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This article is a part of a project investigating the relationship between the dynamics of completely integrable or "close" to completely integrable billiard tables, the integral geometry on them, and the spectrum of the corresponding Laplace-Beltrami operators. It is concerned with new isospectral invariants and with the spectral rigidity problem for the Laplace-Beltrami operators ∆ t , t ∈ [0, 1], with Dirichlet, Neumann or Robin boundary conditions, associated with C 1 families of billiard tables (X, g t ). We introduce a notion of weak isospectrality for such deformations.

The main dynamical assumption on (X, g 0 ) is that the corresponding billiard ball map B 0 or an iterate P 0 = B m 0 of it posses a Kronecker invariant torus with a Diophantine frequency ω 0 and that the corresponding Birkhoff Normal Form is nondegenerate in Kolmogorov sense. Then we prove that there exists δ 0 > 0 and a set Ξ of Diophantine frequencies containing ω 0 and of full Lebesgue measure around ω 0 such that for each ω ∈ Ξ and 0 < δ < δ 0 there exists a C 1 family of Kronecker tori Λ t (ω) of

satisfies the weak isospectral condition we prove that the average action β t (ω) on Λ t (ω) and the Birkhoff Normal Form of P t at Λ t (ω) are independent of t ∈ [0, δ] for each ω ∈ Ξ.

As an application we obtain infinitesimal spectral rigidity for Liouville billiard tables in dimensions 2 and 3. In particular infinitesimal spectral rigidity for the ellipse and the ellipsoid is obtained under the weak isospectral condition. Applications are obtained also for strictly convex billiard tables in R 2 as well as in the case when (X, g 0 ) admits an elliptic periodic billiard trajectory with no resonances of order ≤ 4.

In particular we obtain spectral rigidity (under the weak isospectral condition) of elliptical billiard tables in the class of analytic and Z 2 × Z 2 symmetric billiard tables in R 2 . We prove also that billiard tables with boundaries close to ellipses are spectrally rigid in this class.

The results are based on a construction of C 1 families of quasi-modes associated with the Kronecker tori Λ t (ω) and on suitable KAM theorems for C 1 families of Hamiltonians. We propose a new iteration schema (a modified iterative lemma) in the proof of the KAM theorem with parameters, which avoids the Whitney extension theorem for C ∞ jets and allows one to obtain global estimates of the corresponding canonical transformations and Hamiltonians in the scale of all Hölder norms. The classical and quantum Birkhoff Normal Forms for C 1 or analytic families of symplectic mappings (Hamiltonians) obtained here can be used as well in order to investigate problems related to the quantum non-ergodicity of C ∞ -smooth KAM systems.
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Introduction

This article is a part of a project (cf. [START_REF] Popov | KAM theorem for Gevrey hamiltonians[END_REF]- [START_REF] Popov | On the integral geometry of Liouville billiard tables[END_REF]) investigating the relationship between the dynamics of completely integrable or "close" to completely integrable billiard tables, the integral geometry on them, and the spectrum of the corresponding Laplace-Beltrami operators. It is concerned with new isospectral invariants and the spectral rigidity of the Laplace-Beltrami operator associated with C 1 deformations (X, g t ), 0 ≤ t ≤ 1, of a billiard table (X, g), where X is a C ∞ smooth compact manifold with a connected boundary Γ := ∂X of dimension dim X = n ≥ 2 and t → g t is a C 1 family of smooth Riemannian metric on X.

Substantial progress in the inverse spectral geometry has been made by means of the wavetrace formula [START_REF] Gramtchev | Nekhoroshev type estimates for billiard ball maps[END_REF], [START_REF] Guillemin | Some inverse spectral results for negatively curved 2manifolds[END_REF], [START_REF] Hörmander | An Introduction to complex analysis in several complex variables[END_REF][START_REF] Iantchenko | Birkhoff normal forms for Fourier integral operators II[END_REF], [START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF], [START_REF] Zehnder | Generalized implicit function theorems with applications to some small divisor problems[END_REF]- [START_REF] Zelditch | Inverse spectral problem for analytic domains. I. Balian-Bloch trace formula[END_REF], and by its semi-classical analogue -the Gutzwiller trace formula [START_REF] Marvizi | Melrose: Spectral invariants of convex planar regions[END_REF], [START_REF] Hörmander | An Introduction to complex analysis in several complex variables[END_REF][START_REF] Iantchenko | Birkhoff normal forms for Fourier integral operators II[END_REF], [START_REF] Guillemin | The Poisson summation formula for manifolds with boundary[END_REF][START_REF] Guillemin | Bottom of the wel"semi-classical wave trace invariants[END_REF]. The wave-trace formula, known in physics as the Balian-Bloch formula and treated rigorously by Y. Colin de Verdière [START_REF] De Verdière | Spectre du Laplacien et longueurs des géodésiques périodiques I, II[END_REF], J. Duistermaat and V. Guillemin [START_REF] Duistermaat | Oscillatory integrals, lagrange immersions and unfolding of singularities[END_REF], V. Guillemin and R. Melrose [START_REF] Guillemin | An inverse spectral result for elliptical regions in R 2[END_REF] and S. Zelditch [START_REF] Zelditch | Spectral determination of analytic bi-axisymmetric plane domains[END_REF] (see also [START_REF] De Verdière | Spectrum of the Laplace operator and periodic geodesics: thirty years after. Festival Yves Colin de Verdière[END_REF], [START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF], [START_REF] Popov | Quasimodes for the Laplace operator and glancing hypersurfaces[END_REF], [START_REF] Rüsseman | Invariant tori in non-degenerate nearly integrable Hamiltonian systems[END_REF], [START_REF] Yu | The asymptotic distribution of eigenvalues of partial differential operators[END_REF]), as well as the Gutzwiller trace formula relate the spectrum of the operator with certain invariants of the corresponding closed geodesics such as their lengths and the spectrum of the linear Poincaré map.

