€Q,). Now Lemma 3.4 implies that OfR?(H, I) =0 for any (0,1) € T"* x EY,,
where Eg . = 1:(Q0) is the set of points of positive Lebesgue density in Ey,. Then

PO+ VL(I),I)=(0,I) on T''xE},,

and we obtain that V;L;(I;(w)) = w for each w € Q2. Hence VL}(w) = I;(w) for each w € QY,
where I;(w) is given by (1.6) for such w, according to (9.199). The estimates of the derivatives
of L; and RY follow from that of Lemma 9.18. a

10 KAM theorem with parameters

The theorems formulated above follow from a KAM theorem with parameters. A complete and
very comprehensive proof of it has been given by Poschel [54] and Kuksin [41] in the analytic
case. It can be extended to the case of smooth Hamiltonians using suitable approximation
lemma. In the case of Gevrey Hamiltonians this has been done in [59]. The advantage of
this approach is that frequencies are separated from action variables which makes it easier to
obtain smoothness with respect to them. Moreover, it allows one to prove Holder estimates
of the transformations putting the Hamiltonian to a normal form. Here, the normal form of
the Hamiltonian is N(I;w) := (w, ). The perturbation is a real valued function (0, I;w,t)
P(0,I;w,t) defined in A™ x Q x [0,a], where A" := T" x B(0, pg), B(0,po) C R™ is the ball
centered at I = 0 with radius py € (0,1] and €2 is a bounded domain in R™. Hereafter, we

assume that
P eC*([0,a; C°(A™ x Q)), k€ {01}, (10.203)

i.e. the map t — P, := P(-,t) € C°(T™ x B(0, pg) x Q) is C*-smooth on the interval [0, a]. This
means that the support of the function (I,w) — P(0,I;w,t) is contained in a fixed compact
subset of B(0, pg) x € independent of (0,t) € T™ x [0,a] and that the maps

t— Py = 0lP(-,t) € CV(T™ x B(0,po) x Q), 0<q<k,
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are continuous in t € [0,a] for 5 € N. Given £ > 0 and 0 < r,xk < 1, r < pg, we denote by
| Pt|| ¢;rrc the weighted Holder norm

HPtHZ;r,n = [P0 O’?",HHCZ(O-;é(AnXQ)) (10.204)

where o, is the partial dilation o, (¢, I;w) := (¢, rl; kw). The Holder norms are defined in
Section A.1 (see also [53]).
Fix 1 <1 <9 <7+ 1 and set

lo:=21+24+v%y and {£(m):=2m(r+1)+4y, meN. (10.205)

Denote the Hamiltonian vector field associated to the Hamiltonian (0,I) — N(I;w) = (w,I)
by L, = Xn(-,w) = (w,0/08). We consider C*-families, k € {0;1}, of Hamiltonians t — Hy,,
t € [0, 9], where

Hy,(0,1):=H(0,I;w,t) = N(I;w) + P(0,I;w,t)
and P satisfies (10.203). Recall that for given 0 < & < 1 and 7 > n — 1, the set , =
D(k,7) N Q — Kk consists of all (k, 7)-Diophantine frequencies w in § (w satisfies (9.148)) such
that the distance from w to the complement of €2 in R" is greater or equal to . Set

<P>§(()’I)’n);7",f€ = t:l(l)l?z ||Pt”€(m);7‘,n
( p>g()> : (10.206)
1 m)r,K
<P>é(2n)57“,“ - T Z sup HafPtHK(m);r,n-

<P>Z(0);r,n 0<p<1 te(0,a]
The following result is an analogue of Theorem A in [54].

Theorem 10.1. There exists a positive constant € = e(n, T, ¥y, %1) > 0 depending only on n, T,
Yo and V1 such that, for any a >0, 0 < k <1, 0 <1 < pg and any real valued Hamiltonian
H = N + P, where N([;w) = (w,I) and P satisfies (10.203) and the smallness hypothesis

sup HPtHEO;T,fi < eRT, (10207)
t€(0,a]

the following holds.
There exist C* families of maps

[0,a] 5t ¢ € C°(0Q) and [0,a] 5t — ¥, = (U, V;) € C(T" x Q; T" x B(0,r))
such that supp (¢ — id) C Q — k/2, supp ((Uy, Vi) — (id,0)) € T" x (Q — £/2), and

(i) For each w € Q, and t € [0,a] the map Vg, = ¥;(-,w) : T" — T" x B(0,r) is a smooth
embedding, Ay(w) = Wy, (T™) is an embedded Lagrangian torus invariant with respect to
the Hamiltonian flow of Hy ¢, (0,1) := H(0,I; p1(w), 1), and

XHtv¢t(w) o \Ilt,w — D\Ijti . Ew on r]rn7
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(i) For any m > 0 there is Cy, > 0 depending only on n, 7, 9¢, Y1, and m, such that for any
a, 8 € N" of length |a] + |B|(T+ 1) <m(T+1) + Y1 and 0 < g < k the following estimate
holds

}8g(m8w)ﬂag(Ut(9;w) — 9)! + 7t ‘83(/€8w)58f%(0;w)‘
(10.208)
17 (5070} (60(w) = w)| < Con (o)™ (P

L(m);r,k
uniformly in (0,w,t) € T™ x Q x [0, a.
Remark 10.2. If P is analytic with respect to t in the disc B(0,a) := {t € C: |t| < a} and
(10.207) holds for t € B(0,a), then ¥ and ¢ can be chosen to be analytic with respect to t in
B(0,a). Moreover, for any a, 5 € N of length |a| + |B|(T+ 1) <m(t+ 1)+ 71 and 0 < J < a,
the following estimate holds

|05 (80.,)° (Ur(05w) — )] + 77105 (800) Vi (03 w)| + &7 [(£0,,)% (¢1(w) — w)]

< Cus (5r)™" sup 107 Pellomysr s
teB(0,a)

uniformly in (0,w,t) € T" x Q x B(0,a — 9), with Cp, s > 0 depending only on n, T, ¥9,91, 9,
m.

Before starting the proof of Theorem 10.1 and Remark 10.2 we are going to list several
comments. For each ¢ € [0,0] and w € Q denote by
;== exp (SXHW) , s €R,
the flow of the Hamiltonian vector field Xp, , of the Hamiltonian H; . and set
9o(0) =0+ p(sw), 0 €T", seR, we,
where p : R” — T" is the canonical projection. By (10.207) and (10.208), we have
|doUs(0;w) — 1Id| < Ci(n,7,90)e < 1/2
for (0,w,t) € T" x Q x [0, al, choosing e sufficiently small and we obtain

Remark 10.3. The assertion (i) of Theorem 10.1 means that for each w € Q, the family
[0,6] >t = Ay(w) is a C* family of Kronecker invariant tori with respect to the flow ®; -, where
W = ¢¢(w). More precisely, for each t € [0,0], w € Q, and s € R, the following diagram is
commutative

™ % Tn

\L \I’t,w \L \I’t,w

(3498
At((,U) ﬂ) At(W)

Remark 10.4. -
1. The Theorem could be obtained for any k € N (then Cy, depends on k as well). We suppose
here that k € {0;1} to simplify the proof.
2. We point out that the parameter € > 0 does not depend on the parameters x and r, the
domain 2, the annulus A™ = T™ x B(0, po), nor on the interval [0,al.

3. (ii) still holds if P € C*(|0, 1];Cg(M) (A™ x Q)) with M >0 (see Theorem 11.22).

107



Remark 10.5. Without loss of generality one can assume that k = r = 1. Indeed, consider the
Ck-family of Hamiltonians

I;Tt = (m‘)_l(N +P)oo,, =N+ ]Bt,

where B
Pi(0,;w) = (kr) ' Py(0,7]; kw), (0, T;w) € T x R" x (k™ 10).

If P, satisfy (10.207), then so do P, with k =r = 1. Let q~5t and U, = (ﬁt, 17,5) be the family of
maps obtained by Theorem 10.1 for the family of Hamiltonians Hy with k = p = 1. Then taking

¢ = kprooyt, W= (UprVy) 00y,
we obtain items (i)-(iii) in Theorem 10.1 for Hy and for 0 <k <1,0<r <1.

In order to avoid the repeating use of the parameters x and and p, we suppose from now on
that
k=p=1. (10.209)

Idea oh the Proof. The proof of Theorem 10.1 and Remark 10.2 is organized as follows. In Sect.
11.1 we prove the KAM Lemma and choose the parameters for the next iteration. The KAM
Lemma is close to that of Pdschel in [54] but one needs additional arguments to estimate the
derivatives with respect t. To this end we give a complete prove of it skipping some details. In
Sect. 11.2 we iterate the KAM Step infinitely many times. The choice of the parameters leads
to an exponentially converging scheme. Additional efforts are needed to get convergence for the
derivatives with respect to £ and to obtain the corresponding estimates in the Iterative Lemma.
The iteration procedure is convergent in a Whitney sense only on the Cantor set {2, and one
can not hope to get the global (in Q) estimates (10.208) using Whitney’s extension theorem
for C'*° jets. For this reason we propose a new method in Sect. 11.2.4. Using suitable almost
analytic extensions in Gevrey classes, we prove a Modified Iterative Lemma which provides
a convergent scheme over the whole domain ) and yields the desired estimates. The almost
analytic extensions is obtained in Sect. A.2.

11 Proof of Theorem 10.1

11.1 The KAM Step
11.1.1 The KAM Lemma

Given two domains D; C C%, j = 1,2, we denote by A(D1, D) the space of analytic maps
f: D1 — D5 equipped by the inductive topology generated by sup-norms on compact sets of D1,
and by C*([0,a], A(Dy, D)), k € N, the corresponding space of the C* functions. If Dy = C we
write A(D;) := A(D1,C). Recall that an analytic function f € A(D;) is said to be real analytic
if Dy NR™ # () and f(D; NR™) C R. Introduce the complex domains

Dy, ={0 € C"/27Z" : |Im| < s} x{Ie€C": |I|] <r},

Op={weC": |w— M| <h}.
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Hereafter, |v| = |(v1,...,v,)| = sup|vj| is the sup-norm of v € C". The sup-norm of functions

J

in V := Dy, x Oy, will be denoted by |- |54 and the corresponding space of analytic functions
in V by A(V). We state below a variant of the KAM Lemma following P&schel [54]. It involves
a small parameter € > 0 and several parameters o, s, 7,7, K such that

0<s,r<1l,0<n<1/8 0<bo<s<l, K>1, (11.210)

as well as a positive ¢y = ¢g(n,7) < 1 depending only on n and 7. We suppose that the following
inequalities are satisfied

(a) & < conro™ 1,
(b) e < cohr,

1

Moreover, we will require below the inequality
(d) 2h < o7 H!
which follows from (c) provided that Ko > 1. Fix k € {0;1}.

Proposition 11.1 (KAM Step Lemma). There is a positive co = co(n,7) < 1 depending only
on n and T such that, for any o,s,h,r,n, K, a > 0 and € > 0 satisfying (11.210) and (a)-(c)
and for every real valued Hamiltonian H = N + P, where

N(L;w,t) = e(w,t) + (w,I) and P € C*([0,a], A(Ds, x Oy))
satisfies the estimate

sup sup | Plsrn < & (11.211)
0<p<k t€[0,a]

the following holds.

(1) There exists a C* family of real analytic transformation F = (®, ¢), where
® € C*([0,a], A(Ds—50.r % Opa, Ds)) and ¢ € C*([0,a], A(Op4,0n))
such that H o F = Ny + Py with
Ni(l;w,t) =ep(w,t) + (w,I) and Pi € Ck([O,a],A(Ds_wm x Op/4))

satisfying the estimate

2

|07 P (- ) |s—50mrn/a < Co (mTH + (7 + 0"6K0)5> (11.212)

for any t € [0,a] and 0 < p < k, where Cy = Cy(n,7) > 0 depends only on n and 7;
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(2) 0, ;w,t) = (UO;w,t),V(0,I;w,t)), where V is affine linear with respect to I and the
transformation (0,1) — ®(0,I;w,t) is canonical for each (w,t) fixred. Moreover, for any
0<p<k,apBeN" and |y| <1 the maps ® and ¢ satisfy the estimates

(WP (00p) (rd)?(®(0, I;w, t) — (6,1))] < oa,ﬁ%

oTt+1’

(h0,) 9 (¢ — id)| < C=,

uniformly on Ds_55.nr X Op %[0, a] and Oy, 4 %[0, al, respectively, where W = diag (c7'1d,r'1d),
Co,p > 0 depends only onn, 7, o, B, and C > 0 depends only on n and 7.

Remark 11.2. Set W = diag (O'_lld ,rd, h_lld) and suppose that (d) holds, i.e. 2h < o7 +1,
Then . .
WopDF(.1) W < G-

on Ds 550 X Opq % [0,a], where DF(-,t) stands for the Jacobian of F(-,t). Moreover, (2)
and the Cauchy estimate of the derivatives of F with respect to w yield for 0 < p <1 and any
a, B,v € N" the estimate

WO (08)* (r01)P (hd) (F(0, I;w,t) — (0, I;w))| < cam%

on Ds_55mr X Opg % [0,a], where Cy 5 > 0 depends only onn, 7, a, B and 7.

Remark 11.3. If P is analytic with respect to t in the disc B(0,a) C C and (11.211) holds in
B(0,a) for k=0, then ¥ is analytic with respect to t in B(0,a) and items (1) and (2) hold for
t € B(0,a) with p = 0.

Remark 11.4. Hereafter we use the Cauchy estimates for analytic functions in C™ (see for
example Theorem 2.2.7, [32] and Appendiz A in [54] ). More precisely, let D be a domain in C"
and D, :={z € C": |z — D| < r} the corresponding polydisc. Then for any analytic function f
in D, with a bounded sup-norm |f|, :=sup,ep |f(2)| and any 0 < p <r and o € N" one has

0%fl, < al(r=p) Y £, (11.213)
We recall as well the standard estimates of the Fourier coefficients

fo= [ f@e2m"0ap ke,
Tn

of an analytic function f in a strip T" + s:= {0 € C"/Z" : |Im#6| < s}, s > 0, with a bounded

sup-norm |f|s, namely,
il < e, (11.214)

where |k| = >7_; [k;l.
Proof of Proposition 11.1. For Hamiltonians independent of ¢ the proposition is formulated and
proved in [54]. It follows easily from [54] in the case k = 0. The proof of the corresponding

estimates of 9;P; requires additional efforts. For this reason we give a complete proof in the case
k=1.
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Step 1. Truncation. Consider the linear part of P with respect to I
Q0 I;w,t) := P(0,0;w,t) + (V1 P(0,0;w,t), I).
Given a positive integer K we denote by

RO, I;w,t) := Z Rk(I;w,t)ei<k’0>
|kI<K

the trigonometric polynomial of degree K in the Fourier series expansion of () with respect to
6. By (11.211) and the Cauchy inequalities (11.213) one obtains the following estimates

|85Q\57r < Coe, ‘@?(P - Q)|s,2m < 007725

for 0 < p <1 uniformly with respect to (w,t) € Op x [0, a] (recall that 0 < n < 1/8). Moreover,
estimating the Fourier coefficients of 97Q by (11.214) one obtains

107(Q — R)|s—or < Coo e K% and |0PR|s_o, < Coe. (11.215)

The Cauchy estimates imply

|af(0-69)a(Taf)ﬁRLs—Qa,r/Q < Ca,ﬁE
(11.216)
0P (009)*(r01)P (P — R)|s—20.2qr < Cag(n? + o e K)e

for 0 < p <1 uniformly in (w,t) € Oy, x [0, a]. Hereafter Cy > 1 stands for a constant depending
only on n and 7 and we denote by C, g a positive constant depending only on n, 7, a and 3.

Step 2. Homological equation. The idea is to put OF(P — R) in the error term and to to kill 9/ R
by means of a canonical transformation ® which is the time-one-map of a Hamiltonian vector
field Xp = (VF,—VyF). More precisely, consider the Hamiltonian flow

(2,0,1) — exp(xXp)(0,1) = (u(x,0,1),v(z,0,1))

and set
&= (U,V) :=exp(Xp), where U(-) =u(l,-) and V(-) = v(1,-).

The corresponding Hamiltonian system is

du

e VoF(u,v;w,t)
Z—Z = -V, F(u,v;w,t) (11.217)

u(0) =0, v(0)=1.

The Lie method is based on the identity

2 (f oexp(aXr)) = (£, F} o exp(aXr),
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where {f, F} = (V1f,VoF) — (Vof,VIF) is the Poisson bracket. Using Taylor’s formula with
respect to « at x = 0 and the above identity one gets

(N+R)o® = Noexp(xXp)|z=1 + Roexp(xXF)|z=1

| (11.218)
= N+{N,F}+R—|—/O {1 —=2){N,F}+ R,F}oexp(zXp)dz.