It has been proved in [START_REF] Gramtchev | Nekhoroshev type estimates for billiard ball maps[END_REF], [START_REF] Zehnder | Generalized implicit function theorems with applications to some small divisor problems[END_REF][START_REF] Zelditch | Wave invariants at elliptic closed geodesics[END_REF], [START_REF] Hörmander | An Introduction to complex analysis in several complex variables[END_REF][START_REF] Iantchenko | Birkhoff normal forms for Fourier integral operators II[END_REF], that for certain nondegenerate closed geodesics one can extract the Birkhoff Normal Form (BNF) from the singularity expansions of the wavetrace. S. Zelditch [START_REF] Zelditch | Wave invariants for non-degenerate closed geodesics[END_REF] - [START_REF] Zelditch | Inverse spectral problem for analytic domains. II. Z/Z 2 -symmetric domains[END_REF] and H. Hezari and S. Zelditch [START_REF] Herman | Inégalités "a priori" pour des tores lagrangiens invariants par des difféomorphismes symplectiques[END_REF] have reconstructed the boundary for a large class of analytic domains on R n having certain symmetries. Hezari and Zelditch [START_REF] Hezari | Inverse spectral problem for analytic (Z/2Z) n -symmetric domains in R n[END_REF] have proven infinitesimal rigidity of isospectral deformations of the ellipse.

Spectral rigidity of closed Riemannian manifolds of negative sectional curvature has been obtained by V. Guillemin and D. Kazhdan [START_REF] Guillemin | Wave trace invariants[END_REF] (in dimension two), C. Croke and V. Sharafutdinov [START_REF] Croke | Spectral rigidity of a compact negatively curved manifold[END_REF] (in any dimension) and by G. Paternain, M. Salo, and G. Uhlmann [START_REF] Moser | Proof of a generalized form of a fixed point theorem due to G.D. Birkhoff[END_REF] for closed oriented Anosov surfaces. In order to link the spectrum of the Laplace-Beltrami operator with the length spectrum of the manifold the wave-trace formula is used. The wave-trace formula is especially useful for C 1 -deformations (X, g t ) of a closed Riemannian manifold (X, g 0 ) with an Anosov geodesic flow since every closed geodesic of (X, g 0 ) is hyperbolic, hence, nondegenerate and it gives rise to a C 1 family of closed hyperbolic geodesics of (X, g t ) for |t| small enough. This reduces the problem of the infinitesimal spectral rigidity of Anosov manifolds to the injectivity of a geodesic ray transform which has been proved for negatively curved closed manifolds of any dimension [START_REF] Croke | Spectral rigidity of a compact negatively curved manifold[END_REF] and for closed oriented Anosov surfaces [START_REF] Moser | Proof of a generalized form of a fixed point theorem due to G.D. Birkhoff[END_REF]. Moreover, infinitesimal rigidity implies spectral rigidity because of the structural stability. Non of these properties is valid for deformations of a billiard table "close" to an integrable billiard table which makes the spectral rigidity problem much more difficult in that case. The wave-trace method requires certain technical assumptions such as simplicity of the length spectrum (a non-coincidence condition) and non-degeneracy of the corresponding closed geodesic and its iterates which are not fulfilled in general.

The main dynamical assumption on (X, g 0 ) in the present work is that the corresponding billiard ball map or an iterate of it posses a Kronecker invariant torus (see Definition 1.1) with a Diophantine frequency vector and that the corresponding Birkhoff Normal Form (BNF) is nondegenerate in a Kolmogorov sense. Such Hamiltonian systems are said to be of Kolmogorov-Arnold-Moser (KAM) type. The dynamics of such systems is quite complex. In particular, the non-coincidence and the non-degeneracy conditions may not hold for the corresponding closed geodesics. This makes the wave-trace method useless for such systems in general. On the other hand, the Kronecker tori with Diophantine frequencies survive under small perturbations which makes them the right objects to look for. For this reason we propose another method which is based on the construction of C 1 -families of quasi-modes associated with these tori.

Du to the Kolmogorov-Arnold-Moser (KAM) theory, if the initial Hamiltonian system (t = 0) is completely integrable and if it satisfies the Kolmogorov nondegeneracy condition, then a large part of the invariant tori of the initial system having Diophantine frequencies ω survive under the perturbation for t in a small interval [0, δ 0 ) and give rise to cylinders of invariant tori t → Λ t (ω), 0 ≤ t < δ 0 along the perturbation. The positive number δ 0 depends on the small constant κ and on the exponent τ in the Diophantine condition (1.2). The aim of this paper is to prove that the invariant tori form C 1 -families with respect to t and that the value at ω of the corresponding Mather's β-function does not depend on t, or equivalently that the Birkhoff Normal Form (BNF) of the system at each torus Λ t (ω) does not depend on t for any C 1 -smooth isospectral deformation. Applications will be obtain in the following three cases: for deformations of Liouville billiard tables, in the case of deformations of strictly convex domains and in the case when g 0 admits an elliptic (broken) geodesic which has no resonances of order ≤ 4 and has a nondegenerate BNF.

Let us formulate the main problems that we are going to investigate. Denote by ∆ t the "geometric" Laplace-Beltrami operator corresponding to the Riemannian manifold (X, g t ) with Dirichlet, Neumann or Robin boundary conditions. This is a self-adjoint operator in L 2 (X) with discrete spectrum accumulating at +∞. The corresponding eigenvalues λ solve the spectral problem ∆ t u = λ u in X ,

B t u = 0 , (1.1) 
where B t u = u| Γ in the case of Dirichlet boundary conditions, B t u = ∂u ∂νt | Γ in the case of Neumann boundary conditions, and B t u = ∂u ∂νt | Γ -f u| Γ in the case of Robin boundary conditions, where ν t (x), x ∈ Γ t , is the outward unit normal to Γ with respect to the metric g t and f is a smooth real valued function on Γ.