We are looking for a trigonometric polynomial F' of degree K and for a function N depending
only on (I,w,t) solving the homological equation

{(N,F}+R=N. (11.219)

Recall that N(I;w,t) = e(w,t) + (w, ). Then (11.219) becomes L,F = N — R, where £, =
(w,0/00). Take

N(I;w,t) := Ry(I;w,t) :/ R(0,I;w,t)dd,

which is affine linear in I. Then the zero order term of the trigonometric polynomial N —R
is zero which is a necessary condition for solving the above equation. On the other hand, the
Diophantine condition (9.148) with x =1 and (c) imply

[{w, k)| > for all w € O, and 0 # |k| < K, (11.220)

1
2[k|7
where |k| =37, |k;j|. Denote by Hx the space of trigonometric polynomials in 6 € T" of degree
< K with zero order terms equal to 0. This space is generated by the functions exp(i(k,#)),

where k € Z" and 0 < |k| = |ki| + -+ + |kn| < K. It follows from (11.220) that the map
L, : Hx — M is an automorphism. Denote by £ : Hx — Hx the inverse map and set

F:=L;Y(R-N). (11.221)

The Fourier coefficients of F are Fy = 0, F}, = (i{w, k)) 'Ry for 0 < |k| < K and F}, = 0 for
|k| > K. Hence, F' is well defined, it solves (11.219) and is affine linear in I. Moreover, it is
uniquely defined by

FO,I;w,t)df = Fyo(I;w,t) =0. (11.222)
"En

Now (11.218) reads
A 1 A
(N+R)o®d=N+N +/ {(1—=2)N + zR, F}oexp(zXp)dz. (11.223)
0

Moreover, (11.214), (11.215) and (11.220) imply

FRlsor .,
0P F|s 20, < Co% < 00;. (11.224)
Using the Cauchy estimates one gets
€
07 (c0)" (rdn)° F| < Cap— (11.225)
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uniformly in D,_3,, /5 X Op X [0,a] and for any 0 <p <1 and o, 8 € N", [3] < 1. By (11.214),
(11.215) and Cauchy one has as well

|0V N|, = |0} Roly < |0FR|s—or < Coc and |0} (rdr)N|,/a < Coe (11.226)

for 0 < p < 1 uniformly with respect to (w,t) € Op, x [0,a]. The derivatives of F' and N with
respect I of order bigger than one are all zeros since the functions are affine linear in I.

Step 3. Canonical transformation. The solution (u,v) of the Cauchy problem (11.217) are real
analytic in (z,6,I,w) and C! in ¢t. Consider the canonical transformation ® = (U, V), where
U(-) =u(l,-) and V(-) = v(1,-) are defined in Step 2. Since F is affine linear in v one observes
that u is independent of I and v is affine linear in I. In particular, U is independent of I and V'
is affine linear as a function of I. Moreover, (11.225) and condition (a) imply for p € {0;1} the
inequality

|OVVgF| <nr <r/8 and |0V F|<o (11.227)

in Dy_357/2 X Op X [0, a] choosing the constant ¢y = co(n,7) < 1 in (a) sufficiently small. Then
exp(IXH) : Ds—4cr,r/4 - Ds—3o,r/2 (11228)

for every (w,t) € Op, x [0,a] and 0 < x < 1. In particular, ®(;w,t) = (U(;;w,t), V(- w,t)) is a
well defined real analytic map

q)(';wat) : Dsf4o',r/4 — D3730,r/2

for every (w,t) € Oy x [0,a] and we get & € C([0, al, A(Ds_45,/4 X Opy Ds_35.4/2)). We are
going to show that

1

0P (ul, 6, I;w,1) — 0)] < Co—ry

g ro

1 . (11.229)
107 (v(w,0. T, t) = D] < Co-——5

in [0,1] X Ds_4g,/4 X Op x [0,a]. For p = 0 it follows directly from (11.217) and (11.225). Let
p=1. Set

1 1
u(0,I;w,t) == — sup |Owu(x,0,I;w,t)| and (0, 1;w,t) :=— sup |Ow(x,0,;w,t)|.
0 0<z<1 T 0<x<1

Differentiating (11.217) with respect to ¢ and using (11.225) one gets

1 1 1
v < — sup |0(oVy)F|+ — sup [(0y)(cVe)F|u+ — sup [(rdr)(cVeF|v
oT 0<z<1 OT 0<z<1 T 0<z<1

gc( R R ﬂ

ro7tl raT“u TO'T—HU

where C = C(n,7) > 0 and by (a) one obtains

_ € S
v < CW“‘CCO(U‘{'U)
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in Dy_45,,/4 X Op % [0,a]. Choosing ¢y < (4C)~! this gives

B € 1.

The same estimate holds for @ and we get (11.229). By Cauchy this implies

1

=107 (009)* (rdp)P (w(x, 0, I;w, t) — 0)] < Copg—r

o PpoTtl

X i (11.230)
~10F (009)* (rOn)” (v(w, 0, I;w,8) = D| < Cap——

in [0,1] X Dy_s54.,/8 X Op x [0,a]. Since n < 1/8 this proves the estimates of ® in statement (2)
of the KAM step. By (11.227) we get

‘U(97I;wvt> - I‘ < sup ‘VIF(';w7t‘s—3a,r/2 <o,
0<z<1

V(0. L;w,t) —I| < sup [VoF (5w, tls_35,2 < nr
0<a<1
on Ds_55,r x Op x [0,a]. This implies that ®(-;w,t) maps Ds_50,r t0 Ds_40,2,r, and that
® € C([0,a], A(Ds—50.4r X Ony Ds—15.201r))- (11.231)
Step 4. New error term. The identity (11.223) yields
Ho®=(N+R)od+(P—R)od =N, +P, (11.232)

where the Hamiltonian N, = N + N is independent of 6 and affine linear in I and
1
Py = / {(1 = 2)N + 2R, F}oexp(zXr)dx + (P - R)o ® (11.233)
0

is the new error term.
We are going to prove (11.212). In the case p = 0 it follows from the corresponding estimates
in [54]. Take p = 1 and consider firstly

H((P—R)o®) = (0y(P—R))o®+ (D(P—R)o®)0,P,
where D stands for the differential with respect to (6,I). By (11.231) and (11.216) we have
07 (P = R) 0 ®|s—50.r < |0} (P — R)ls—to2r < Co(® + 0 "¢ ")e.
Moreover, (11.216) implies
ID(P = RYW ™ Ysao2qr < Co(if® + 07" ),
while (11.230) gives [W0,®| < Coe/ro™ ' on Dy_5,, /3, and we get
[(D(P — R) o ®) 0y®|s—50,r < |D(P — R)W_l|s—4a,r/2\W3t‘I)|s—5a,r/8

3
ro7t+1

< Co(ne + o e K%)
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uniformly with respect to (w,t) € Oy, x [0,a]. To evaluate the derivative with respect to ¢ of the
first term in (11.233), we consider

G:=0/({R, F}oexp(zXp)) = G1 + G2 + Gj,
where
G1:={0R,F}oexp(xXF), Go:={R,0;F}oexp(zXrp)

and
Gs := (D{R, F} o exp(zXp)) .0p exp(zXp).

Using (11.228) one obtains
{OFR, 0 F'} o exp(aXp)|s—somr < {OF R, 0 F}s—30,0/2
for 0 < p,q <1. Now (11.216) and (11.225) imply

HafRa 81?F}’5—30,7”/2 < lavaRHagVOF‘ =+ ‘avaFHa?V@R‘

2

— 20,

SC()(E 9 9 E> S

r o™l roT o ro™+1

uniformly with respect to (w,t) € Oy x [0, a], which gives the desired estimate for G; and Ga.
By the same argument one obtains

e € e € €
@00)" (O (R, Fllicsonse < Cas (e + o ) = 2
Using (11.230) and the preceding estimate one gets
’G3’S—5U,7]T < ‘(O—D9>{R7F}‘sf3a,r/2 ‘U_latu’s—&r,m‘

2

_ IS
+|(TDI){R7 F}‘S*30',T/2 ‘T 1815”’8—50,777“ S COW

Wherg Dy and Dy are the partial differentials with respect to 6 and I respectively. The function
0:({N, F} oexp(xXr)) can be evaluated in the same way using (11.226). This proves (11.212).

Step 5. Transforming the frequencies. Consider
N(L;w,t) + N(I;w,t) = eq(w,t) + (w4 (VIN)(w, 1), I) = ey (w,t) + (w + (ViRo)(w, 1), I).
Following Pdschel [54], Sec. 4, we obtain a real analytic inverse ¢ : Oy /4 — Oy, /5 of the map
w— wy =w+ (ViRp)(w,t)

- o1(w) + (VIR (@) t) = w, @€ Opya, t € [0,a]. (11.234)

Moreover, the following estimate is true

6 — id| + h|Dé; — 1| < O~
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on Oy,/4. We set ¢(-,t) = ¢ and Ny = (N +N)o .
We are going to estimate 9;¢ on Oy, 4. Using (11.226) and Cauchy we obtain the estimate

|(h0,) 0V Ro(w,t)] < Cy~ in (w,t) € Opq % [0,a] (11.235)

<M

for each 0 < p <1 and 7 € N” (recall that Ry is affine linear in I). In particular, using (b) we
obtain

|DVRy(w,t)| < C(n, 7')% < C(n,7)ep(n, ) < % in (w,t) € Opyy x [0, 0] (11.236)
for ¢o small enough. Differentiating (11.234) we get
Ot (w) + (DVRp)(¢r(w), t) O (w) + (V10 Ro) (e (w),t) =0 (11.237)

Using (11.235) and (11.236) we get the estimate

9h6n(@)| < Cln,7)= < Co(n. Tk in (w,1) € Opya x [0,d]
Differentiating (11.237) with respect to w we obtain

(h0u;)01pt(w) + (DV 1 Ro)(pt(w), 1) (RO, ) Ordr(w) = Qr(w)
where

Qi= — (hD)*(V10{Ro)(¢1,1)[0u;0¢, ' 04pt) — (hDy,)(hD)V [ Ro (bt t) .o~ 0y
— (h,)(V10:Ro) (1, t) — hD(V 10, Ro) (1, t) O, 1

Hereafter, D?f[-, ] stands for the quadratic form representing the second differential of f. Using
(11.235), (11.236) and (b), we obtain

. € .
|(h0,)OF (fr — id)| < ¢ i Op.
This completes the proof of the KAM Step Lemma. |
The analyticity with respect to t in Remark 11.3 follows from the theorem of Cauchy. o

Does the transformation F obtained by the KAM Step Lemma depend on the choice of the
parameters K, o, h, r, n and how? Following the construction of F we obtain the following

Remark 11.5 (Uniqueness by construction in the KAM Lemma). The transformation F, the
new normal form N4 and the error term Py depend on the choice of K wvia the truncation in
Step 1. If K is fized, then they do not depend on the choice of the other parameters o, h, r and
n in the following sense. Let o', I/, ' and 1’ be another admissible choice of the parameters
and F', N and P, be the corresponding transformation, normal form and error term. Then
F' =F, N = N4 and P! = Py on the intersection of their domains of definition.
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11.1.2  Preparing next iteration.

We are going to prepare the next iteration. Choose a “weighted error” F satisfying
0< E<n?<1/64 (11.238)

fix 0 < € <1 and set
e=éro" M E. (11.239)

where 0 < 0 < 1/5. Define K and h by

1

— 11,2 —
K—U IH(U), 2h_W

= (o/%(e))"*. (11.240)
Lemma 11.6. There exists E° = E°(n,7) > 0 depending only on n and T such that the
hypothesis (a)-(d) of Proposition 11.1 are satisfied for 0 < o < 1/5 and 0 < E < E%n,7)
provided that

2In?"2(0)E < co. (11.241)

Proof. Firstly, a) follows from the definition of ¢ choosing E < E° < ¢y(n,7)? and c) follows
from the definition h, while (d) follows from the inequality Ko = In%(¢) > In?(5) > 1. The
hypothesis (b) follows from the inequality

€ ro™tE

— < =2In>2(0)E < 11.242

hr — hr . (0)E < ¢ ( )
in view of (11.239) and (A.64), which yields (b) in Proposition 11.1. O

We are going to fix 17 and determine the parameters s;, o4, r+, ny, K4, hy, €4, and the
weighted error E for the next iteration. Suppose that

o "exp(—Ko) =0 "exp (— In*(0)) <’ (11.243)

Then using (11.238) and (11.239), one obtains from (11.212) the following inequality
1
0V Pils—s0mrnja < Coéra™ 'E (E+n” + 0 "e X)) < 3Coén’*ro™ ' E = 35+ (11.244)

where 0 < p <k and Cy = Cy(n,7) > 1 depends only on n and 7. Set

5

re=nr, s =85—50, o =d0, s=

where 0 < § < 1/6 will be fixed below and put ¢4 := éhr(ﬂrHEJr. Plugging the expression of
€4 in (11.244) and using (11.245) we get

E, = (6C’0(n,7')5_T_1) nk

which leads to an exponentially converging iteration scheme if 6Cy(n, 7)5_T_ln < 1. Now we fix

SAE

0 <9 < min(¥p/4,1), &:= (6Co(n,7))" 7, n:=4s 1+ (11.246)
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where v is a positive number which will be determined in Sect. 11.2 and ¥y > 1 is fixed in
(10.205). In particular, (11.246) implies that

0<6<1/(6Cy) <1/6 and 7 < d?<1/6,
since Cp > 1 and 7 > n — 1 > 1. Moreover,
E, =0¢"FE. (11.247)

Set ny = né”+~Y with certain v; > v which will be determined by the next iteration and put
hy = (1/2)K{7', where K = o' In?(0). Notice that

Sy =s8—>50=40s, St —boy=109(s—50)>0,

and one obtains that o4, s4,r4+,ny and K satisfy (11.210). Moreover,

h (T+1) 1
=+ < (Ui) et < o (11.248)
g
and (11.244) implies
1 1.
07 Pilsyrihy < 36+ = §€T+Ui+1E+ (11.249)

for 0 < p < k. We have prepared the next iteration.

11.2 TIteration
11.2.1  Choice of the small parameters.

As in [54] we are going to iterate the KAM step infinitely many times choosing appropriately
the parameters 0 < s,7,0,h,n7 < 1 and so on. Our goal is to get a convergent scheme. We are
going to define suitable strictly decreasing sequences of positive numbers {s;}22,, {r;}32, and
{h;}320, tending to 0. Set

S5 = 805j, 05 = Joéj, S0 — 500(1 — 5)_1 S (0, 1), (11.250)
where 6 = d§(n,7,9) < 1/6 is given by (11.246).

Given m > 0, we define an increasing sequence v(m) := (v;(m));en as follows. We set

Yo —1 for j<J(m)
vj(m) = (11.251)
m(t+1)+99—10 forj>J(m),

where 0 < ¥ < min(dJy/4,1), and
J(m) > m(r + 1)9~1 (11.252)

is an integer which will be determined in Sect. 11.2.5. If m = 0, we have v;(0) = ¥y — ¢ for any
j € N and we set J(0) = 0.

Taking into account (11.245), (11.246) and (11.247), we define the sequences {r;(m)};en,
{n;(m)};jen and {E;(m)};en as follows. Fix

ro = sp < 1’ no = 6T+1+’L9+V0 — 67’+1+190,
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and set for j > 1

nj = 1;(m) = 6V = 8oy = §TTHIAY,

(11.253)
rj =rj(m) =mnj_1rj1 =0"r, pi=jT+1+0)+ M+ -+ 1),
and
Ej = Ej(m) = 5Vj_1Ej,1 = 5VO+"'+Vj_1E0. (11254)
Take the positive number Ey = Ey(n, 7,v) sufficiently small so that
Fo < 12 = 62724200
The inequality (11.252) implies that
21/j—21/0 < v+ t+vi-1, j=>1. (11255)

Indeed, if m = 0 then v; = vy = ¥g — ¥ > 0 for each j. Let m > 1. For j < J(m) have
vi =1y =19 — 19 >0 and for j > J(m) we get

2uj —2vg =2m(T+1) < J(m)Y <259 < j(¥o—V) <wvp+---+ v
which yields the inequality for any m € N and j € N. Now, (11.253), (11.254) and (11.255) yield
0<Ej<nf<nmj<1/64, jeN. (11.256)
Taking into account (11.239), we put
gj = érjol "V Ej = éroof T EgbY, (11.257)
where go = 0 and ¢; = ¢;(m) is given for j > 1 by

G =PI D)+ o)

. (11.258)
= j2r4+2+9)+2(p+ - +vim1).

The parameter 0 < £ < 1 will be chosen later. Finally, taking into account (A.64) we set
Kj=0;'I(0;) and 2h; = K; 7' = (0;/In%(0;))"", jeN. (11.259)
We have
sj+1=8; —50j, 0j=51(1—3)s; and hjy1/h; <5 < 1/6 (11.260)

in view of (11.248) and (11.250). Moreover, s;1 — bsj11 = 0(s; — 5s;) and (11.210) holds for
each j € N. We are going to show that (11.243) and hypothesis (a) - (d) of Proposition 11.1 are
satisfied for any j € N.

Lemma 11.7. There exist constants
0<aog= 50(71,7’,190,19) < (1 — 5)/5, 0< Eo = E@(H,T,ﬁo,ﬁ) < 1/647

depending only on n, 7, Yo and ¥, such that (11.210), (11.243), (11.256), and the hypothesis
(a)-(d) are satisfied for any j € N, provided that

0<og< go, 0< Ey < Eo, 21n2T+2(00)E0 < ¢p.
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Proof. We have already obtained (11.210) and (11.256) for j € N. Choosing Ey < Eqo(n, 7,9g) <
c we get (a) for any j € N, while (11.259) implies (c). Moreover, (d) holds since Kjo; =
In*(o;) > 1. On the other hand, (b) holds if E; and o; verify (11.241). By (11.251) and since
Yo > 41, we obtain

21n27+2(0j)Ej = 21H27—+2(Uo5j)(5yo+‘..+yj71E0 < 2 1n27+2(005j)62j19E0 = f(dj)a
where the function
z = f(z) = 2% 2 (ogx)2*’ By

is increasing in the interval (0, 1], provided that 0 < o9 < 7, := exp (—(7‘ + 1)19*1). Then we
have ‘
21?2 (0;)E; < f(67) < f(1) = 2In*"2(09) Ep < co
for 0 < o < 0y,
We are going to prove (11.243). For j = 0 this means that
o5 " exp (—1In*(0y)) 6220 <1,

The function x — ™" exp (— In? x) is increasing in the interval (0,e~V"] and & depends only

on n, 7 and ¥, hence, there exists a positive constant o = o) (n,7,9) < e~V™ such that the
inequality is satisfied for any 0 < og < o).
Suppose now that 7 > 1. Notice that

vi(m) < jo + 199 — v
in view of (11.251) and (11.252), hence,
n; > §I0+THI+Y0 5]'19770_
This implies
o; " exp (- lnz(aj)) n;Q < oy " exp (- 1n2(005j)) 62t = g(67 ™).

The function

n—

z— g(z) =z P exp (— ln2(aox)) oy "

is increasing in the interval 0 < x < 1 for 0 < 09 < 74 := e~ V"2% and we get
o; " exp (- ln2(aj)) 77]-_2 <g(6;") < g(1) =0y "exp (— lnz(ao)) no 2 < 1.
for 0 < o9 < a('(n, ,?). This yields (11.243) for any j € N.

We fix 0 < 09 < (1 —6)/5 ones forever by
1
0 < o9 = o9(n, 7,90,7) := min (ﬁ’ T4, 005 56”), (11.261)

and then choose Ey in Lemma 11.7 such that 2E; < ¢oln=>""%(0g). Then (b) holds for any
0 < Ey < Ep and j € N. The choice of o is motivated by the previous Lemma and by (11.264).
Using the proof of (b) in Lemma 11.7 we obtain the inequality
:—J < 2In*"t?(0;)E; < 30’6319 1H2T+2(JJ)J?19EO <C(n,, 190,19)0]2-1915’0, (11.262)
)
since ¥ < 9 /4.
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Remark 11.8. The sequences of n; = n;(m), r; = r;(m) and weighted errors E; = Ej(m)
depend on the choice of m € N, but o, hj and K; do not depend on m.

11.2.2  Analytic smoothing of P;.

The Hamiltonian P; is not analytic and one can not apply directly the KAM step to it. We are
going to approximate it by real analytic functions. To this end we recall some facts about the
analytic smoothing technique in Section A.1. We are going to apply the Approximation Lemmas
A.1 to the real valued Hamiltonian P € C* ([O,a]; CE(A™ x Q)), where ¢ > 0 and 0 < L < co.
Set

uj =upd’ , j €N, (11.263)

where
0 < up = 659 = 30(1 — &) Lo < 3600 < 1, (11.264)

the small parameter 0 < § = d(n,7,9) < 1/6 is given by (11.246) and og is fixed in (11.261).
Let us denote by U; the complex strips in C"/27Z"™ x C™ x C" consisting of all (6,;w) such
that

Imé|, ImI|, Imw| < uj, (11.265)

and by A(U;) the set of all real-analytic bounded functions in ¢} equipped with the sup-norm
| - |u;- Define

Pl :=8,P, jeN, (11.266)

by means of the Approximation Lemma A.1. This is a C* family with respect to ¢t € [0, a] of real
analytic in C"/27Z"™ x C™ x C™ functions. In view of (A.7), for each finite ¢ < L and 0 < ¢ < ¢,
the following inequality is true

1P} — Plly < C(n, 0)u™" | Pls (11.267)

in the corresponding Hélder norms on T™ x R™ x . On the other hand, the inequality (A.6)
with p=wu; and p =u;_1 = 5*1uj, yields the estimate

CAGE

LS Couj_1 0] Pille = Cuj |10} Pile
J

for each finite £, 0 < ¢ < L and 0 < p < k, where C = C({,n,T,9) = Co(n,£)d~¢ is a positive
constant depending only on ¢, n, T,v9y. Moreover,

|07 P, < Colloy Pello < Cugl|OF Fille

uo

where C' = Co(n)ug’. The positive constant Cp := max(c,¢) = Cy(n,,99) depends only on
£, n, 7 and ¥y. Hence,

|07 PY|, <Zo, and ‘85135 P <&y, for j>1 (11.268)
uj
for any finite ¢, 0 < ¢ < L < 0o, where
k
Eogk = Cpuf Y sup [|OF P, (11.269)
»—0 0<t<a
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and Cyp = C(¢,n,1,99) > 0 depends only on ¢, n, 7 and 9.
We would like to deal with P7 at the j-th iteration putting P/ — P! in the error term. To
this end we need for 0 < p < k the following inequalities

Uoand |orpl —orpiY < HEL for > 1 (11.270)

‘afpto‘uo S 2 Uj - 4

These inequalities will be obtained in Sect. 11.2.5, choosing appropriatelly the sequence v and
the small constants e and €.
Using the notations introduced in the beginning of Sect. 11.1.1 we set

D]’ = DS]',T]' s Oj = Oh]. s V]’ = Dj X Oj. (11.271)
Moreover, given an integer 1 < g < 3 we set
O] := Og), and V] := D] x 0. (11.272)

We have
Dj+1 X Oj+1 C DJ1 X 0]1

since sup {sj4+1/sj, 7j+1/rj, hj+1/h;} <06 < 1/6.
11.2.3 [terative Lemma.
We are ready to make the iterations. Consider the real analytic in ¢/; Hamiltonian
H] (¢, I;w) = H (¢, I;w,t) := No(I;w) + P/ (¢, T;w),
where No(I;w) := (w,I) and U; is defined by (11.265). Let us denote by U]Q the subset of
C"™/2mZ™ x C™ x C™ consisting of all (¢, I;w) such that

1
Imé|, ImI|, Imw| < JUs -

We have 2s; < u;, which yields D; x O; C L{]Q. Using the notations introduced in (11.272) we
obtain
Dji1 x Oj41 CDF x OF C Dj x O CU) C U (11.273)

since sup {sj+1/5;, 7j41/7j, hj+1/h;} <6 < 1/6. For any j € N, let us denote by D; the class
of real-analytic diffeomorphisms

Fj:Djt1 x Oj41 — Di x OF
of the form
Fi(0, Lw) = (®(0,;w), ¢j(w)), (0, [;w) = (Uj(0;w), Vi(0, [;w)), (11.274)
where V;(60, I;w) is affine linear with respect to I, and (6,1) — ®;(6,I; w) is a canonical trans-

formation for any fixed w. To simplify the notations we denote the sup-norm of functions
f:Djx0; = Chy [f|;j = |f|8j,7“j,hj' Fix k € {0;1}.
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Proposition 11.9 (Iterative Lemma). Let P7 € C*([0,a], A(U;)), j € N, be a C* family of real
analytic Hamiltonians in U; satisfying (11.270) and HJ = Ng+ P?. Then for each j € N there
is a normal form N;j(I;w,t) = ej(w,t) + (w,I) and a C* family of real analytic transformations

Fi e C*([0,a), A(D; x Oj,(Dg x Og) NUY)), F| =Fi(-1), (11.275)
such that
1. F¥ =id and .7-"757.Jrl = Fio00---0F;, for j >0, where
F; € C*([0,a], A(Dj41 x Oj41,D? x 03)) and  Fy;(-,t) == F;(-,t) € Dj;  (11.276)
2. HV o FI™t = Njiy + Rj1 and |0V Rjs1|j41 < €j41/2 for 0 < p < k;

3. The following estimates hold

7 . = — Coe;
W0 (Fij = id)|jer + [W;00(DFyy —1)W; |1 < 57, (11.277)
7%
1 i Cog;
0P (F ™ = F)lj+1 < , (11.278)
Tjhj

for 0 < p <k and uniformly with respect to t € [0,a], where Co = Cy(n, T,9,79) >0, D]-"tj
stands for the Jacobian of F} with respect to (0, I;w), and
W, = diag (o;711d, r;~1d, h; '1d).

Proof. For k = 0 the proof is similar to that of the Iterative Lemma in [54] and it is done
in [59] in the case of Gevrey Hamiltonians independent of t. Additional efforts are required for
the proof of the estimates (11.277) and (11.278) in the case when p =k = 1.

Consider firstly the Hamiltonian HY = Ny 4+ PY. It satisfies the hypothesis of Proposition
11.1 in Dy x Og for t € [0, a] in view of (11.270) and Lemma 11.7. Hence, applying the KAM
Step Lemma to the Hamiltonian H° we find F! = Fy such that H° o F! = N; + Ry, where
Ry (-, t) is real analytic in Dy x O1 and |0V Ry (-, t)|1 < 1/2. Moreover, (11.277) holds for j = 0.

Given j > 1 we suppose that the Proposition holds for all indexes 0 <[ < j — 1. We are
going to prove it for [ = j. We are looking for a transformation /™! = FJ o F;, where F;
belongs to D;. By the inductive assumption we have

H'"'o Fi = N; + Rj,

where Nj(I;w,t) = e;(w,t) + (w,I), R;(-,t) is real analytic in D; x O;, and |0V R;(-,t)|; < &;/2.
Then we write
HY o FItt = (Ng + PI 1) o FItl 4 (P7 — PI=1) o FIH!

= (Hj_l o]:j) oF;+ (Pj — Pj_l) o Fitl
= (N;j+ Rj+ (P! =PI o FI) o F;.
Consider the Hamiltonian ij = N;+ R; + (P’ — PI7Y) o FJ in Dj x O; for t € [0,a] and set
R} = (P? — PI=") o FJ. Using (11.270) we get
, - , , . .
(P} =P/ ) o F( 0l < [P = B o < 5
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On the other hand, by the inductive assumptions (11.275) we obtain
0:((P] = PI™) 0 FI(-, 1))l < |0P] — 0P yo + [(D(B; — P71 0 FI(, 1)) 0 F7 (-, 1)
The firs term of the right hand side is estimated by % in veiw of (11.270). Using (11.275) we
estimate the second one by
ID(F] =PI W oo W0 F (1)

(here we consider W, as a linear operator acting on C*"). Now Cauchy estimates (see Remark
11.4 ) and (11.270) yield

D(P! — PI7hywt

! ‘ug) - )(Sjv97rjvbhjvw) (P} - P71

uo
5 1 e E? (11.279)
<sup{sj,r;,h;} o |P) — Pt]_1|u]. <2 x g X Zj < Zj

J

Moreover, (11.277) and (11.262) imply that |W;0,F7(-,t)|; < 1 for Ey = Eo(n,7,90,9) > 0
small enough. Finally, we obtain

|aij —l—afR?b‘ <¢gj, DPE {0;1}.

We apply the KAM Step Lemma - Proposition 11.1 - to the C* family of Hamiltonians H. -
Using Remark 11.4, (11.249) and (11.262) as well, we find a C* family of real-analytic maps

.Fj(-,t) : Dj+1 X Oj+1 — l)j2 X 0]2

which belong to the class D;, satisfy (11.277) and such that (N; + R;) o Fj = Njqt1 + Rjta,
where
€j+1

1 1
PR . iy T+l o [y ) THp
]8t Rj+1’j+1 < 263T]+1O'j+1 Ej+1 < 2€J+1TJ+1Uj+1 E]+1 = 5

We are going to show that ‘
FH D x 0541 — U, (11.280)

To prove (11.280) we estimate the norm of the linear operator Wqu;ll. We have

o7 o7 —1
|Wqu+1| = sup {3q+1/8q,7'q+1/Tq, hq+1/hq} = Sq-i-l/sq = 67

since 7441/rg < 071 < § and hgi1/hy < 87T < § for any ¢ € N by (11.253) and (11.260).
Recall that ¢ and Fy depend only on n, 7, ¥9 and ¥. Then using (11.262) and the inductive
assumption (11.277), we estimate the Jacobian of F/*1 in D; 1 x ;41 as follows (see also [54])

WODleWj‘l)jH - )WOD(foo...ofj)Wj‘l‘jH
= — 1 — — 1|\ | — 1
H(‘Wququ ‘QH ‘WquHD (Wijjo ‘
=0

IN

J+1

IN
>
<
—3
N
—
+
= Q
ek
N~
A
(%)
o,
o}
M
o}
N
(]2
= |Q
==
~



where C' = C(n, 1,9, 9) stands for different positive constants depending only on n, 7, ¥J¢ and
9. Choosing the parameter Fy = Ey(n, 7,99, 9) > 0 sufficiently small we obtain

WoDFHW ' <&, jeN (11.281)
ol
Set
z=(0,1,w) =241y € Djy1 x Oj41,

where z and y are respectively the real and the imaginary part of 2. Then |W 41 y| < 1, where
| - | stands for the sup-norm. We have

Fitl (@ +iy) = FH @)+ iW, Ti(z,9)W,y,
1

Ty(ey) = [ WoDF o+ itg) W di
0

(we consider | W ; as a linear operator acting in (R3", |- |)). Moreover, |Tj41(z,y)| < ¢’ and since
Wiyl <8|Wit1y| <5 <1/6, we get

_ 1 . »
T (2, y)Wiyl <58, @+iy € Djp1 x Oj1.

Denote by Z;+1(z,y) the imaginary part of F/*!(z+iy). Since F/71(z) is real valued, Z;11(x,y)
is equal to the real part of WO_ITJ'_H(.%’, y)W;y. Then we get
_ B | = 1 .
Uj 1|Zj+1($,y)‘ <90 JUO 1’W0 ‘|Tj+1(w7y)wj yl < 97 z+iy € Djpq X Oj+1 )
and we obtain (11.280).
It remains to prove (11.278). In the case when p = 0 it follows from the arguments in

[54]. Suppose now that p = k = 1. Denote by DF(z) the differential of 7/ with respect to
z = (0,1,w) acting on vectors n € C3" by n — DF/~1(2).n. Consider

O(FIT — FIy = 0y(F o Fj — FV)

= (DFV 0 F}) O F; + (O F7) 0 Fj — 9 F7 = ¥y + X
where ‘
Y= (D./rj o f']) : c%]-}-,
1
S / (DOFI)(@F; + (1 - 2)id) . (F; — id) dz.
0
We are going to estimate ¥;, 1 <1 < 2. By (11.276), (11.277) and (11.281) we get for any j > 1
D1l < hg' }WODF'WJ-’I‘ (W00 F| < Co%. (11.282)
J J'g

Consider ¥y now. Set F* = F_; = id and put F9J = Fgo--roFj_1forg < j—1and
F7J =id. For j > 1 we have

<.
|
_

OFI =0y (Foo---0Fj_1) =Y (DF¥oFTI) ((0pF,) o FItH).

Q
Il
o
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Using (11.276), (11.277), (11.281) and (11.262) we get as above
j—1
0.F|, < he' Y \WOquWq—l\q (WO Fy
q=0
< OZJ: F1 01— 6¥) LR,
B =0 rqhq
where C' stands for different constants depending only on n, 7, ¥y and ¥). By Cauchy this implies
|DOFIW;| < C (11.283)
uniformly on D} x O% x [0, a], and we get
€j
rih;

Xol; g < sup (11.284)

2202
D2 x0% x[0,a]

WoDoFIW | [W;(F; —id)|,,, < C

where C' = C(n, 1,9, v) stands for different positive constants depending only on n, 7, ¥J¢ and
9.

This proves (11.278) for p = k = 1. In the case when p = 0 we use the same arguments.
This completes the proof of Proposition 11.9. O

Remark 11.10 (Uniqueness by construction in the Iterative Lemma). The transformations
Ft.j, the normal forms Ny ; = Nj(-,t) and the error terms P; j := Pj(-,t) do not depend on the

choice of m > 0 in (11.251) in the following sense. Let m' > 0 and let F ;, Ny ; and P/ ;, be the
corresponding transformations, normal forms and error terms. Then ]:{’j = Fijs Nt’J = Ny

and Pt’J = P, ; on the intersection of their domains of definition.

Remark 11.10 follows from Remark 11.5 and Remark 11.8 by induction whit respect to j € N.

The Iterative Lemma provides a convergent schema giving in a limit a C'**° function on T™ x £y
in a Whitney sense. To avoid inconveniences arising from the Whitney extension theorem, we
propose a modified Iterative Lemma in the next section.

11.2.4 Modified Iterative Lemma.

We are going to modify ]-"tj multiplying .Fg —id by a suitable almost analytic cut-off function in
we Cm.

1. Construction of almost analytic cut-off functions.

We say that a function f : C" — C", given by = + iy — f(z + iy) := f(z,y) for z,y € R", is
R-smooth, or € in a real sens, if the function R" x R" 5 (z,y) — f(z,y) is C*-smooth. As
usually we denote by 0;, 1 <1 < n, the operators

S0 _1(0 o
l_851_2 ox; Zayl ’

and we set = (O1,...,0,). A R-smooth function f : C* — C” is called almost-analytic if the

vector-function (z,y) — Of (z + iy) is flat at R x {0}, in the sense that
855f(x,y)|y:0 =0 for any 8 € N",
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Such a function is “very small” for y small. If f is an almost analytic Gevrey functions, then it
is even exponentially small. Given p > 1 and L > 1, we say that f belongs to the Gevrey class
g7 (C™) if it is R-smooth and

Iflei= swp w1020 f(e,)| L7l ep) < oo,
,BEN" (z,y)ER™XR™

where |a| = a1 + -+ a, and ol = aq!---ap! for @ = (ay,...,a,) € N. We say that f is
Gevrey-G? function. If the function f € G7(C™) is almost-analytic, then there exist positive
constants C' = C(n, p) and ¢ = ¢(n, p) depending only on n and p, such that

_ _ 1
02050, (w +iy)| < CIIfo LHal?B1? exp (—e(Llyl) 77 )

for any a,6 € N and 1 <[ < n.