The method we use is based on the construction of C 1 smooth with respect to t quasi-modes. This method has been applied in [START_REF] Popov | On the integral geometry of Liouville billiard tables[END_REF] in order to investigate the spectral rigidity of the problem (1.1) with Robin boundary conditions in the case when the metric g is fixed and t → f t is a continuous deformation of the function appearing in the Robin boundary condition. Let us formulate the isospectral condition.

Consider a union I of infinitely many disjoint intervals [a k , b k ] going to infinity, of length o √ a k , and which are polynomially separated.

More precisely, fix two positive constants d ≥ 0 and c > 0, and suppose that (H 1 ) I ⊂ (0, ∞) is a union of infinitely many disjoint intervals [a k , b k ], k ∈ N, such that

• lim a k = lim b k = +∞; • lim b k -a k √ a k = 0; • a k+1 -b k ≥ cb -d k for any k ∈ N.
Given a set I satisfying (H 1 ), we impose the following "weak isospectral assumption" (H 2 ) There is a ≥ 1 such that Spec (∆ t ) ∩ [a, +∞) ⊂ I ∀ t ∈ [0, 1] .

Note that the length of the intervals [a k , b k ] can increase and even go to infinity as k → ∞ but not faster than o √ a k . Physically this means that we allow noise in the system. Using the asymptotic behavior of the eigenvalues λ j as j → ∞ one can show that conditions (H 1 )-(H 2 ) are "natural" for any d > n/2 and c > 0. By "natural" we mean that for any d > n/2 and c > 0 the usual isospectral condition

Spec (∆ t ) = Spec (∆ 0 ) ∀ t ∈ [0, 1]
implies that there exists a ≥ 1 and a family of infinitely many disjoint intervals [a k , b k ] such that (H 1 )-(H 2 ) are satisfied -see [START_REF] Popov | On the integral geometry of Liouville billiard tables[END_REF], Lemma 2.2, for details. The exponent d depends on the level spacing of the spectrum of ∆ 0 . The elastic reflection of geodesics of (X, g t ) at Γ determines continuous curves on X called billiard trajectories as well as a discontinuous dynamical system on the corresponding coshere bundle S * t X -the "billiard flow" consisting of broken bicharacteristics of the Hamiltonian h t associated to g t via the Legendre transform. The latter induces a discrete dynamical system B t defined on an open subset B * t Γ (depending on t) of the open coball bundle B * t Γ of Γ called billiard ball map (see Section 2.1 for a definition). The map B t : B * t Γ → B * t Γ is exact symplectic. Fix an integer m ≥ 1 and consider the exact symplectic map

P t = B m t : U t → B * t Γ
where U t is an open subset of B * t Γ t such that B j t (U t ) ⊂ B * t Γ for any 0 ≤ j < m. Given an interval J ⊂ [0, 1] we say that P t = B m t , t ∈ J, is a C 1 family of exact symplectic maps if for every t 0 ∈ J and ρ 0 ∈ U t 0 there exist neighborhoods J 0 ⊂ J of t 0 and V ⊂ U t 0 of ρ 0 such that V ⊂ U t for every t ∈ J 0 and the map

J 0 t → P t V ∈ C ∞ (V, T * Γ) is C 1 .
We are interested in Kronecker invariant tori of P t of Diophantine frequencies, which are defined as follows.

We denote by T d the torus T d := R d /2πZ d of dimension d ≥ 1 and by pr : R d → T d the canonical projection and we consider T d as a Z-module. A "distance" from a given α ∈ T := T 1 to 0 can be defined by |α| T := inf{|a| : a ∈ pr -1 (α)}.

Fix κ ∈ (0, 1) and τ > n -1 and denote by D(κ, τ ) the set all ω ∈ T n-1 = R n-1 /2πZ n-1 satisfying the "strong" (κ, τ )-Diophantine condition

| k, ω | T = |k 1 ω 1 +• • •+k n-1 ω n-1 | T ≥ κ n-1 j=1 |k j | τ ∀ k = (k 1 , . . . , k n-1 ) ∈ Z n-1 \{0}. (1.
2)

The condition (1.2) is equivalent to the following one. There exists ω ∈ pr -1 (ω) such that

| ω , k + 2πk n | ≥ κ n-1 j=1 |k j | τ ∀ (k, k n ) ∈ Z n-1 × Z, k = 0.
Obviously, if this condition is satisfied for one ω ∈ pr -1 (ω) then it holds for each ω ∈ pr -1 (ω). We denote by D(κ, τ ) the set all ω ∈ R n satisfying the following "weak" (κ, τ )-Diophantine condition:

| ω, k | ≥ κ n j=1 |k j | τ ∀ k ∈ Z n , k = 0. (1.3)
Thus the relation ω ∈ D(κ, τ ) implies that ω := ( ω , 2π) ∈ D(κ, τ ) for at least one (and then for all) ω ∈ pr -1 (ω). The set D(κ, τ ) ( D(κ, τ )) is closed and nowhere dense in R n-1 (R n ), respectively. Moreover, the union ∪ 0<κ≤1 D(κ, τ ) of (κ, τ )-Diophantine vectors is of full Lebesgue measure in R n-1 for τ > n -1 fixed, and D(κ , τ ) ⊂ D(κ, τ ) for 0 < κ < κ . Denote by D 0 (κ, τ ) the set of points of positive Lebesgue density in D(κ, τ ), i.e. ω ∈ D 0 (κ, τ ) if the Lebesgue measure meas (D(κ, τ ) ∩ V ) > 0 for any neighborhood V of ω 0 in R n-1 . By definition, the complement of D 0 (κ, τ ) in D(κ, τ ) is of zero Lebesgue measure. In the same way we define the subset D 0 (κ, τ ) of points of positive Lebesgue density in D(κ, τ ). Definition 1.1. A Kronecker torus of P t of a frequency ω is an embedded submanifold Λ t (ω) of B * t Γ diffeomorphic to T n-1 such that (i) B j t (Λ t (ω)) is a subset of B * t Γ for each 0 ≤ j ≤ m -1;

(ii) Λ t (ω) is invariant with respect to P t = B m t ;

(iii) The restriction of P t to Λ t (ω) is C ∞ conjugated to the translation R ω : T n-1 → T n-1 given by R ω (ϕ) = ϕ + ω.

This means that there is a smooth embedding f t,ω : T n-1 → B * t Γ such that Λ t (ω) = f t,ω (T n-1 ) and the diagram

T n-1 Rω -→ T n-1 ↓ f t,ω ↓ f t,ω Λ t (ω) Pt -→ Λ t (ω) (1.4)
is commutative.

Definition 1.2. By a C 1 -smooth family of Kronecker tori Λ t (ω) of P t , t ∈ [0, δ], with a frequency ω we mean a C 1 family of smooth embeddings [0, δ] t → f t,ω ∈ C ∞ (T n-1 , T * Γ) satisfying (i)-(iii) of Definition 1.1.

For each Diophantine frequency ω ∈ D(κ, τ ) the embedding f t,ω : T n-1 → B * t Γ is a Lagrange embedding (see [START_REF] Hedenmalm | Formal power series and nearly analytic functions[END_REF], Sect. I.3.2). We simply say that each Kronecker torus Λ t (ω) ⊂ B * t Γ is Lagrangian for such frequencies. Note that the map P t : Λ t (ω) → Λ t (ω) is uniquely ergodic for ω ∈ D(κ, τ ), i.e. there is a unique probability measure µ t on Λ t (ω) which is P t invariant. Evidently, its pull-back f * t,ω (dµ t ) by the diffeomorphism f t,ω coincides with the Lebesgue-Haar measure dθ of T n-1 . The automorphism x → x 2π of R n-1 induces an isomorphism of groups  : R n-1 /2πZ n-1 → R n-1 /Z n-1 assigning to any frequency vector ω the corresponding rotation vector which will be denoted by ω/2π. Hereafter we will deal mainly with frequency vectors which is motivated by the extensive use of the Fourier analysis.

To any Kronecker torus Λ t (ω) with a Diophantine frequency ω ∈ D(κ, τ ) one can associate three dynamical invariants as follows.

The first one is the average action on the torus, which corresponds to the Mather's β-function in the case of twist maps. Given ∈ B * t Γ we denote by A t ( ) := γt( ) ξdx the action on the broken bicharacteristic γt ( ) "issuing from" 0 := and "having endpoint" at m := P t ( ), where ξdx is the fundamental one-form on T * X. Denote by X ht the Hamiltonian vector field where h t is the Legendre transform of the metric tensor g t . The broken bicharacteristic γt ( ) is a disjoint union of integral curves γ t ( j ) of the Hamiltonian vector field X ht "issuing" from j := B j t ( ) and "ending" at j+1 = B j+1 t ( ) and lying on the coshere bundle Σ t := S * t X = {h t = 1} (for a more precise definition see Section 2.1). The vertices of γt ( ) can be identified with j , 0 ≤ j ≤ m, and we have

A t ( ) = m-1 j=0 γt( j ) ξdx.
Notice that 2A t ( ) is just the length of the broken geodesic in (X, g t ) obtained by projecting the broken bicharacteristic γt ( ) to X. In particular, A t ( ) > 0. By Birkhoff's ergodic theorem

β t (ω) := -2 lim N →+∞ 1 2N N -1 k=-N A t (P k t ) = -2 Λt(ω)
A t dµ t < 0 (1.5)

does not depend on the choice of ∈ Λ t (ω). The function β t can be extended as a convex function in the case when n = 2 and P t is a monotone twist map. It can be related to the Mather's β-function β M t [START_REF] Siburg | The Principle of Least Action in Geometry and Dynamics[END_REF] (cf. also [START_REF] Salamon | KAM theory in configuration space[END_REF]) by the isomorphism  : R n-1 /2πZ n-1 → R n-1 /Z n-1 , i.e. β t = β M t • . Another invariant of a Kronecker torus Λ t (ω) with a Diophantine frequency is the Liouville class on it which is defined as the cohomology class [f * t,ω (ξdx)] ∈ H 1 (T n-1 , R), where ξdx stands for the fundamental one-form of T * Γ (recall that f t,ω : T n-1 → B * t Γ is a Lagrange embedding). Let e 1 , . . . , e n-1 be the canonical basis of R n-1 and s → c j (s) = pr (se j ), j = 1, . . . , n -1, be the corresponding loops on T n-1 . Then γ j t,ω := f t,ω • c j , j = 1, . . . , n -1, provide a basis of loops of H 1 (Λ t (ω), Z). In the dual basis of H 1 (T n-1 , R) we write [f * t,ω (ξdx)] as

I t (ω) = γ 1 t,ω ξdx, • • • , γ n-1 t,ω
ξdx .

(1.6)

The Birkhoff Normal Form (BNF) of P t is another invariant related to a Kronecker torus. To each Kronecker torus Λ t (ω) with a Diophantine frequency ω one can associate a BNF of P t as follows. There exist an exact symplectic map χ t from a neighborhood of T n-1 × {I t (ω)} in T * T n-1 to a neighborhood of Λ t (ω) in T * Γ a smooth function L t and a map R t such that Λ t (ω) = χ t T n-1 × {I t (ω)} and

χ -1 t • P t • χ t (ϕ, I) = (ϕ + ∇L t (I), I) + R t (ϕ, I), ∂ α I R t (ϕ, I t (ω)) = 0 ∀ α ∈ N n-1 , (1.7) 
(see Sect. 3). The BNF of P t at the torus Λ t (ω) is said to be nondegenerate if the Hessian matrix of L t at I = I t (ω) is nondegenerate, i.e.

det ∂ 2 I L t (I t (ω)) = 0.