Proposition 11.11. For any n > 2 and p > 1 there exist positive constants C = C(n,p),

L = L(n,p) and c = c(n, p), and a family of almost-analytic functions x; € gg/h ‘+1(Cn)’ jeN,
J

with the following properties

(i) supp (x;) C O?H and x; =1 on OJQ-H;

(1) Ixill/nsyy < C for j €N;
(iii) the following estimate holds

0200x;(x +iy)| < C(L/hjs)* P 0l 3) 7 exp (el /s ) 77
on C™ for any j € N and «a, f € N™.
The proposition will be proved in Section A.2.
2. Modified transformations.
From now on we take p = 2 in Proposition 11.11. We define the modified transformations
Hej: Djy1 x C" — C"/27Z2" x C" x C"

by
Hij(2) =24 xj(w) (Fr(2) —2), z=(0,1;w) € Djq1 xC". (11.285)

Setting H; ; = (:I;t,j, @j), this means that
{ (0, ;w) = (0,1)+x;(w) (B0, T;w) = (0,1)),
Pjt(w) = w+ x; (W) (d5(w) —w),
for (0,1;w) € Dj41 x C™.

Lemma 11.12. The following relations hold for any j € N provided Ey = Ey(n,T,0,9) is
sufficiently small

(1) ’HtJ : Dj+1 x C" —)DJQ X(Cn,
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(2) (;t,j(Oj—i-l) C 0]2 and 'HtJ : Dj+1 X Oj+1 — l)]2 X 0]2
Proof. (1) Recall from (11.277) that
C()Ej

27

by (11.277) and (11.262), where W; = diag (o;'Id, r;~*Id). Moreover,

’Wj(‘bm‘ - id)|DjJrl < < C()C(n, 7,90, 19)E0

‘Xj|(C" < HXjHl/th < C(n)

in view of Proposition 11.11, (ii). This yields

[W;(@¢; —id)|p,,, < Ci(n,7,9,9)Ey <

| =

choosing Ey = Fy(n, 7,7, 9) sufficiently small, and we obtain (1).
(2) Let w € Oj41. Then there exists w’ € Q; such that |w —w'| < hj;1 and we get as above

- e
91 (w) —w'| < Jw =W FIxll/n 0 (w) — | < Ay + C(n)Cor%
J
1 1
< hjt1+C(n,7,9,9)Eohj < hjy1 + gh]‘ < ihj’
for Ey = Ey(n, 7,99,9) > 0 sufficiently small, hence, ggt,j(w) € 0]2. O

Let us define H; = (¥, ¢;) and H7 by H;(-,t) = Hs; and HI(-,t) = HJ for t € [0, a], where

7‘[? = id, H{+1 = 7‘[@0 O--- O/HtJ‘ : Dj_|_1 x C" — D() x C™.

We set 0; = 8%1 for1 <l<mnandd=(dy,...,0,) . We are going to use as well the convention
ﬁ = 400 and exp(—o0) = 0.

Proposition 11.13 (Modified Iterative Lemma). Under the assumptions of Proposition 11.9,
the transformations " are well defined on D; x C™ x [0,a] and have the following properties

(i) H7 € C*(]0,a],C°>®(D;j x C", Dy x C")) and 7-[% = .7-"tj on Dj x 0]2 fort € [0,a]. Moreover,

supp (H{+1 — H‘Z) C Djiq % O?H and 7-[{“ — Hi = th oHij — .7-"tj;

(i1) \8?(7—[{“ —Hg)(z)] < SO;] for z = (0,1;w) € Djy1 xC", t €[0,a], and 0 <p <k,
31

where Cy = Co(n, 7,99,9) > 0;

iii) HITY — H7 is analytic with respect to (0,1) € D; and almost analytic and Gevrey-G? with
J
respect to w. Moreover, for any 0 < p < k the following estimate holds

i
rih’ (11.286)

‘58? (’,L[j+1 _ Hj) (G,I;w,t)‘ < C’hj_j1 exp (—c ‘h}gz—;”)
for (0, I;w) € D?H x C", t€]0,qa],

where C = C(n,T,09,9) and c = c¢(n) are positive constants;
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(iv) the following estimate is true

‘apaﬁm (HIT! = H7) (0, T;w t)‘ < Cp, h o 22 () (11.287)
J J

for (6,1; )EDQ_HX]R” t €0,a]l, and 0 <p <k, 5,7 € N", where
Cﬁﬁ = C/BW(H,T 190,19) > 0.

Proof. (i) Recall that xj—1 =1 on OJ2», hence, H; j—1 = Ftj—1 on Dj; X OJQ-. Moreover,
Fij-1:Dj x Oj = D} | x OF_ by Proposition 11.9 and x;_2 = 1 on OF_;, which implies

(H{ " oHej—1)(2) = (H{ ' o Frjoi)(2) = (F ' o Fuj)(2)
for any z € D; x OJQ.. Repeating this argument we obtain the equality
Hi(z) = (H o Fiym)(z) = - = (Fro o0 Fry1)(2) = Fi (2).

fwé¢ O;’H, then x;(w) =0, H¢ (0, [;w) = (0, ];w) and ’H{H(H,I;w) = H{(G,I;w), hence,
supp (H{ ™ — M) C D11 % 0]+1

Let 2 = (0, [;w) € Dj41x 03 711 C Djy1x0j41. Lemma 11.12 implies that Hy j(z) € Djz- ><OJ2-,
hence, Xj_l(qgj(w)) = 1 and we obtain

(Hej-10Hij)(2) = (Frj-10Hiy)(z) € Dj 4 x OF 4

On the other hand x;j_2 =1 on 032-71 and repeating this argument we get

(H] oHej)(2) = (Hioo-oHyj—10He;)(2) = (Hego o Frj10He;)(2)
= s = (‘Ft,O O:+++0 -Ft,j—l o Ht’j)(z) = (.th o %t’j)(Z)

Moreover, HJ(z) = F}(z) since z € Dji1 x0j41 C DJQ- X OJZ, and we obtain the equality
Hi W] = F] oHy; — F]
t t t 12 t

on Dji1 x O3, On the other hand, both sides of it vanish at any z € Djy1 x (C™\ O3,,).
Hence, the above equality is true on D;q x C". This completes the proof of (i).

(ii) Let p=0. Using (i) we obtain
1
HIT W = FloH; — FI :Xj/ (DF)(zHj+ (1 —x)id) . (F; —id ) dx.
0

Moreover, for any z € supp (7—[{Jrl - 7-[{) C Dji1 X Oj1 C DJQ- X sz we have
aHj(z)+ (1 —2)z€ Df xOF for 0<x<1, (11.288)
and (11.277) and (11.278) imply

e
< Cy J

; ; g — T .
I~ |4 < Cn)hg [WoDFIW, ‘j W,(F; — i), o
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Let p = 1. By the chain rule we get
O(HIT —HI) = 9y(FT o H; — FJ)
= (DF’ o H;) .0 Fj + (O F7) o Hj — O F) =51 + 5
where .
21 = (D]:J OHJ') . 8,5]:]',
1
o ;:/ (DOFI) M, + (1 —2)id) . (F; — id) da.
0
Using (11.288), we estimate ¥ and ¥ as in (11.282) and (11.284).

(iii)  Let p = 0. Recall that F7 is analytic on D; x O;, F; is analytic with respect to
z=(0,I;w) € Djy1 x Ojy1, and that H;(z,t) = z + x;(w)(Fj(z,t) — 2).
Differentiating the identity in (i) we obtain for any 1 <[ < n the following one

D — HI) (2, 8) = 2 (FF oM, — FI) (2, 1)
o) (11.289)

= Oy () DF (M) (Fy(2.1) — 2)

for each z € supp (HJ ™" — HJ) and ¢ € [0,a]. According to Proposition 11.11 we have

_ B hiiq
dxi(w)| < Chl —c—2t ) 11.290
wsélé)n | lXj ((U)‘ — 7+1 exp ( c |IH1 ((.U)| ( )

Morreover, z € Djiq X O?H and H;(z,t) € DJQ- X 0]2 in view of item (i), and arguing as in the
proof of (11.282) we obtain (iii) for p = 0.

Let p = k = 1. Differentiating the identity (11.289) with respect to ¢ we obtain
Dy (HITT — HI) (2, 1)
= Oix; (W) DF] (H(2,1)) - (Fy(2,t) — 2)
+Ix;j(W)DF! (H(2,1)) .0uFj(z,1)
x5 (@)X (@) D F (H(2, 1)) [00Fj (2, 1), Fi (2, 1) — 2)]

for z € supp (H] ™" — H).
Consider for any z = (0, I;w) € D; x O; the symmetric bilinear form

(€,m) = D*Fl(z,0)¢,n), &neC,

representing the second differential of ]:tj at z. We have

Lemma 11.14. There exists C = C(n,T,399,0) > 0 such that
DI — n
D2afft] (Z)[W] 3 Wj 77] < C‘§|(C3"|77|(C3"7 §&ne c? ) (11291)

foranyzGD]zXO]z,tG[O,a],ngSk, and j € N.
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Proof.  The expression D20} F/(z, t)[W]flg ,W;ln] is a sum of monomials of the form
(906)" (rj1)" (h;0 Y O F(0.1: . ) .

where |a| + |5 + || =2 and 1 < I,m < n. The estimate follows from (11.278) and the Cauchy
inequalities . O

For each z € supp (H] ' — H]) C Dj41 x Oj41 we have H](2) € D3 x O3 in view of Lemma
11.12. Then the estimate (11.287) follows from (11.290), Lemma 11.14, and (11.277) as in the
case p = 0. This proves (iii).

(iv)  We are going to use Cauchy formula for almost analytic functions. Let f: C — C be
a R-smooth almost analytic function. Denote by D, (z) the open disc {z € C: |z — x| < r} of
radius r > 0 and by 0D, (z) its boundary oriented counter clockwise. For any x € R and § € N,
the following Cauchy integral formula is valid

5
%(m) - % {/m«( (z—2)" " f(2) dz + // aIE )dz/\dz} (11.292)

(see e.g. [25], Proposition 1.1). Notice that the second integral is well defined since the function
af is flat at R.
Set
Rj = hjy1In"*(041)
and ' ‘
Ig.,(0,1;w,t) = 8585831 (’H]Jrl —H) (0, I;w,t)

for (0, I;w) € DJQ-+1 x R™, t € [0,a]. Recall that H7 is analytic with respect to (6,1) € Dj41.
Applying first the Cauchy inequality with respect to 6, we get

g (0, [;w,t)] < (20j+1)7|5|71|fo,71(9,I;w,t)|.

for (0,I;w) € DQJrl x R", t € [0,a]. We are going to estimate |Io~(6,I;w,t)|.
Applying Cauchy formula (11.292) to the variable 2 = w; € R, keeping o’ = (wa,...,wy)
fixed in R™"!, we obtain

7! OO (HITY —HIN(O,I; 2,0, t)
Ip, (0, ;w,t) = — d
0771( b ) 271 Dg.(w1) (Z—wl)’71+1 o
! _ , (11.293)
! RO = W) 0, L2, 8)
— T dz Ndz
270 J g, (@) (z —wi)n+

for (0, I;w) € D? 21 x R"and t € [0,qa].
Using (ii) we estimate the first integral by

6Jh711

2y, +2
Cﬁ'}’l rih; i1 In M 0)41)

for (0, I;w) € DJQ-_H x R™ and t € [0, al.
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In order to estimate the second integral we are going to use the following estimate

1 hjt1 —1
- _ h-
[z — it P ( “Tim <z>r) o

1 ha .
= T 2Pt P <‘§ [ jfl>|> 2o I (1 )5 )
miz m(z
1
S C‘ﬂW
J

for z # wy. Using (iii) and the estimate above, we estimate the second integral by

€j —v1—1
CV Tjhj hj—d
for (0, I;w) € Djz-Jrl x R™ and t € [0, a).
This implies
o (6, I, )] < Coy ——h; 0 (1 /0y y)

Tjhj g+l
for (6, ;w) € D32‘+1 x R™ and t € [0, a.
Finally we obtain
Ej v —1 _
‘Iﬁf}’l (97I;w7t>‘ S 05771 ﬁh‘jji 1n2ﬂ/1+2(1/0—j+1)0'j4‘ﬁ|
for (0,I;w) € DJQ-Jr1 x R™ and ¢t € [0,a]. This proves (iv) in the case when v = (71,0,...,0).
By a permutation of the indexes, we obtain it as well for v = (0,...,0,7v;,0,...,0). It remains

to prove the estimate for the mixed derivatives with respect to w. To this end we shall use the
following

Lemma 11.15. For any v € N" of length N = |y| > 2 there exist (N + 1)1 vectors ¥, and

constants ¢,, such that
0] = emly

where Ly, stands for the directional derivative Ly, f(w) = L|s—of(w + stn).

Proof.  We proceed by induction with respect to n > 2. Let n = 2 and v = (71,72) with
72 # 0. Denote by & and € the canonical basis of R? and set ¥ = &, + A&, where A > 0. We
have

N
LY => N1, L=
1=0
Choosing A\, = m/(N + 1) and 9, = €1 + A\ppé2 for 1 < m < N + 1, we obtain the linear system

Nt N-lql
l!(N—l)!al %-

N
SN Li=c£y, m=0,...,N.
=0
This system has a unique solution with respect to L;, 0 < [ < N, since the corresponding

determinant is just the Vandermonde determinant. Then we use induction with respect to n. O

Applying the preceding argument for each derivative Eévm, we complete the proof of (iv). O
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Remark 11.16 (Uniqueness in the Modified Iterative Lemma). The transformations H? do not
depend on the choice of m > 0 in (11.251) in the sense of Remark 11.10.

11.2.5 Choice of the sequence v and the small parameters € and €.

Given m € N we consider the sequence (vj(m));ecn introduced in (11.251) and set

by =27+ 2+ 2 for j < J(m),
li(m) = (11.294)
by =2m(T+1)+ 4y for 5> J(m),

where J(0) = 0 and J(m), m > 0, will be a suitable integer satisfying (11.252).

Consider the family of functions Ptj , j € N, defined by (11.266). In order to apply the
Iterative Lemma and the Modified Iterative Lemma to that family, we have to show that it
satisfies (11.270), To this end we will choose appropriately the small constants ¢ and ¢ as well
as the integer J(m) for each m > 0. By (11.268) and (11.269), it suffices to prove for each j € N
that

k 1

£j . - .
Cous Z sup ||07Pl, < b *Erj_t,_l(m)o'-i_llEj_i_l(m) with £ = £;(m). (11.295)
! 10 0<t<a 4 4 /

Here r;(m) and Ej(m) are given by (11.253) and (11.254), respectively, ¢ € (0,1]. In view of
(11.263) and (11.253)-(11.258), the relation (11.295) becomes

- (6/650)"
> sup 0P|y < éroog MM with £ = ¢5(m), (11.296)
£ 0<t<a 4CYy
where
M; = 11— (J+ 1)
= (G+DEr+2+9—L;(m))+2(vo(m)+ -+ vj(m)).
Since rg = sor > ogr, the inequality (11.296) will follow from the following one
sup [|OF Plle;my < €€;(m)s™i™ 0 <p <k, (11.298)
0<t<a
where t,(m)
i m
ej(m) = ag”EoM. (11.299)
8C4;(m)
We have ,
€ = O‘SJJEQ% for j < J(m);
ej(m) = o
€m = USJFQEOM for j > J(m).

2

For m = 0, taking into account (11.251) and (11.294), we obtain

M;(0) = —(j + 1)9.
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For m > 0 we obtain in the same way

—(+ 17, g <J(m),

Mj(m)=<¢ —j@2m(r+1)+9) -9, j =J(m), (11.300)

Mymy(m) — (G = J(m))9, j = J(m).

Our aim now is to satisfy (11.298) for each m € N, j € N, and 0 < p < k < 1, choosing
appropriately ¢ € (0,1] and J(m).
(1)  The case when p = 0.
Suppose firstly that m = 0. Then (11.298) becomes

sup ||Pille, < €€, VjeN. (11.301)
0<t<a
Let us set ;
4 —*0
€ = €= 08+2E0(4806?7
to (11.302)
g = ¢! sup | Pl o -

0<t<a

Then (11.301) holds for any j € N. Moreover, (10.207) just means that
0<ép<1.

Notice that e depends only on n, 7, U9 and ¥ since ¢y, 09, so and Eg depend only on n, 7, ¥
and ¥ by Lemma 11.7, (11.260) and (11.261). Hence, one can apply the Iterative Lemma.
Suppose now that m > 0. If j < J(m), then £;(m) = ¢y and M;(m) = —(j + 1), and
(11.298) for p = 0 reduces to (11.301) with € and € given by (11.302).
On the other hand, for j = J(m) and any k € {0;1}, the inequality (11.298) becomes

k
Al (m) := Co(m)s? T+ 3~ sup (10 Pillegm) < &, (11.303)
p=0 ==

where Cy(m) = 87}

The sequence (A}(m));en is decreasing and it tends to zero. Let J(m) be the smallest integer

§>m(r+ 1)1

such that A?(m) < €. Then (11.298) holds for j = J(m) and p = 0. Moreover, J(m) satisfies
(11.252) by definition. For j > J(m) we have

sup ”PtHZj(m) :Os<1tll<) HPtHZm < éeméM‘l<m>(m) Séem(;Mj(m)
Stsa

0<t<a

in view of (11.300), hence, (11.298) is satisfied for each j € N when p = 0.
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Lemma 11.17. There exist B B
Cm = Cr(n, 1,9,99) > 0,

depending only on n,7,9,%y and m, such that
Cmé < A, (m) < é. (11.304)
Proof.  If J(m) — 1> m(7 + 1)9~1, then Ag(m)_l(m) > ¢, and we get

&> Ay (m) = 2mTHTIAG S (m) > g6,

m)

If J(m) < m(7 +1)9~! 4+ 1, then

é

v

Ay (m) = Co(m)d”MEPEEDHD sup || P4,
0<t<a
> Co(m)s*™ee,

where b(m) = (m(7 + 1)9~! + 1)(2m(7 + 1) + ), and we obtain (11.304) since Co(m), € and &
depend only on n, 7,9, 9y and m. O

(2) The case when p =k =1.

Choosing € and J(m) as in the case (1), we obtain that P; satisfies (11.298) for p = 0. To
satisfy (11.298) for p = 1, we need an additional argument. We rescale t by setting ¢ = tT(m) €
[0, a(m)], where a(m) = aT'(m) and

1 s sw [P,
0; t
T(m) :== — sup sup ||V P, = pei0i} D=t=a > 1. (11.305)
€€ pef0:1} 0<t<a Sup 1Pl
sStsa

Then ﬁg defined by P(-,f) := P(-,i/T(m) satisfies (11.298) for p = 0. Moreover,

10:Pille,,, < sup 0P lle,, < sup [Pl
0<t<a 0<t<a

1
T(m)
and we obtain (11.298) for p = 1. Replacing P, with 155, we can apply Proposition 11.1 to ]55 for
t € [0,a] at each iteration (recall that the constants in Proposition 11.1 do not depend on a).

We summarize the above construction by the following

Lemma 11.18. Fix the positive constants € and € <1 by (11.302). Then

1 = 0 then for each m € the sequence (€y.(m).i.0)ieN defined in . satisfies

If k = 0 then f h N th €0;(m),j,0)jeN defined 11.269 fi
(11.295) and the Iteration Lemma as well as the Modified Iteration Lemma hold for any
m e N;

(ii) If k =1, then P;, t € [0,a(m)], satisfies (11.295) and the Iteration Lemma as well as the
Modified Iteration Lemma hold for any m € N.

How do the maps .7-"t] ,J € N, constructed by the Iteration Lemma and ”H{ given by the
Modified Iteration Lemma, depend on m € N7 The answer of this question is given in Remark
11.10 and Remark 11.16 and we summarize it by the following
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Lemma 11.19 (Uniqueness by construction). We have the following:

(i) The transformations .7:J and 7—[ J € N, do not depend on m in the following sense. If
m' € N and .7:] and ’Ht, are the corresponding transformations, then .7-"J = .7-"? and
7—[] ’Ht on the intersection of their domains of definition.

(ii) Let k=1 and ]T"j and ﬁj, j € N, be the transformations corresponding to ﬁt, where

tT'(m) € [0,T(m)a]. Let F! and Hl be the transformations corresponding to P;,
t € [0 al. Then ]-"] F! and 7-[] Fl.

Item (ii) means that the map [0,a] — HJ is C!, if k = 1, and that
OH{ = T(m)OH |i—ir(m)
In order to prove (ii), Theorem 10.1, we need the following

Lemma 11.20. For each m > 0 there exists Cp, = Cp(n,7,9,99) > 0 depending only on
m,n, 7,9, 9 such that

R T7+1)+99—0
EEj(m) < Cho 000 S [Pl
Stsa

Proof. Let m = 0. We have
E](O) _ 5VO(D)+"‘+Vj 1(0 )E — 5](190 19)E‘0 < (0—05) ﬁogfilﬁE

and the estimate holds in view of the choice of £ in (11.302).
Suppose now that m > 0. Using Lemma 11.17 and (11.303) we obtain

EEj(m) < Ol Af( (m)Ej(m)

= C;,'Co(m)s™ ) sup || Pyl gmys
0<t<a

where
Fp(j) = J(m)2m(t + 1) +9) + vo(m) + - - - + vj_1(m).

Let j < J(m). Using (11.251), we get

Fn(j) = Jm)@m(r +1)+9)+ j(0o — V)
> j@2m(T + 1)+ ).

If j > J(m) + 1, we obtain by (11.251) the inequality

Fn(5) = Jm)2m(r+1)+9)+ J(m)(Pg — )
+ (= Jm)(m(r + 1) + o — V)
> j(m(r+ 1)+ 9 —0).

Choosing Cy, := C; Co(m)(000) "™+ we complete the proof of the Lemma. O
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We are ready to prove Theorem 10.1. Fix the parameter m and set

<P>(P) — <P>

®)
=P 0<p<k, (11.306)

4(m);1,1°
using the notations in (10.206). If p = 1 we scale back with respect to ¢ by T'(m). Combining
(11.287) and Lemma 11.20 and using Lemma 11.19, (ii), in the case when p = 1, we obtain the
estimate

Poj oy (W = 1) (6, w0, 1)|

Ej -8, —
< Cg,yﬁjaj D (1/040) T (m)P

+1)4+90—0 _—|B], —
< Oy o 0o s Pl (1/0,0) (P)P)

m— T4+1)— Jo—19
< Cp o3y PV 0l (155,) (PR

m— T+1)— o —29
< Gy 0TI 0020 ()

on Dji1 x R™ x [0,a], where C,, g~ stands for possibly different positive constants. Let us fix
¥ = (99 — 91)/4. Then

; ; m— T — V1 +20
Foge (! = H9) (0. 1w, )| < Gy ol iy DTN py(0) 11307
< Cmpy szil <P>§1(?2n)

on Dji1 x R™ x [0,a] provided that 8| + [v|(T +1) < m(7 + 1) + 1. Set
H (0, I;w,t) = (970, [;w, 1), ¢ (w,1))
where ®7(0, I;w,t) = (U’ (0;w,t),VI(0, I;w,t)) and V7 is affine linear in I by construction. Set

\Il(e;w,t) = \Ijt(e;w) = (U(G;wat)v V(e;wvt)) = lim @j(H,O;W,t),
} e (11.308)
lim ¢’ (w,t), (0,w,t) € T" x R"™ x [0, al.

Jj—00

P(w,t) = dr(w)

Lemma 11.19 implies that the transformations ¥ and ¢ do not depend on the choice of m. Then
it follows from (11.307) that the function [0,a] > t — (8583\%,83@) e OV is C* for for any
m > 0 and «a, € N" such that |a| + |5|(7 + 1) < m(7 + 1) + 91. Moreover, the estimates in
Theorem 10.1, (ii), hold (here k = p = 1).

We are going to prove (i). To this end we use the identity

M/ = Fi on D? x 0% x [0, q]

given in Proposition 11.13, (i). As in Sect. 5.d, [54], we obtain that
[ Xpp 0 F = DO - Xy| < L
Tjhj

on T" x {0} x Q; for all j > 0, where Xp; and Xy = L, stand for the Hamiltonian vector fields
of HI(0,I;w,t) and N(0,I;w) = (w,I), respectively. On the other hand, V(QJ)HJ converges
uniformly to Vg H as j — oo in view of the estimate (11.267), with £ = £y and ¢’ = 1J; hence,

XH(@d)(Lu,t),t) © \IJ(';W’ t) = D\I](';wat) : £w
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on T™ x {0} x ;. Moreover, (11.307) implies that
U(,w,-) = limU;(-,w,-) € C¥([0,a], CMT7(T™)), for each w € Q,

and

|U(5w,t) —id|| 119 < Cn, 7,00, 91) (P)) ) < Cln, 7,00, 91)e < 1/2,

choosing € small enough in a function of n, 7,99 and 91, hence, U(+,w, t) is an embedding. Then
t— {¥(O;w,t): 0 €T"}

is a C* family of embedded invariant tori of the Hamiltonians (0, 1) — H(6,I;¢(w,t),t) with
frequency w € . They are Lagrangian by construction (see also [26], Sect. 1.3.2).
Using Remark 11.3 and Cauchy one obtains

Remark 11.21. If P/ are analytic with respect to t in B(0,a) and satisfy (11.270) for t €
B(0,a), then F; are analytic with respect to t in B(0,a) and the estimates (11.277) and (11.278)
hold for p =10 and t € B(0,a). Moreover, ¥ and ¢ are analytic in t in B(0,a).

11.3 KAM theorem with parameters in Holder classes.

Better Holder estimates of the transformations W; and ¢; then those in (ii) Theorem 10.1 can
be obtained by means of the anisotropic Hélder spaces CP(™)(T" x Q) introduced by Poschel
[53], where

p(m) = ((m(T+ 1) +191,m—|—192), m>0, 1< < 190, Uy = (’190 — 191)/(4T+4).

Denote the corresponding weighted Holder norms by || - [| )y

Theorem 11.22. There exists a positive constant € = e(n,7,99,91) > 0 depending only on n,
T, Yo and Y1 such that, for anya >0,0< k<1, 0 <7 < pg and M > 0, and any real valued
Hamiltonian H = N + P, where the perturbation P € Ck([O,a];C’g(M) (A x Q)) satisfies the
smallness condition
sup || Pillegire < enr, (11.309)
t€[0,a]
and N(I;w) = (w, I) is the normal form, the following holds.
There exist families of maps

[0,a] 5t ¢ € CMT2(Q:Q), [0,a] 5t — Uy = (Up, V;) € CPM(T™ x Q; T x B(0, 7))
(11.310)
such that supp (¢¢ — id) C Q — k/2, supp ((Ut, V;) — (id1n, 0)) C T x (Q — k/2) and item (i) of
Theorem 10.1 holds true.
Moreover, for any 0 < m < M there is Cp, > 0 depending only on n, T, Yo, V1, and m, such
that
16f (U — ide )| gy + 77 HIOFVillpgamyise + 57 H 1O (S0 — i)l s
(11.311)
< Cm (/‘37”)71 sup  sup HatthHZ(m);T,li
0<p<q t€[0,qd]
for each m € [0,M] and t € [0,a]. These estimates hold for each m € [0,+00) if P €
C*([0,a); C§°(A x Q)).
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If P is analytic with respect to t in an open disc B(0,a) C C of radius a and (11.309) holds
forany t € B(0,a) , then ¢ and ¥ are analytic int € B(0,a), and the inequalities (11.311) hold
uniformly in t € B(0,ad’), 0 < d’ < a, where ¢ =k = 0, the interval [0, a] is replaced by the disc
B(0,a) in the right hand side of (11.311), and the constant C,, depends on a’ as well.

The estimates follow from (11.307), the properties of the norms ||- || .. for anisotropic Holder
spaces obtained in [53] and the Inverse Approximation Lemma obtained by Pdschel in [53].

Remark 11.23. Can ¢(m) = 2m(7+1)+4y be replaced by m(T+1)+£Ly ¢ The loss of m(T+1)
derivatives in the estimates (ii) is due to the fact that we take only the affine linear approzimation
Q of P with respect to I in the KAM Step Lemma below. Using the approximation proposed by
Riissmann in Theorem 7.2 [64] as Bounemora [3], one could prove (ii) with £(m) replaced by
m(7 + 1) + &y. This needs additional efforts and will be done elsewhere.

A Appendix.

A.1 Approximation Lemma

The Hamiltonian P; is not analytic and one can not apply directly the KAM step to it. We are
going to approximate it by real analytic functions. To this end we recall some facts about the
analytic smoothing technique invented by Moser [49], [50], and developed in different situations
by Zehnder [73], Poschel [53], Salamon [67] and Salamon and Zehnder [68]. The Approxima-
tion Lemma and the Inverse Approximation Lemma characterize Holder classes of differentiable
functions in terms of quantitative estimates of approximating sequences of analytic functions.

Let m € N, 0 < <1, and let U C R™ be an open set. The Holder space C"*(U) consists
of all f € C"™(U) such that

[fllcmuwy = sup ([ fllem @), Hmpu(f)) < oo, (A1)
where
| fllgm@y := sup sup [0%f(x)] (A.2)
|a|<m zeU
is the C™ norm of f and
0% f(x) — 0" f(y)]

Hy, ,(f) = sup A3
#( ) ’3? - y!“ ( )
where the supremum is taken over all z,y € U such that x # y and all @ = (aq,...,a,) € N" of

length |a| = a1 + -+ a, = m.
Given a non negative number £ = m + pu ¢ N, where m = [¢] € N is the entire part of ¢ and
0 < = {f} < 1 the residual one, we set C*(U) = C™*(U). To simplify the notations we set

1flle = lflleo = Ifllcew:-

Denote by
(T )(y) = > 0“f(x)y®/a!

laj<m

the Taylor polynomial of f up to order m. Given 0 < p < oo and an open set U C R"™ we denote
by U, the strip of all  + iy € C" such that z,y € R", 2 € U and |y| < p. Recall that A(U,) is
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the space of analytic functions on U,. We denote by |- |, the sup-norm on U,. The function f is
said to be real analytic in U, if f is analytic on U, and real valued on U. In this Section we take
U = R"™. The space of entire functions A(C™) is endowed by the inductive topology generated
by the sup-norms on compact sets of C”.

Lemma A.l. (Approximation Lemma) (/67],[73]). There exists an entire function K €
A(C™) generating a family of convolution operators

Sef@)=p™ [ K (7w w) fo)dy, 0<p<1. (A4)

from CO(R™) to A(C™) with the following properties.

1. For anyl =m+ p >0, where m € N and 0 < p < 1, there is a constant C = C(n,f) > 0
such that, for every f € C™"(R"™), any a € N" of length |a| < ¢ and any x = u+iv € C",
u,v € R™ with |v| < p, we have

0°Spf (u+ iv) = (T f) (@) < Cp || flcmn, (A.5)

and in particular for any 0 < p < p <1, and f € C*(R™),

|0°Spf — 0S5 f1, < C5* 1| |- (A.6)

2. The restriction of S,f to R™ satisfies

1S0f = Fll, < Co 5| fllemm, 0< s <L (A7)

3. K(R") C R and in particular the function S,f is real analytic whenever f is real valued.
Moreover, if f is periodic in some variables then so is S, f in the same variables.
4. If[0,1] > t — f, € CYR™) is a CF family, then for any p > 0 fized, the family
0,1 >t~ S, fr € A(C")

is C* as well and (%)p Spfe =S, (%)pft for 0 < p < k. Moreover, ift — fi(x) is analytic
in a complex neighborhood V of t = 0 for each x € R", then so is S, fi(x), and (A.5)-(A.7)
are satisfied fort € V.

A complete proof of the claims 1.-3. is given for example in [67], Lemma 3, and in [73]. In
the case of anysotrop Holder spaces the lemma has been obtained by Poschel in [53]. The claim
4. follows easily from the properties of K. In order to obtain item 1, one uses Taylor’s formula
with integral remainder, which yields the estimate

0% f (u+v) = (T110% ) (0) < ell | eman o] 71

for |a] < m (see (3.4) in [67]). O

Using item 3. one obtains as in [67], Lemma 5, the interpolation and product estimates.
More precisely, let r, s, £ be positive numbers such that 0 <r < s < f,and{ =m+pu, 0 < pu < 1.
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If 4 < 1, then O™ = C*. Set v := (£ —s)/(¢ —r). Then there is a constant ¢ = ¢,; > 0
depending only on ¢ and r such that for any compactly supported f € Cy"*(R") the following
estimate holds

1—
Iflles < cre LG 1f 1] G- (A.8)
Moreover, given f,g € C§"*(T™ x R") one can estimate the C*-norm of the product

1fgllemn < [ fllcollgllcms + 1 fllemullglco- (A.9)

Remark A.2. Let D C R™ be an open bounded convex set. Then
1 fllos < erem 111G £l G

for each f € C°(D) or f € C(T" x D). Moreover, there exists Cy depending only on £ and
on the dimensions n and m such that if f,g € C®°(D) or f,g € C>°(T" x D) then

Ifglle < Cellfllollglle + 11 FNlellgllo)-

Proof. Firstly we apply Whitney’s extension theorem (see e.g. [71], Chapter VI, Theorem 4)
to f € C**(D), where D is compact, k € N, 0 < u < 1. We obtain an extension f € C*#(R™)
of f such that

[ fll oo @my < Cell fllcron(pys
where Cy = Cy(m) > 0 depends only on ¢ = k + pu and m. Moreover,
[ fllexrpy < I fller+r(pys

since f is C'"°°-smooth on the compact D and D is convex. Then we apply the interpolation
inequalities (A.8) to the extension f € C*#(R™) of f. In the same way we prove the product

estimate. O

Consider a subdivision x = (x(l),...,x(p)) € R" x--- xR™, n =ny+---+ ny, where
1 <p<n. Given a = (ai,...,ap), where a; are positive numbers for 1 < j < p, we denote by
0q : R" — R” the dilation o,(z) = (a2, ..., a,zP). More generally, for any d € N we denote

by 04 : T x R® — T¢ x R™ the partial dilation oq(6,z) = (6, a1z, ..., apx(p)) (by convention
TY = {0}) and define the “a-weighted” Holder norm of f € C*(T¢ x R"™) by

11l = 11 0 oall ce- (A.10)

A.2 Almost analytic Gevrey extensions

Proof of Proposition 11.11 . Fix p > 1. Let ¢ be a real valued compactly supported Gevrey
function belonging to the class G{(R™) for some A > 0, which means that

lella = sup sup (Jofp(@)] A1) < oo, (A11)
aeN? xeR™
where o] = a1 + -+ a, and a!l = aq!---ay! for a = (aq,...,a,) € N*. We suppose as well

that the support of ¢ is contained in the unit ball Bf*(0) = {x € R": |z| < 1} in R™ and that

/n o(z)de = 1.
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Set U]Q = 0]2. N R"™ and U]‘? = {z e R": dist (x,UJQ) < q/16}, q € {0;1;2;3;4}, in particular,
U ;»1 = Og? NR™. Denote by 1; the characteristic function of the set U J2 in R” and consider for any
J € N the function f; defined by the convolution

n

Fie) = (6/m)" [ o= (16u/h) du = 16/1,)" [ 1w (16— w)/hy) du
These functions have the following properties

(1) f; € G5, (R") with A; = 16A/h; and || fj|lx, < vol (BT (0))[[]lx;

(A.12)
(2) suppf; C U;’ and f; =1on Ujl7

where the positive constant A is given in (A.11). We are going to obtain a Gevrey-G” almost
analytic extension of f; in C" which is equal to one on OJQ- and has a support in Og?.
To this end we introduce a family of the compact sets in R™ x R™ given by

Kj = (R x {0}) UO? U (0; \ 03),

where the set O; C C" is identified with the corresponding open set in R x R™ via the map
C" >z +iy — (z,y) € R" x R" and O, stands for the closure of O;. Let us extend f; to a
continuous function with support in K; by

fi(x) if zeR" y=0;
fi(z,y) = 1 if (z,y) € 0%
0 if (z,y) € (R"xR")\ O

It is easy to see that a formal almost analytic extension of fj is given by the power series

> (i) 9] fi(x)/ B, (A.13)
yenn
which means that the operators O, k = 1, ..., n, annihilate it. The corresponding Taylor series

centered at (z,y) € Kj is

o @ —2) iy —iy)P 0% fi(x) /(B181).