(

One can choose L t so that β t (ω) + L t (I t (ω)) = ω, I t (ω) and ∇L t (I t (ω)) = ω (1.9)

(see Lemma 3.5).

Given an interval J ⊂ [0, 1] and a C 1 family of Kronecker tori J t → Λ t (ω), we say that (1.7) provides a C 1 family of BNFs in J if t → χ t , t → L t and t → R t are C 1 families with values in the corresponding C ∞ spaces (see Definition 3.3).

Let [0, δ) t → P t be a C 1 family of exact symplectic maps and 0 < δ ≤ 1. We are interested in the following problems. Problem I. Let Λ 0 (ω 0 ) be a Kronecker torus of P 0 with a (κ 0 , τ )-Diophantine frequency ω 0 ∈ D(κ 0 , τ ), where 0 < κ 0 ≤ 1 and τ > n -1. Suppose that the BNF of P 0 at Λ 0 (ω 0 ) is nondegenerate. Do there exist Ξ ⊂ T n-1 and 0 < δ ≤ δ such that 1. ω 0 ∈ Ξ and Ξ is a set of Diophantine frequencies of full Lebesgue measure at ω 0 which means that meas (Ξ ∩ W ) = meas (W ) + o(meas (W )) as meas (W ) → 0 for any open neighborhood W of ω 0 ;

2. For each ω ∈ Ξ there exists a C 1 family of Kronecker tori [0, δ] t → Λ t (ω) of P t .

A positive answer of this question is given by Theorem 1, item 2, and Theorem 3.2. The set Ξ is of the form (see Section 3) Ξ =

0<κ≤κ 1 Ω 0 κ (1.10)
where κ 1 ≤ κ 0 , ω 0 ∈ Ω 0 κ and the set Ω 0 κ consists only of points of positive Lebesgue density for any κ fixed. Moreover, Theorem 3.2 gives a C 1 family of simultaneous BNFs associated with the C 1 families of invariant tori

[0, δ] t → Λ t (ω) ∀ ω ∈ Ω 0 κ .
which means that the family of symplectic maps χ t , t ∈ [0, δ], is C 1 and for any fixed t the map χ t provides a BNF (1.7) of P t at Λ t (ω) for all ω ∈ Ω 0 κ at once. These families are analytic in t if the map t → P t is analytic. We apply that to the following three situations 1. (X, g 0 ) is a nondegenerate Classical Liouville Billiard table as defined in Section 4. Then the billiard ball map P 0 = B 0 is completely integrable and the Kolmogorov non-degeneracy condition is fulfilled. Hence Theorem 1, 1-2, and Theorem 3.2 hold for every invariant torus of Diophantine frequency in this case.

2. (X, g 0 ) has an elliptic closed broken geodesic with m ≥ 2 vertices of no resonances of order ≤ 4 and with a nondegenerate BNF (see Section 5). The corresponding return map P 0 = B m 0 has a large family of Kronecker tori with Diophantine frequencies, the BNF of each of them is nondegenerate and one can apply Theorem 1, 1-2, and Theorem 3.2.

3. (X, g 0 ) is a locally strictly geodesically convex billiard table of dimention two (see Section 6). Then there exists a large family of Kronecker tori with Diophantine frequencies of the billiard ball map P 0 = B 0 . These invariant circles accumulate at the boundary S * 0 Γ of the coball bundle B * 0 Γ and give rise of the so called Lazutkin caustics in the interior of X. Close to S * 0 Γ the map P 0 = B 0 is twisted. This implies that the BNF of P 0 is nondegenerate at each Kronecker torus sufficiently close to S * 0 Γ and we can apply Theorem 1, 1-2, as well as Theorem 3.2.

From now on we denote by Ξ a set of Diophantine frequencies of the form (1.10) such that the items 1. and 2. in Problem I are satisfied in Ξ.

Problem II. Let (X, g t ), t ∈ [0, 1], be a C 1 family of billiard tables satisfying the weak isospectral condition (H 1 )-(H 2 ). Consider a C 1 family of Kronecker tori [0, δ] t → Λ t (ω) of P t for each ω ∈ Ξ. Are the functions t → β t (ω), t → I t (ω) and t → L t (I t (ω)) independent of t ∈ [0, δ] for each ω ∈ Ξ?

Affirmative answer of this question is given in Theorem 1 and Theorem 2. This result can be applied in the cases 1. -3. listed above. The proof is based on the construction of C 1 families of quasi-modes of the spectral problem (1.1) in Theorem 8.2. We present below the main idea of the proof.

Problem III. Does the weak isospectral condition (H 1 )-(H 2 ) imply the existence of a C 1 family of Kronecker tori [0, 1] t → Λ t (ω) of P t all along the perturbation for each ω ∈ Ξ?

This problem is closely related with a mysterious phenomena in the Hamiltonian dynamics of close to integrable systems -the destruction of Kronecker tori with Diophantine frequencies along a perturbation. The C 1 family of Kronecker tori t → Λ t (ω) exists in a certain interval [0, δ 0 ) but it may cease to exist at t = δ 0 . Does the "weak isospectral condition" prevent the tori from destroying? We give a positive answer of Problem III in the following two cases -in the case 2. mentioned above if the elliptic periodic broken geodesic has no resonances of order ≤ 12 (see Theorem 5.2 and Proposition 5.3) and for the Lazutkin caustics in the case of a C 1 deformation of a strictly convex billiard table in R 2 (see Theorem 6). The proof of these two results is rather involved. It requires a KAM theorem and BNF theorem where the constant appearing in the smallness condition essentially depends only on the dimension n and the exponent τ > n -1 but not on the particular completely integrable Hamiltonian (see Theorem 9.8 and Theorem 9.11). We need as well suitable uniform with respect to t global estimates of the Hölder C -norms ( ≥ 1) of the functions L t in the BNF (1.7). These estimates are obtained in Theorem 9.11.