(B,8")EN™ XN

The family of jets F; = ( f(ﬁ ) corresponding to the power series given above is

J )ﬁ,B’EN”
defined for any (3, 8') € N* x N” and (z,y) € K; by

f;ﬁﬂ)(m,y) _ i|6/‘8’8+ﬂlfj(:6). (A.14)

Remark A.3. If (x,y) € K; and y # 0, then either z € UJQ orx ¢ U]‘-l. On the other hand,
fi=1on UJ:-l and f; =0 on R™\ Uf. Then ff‘(:v,y) =0 fora=(8,6")#0 and ij(a:,y) =11
(x,y) € UJ(»J = OJZ, f](-)(:c,y) =0 if (z,y) ¢ U;-l = O?. In particular,

fj'a(%y) = ff‘(l:,()) for each a.
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We are going to extend the jet I to a Gevrey-G” function using a Whitney extension theorem
in Gevrey classes.

Let us first recall the notion of Gevery smoothness of Whitney jets. Let K be a compact set
in R, d > 1, and F = (fﬂ)ﬁeNd a jet of continuous functions f# € C(K). For each N € N we

denote by TN F' the formal Taylor polynomial of order N centered at u € K, i.e.

TNF(z Z ) (z—u)?/p, zeR%
IBI<N

Given @ € N% we denote by F(® the jet (fo+°)
0% of the Taylor polynomial is given by

SeNd” Then for |a| < N, the partial derivative

TNF(z) = TP (z) = 3 f*P(u)(z - w)?/8!.

|B]I<N—|af
For each o € N¢, the corresponding Taylor remainder is defined by

RYF(z) = f(z) - 9T (F)(2)

o Ll
= Q- X P w?s

|BI<N—laf

Recall from Stein [71] p. 177 the following identity

DT F(z) = 8TV F(z) = ) (2= ) RyFOH P (v) /! (A.15)
|BI<N

for any N €N, |a| < N, u,v € K and z € R? .
Let L > 0. The jet F' = (f’B)BeNd is said to belong to the Whitney space WG7 (K) of Gevrey
jets if there exists A > 0 such that

(1) 1) < ALPY(BYP for B €N, u € K;

2) |RNFO(2)| < ALNTY((N + 1))P|z — wfN /(N = 4] + 1) (A.16)
for [y| <N, u,z € K.

The corresponding norm of F' is defined by ||F|| := inf A. The space WG7 (K) equipped with
this space is a Banach space. We recall the Whitney extension theorem of Bruna [4] as it has
been presented in [59], Theorem 3.8.

Theorem A.4. There exist positive constants Ay = Ao(d, p) and Cy = Co(d, p) such that the
following holds.

For any compact subset K of R® and jet F = (fﬁ)ﬁeNd € WG (K), satisfying (A.16) on K
with some L > 0, there exists [ € ggOL(Rd) such that

(i) O°f = fB on K for any B;
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(i) [[fllcor < Aol Flz-

We are going to prove that F; are Whitney jets. Using (A.12) we obtain

Lemma A.5. For each j € N the jet F; belongs to the Whitney space ngj (K;) with Lj =
3850227\ /by and |[F; |1, < vol (BY(0)9l.

Proof. Set A = vol(B7(0))|l¢||x. Using item (1) of (A.12) we obtain for each j € N the
estimate

17 @, y)l < AN (B4 8y < A@ren) PP 31281y

for (8,8") e N* x N", (z,y) € Kj.
We are going to prove (ii). For any u = (x,y) € Kj; the formal Taylor polynomial of F} of
order N which is centered at u and evaluated at z = (2/, %), is given by

TNFi(z) = Y. i7IoP P gy - 2) (v — )P (818") .
|B1+I8|<N
We consider separately the following two cases.

1. Let z = (2/,0). Suppose at first that u = (2,0). Then, setting M = N + 1 — |a| — ||, we
obtain by Taylor’s formula

RYES™ () = [;*)() = 0TV 2)

= i¥lor @) - Y A () (o~ )7/ (BY)

IB|<N—|a|—|o/|

— el Z w /1 (1— t)M—l 8a+a/+ﬁfj(x +t(z' —x))dt.

18]=M 0

Now item (1) of (A.12) yields

a,a’ M
RYF(z) < ALY (N 4 )Pl M 3T o
|Bl=M

On the other hand

M M (Br+--+6) M (2n)M
> EZMZ 151!..-/3n! =" <
Bl=M 1Bl=M

Setting v = (o, ) € N x N” and Xj = 2n\; = 32n\/h; we obtain

IRNF (2) < ANVFY(N + 1)1)?]z — oV hHL/ (N — |y + 1))
(A.17)
for z = (2/,0),u = (z,0) € Kj.

Let u = (z,y) € K; and y # 0. By Remark A.3 we have f7(z,y) = f?(x,0) for each v €
N x N”, hence, RNF()(z) = Ré\; O)F(V)(z). Then using (A.17) we obtain the same estimate
since |z — (z,0)| < |z — u|. Hence (A.17) is true for any z = (2/,0) and u = (z,y) in K;.
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2. Let z=(2',y) € K,y # 0 and u € K. Set v = (2/,0). Remark A.3 implies
f](z) = 0T Fi(2)

and by means of (A.15) we obtain

RYF™M(2) = 01TV Fi(2) — 01T Fi(z) = Y (2 =)’ RYE P (0) /1.
|BI<N

Now applying (A.17) to RY F‘j-(7+ﬂ ) (v) we get

||,6’\,v _ u‘N*|ﬁ|*|’Y|+1

— Bl = [+ 1)!5!

\5|<N

Remark A.3 implies that |2’ — 2| > h;/16 on the support of the function u +— RY F()(z) and
we get

2
1< 2hy < 2l ol < Dla—ul and ol < Jo’ — ol +lyl < 2z~ ul.

Setting L; = 385n% > 35%/3 we obtain as above
RYFO)(2) < ALV V(N + 1))z — al=PH/(N = 9] + 1)1

This completes the proof of the lemma. O

Lemma A.5 enables us to apply Theorem A.4 and we denote by x; the corresponding ex-
tension of the jet Fj14 € WG +1( Kjt1). By construction, the Taylor series of x;—1 at (z,0)
coincides with the power series (A 13), which implies that x; is almost analytic. The function yx;
satisfies item (i) of Proposition 11.11 since it coincides with fj4; on Kj,;. It satisfies (ii), tak-
ing L = 385n22""\Cy, where ) is introduced in (A.11) and Cj is the constant in Theorem A.4.
Fixing for any n the function ¢ and the constants A\ and Cp, we may suppose that L = L(n, p)
depends only on n and p.

It remains to prove (iii). Expanding 6;}85 X;j(z,y) in Taylor series at y = 0, we obtain for
any o, € N* and m € N

050X (2, y)] < A(L/hyjsr) (L hja)™ ol P8P ml P y™, (2,y) € R" x R™

Using Stirling’s formula we minimize the right-hand side with respect to m € N. An optimal
choice for m is given by

1
m ~ (Lly|/hj+1) 7T,
which leads to

1 1
10200 xj (2, y)| < CoA(L/hjr1) ™ HPlal?p1e exp (-2(Ly|/hj+1) ”‘1>

for any o, 5 € N* and (z,y) € R" x R", 0 < |y| <1, with Cp > 1. a
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A.3 Borel’s Theorem

Proof of Proposition 7.1.  'We follow the standard proof of the Borel’s theorem (see [80], Theorem
4.15 and [45], Proposition 2.3.2). To simplify the notations set z = (x, &) € T*R?. Consider the
increasing sequence (7);)jen Where

n; := 1+ sup sup sup sup ‘8f8§‘at,m(z)‘.
0<k<1 |a|<jm<j (t,z)eIxT*R4

Choose x € C*(R) such that y =1 on (—00,1/2], 0 < x < 1 on (1/2,1), and x = 0 on the

interval [1, +00) and set
nj -
ar(z,A) = Zx(ﬁ)am(z))\ J

Jj=0
where A\ € D. Notice the the sum is finite for any A € D fixed. Moreover, ‘% X(%) < 1, hence,
for any k € {0,1} and a € N?? with |a| < j we have
5\ 189k92,, . iy, <
X(IA )k ozans(2)] < X(W)m < AL (A.18)
On the other hand |A| < 2n; whenever X(%) < 1, hence,
(1=x(3)) ot ozacs ()] < oyl (A.19)
for any p € N. For any N € N we have
N-1 '
k02 (au(z0) = D ari()A )|
j=0

N—

<2 (1 x(y) ) oFosacs N + 32 x ([ ) okoRans ()N
j>N

—_

J]=

Using (A.19) we estimate the first sum by Cno|A|"™". If N > |af taking into account (A.18)
we estimate the second sum by nx|A|~N + Y isNt1 NIt < Cn oA 7Y for [A| > 2. Finally, if
N < |a| we estimate the first |a| — N terms of the second sum by Cy |\~ and for the other
terms we apply the preceding argument. This proves (7.65). The proof shows as well that for
any k € {0,1} and a € N2 the function (t,2) — 0F0%as(z, \) is a sum of a normally convergent
series of functions, hence, it is a continuous for any A fixed. Thus the map J >t — a; is a C!
family of symbols of order zero. |

A.4 Higher order Holder estimates of a composition and of the inverse
function.

A.4.1 Estimates of the composition and the inverse function.
The aim of this section is to obtain estimates of the composition and the inverse function in

certain Holder norms with constants depending only on the dimension of the spaces and the
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Holder exponent. We start by introducing certain semi-norms as follows. Hereafter we denote
the Euclidean norm of z € R™ by |z|. Recall that for any ¢ € R, [¢] € R stands for the entire
part of £ and {¢} := ¢ — [¢] € [0,1) for the residual one. Given f € C*(U), where U C R" is an
open set, we introduce a f-semi-norm of f by

|/

- o , ifleN;
b :={ e S (A.20)

Hig 0 (f) , fl¢N,

where the semi-norm Hj, ,(f) is defined by (A.3). To simplify the notations we often write
|fle := |fler. This notation should not be confused with the sup-norm in Sect. A.1. The
p-semi-norm of the product of two functions f,g € C*(U) with 0 < p < 1 can be estimated by

[f9lu < \Flulglo + 1flolgl,- (A.21)

More generally, for any m € N, 0 < u < 1, and f,g € C™"#(U), the Leibniz formula implies

Fglmrn < Co Y (1Flksslglms + £kl bnrin ) (A.22)
k=0

where C),, depends only on m and on the dimension n.
Consider now the composition of Hélder functions.

Lemma A.6. Let U; C R", j = 1,2, be open sets. Suppose that Uy is convexr. Let 0 < p <1
and fr € CH(Uy), f2 € CH(Ur). Then |f20 filer, < |folews|filf -

To estimate higher Holder norms of the composition of two functions we apply the Faa di
Bruno formula. To this end we introduce the following notations. Given £ > 1, f € C*(U) and
an integer 1 < m < £ we set

¢, _
Po"(f) = D0 DMl b ke Pl 1 o (A.23)
A(tm) j=1
where the |f|q := | f|o,v and the index set A(¢,m) consists of all (k1,...,ky,) € N™ such that

= i ;>
i+ 4 km =10,  in kj > 1.

For any ¢ > 1 we set
[4]
PL(f) =D P ().
m=1

Proposition A.7. Let f; € CY(U;,Uj41), j = 1,2, where £ > 1 and U; C R™ are open sets
such that f1(Ur) C Us. Then the following holds:

1. If { € N, then

m,Us ,P[Z]’;m(fi)

¢
|fa0 filer, < Cy Z | f2
m=1

where the constant Cy depends only on £ and on the dimensions n;, j =1,2,3.
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2. If £ € [1,00) and Uy is convez, then

|f20 f1

[4]
£l,m m
xS (1flmstey.0n PE™ ) + | ol PET ()

m=1

eon < Cp (1 + \f1|¥(}}1>

where the constant Cy depends only on [{] and on the dimensions nj, j =1,2,3.

Proof. Statement 1. follows directly from the Faa di Bruno formula

(@°f2) 0 fi
B!

where the summation is over all the indices

Q!

..
O(fzo fi) =3 (3a1f1)"‘(3amf1)%

meN,, pBeN? (a,...,0m,) € N x ... x N"T = NU"

m

such that

1<|Bl=m<|al, aa+...+am=a, min |oj] > 1.
1<j<m

Here |B| = 81 + - - - + Bn, stands for the length of 5 € N™2,

We are going to prove 2. Suppose now that Uj is convex and that £ = m + u, where m € N,
and 0 < p < 1. Firstly we apply (A.21) to the product in the Faa di Bruno formula. Then we
estimate (0% f2) o f1 wU; by means of Lemma A.6, which yields

(07 f2) © frlwun <10 foluwal Aill g, -

This implies 2. g

Similar inequalities can be proven for compensated domains U; ([42], Theorem 5.4) but then
the constants depend on Uj.

Proposition A.8. Let £ > 0 and let f € CFY(U, V) be a difeomorphism with inverse g = f~7,
where U and V = f(U) are open subsets of R"™, n > 1. Then the following holds:

1. If ¢ € N, then
ldglley < Co (141N %)) P

where Cy > 0 depends only on £ and on the dimension n;

2. Let 0 < { <1 andlet V= f(U) be convex. Then
ldglloeqry < 1N lco@ @) Hlerw) < I Ichi Idfllow):
3. Let £ =m + p, where m € Ny, and 0 < p < 1. Let V = f(U) be convex. Then
ldgllcr, < O (1 16N, ) (PEF) + e P )

where Cy > 0 depends only on £ and on the dimension n.
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Proof. To prove the statement one needs a sort of Lagrange inversion formula for higher
derivatives of the Jacobian matrix Dg € C*(U, M, (R)). Hereafter M,(R) = M, ,(R) is the
space of real n x n matrices equipped with the corresponding sup-norm and we denote by A - B
the product of two matrices A and B. Denote by L, : M,(R) — M; ,(R) the linear operator
which assigns to each matrix A € M, (R) its p'*-line and by C, : M, (R) — M, 1(R) the linear
operator which assigns to each matrix A € M, (R) its ¢"*-column. We identify L, and C, with
the corresponding matrices in M ,,(R) and M, 1(R), respectively. Since (Dg)(f(x)) = Df(x)™!,
where Df(z)~! is the inverse of the matrix D f(x), we get for any 1 < p,q < n the equality

(5-) 0 =10 DI e R as y= i) (A.21)

Then differentiating the identity Dg(y) = (Df)"'(g(y)) with respect to y, we obtain
0 "9 _1 _1
—Dg)(y)=> +—(Df(x)™")- (Lp Df(x)™" - Cl, asz=g(y).
0Yq = Oz

Denote by A the set of automorphisms of M, (R) generated under composition by the identity
map and the automorphisms of the form

A (Ly-A-C)L,, A€ M,(R).

Using (A.24) we obtain by induction with respect to m € N the following relation
XD = ¢ [ Li@FDf@)™) asz=g(y), (A.25)

Y€AL  1<j<m+1

for any o € N with |a| = m. The index set A, consists of all ¥ = (y1,...,Yms1) € (N?*)™F!
such that
1]+ -+ [Yma1] = m = |al,

¢y € R are universal constants, and £; € A. Consider the derivatives of the inverse matrix
Df(x)~! of Df(x). One can easily show that

2 Dy = —Df(a) (an(x)> Df(a), (4.26)

Oz Oz

This equality implies by induction that for any 0 # « € N,

BDf) )= s [[ Df@) -0 Df(w)- Df(@), (A.27)

BeAl  1<j<]a
where ¢z € R are universal constants and the index set Al consists of all
B= (B, Bal) €N"x -+ x N* = (N")l

such that
1Bl + -+ + [Bjal] = -
Now statement 1. follows easily from (A.25) and (A.27).
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We are going to prove 2 and & . Since V is convex, we have in view of Lemma A.6
1h o gllenery < IBllen@IDgllgo vy = hlloe@ (DA™ Eow,
for any h € C*(U) and 0 < pp < 1. Moreover,
DN Hlenw) < IDFles@)l(DF) ™ o

We have Dg = (Df)~! o g, hence, taking h = (Df)~! we obtain 2. Statement & follows from
(A.25) and (A.27) as in the proof of Proposition A.7. O

Proof of Lemma 9.3. One can take the convolution wg = 1y * x¢, where 1y is the characteristic
function of U, x.(z) = e "x(z/e) and x € C§°(R"™) is a test-function such that

x(x) > 0if |z| < 1, x(x) =0 if |z] > 1 and x(z)dr = 1.
R

More preciselly, we first define a smooth function ¥ by X(z) = exp(—(1 — |z|?)™!) for |z| < 1
and by Xx(x) = 0 for |z] > 1 and then we set x(z) = X(x)/||x||p:- For any ¢ > 0 we have
[Xellee = e™|x|le- Set ¢ := ¢P and ¢.(z) = e "¢(x/e), where B = B™(0,2). Then ¢(z) =1
for |z| <1, hence, ¢(z/e) =1 for = in the support of x. and we easily obtain the inequality

09 x=(z —y) = 0xe(z — )| < (P& —y)/e) + o((2 — y)/e)) 0 xe(x — y) — I x=(2 — v))]

for any z,y,z € R™ and 0 < ¢ < 1. This implies

1 llese < 26" * el xellese < 2l zallxlle = 2l ¢llza lIxlle = Co

which proves the Lemma. |

A.4.2 Higher order Holder estimates and Interpolation inequalities.