Problem IV. Spectral rigidity under the weak isospectral condition.

We show in Proposition 2.2 that the variation βt (ω), ω ∈ Ξ, can be written by means of a suitable Radon transform at the family of Kronecker tori Λ t (ω), ω ∈ Ξ, applied to the "vertical component" of the variation of the boundary Γ t . In particular, the equality β t (ω) = β 0 (ω), t ∈ [0, δ], ω ∈ Ξ, obtained in Theorem 2 implies that the image of the Radon transform is zero for any weakly isospectral family (see Theorem 3). Hence, to prove infinitesimal rigidity one has to obtain injectivity of that Radon transform. In this way we obtain infinitesimal spectral rigidity under the weak isospectral conditions for classical Liouville Billiard Tables of dimension 2 and 3 in Theorem 4.3 and Theorem 4.5. We obtain in particular that the billiard tables inside the ellipse in R 2 and inside the ellipsoid in R 3 are infinitesimally spectrally rigid under the weak isospectral conditions (H 1 ) -(H 2 ). Infinitesimal spectral rigidity of the billiard table inside the ellipse has been obtained by Hezari and Zelditch [START_REF] Herman | Inégalités "a priori" pour des tores lagrangiens invariants par des difféomorphismes symplectiques[END_REF] under the usual isospectral condition using the wave-trace method. Unfortunately infinitesimal spectral rigidity does not always apply spectral rigidity as in the case of negatively curved manifolds because of the phenomena of destruction of Kronecker tori with Diophantine frequencies.

As an application of Theorem 3 we prove in Theorem 4 spectral rigidity of analytic Z 2 ⊕ Z 2 symmetric billiard tables (X t , g) of dimension two if one of the corresponding bouncing ball trajectories is elliptic, it has no resonances of order ≤ 4 and the Poincaré map is nondegenerate. Problem V. Are classical Liouville Billiard Tables spectrally rigid?

It turns out (see Corollary B.6) that the map P = B 2 is always Kolmogorov nondegenerate (twisted) at the elliptic point for elliptical billiard tables (bounded by an ellipse). Moreover, except of five confocal families of ellipses given explicitly by (A.73), the geodesic γ 1 is 4-elementary. These two conditions are open in the C 5 topology, and applying Theorem 4 we obtain spectral rigidity not only of such elliptical billiard tables but also of analytic Z 2 ⊕ Z 2 symmetric billiard tables close to them.

Problem VI. Estimates of the canonical transformation and the transformed Hamiltonian in the KAM theorem in the scale of C α norms.

In order to prove the main theorems in the first part of the article we need certain global estimates (in the whole domain of frequencies) of the canonical transformations and the transformed Hamiltonian in the KAM theorem in the whole scale of Hölder norms. Such estimates are obtained in Theorem 10.1, (iii), and in Theorem 11.22, using a new iteration schema, which allows us to avoid the Whitney extension theorem for C ∞ jets.

Before giving the structure of the paper we would like to compare different features of the spectral rigidity problem in the cases of negatively curved closed manifolds and of close to integrable Hamiltonian systems.

negative curvature close to integrable We are going to describe now the structure of the paper. In Section 2 we recall first the definition of the billiard ball map and then we formulate some of the main results. We give as well a proof of Theorem 3 which reduces the spectral rigidity problem to the injectivity of a suitable Radon transform.

In Section 3 we obtain by Theorem 3.2 a C 1 family of BNFs of P t associated with C 1 families of Kronecker tori Λ t (ω), where ω ∈ Ω 0 κ , t ∈ J, and J ⊂ [0, δ 0 ] is an interval. This family is analytic in t if the map t → P t is analytic. The theorem is based on the BNF obtained in Theorem 9.11.

Section 4 is devoted to Liouville billiard tables of dimension n = 2 or n = 3. Liouville billiard tables of dimension two were defined in [START_REF] Popov | KAM theorem for Gevrey hamiltonians[END_REF]Sec. 2] by using a branched double covering map. We give here an invariant definition of Liouville billiard tables in dimension two and we prove the equivalence of the two definitions in Appendix B.1. Then we recall the definition of Liouville billiard tables of classical type in dimension two. Infinitesimal spectral rigidity of such billiard tables under the "weak isospectral condition" is obtained in Theorem 4.3. Infinitesimal spectral rigidity of nondegenerate Liouville billiard tables of classical type in dimension three is obtained in Theorem 4.5. Here we essentially use the injectivity of the corresponding Radon transform which has been proven in [START_REF] Popov | Discrete analog of the projective equivalence and integrable billiard tables[END_REF]. In particular we obtain infinitesimal spectral rigidity of the ellipse in R 2 and the ellipsoid in R 3 under the "weak isospectral conditions".

In Section 5 we consider C 1 isospectral deformations [0, 1] t → (X, g t ) of a given billiard table (X, g 0 ) admitting an elliptic closed broken geodesic γ with m ≥ 2 vertices and we denote by P 0 := B m 0 the corresponding Poincaré map. We suppose that γ admits no resonances of order ≤ 4 and that the BNF of P 0 is nondegenerate. By the implicit function theorem there exixts δ > 0 and a C 1 family of elliptic closed broken geodesic γ t , t ∈ [0, δ), with m ≥ 2 vertices in (X, g t ) having no resonances of order ≤ 4 and such that the BNF of the corresponding Poincaré maps P t are nondegenerate. Theorem 4 gives spectral rigidity for a class of analytic Z 2 ⊕ Z 2 symmetric billiard tables of dimension two. Then we address the following questions. Suppose that the C 1 family of billiard tables (X, g t ), 0 ≤ t ≤ 1, is weakly isospectral. Assume that (X, g 0 ) admits a periodic elliptic broken geodesic γ 0 and that the corresponding local Poincaré map is twisted. Does there exist a C 1 family of periodic elliptic broken geodesics [0, 1] t → γ t in (X, g t ) along the whole perturbation? Do the corresponding local Poincaré map remain twisted? Do the invariant tori Λ 0 (ω) associated to γ 0 give rise to C 1 families of invariant tori [0, 1] t → Λ t (ω) along the whole perturbation? We give an answer of these questions in Theorem 5.2 and Proposition 5.3.