The above estimates can be simplified considerably if the domain of definition of the functions
is the whole space or an open convex bounded set. We set A := T" x D, where D is an open
set in R?. We shall use the convention A :=T" if d = 0 and A := D if n = 0.

Using the interpolation inequalities as in [42], Proposition 5.5, one obtains

Proposition A.9. Let f € C®(A1,As) and g € C®(Ag,R), where A; = T™ x R%, Ay =
T x Dy and Dy C R is an open set. Then the following holds

1. For any ¢ > 1,

90 fl s, < CeX+Ndf]G4,)

(4]
<> (lglmas ldf le—may + 19lmsg3,80 1df 10 —m.as)

m=1

where Cy > 0 depends only on £ > 1 and on the dimensions n; and d;.
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2. Let Aj =T xR%, j=1,2. Then

90 a0, < Ce(l+ldf 4,)
(A.28)

X (lglle.azlldfllo.as + lgllyaqlldflle-1.a,)
where Cy > 0 depends only on £ > 1 and on the dimensions n; and d;.

3. Let D;, j = 1,2, be open convex subsets of R% and A; = T x D;. Then (A.28) holds
for any f € C®(A1,A3) and g € C*®(A2,R) with a constant Cy depending only on £ > 1
and the dimensions n; and d;.

Proof. To prove the first statement we make use of Proposition A.7 and of the interpolation
inequalities. Consider a typical term of (A.23) given by

A= fley -l [l | Flegn - 1 ko

where kj + -+ + ky, = [¢] and k, > 1, for any p. Set r =0, s =s, =k, + 6, — Ll and t =4 —m,
where 0, = 0 if p # j and ¢; = {{}. By means of the interpolation inequalities we get

t—s

fleptre, < Idflls < celldflle® NdfIlf

which implies
A< e |ldfllg=H S lle—m,

where ¢, > 0 depends only on ¢. Hence,

[4]
PE(f) < O S ldfIE I lle—m- (A.29)
m=1

Notice also that | f \?Xl <1+ |df|o. Using Proposition A.7 one obtains 1.
To prove 2 one uses the interpolation inequalities with respect to both functions f and g.
Namely, given 0 < s < t and u,v € C? one obtains

t—s t—s

s s
ullslvlle—s < edllullg® Null 0ligllvlls© < ee(llullellvllo + [lvllellullo) (A.30)

by means of (A.8) and Young’s inequality

2y < lxp—i— lyq < 2P + 9,
p q
where x and y are non-negative and p and ¢ are positive numbers such that + + % = 1. Putting
s=m,t=»0 u=g,v=dg,and then s=m — 1+ {{},t =¢—1, u=dg, v = dg, and using 1,
we obtain 2. The inequality in 2 has been proven for more general domains in ([42], Proposition
5.5) but the constants there depend on the domains. Statement 3 follows from 2 and Remark
A2. a

In the same way we obtain
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Proposition A.10. Let f € C>(A1,A) be a difeomorphism with inverse g = f~1 € C®(Ag, Aq),
where A; =T" x D; and Dj C R?, j =1,2, are open sets. Then the following holds.

1. Let Dy be convex. Then for any positive integer £ € Ny,
[4]
ldgllons < Co (14 16H L) S 112 1 e, (A31)
m=1
where Cy depends only on £ and on the dimensions n and d.
2. Let both Dy and D3 be convex. Then (A.31) holds for any € > 1.

Proof. The inequality (A.31) follows for £ € N, from Proposition A.8 and Remark A.2 using
(A.29) as in the proof of Proposition A.9. To prove it for any ¢ > 1 we use (A.30) as well. O

Given n,d € N we set A = T" x R%. Using the interpolation inequalities and Proposition
A.8 we obtain

Proposition A.11. Let u = id + ¢, where ¢ € C®(A,A), A = T" x R?, and
(n+d)||¢]l1 <eo <1.

Then u is a diffeomorphism homotope to the identity with inverse u™' = id + 1, where ¢ €
C>(A,A) and for any £ > 0 we have

lblle < Cellole

where Cy = Cy(eo,mn,d) > 0 depends only on ¢, g, and on the dimensions n and d. If supp ¢ C
T" x K then suppt) C T™ x K as well. Moreover, if the map [0,0] >t — ¢y € C°(A, A) is C*
then so is the map t — ;. The same holds if A =T" (d =0) or A=R? (n =0).

Proof. Notice that ||do|lo < (n+ d)||¢||1 < eo < 1. The inverse function theorem implies
that u is a diffeomorphism with inverse u=! = id + v, where 1 € C*°(A, A). Moreover,

Y =—¢o(id+1)7!, (A.32)
which implies [|¥]|o = ||¢]lo. If 0 < £ < 1, then

Ille < Nigllo + @l cell (1 + dg) ~HIg < C(1 — 20) "I

The estimate of 1 in the C* norms with £ > 1 follows from (A.32) using Proposition A.9 and
Proposition A.10. To prove the assertion about the support notice that u~! = id on T" x (]Rd\K ).
O
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A.4.3 Weighted Holder norms and interpolation inequalities.

Given 0 < k < 1, £ > 0, and f € CYT" x D), where D C R? is an open set we define the
corresponding weighted C* norm by

1 llernxpim = 1 © Olly gt (Tnx D)
where o, (0,7) = (0, k). We set as well
[flemnxpin = f 0 Ouly gt (mn )

In particulat, if £ € N, then

||f||m,T"><D;m = 8sup |f|m,’]1‘"><D;m
0<m</

where

|f|m,']1‘"><D;f€ = sSup Hagé('%&“)ﬁfHCO(’]I‘"xD)'
lo|+|B]l=m

Applying (A.8) to f = uoo, with 0 < k < 1 one gets the interpolating inequalities for
|t := ||ullt.amm, where A = T™ x R4,
We list below several estimates which follow directly from Proposition A.9. Set

mu’”f,D;ﬁ = Sup ”UHffm,D;m
0<m<t

where m are integers.
Proposition A.12. Fiz 0 < xk < 1.

1. Let u € C®(A1,As) and v € C®(Ag,R), where Ay = T™ x RU, Ay = T™ x Dy and
Dy C R% is an open set. Then for any ¢ > 1,

wouly,, . < Cy (14 ldloxt ouoa)|&')

[£]
% 3 (lollm sasnlld(o 0 w0 0ot ary + 10l gy aainll o 0 w0 )l cte-m sy

m=1
where Cy > 0 depends only on £ and on the dimensions nj and d;.

2. Let Aq iT"Q x D1, where Dy is an open convex subset of R%, Ay = T™ x R%, and
U € COO(Al,AQ). Then

0o ulpnm < Cg( +|ld(o ouoo’n)|£501>

*([lollenlld(ogt o woan)lloo + lvlluxlld(ort o wo o)l ger)

for any £ > 1, where Cy > 0 depends only on ¢ and on the dimensions n; and d;. In
particular, if Ay = T"2 (de = 0) then

o oulles < oo ullon +Co (14 el (lelleselulizs + Nollullullese)
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3. Let D; C R%, j = 1,2, be open sets in R% and let Dy be convex. Then for any u €
C>®(D1,R%®) with uw(D1) C Dy and v € C®(Ag) with Ay = T"? x Dy we have

—
|’U O u|,€7D1;f§ S Cﬁ (1 + ”du| CO}Dl))

€]
X Z (|U|m7A2;H (1 + Hdqu—m,Dl;fﬁ) =+ |’U|m+{€},A2;/@ (1 + ||du||[€]—m,D1;n))

m=1

< Co (14 lldull ol ) (1 + ldulleep,) Iolesan

for any £ > 1, where the constant Cjy > 0 depends only on [{] and on the dimensions d;
and ny.

Proof. To prove 1 we put f = 0., 'ouoo, and g = v oo, in Proposition A.9. The statement
2 follows from Proposition A.9, 3. To prove 8 we use Proposition A.7, 3, and apply Remark
A.2 to u € C*°(Dy) using the interpolation inequalities for the extension of u as in the proof
of Proposition A.9. To prove the second inequality in 3 notice that ||dul|.,p,;x < ||dulle,p,;x for
w < ¢ since D is convex. O

Remark A.13. The estimates in Proposition A.12 hold when k = (k', k") with 0 < &', k" <1,
D; = D, x DY, 0g(6,2/,2") = (0, K'2", 5"2") ond Julpa = |0 Olgeqmt oy

A.4.4 Symplectic transformations and generating functions.

Consider a C! family of exact symplectic maps W; : A — A, t € [0,6], where A := T¢ x R
Suppose that W; — id is compactly supported for any t. We are looking for a C! family of
generating functions

ét(‘/)a T) = (‘Pa T) - Gt(pr((p)7 T)a ((P, T) € Rd X Rda (A'33)

of W} such that the function G; € C’OO(’]I‘d X Rd) is compactly supported with respect to r and

Wi (V:Gulp,r)r) = (0 VoCalgir)) s (pr) € A (A.34)

(see Definition 3.1). Slightly abusing the notations, we will identify below a 27-periodic function
with the corresponding functions on T?. Given a smooth function G in A := T¢ x D, we denote
by

sgrad G(0,r) :== (V,G(0,1),—VeG(0,1))

its symplectic gradient. Notice that |01 sgrad Gellpax < £ Geller1 Ak

Lemma A.14. 1. Let [0,0] 3t — W; : A — A be a C* family of exact symplectic mappings.
Suppose that
2d|oy, ' (Wi = id) |10 < €0 < 1 (A.35)

fort € [0,8]. Then there exists a C* family of generating functions G, of Wy given by (A.33)
such that for any £ > 0 the following estimate hold true

lo " sgrad Gille.am < Cellog ' (We = id)le,am (A.36)
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for t € [0,6], where Cy = Cy(go,d) > 0 depends only on ¢, £y and d. Moreover, the relation
supp (W; —id) € T x K implies supp (sgrad G¢) C T¢ x K as well.
2. Conversely, let Gy be a C' family of functions such that

2d||o; ! sgrad Gyll1.a.s < €0 < 1 (A.37)

fort €[0,6]. Then G, given by (A.33) is a C' family of generating functions of symplectic maps
Wi A — A and for any £ > 0 we have

lo "Wy = id)l|e.asn + llo "W = id) [le,asn
(A.38)
< Cyl|o; 'sgrad Gla:x

wheret € [0,6] and Cy = Cy(gg,d) > 0 depends only on l, g and d. Moreover, if supp (sgrad Gy) C
T x K then supp (W; —id) C T? x K as well.

Proof. 1. Set Wy = (U, Vi) : A — A. It follows from (A.35) that the map 6 — U;(0,r) — 6
can be identified with a 27-periodic vector function on R?. Consider the map

fi=id+g : A — A, where ¢/(0,r)= (U(0,1)—0,0).
By (A.35) one obtains
2d || gel1,a5 < 2dloy (Wi = id)||1,00 < €0 < 1

for any ¢ € [0,0]. The inverse function theorem (Proposition A.11) implies that f; : A — A is a
diffeomorphism homotope to the identity. In particular, the equation ¢ = U;(0,r) has a unique
smooth solution 6 = ¢ + ¢.(¢, ), where ¢; can be identified with a 27-periodic with respect to
¢ € R? function and the map [0,8] >t — ¢, € C®(A,A) is C'. Then

fit=id + hy, where hy = (¢é¢,0).
Proposition A.11 applied to
o lofioo,=id+gioo, and o, o ftoo, =id+ hioo,

yields
Hqﬁtuf;m < CéHgtHZ;K < CKHUEI(Wt —id)

LAk (A.39)

where Cy > 0 depends only on ¢, 9 and d. On the other hand, the map W; is exact symplectic
and close to the identity and there exists a C'-family of generating functions G; such that Gy is
compactly supported and

ViGi(p,r) = =du(p,7),  VoGilp,r) = Vilp + ¢e(p,7),7) — 1.

We are going to prove (A.36). The estimate of V,G; follows from (A.39). To prove the estimate
of m_lvat we write

1
VoGi(p.r) = (Vilp.r) — ) + /0 doVilio + su(p, 7). 7) dulip, ) dis,
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where dg is the partial differential with respect to the first variables 6. Notice that ||¢¢||1.. < Cieo

in view of (A.35) and (A.39). Then using (A.9), Proposition A.12, 2, and (A.35) we complete
the proof of (A.36). Suppose now that supp (W; —id) € T x K. Then supp (f; —id) € T¢ x K
which implies that supp (f; ' —id) € T¢ x K. Hence, ¢;(¢,r) = 0 for ¢ € T" and r ¢ K and
supp (sgrad G;) € T¢ x K.

2. In the same way we prove the second part of the Lemma. Suppose that (A.37) holds.
Using the inverse function theorem given by Proposition A.11 one solves as above the equation

0=¢—V,Gip,r)
with respect to ¢ € T¢. The corresponding solution has the form ¢ = 6 + (6, r) and
Wi (0,7) = (0 + (0, 7), 7 + VG(0 + 11(0,7),7)).
Moreover, Proposition A.11 yields as above the estimate
[9lleasn < Cillo sarad Gelle,as (A.40)

for any ¢ € [0, 6], where ¢ > 0 and C; > 0 depends only on ¢, g and n. Then using (A.34) and
Proposition A.12 we estimate of W; — id. We get the same estimates for (W;)~! —id, where

(W)™ o, = VpGi(p,1)) = (0 = VoGl 1), 7).

To this end we first solve the equation r — V,G¢(p,r) = I with respect to 7 and then we proceed
as above. O

The estimates (A.36) and (A.38) are still valid if we add additional parameters s € TP and
w € R Set A := A x Ao, where A = T¢ x R? and Ay = TP x R%. Given u = (0,k)
with 0 < o,k < 1 and f € C*(Ay x Ag) we set ||flloap = ||f o oulloe(ay, where oy, (6,75 s,w) =
(0, or; s, kw). We consider the symplectic gradient of the function (8,7) — G¢(0,r; s,w) for (s,w)
fixed. Following the proof of Lemma A.14 we obtain

Lemma A.15. Suppose that the map [0,6] >t — Gy € C*®(A,R) is C* and
(2d+p+q) ||lo,  (sgrad Gy (5 s, w) — ida, (1)) [[1,8050 < €0 < 1,

fort €10,6] and (s,w) € Ag, where idy, is the identity map on Ay. Then for any (s,w) € Ay
fized, the function (0,r) — G(0,r;s,w) = (8,r) — G(0,7; s,w) is a generating function of an
exact symplectic map Wy(-;s,w) in Ay, the map [0,8] >t — W; € C®(A,Aq) is C and

log ™ (We — ida,)

eag + 1oy HW —iday) e < Cello, 'serad Gille,ay (A.41)

where Wt_l(';s,w) is the inverse of Wi(+;s,w) in Ay with (s,w) € Ag fized and Cy > 0 depends
only on £, g and on the dimensions d,p and q.

Let D C R% be an open set and A = T¢ x D. Consider a function G € C*°(A, A) of the form

GO,r)=(0,r) — K(r)— G(0,r),

Recall that the map @ defined by Q(6,r) = (8 + VK (r),r) is a symplectic map with generating
function (0,7) — (0,7) — K(r).
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Lemma A.16. Let suppG C T" ! x F, where F C D is a compact and let G satisfy (A.37).
Then the function (0,7) — (0,7) — G(0,7) is a generating functions of a symplectic transforma-

tion W : A — A, G is a generating functions of a symplectic transformations P : A — A, the
support of W —id is contained in T" ! x F and P =W o0 Q.

Proof. The assertions about W follow from Lemma A.14. As in the proof of Lemma A.14
one obtains that the map § — 6 —V,.G(6,r) is a diffeomorphism of T¢ homothope to the identity
mapping. Then comparing the identities

PO —-V,.K(r)—V,G0,r),r)=(0,r— VeG(0,r))
and
(WoQ)(0—V,.K(r)—V,.GO,r),r)=W(O0 -V, GO,r),r)=(0,r—VeG(0,1))

we obtain the relation P = W o Q. |

B Appendix.

B.1 Invariant characterization of Liouville billiards

Here we prove the following invariant characterization of Liouville billiard tables defined in [60,
Sec. 2].

Theorem 7. Let (X, g) be a smooth oriented compact and connected Riemannian manifold of
dimension two with connected boundary I' = 0X. Assume that

(a) There exists a smooth quadratic in velocities integral of the geodesic flow I : TX — R that
is tnvariant with respect to the reflection at the boundary TM|r — TM]|r, £ — £—2g(v,§),
where v is the outward unit normal to I'. In addition, we assume that the metric g does
not allow global Killing symmetries;

(b) There is no point xog € I' and a constant ¢ € R such that g,(&,§) = clzy(€,€) for any
€T X.

Then (X, g) is isometric to a Liowville billiard table.! Conversely, any Liouville billiard table
satisfies the properties stated above.

Remark B.1. The assumption that g does not allow global Killing symmetries is needed for
excluding the case when (X, g) is a surface of revolution. Condition (b) can be replace by a
similar condition but can not be avoided. One can easily see this by considering the billiard table
on the surface of the ellipsoid {ié + %j + j—i = 1}, 0 <a<b<c, defined by the condition y > 0.
This billiard table is completely integrable but it is not a Liouwville billiard table. Its boundary is
the geodesic that corresponds to the intersection of the coordinate plane Oy, with the ellipsoid.
In particular, this curve is not locally geodesically convex and it contains the four umbilics of
the ellipsoid. One can easily see that the billiard table defined this way satisfies all conditions of
Theorem 7 except (b). Condition (b) is also needed to ensure that the integral is non-trivial, i.e.
I # cg where ¢ is a real constant.