Section 6 is devoted to isospectral deformations of locally strictly geodesically convex billiard tables of dimension two. Firstly we obtain in Proposition 6.1 a C 1 family of BNFs for the billiard ball maps B t in a neighborhood of S * t Γ in terms of the interpolating Hamiltonian ζ t introduced by Marvizi and Melrose [START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF]. Then Theorem 6.2 gives an affirmative answer of Problems I-III in the case of C 1 families (X, g t ), t ∈ [0, δ], of locally strictly geodesically convex billiard tables of dimension two satisfying the weak isospectral condition (H 1 ) -(H 2 ). Moreover, if (X t , g), t ∈ [0, 1], is a C 1 family of billiard tables in R 2 equipped with the Euclidean metric and satisfying the weak isospectral condition and if X 0 is strictly convex then we prove in that X t remains strictly convex for each t ∈ [0, 1] and we get an affirmative answer of Problem III for t ∈ [0, 1] (see Theorem 6).

In Section 7 we reduce the problem (1.1) microlocally at the boundary. The main idea is explained in the beginning of Section 7. Let f t = f t (•, λ) be a 1 2 -density on Γ depending on a large parameter λ and with a frequency support contained in a small neighborhood of the union of the invariant tori Λ t (ω). We consider the corresponding outgoing solution u t of the reduced wave equation (the Helmholtz equation) in X t with initial data f t and we "reflect it at the boundary" m -1 times if m ≥ 2. To this end we use the outgoing parametrix of the reduced wave equation which is a Fourier Integral Operator with a large parameter λ (λ-FIO). Taking the pull-back to Γ of the last branch of the solution u t (•, λ) we get a 1 2 -density M 0 t (λ)f t , where M 0 t (λ) is a λ-FIO of order zero at Γ the canonical relation of which is just the graph of P t . We call M 0 t (λ) a monodromy operator. In this way obtain that

(-∆ t + λ 2 )u t = O N (|λ| -N )f t , B t u t = O N (|λ| -N )f t if and only if M 0 t (λ)f t = f t + O N (|λ| -N
)f. We are looking for couples (λ, f t ) solving the last equation. To this end using the BNF of P t we obtain a suitable microlocal (quantum) Birkhoff normal form of M 0 t (λ) for t ∈ J (see Proposition 7.11 and Proposition 7.12 in Sect. 7.3). This enables us to "separate the variables" microlocally near the whole family of invariant tori Λ t (ω), ω ∈ Ω 0 κ , and to obtain a microlocal spectral decomposition of M 0 t (λ) in Proposition 7.15. Then the problem of finding λ is reduced to an algebraic equation µ t (λ) = 1 + O N (|λ| -N ) where µ t (λ) are suitable eigenvalues of M 0 t (λ) with eigenfunctions f t . In this way we obtain that λ should satisfy (7.125) and (7.126) and we solve that system of equations recursively. This is done in Section 8, where we obtain C 1 families of quasi-modes. Using these quasi-modes we prove item 3 of Theorem 1 which claims that the function t → β t (ω) is independent of t for Diophantine frequencies ω provided that the weak isospectral condition (H 1 )-(H 1 ) is fulfilled. We are going to give the idea of the proof.

Sketch of the Proof.

We fix t ∈ [0, δ), κ > 0 and ω ∈ Ω 0 κ and we impose the following Strong Quantization Condition on the torus Λ t (ω).

There exists an infinite sequence M(ω) of (q, λ)

∈ Z n × [1, ∞) such that q = (k, k n ) ∈ Z n-1 × Z and λ = µ 0 q ≥ 1 satisfy        c -1 0 |q| ≤ µ 0 q ≤ c 0 |q| lim |q|→∞ µ 0 q I t (ω), L t (I t (ω)) -k + ϑ 0 4 , 2π k n + ϑ 4 = 0.
(1.11) 

Here c 0 > 1 is a constant, (ϑ, ϑ 0 ) ∈ Z n ,
(ω) ⊂ Z n ×[1, ∞)
on the first factor. The set M will be the index set of the C 1 family of quasi-modes that we are going to construct. To obtain a quantization condition for the tori Λ s (ω) for s close to t we introduce for any q ∈ M the interval

J q := t, t + 2|q| -1 .
Since the maps s → L s and s → I s are C 1 in a neighborhood of t with values in the corresponding C ∞ spaces (see Theorem 3.2 and Definition 3.3), the following quantization condition of the tori Λ s (ω) is satisfied

Quantization Condition.

There exists a constant C = C(ω) > 0 independent of q ∈ M and s ∈ J q such that

µ 0 q I s (ω), L s (I s (ω)) -k + ϑ 0 4 , 2π k n + ϑ 4 ≤ C ∀ q ∈ M, s ∈ J q .
(1.12)

Using this condition we construct C 1 families quasi-modes (µ q (s) 2 , u s,q ), q ∈ M, s ∈ J q , of order M for the problem (1.1) such that (see Theorem 8.2)

(1) u s,q ∈ D(∆ s ), u s,q L 2 (X) = 1, and there exists a constant C M > 0 such that

     ∆ u s,q -µ 2 q (s) u s,q ≤ C M µ -M q (s) in L 2 (X) , B u s,q | Γ = 0
for every q ∈ M and s ∈ J q ;

(2) We have µ q (s) = µ 0 q + c q,0 (s) + c q,1 (s)