In particular, X is diffeomorphic to the unit disk D? in R2.

157



As a consequence of Theorem 7 we see that there exists a double covering map with two branched
points,
7:C = X,

where C' denotes the cylinder (R/Z) x [N, N], N > 0, coordinatized by the variables = and y
respectively, so that the metric 7%(¢g) and the integral 7%(I) have the following form on C,

dg> = (f(x) —qy))(da® + dy?) (A.42)
dI? = «adF?+ Bdg?

where o # 0 and § are real constants and

dF? == (f(x) — q(y)) (aly) da® + f(z) dy?) . (A.43)

In other words, the integral dI? belongs to the pencil of dg? and dF?. Here f € C*®(R) is
1-periodic, ¢ € C*°(|—N, N]), and

(i) fiseven, f>0ifz ¢ 3Z, and f(0) = f(1/2) = 0;
(i) q is even, ¢ < 0 if y # 0, ¢(0) = 0 and ¢ (0) < 0;
(iit) f@R)(1/2) = (=1)kq**)(0), I = 0,1, for every natural k € N.

In particular, if f ~ Y22, fra?* is the Taylor expansion of f at 0, then, by (iii), the Taylor
expansion of g at 0 is ¢ ~ Y20, (—1)¥ fra?.

Remark B.2. The branched points of the covering correspond to the points (0,0) and (1/2,0)
of the cylinder C. The metric (A.42) and the integral (A.43) on C vanish at these points.

Proof of Theorem 7. Consider a tubular neighborhood V' = V(I') C X of the boundary I in
X that is diffeomorphic to the strip (R/Z) x [—¢,0], € > 0, and assume that the boundary
I corresponds to the circle (R/Z) x {0}. By gluing two 2-dimensional closed disks along the
boundaries of this strip and then by extending the Riemannian metric g to a smooth Riemannian
metric g on the corresponding 2-sphere, we obtain an isometrical embedding of our tubular
neighborhood V' of the boundary I' into a Riemannian manifold diffeomorphic to the unit 2-
sphere S? in R3. Using the metric g on S? and passing to isothermal charts we obtain a complex
atlas on S?, that transforms S? into a Riemann surface. Then, by the Riemann mapping theorem,
this Riemann surface is biholomorphically equivalent to the standard Riemann sphere that we
identify with the complex projective plane CP'. Taking a point N on CP' that does not lie in
the image of the strip V and then applying stereographic projection CP!\ {N} — C we obtain
an embedding of the strip V into the complex plane. By construction, the push-forward of the
metric ¢ is conformally equivalent to the Euclidean metric on C. Let {(z,y)} and z = = + iy
be the coordinates in C. For simplicity, we will identify the metric g, the integral I, and the
neighborhood V' and I' with their corresponding push-forward images. Then we have,

1
dg* = S Mw,y)(da® + dy?)

and V is a closed domain in C diffeomorphic to the annulus (R/Z) x [—¢,0]. By construction,
Az,y)

g is extended to a smooth Riemannian metric dg* = =5 (dz? + dy®) on the whole of C. Let
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{(p1,p2,,y)} be the standard coordinates on T*R? where R? is identified with C. Applying the
Legendre transform, then passing to complex notations and introducing the complex impulses
p = %(pl —ip9), P = %(pl +ip2), and Oy := Op, + 10p,, Op := Op, — 0p,, We obtain complex
coordinates {(p, 2)} on T*R? so that

2pp
H = A.44
Xz, 2) (A.44)
and
I = A(z,2)p* + B(z, 2)pp + A(z, 2) p* (A.45)

with B(z,z) = B(z, 2).2 In view of condition (b) of the theorem, the coefficient A(z, Z) does not
vanish on T, i.e.,
A(z,Z2) #0 Vz e T. (A.46)

In the coordinates {(z,p)} on T*R? the canonical symplectic structure w takes the form w =
dp N\ dz + dp N dz. Hence,
{(H,I} = (HyI, — H.I,) — (HyIs — HsI;) = 2Re(H, I, — H.I,). (A.47)
As I is a first integral of the geodesic flow of g, we have
{H, Ity =0. (A.48)

Using (A.47) one sees that equation (A.48) is equivalent to the following system of equations

Ag — O,
(A.49)
M, + 20\, A+ B\;+AB;=0.

In particular, we see that the coefficient A(z, 2) in front of p3 in the formula for the integral
(A.45) is holomorphic in z € V. C C, A = A(z). Take 2 in the interior of V' and consider a
biholomorphic change of the variable w = w(z) in an open neighborhood of zj in the interior of
V. Then the expression for the integral (A.45) implies that,

dw)Q, (A.50)

A(w) = A(z (—
(w) = A(2) (-
where A(w) is the coefficient in front of (p)° in the expression for the integral I in the chart
corresponding to w. Here § is the complex impulse in the chart corresponding to w.?

Remark B.3. In fact, (A.50) implies that the bivector field,
Q{z} = A(Z) 0, ® 0,

when written in an isothermal atlas, will correspond to a globally defined holomorphic section
of the boundle Té’oX C TcX . As the integral I is non-trivial (condition (b)), the holomorphic
bivector ) vanishes only at finitely many points in the interior of X. If X were a closed surface,
then by Hopf theorem, deg(Q2) = 2x(X), where x(X) = 2 — 2g is the Euler characteristic of
X and deg(2) is the number of zeros (counted with multiplicities) of 2. This would imply that
g =0,1, and therefore X would be diffeomorphic to the 2-sphere or the 2-torus ([39, 40]).

2] = I as I is real-valued.
3Note that p = ﬁ%.
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Next, we want to simplify (A.49) by passing to a new complex variable w = w(z), with w(z)
holomorphic in the interior of V, so that A(w) = 1. In view of (A.50), this amounts to solving
the differential equation 1 = A(z)(%)? In the case when A(zp) # 0 and zg lies in the interior
of V, the later equation can we solved explicitly in a sufficiently small open disk centered at zy,

I

w(z) = w(z) + /Z j)EA)

where the path of integration connecting zg with z is C'-smooth and lies in the small disk
centered at zyp. The square root /A(A) is holomorphic in the considered disk and is defined
up to the choice of the sign. As it was mentioned above, condition (b) of the theorem implies
(A.46). Hence, by shrinking the strip V' if necessary, we can ensure that I' C V and A(z) # 0
for any z € V. Now, take 2y € I' and consider the map,

Oz w(z V—-C, (A.51)

) / 2 dA
where the path of integration connecting zy with z is C'-smooth and is contained in V. Clearly,
the map ® above is well-defined on V' and holomorphic in the interior of V. Moreover, it follows
from (A.51) that the directional derivatives of ® of all orders exist and are continuous up to the
boundary of V. This allows us to extend ® to a smooth map defined in some open set VOoV.
Next, let us consider the image ®(I") of the boundary I'. Take z; € I'. By the inverse function
theorem, there exist an open neighborhood U(z1) of z; in C and an open neighborhood W (w1)
of wy := ®(z1) in C so that ®|y(;,) : U(21) = W(z1) is a diffeomorphism. Let w = u + iv.
Then, as A(w) = 1 for all w € ®(V) we conclude from (A.44) and (A.45) that § := ®,(g) and
I := ®,(I) are diagonal in the coordinates {(u,v)} on W (w;)N® (V') and non-proportional at all
points of ®(V'). In other words, the coordinate vector fields 9, and 9, on W (w;)N® (V') coincide
with the principle directions of the quadratic forms § and I. As by assumption the integral Iis
invariant with respect to the reflections at the boundary ®(I") we conclude that ®(I') N W (wy)
is a coordinate line. As z; € I' was chosen arbitrarily, we see that ®(I') is a straight line. By
shrinking the strip V' so that I' C V' onece more if necessary and by rotating the target copy of
C we get that for some § > 0,

P(V)={w=u+iv| - <v <0},

and ¢ : V — ®(V) is a smooth covering map. The boundary ®(I') coincides with the real line.
This proves that there exist a tubular neighborhood V of I' in X and 4§,/ > 0 such that V is
diffeomorphic to the cylinder

Z={z=zx+iy|lz e R/IZ,—6 <y <0},
with I corresponding to (R/IZ) x {0},
H=2pp/\, I=p*+Bpp+p>, B=B, (A.52)

and

BA: +AB; = —2), . (A.53)
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Note that (A.53) is equivalent to the vanishing of the Poisson bracket {H,I}. Equation (A.53)

is also equivalent to (AB)z = —2\,. By separating its real and the imaginary parts we get
(AB)y = =24,
(AB)y =2\,

This implies that

AB+2) = (MB +2))|y0) =a®)/4, MB—2) = (MB—2))loq) = f(=)/4

where f € C*°(R) is 1-periodic and ¢ € C*°([—4¢,0]). By subtracting these two equations we see
that,

Az, y) = q(y) = f(z) > 0.
This, together with (A.52) and p = (p1 — ip2)/2 implies that

1 pi+ 15
H= 22— @ (A.54)
and
2 = (B—|—2)p2+(B 2)p?
a(y)pi + f(z)p3
OB (A.55)

Remark B.4. Our arguments also show that for any choice of functions f € C*(R) I-periodic
and g € C*([a,b]), a,b € R, so that q(y)— f(x) > 0 the functions H and I defined by (A.54) and
(A.65) are in involution with respect to the canonical symplectic structure w = dpy Adx+dpa Ady
on the cotangent bundle to the cylinder (R/IZ) x [a,b).

This Remark allows us to extend the metric g and its first integral I to a larger cylinder,
Z:={z=x+iy|z e R/IZ —0 <y < b},

that contains the boundary I' = (R/IZ) x {0} in its interior. In order to do this we extend the
function ¢ to a function ¢ € C*°[—4, 6] so that ¢(y) — f(z) > 0 on Z and

vk >1, ¢® () =0. (A.56)

Then we use (A.54) and (A.65) to extend the metric g and I to smooth quadratic forms on Z.
By Remark B.4, I continues to be a quadratic integral of the Riemannian metric g on Z. In this
way we extend the Riemannian manifold (X, g) to a smooth Riemannian manifold (X,§) with
connected boundary T, so that X C X, I is in the interior of X, dlx =g, Ilx =1 and I is a
quadratic first integral of g. In addition, a collar neighborhood of I" in X can be coordinatized
by the cylinder Z so that the Legendre transforms of the metric and the integral are given by
(A.54) and (A.65). B

Our final step is to take two copies of (X, g) and glue them along their boundaries by a
diffeomorphism that, in the coordinates {(x,y)}, corresponds to the identity,

(x,0) = (z,0), (R/IZ)x {0} — (R/IZ) x {6} .
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In this way we obtain a closed Riemannian manifold (X ,g). In view of the flatness condition
(A.56) on g, the metric § and the corresponding quadratic form I are smooth, the Riemannian
manifold (X, g) is isometrically embedded into (X ,§g), and I |x = I. Moreover, by construction,
I is a quadratic integral of the geodesic flow of g. Finally, Theorem 7 follows from the classifi-
cation theorem for Liouville surfaces (see e.g. [39]). O

B.2 Kolmogorov Nondegeneracy of the bouncing ball map for Liouville bil-
liards

In this Appendix we show that the Poincaré map of the Liouville billiard tables on the surfaces
of constant curvature is non-degenerate at the elliptic fixed point.

Let (X, g) be a Liouville billiard table of classical type. Then there exists a double covering
with two branched points
7:C =X (A.57)

where C' denotes the cylinder (R/ Z) x [=N,N], N > 0, coordinatized by the variables = and
y respectively, so that the pull-back of the Riemannian metric on X and the corresponding
quadratic in velocities first integral take the form

dg* = (f(z) — q(y)) (da® + dy?) (A.58)

dF? = (f(z) = q(y)) (a(y)da® + f(x)dy?) (A.59)
where f € C*°(R) is 1-periodic, g € C’OO([—N, N]), and the hypotheses (i)+(v) in the definition
of Liouville billiard tables of classical type hold. In addition, we will assume that f has a Morse
singularity at x = 1/4 which amounts to f”(1/4) < 0. Note that the line (taken twice) on the
cylinder C' corresponding to x = 1/4 is an elliptic closed broken geodesic of (X, g) with two
vertices. Let

f(z) = ao + a1(z — 20)? + as(z — 20)* + O((z — 20)°) (A.60)
where ap > 0 and 3 < 0 be the Taylor’s expansion of f at xg = 1/4. Let {(I, )} be action-angle
variables in an open neighborhood in B*I" of the elliptic fixed point of the billiard ball map of
(X, g) normalized so that I = 0 at the elliptic point. We have the following

Theorem B.5. Denote by K the Hamiltonian that generates the billiard ball map in the action-
angle coordinates {(1,0)}. Then

dH ﬁ
o= ! /

\/Oéo—q

PK, oo N dy 3az
0= (L /m>

Integrable billiard tables on surfaces of constant curvature are examples of Liouville billiard
tables of classical type — see [60, §3]. In the case of elliptic billiard tables we have that

and

f(z) = 4?7 sin® 27z and  q(y) = —4e*n? sinh? 272 (A.61)

where € > 0 is the distance between the center of the ellipse and one of the focuses (see [60,
§3.1]). As a consequence we obtain
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Corollary B.6. For any e > 0 and for any N > 0 we have that —1 < %((O) <0 and %(0) < 0.
In particular, the Poincaré map of the elliptic billiard ball map is non-degenerate (twisted) at the

elliptic fized point. Moreover, it is 4-elementary except for five different values of the parameter
N > 0.

Remark B.7. Similar results can be proved for the Liouville billiard tables on the surfaces of
constant curvature.

Proof of Theorem B.5. Let {(x,y,p1,p2)} be the standard coordinates on the cotangent bundle
T*C. By the Legendre transform

_ P+ _ a)ri + f(@)r3
=5 = "7 -
where
p=(f(z) —qW)z, p2= (flz)—q()y (A.62)

and 2 and y denote the components of the velocity vectors in T'C. For
0<h<max f =g
consider the invariant with respect to the geodesic flow on T*C surface
Qn:={H=1F=h} CT*C.
Since the variables separate one easily sees that (Jp is characterized by the set of equations
pi=f(x)—h, p3=h—qy). (A.63)

One concludes from (A.63) and the hypothesis (i)+(v) on the functions f and ¢ that for 0 <
h < ag the surface @y, consists of two copies of (R/Z) x [-N, N]. The billiard reflection map at
the boundary of C' preserves the boundary of ()5, and can be used to “glue” the two components
of @y into a single Liouville torus Q), of the broken geodesic flow on C. By integrating the
Liouville form x = pidx + pady along the two cycles on @h that are “parallel” to the coordinate
lines on C, we obtain from (A.63) that

N
K =2 [ Vh=a)dy (A.64)

and
I(h) =2 / V@) -~ hde (A.65)

where 0 < zj, < 1/4 < 2] < 1/2 are the two zeros of the equation f(z) = h. Note that
x) = xy = 1/4if and only if h = ag. Since f has a Morse singularity at zo = 1/2 there exists an
orientation preserving change of variables p : U(0) — V(0) from an open neighborhood of zero
U(0) onto an open neighborhood of zero V(0) such that

x —x0 = p(u), (A.66)

and
f(z)—h=(ag—h) —u? (A.67)
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It follows directly from (A.60), (A.66), and (A.67) that

1 a2 3 5
— O . A.68

In view of (A.65), (A.66), (A.67), and (A.68) we obtain
I(h) = 2/ " V@) = hdz
),
Vag—h ,
— 2 pavia - Ry

—vag—h
1
= 2(ap — h)/ p'(U\/ao — h)\/l —u?du
-1
= - h — ————(h — O((h — )
—a1( a0) + 804%\/—041( a0)” + O((h — o))
Hence,
dI d?1 5
I(ag) =0, %(ao) =—7/v—aq, W(ao) = 3mag/daiy/—ag. (A.69)

It follows from (A.64) and the fact that ap > 0 that K is a C°°-smooth function of & in an open
neighborhood of h = «. By combining this with (A.69) we obtain

dK dK dI m
170 = -(a0) /- (a0) = 1

(A.70)

/ \/ﬁ

and

T = (G0 - 0 Te0) /(Gaw)’

o ar N dy _3(12
O e S )

O]

Proof of Corollary B.6. The Corollary follows directly from Theorem B.5 and (A.61). In fact,
it follows from (A.61) that

2_2 2 2 167 4 6
f(x) = 42n (1 —an(z = 1/4) + = (@ = 1/4)" + O((@ — 1/4) )).
Hence,
4
ap=c%,  ag = —An?P, ag = 16; 2, (A.72)

where we set for simplicity ¢ := 2mwe. Then, in view of Theorem B.5 we obtain that

_ / " dy
~N /1 + sinh? 27y
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and
d’K 1

L L R
dr? 2em N (1+sinh2 27ry)3/2 ~N /1 + sinh? 27y

By passing to the variable v = sinh 27y in the integrals above one obtains that

K 2
C;T(O) = arctan (sinh27rN) < 0 (A.73)
and
d*K 1 sinh27N

- _ A.74
dr? (0) 2em? cosh? 2r N <0 (A.74)

which completes the proof of the first two statements of the Corollary. It is clear that the

spectrum of the Poincaré map of the elliptic billiard ball map at the elliptic fixed point is equal
to {e*} where

dK
o= iQﬂ'ﬁ (0)mod .

The last statement of the Corollary then follows from the definition of the 4-elementary Poincaré
maps and formula (A.73). O
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