1 µ 0 q + • • • + c q,M (s) 1 (µ 0 q ) M
where the functions s → c q,j (s) are real valued and C 1 on the interval J q and there exists a constant C M > 0 such that |c q,j (s)| ≤ C M for every q ∈ M, 0 ≤ j ≤ M , and any s ∈ J q ;

(3) There exists C > 0 such that

µ q (s)L s k + ϑ 0 /4 µ q (s) -2π k n + ϑ 4 ≤ C µ q (s)
for every q ∈ M and s ∈ J q ;

(4) We have

k + ϑ 0 /4 µ q (t) = I t (ω) + o 1 |q| as |q| → ∞.
We point out that the strong quantization condition (1.11) is needed only in the proof of item (4). Items ( 1)-( 3) follow from the weaker quantization condition (1.12). The estimate in ( 3) is related to the nullity of the subprincipal symbol of the Laplace-Beltrami operator. Note also that the quasi-eigenvalues µ q (s) 2 are defined only in the intervals J q which shrink to t as q → ∞.

Consider now the self-adjoint operator ∆ s with Dirichlet, Neumann or Robin boundary conditions and the corresponding spectral problem (1.1). The relation between the spectrum of ∆ s and the quasi-eigenvalues µ q (s) 2 is given by

dist Spec (∆ s ) , µ q (s) 2 ≤ C M µ -M q (s)
where C M is the constant in (1) and M is the order of the quasi-mode. We fix M > 2d + 2 where d ≥ 0 is the exponent in (H 1 ). It follows then from (H 2 ) that the quasi-eigenvalues µ q (s) 2 , |q| ≥ q 0 1, s ∈ J q , belong to the union of intervals

A k := a k - c 2 a -d-1 k , b k + c 2 a -d-1 k k ≥ k 0 1
where c is the positive constant in the third hypothesis of (H 1 ). These intervals do not intersect each other for k ≥ k 0 1 in view of the third hypothesis of (H 1 ). The function J q s → µ q (s) 2 being continuous in J q can not jump from one interval to another, hence, it is trapped in a certain interval A k . Then using the first and second hypothesis of (H 1 ) we obtain

|µ q (s) -µ q (t)| ≤ 1 µ q (t) |µ q (s) 2 -µ q (t) 2 | ≤ 2a -1 2 k (b k -a k ) = o(a 1 2 k ) = o(µ q (t)) = o 1 |q|
for |q| ≥ q 0 where q 0 1 does not depend on the choice of s ∈ J q . This implies

µ q (s) = µ q (t) 1 + o 1 |q| as q → ∞
uniformly with respect to s ∈ J q . A detailed proof of this statement is given in Lemma 8.3. Now using (4) we get

ζ q (s) := k + ϑ 0 /4 µ q (s) = k + ϑ 0 /4 µ q (t)(1 + o(1/|q|)) = k + ϑ 0 /4 µ q (t) + o 1 |q| = I t (ω) + o 1 |q| , q → ∞
uniformly with respect to s ∈ J q . In the same way we get from (3)

L s (ζ q (s)) = 2π k n -ϑ/4 µ q (s) + O(|q| -2 ) = 2π k n -ϑ/4 µ q (t) + o 1 |q| = L t (ζ q (t)) + o 1 |q| , q → ∞
uniformly with respect to s ∈ J q . Setting η := 1/|q| we obtain from the above equalities that

L t+η I t (ω) = L t+η ζ q (t + η) + o(η) = L t+η ζ q (t + η) + o(η) = L t ζ q (t) + o(η) = L t I t (ω) + o(η), η = 1/|q| → 0. Recall that the map [0, δ] → L s (•) is C 1 with values in the corresponding C ∞ space. Hence, Lt (I t (ω)) = d ds L s (I t (ω)) s=t = 0 ∀ ω ∈ Ξ t κ .
On the other hand, Ξ t κ is dense in Ω 0 κ since any point of Ω 0 κ is of positive Lebesgue density and Ω 0 κ \ Ξ t κ has measure zero, and by continuity (the function I → Lt (I) is smooth) we get this equality for each ω ∈ Ω 0 κ . The point t has been fixed arbitrary in [0, δ), hence, Lt (I t (ω)) = 0 for every t ∈ [0, δ) and ω ∈ Ω 0 κ . Now differentiating the first equation of (1.9) with respect to t we obtain βt (ω

) = ω, İt (ω) -Lt (I t (ω)) -∇L t (I t (ω)), İt (ω) = 0 ∀ ω ∈ Ω 0 κ since ∇L t (I t (ω)) = ω. Hence, β t (ω) = β 0 (ω) for every t ∈ [0, δ)
and ω ∈ Ω 0 κ . By continuity we get the last equality for every t ∈ [0, δ] as well.

2

We point out that the classical and quantum BNFs are analytic in t if the perturbation is analytic in t which leads to analytic in t quasi-modes. This can be used as in [START_REF] Frerick | Whitney extension operators without loss of derivatives[END_REF][START_REF] Gomes | KAM Hamiltonians are not Quantum Ergodic[END_REF] to extend the results of S. Gomes and A. Hassell about the quantum non-ergodicity of C ∞ -smooth KAM systems. Moreover, using Theorem 11.22 and the pseudodifferential calculus of operators with symbols of finite smoothness [START_REF] Popov | On the integral geometry of Liouville billiard tables[END_REF], one may extend them to KAM systems of finite smoothness.

The second part of the manuscript is devoted to the KAM theorem and the BNF around families of invariant tori in both the continuous and discrete cases. The main novelty in it can be briefly summarized as follows -the constant in the smallness condition essentially depends only on the dimension of the configuration space and on the exponent in the Diophantine condition;

-C k smooth (analytic) families of invariant tori t → Λ t (ω) with Diophantine frequencies are obtained;

-C k smooth (analytic) with respect to the parameter t BNF is obtained around the union of Λ t (ω); -global estimates in the whole scale of Hölder norms with universal constants are obtained.

To this end a new iterative schema is proposed. The Modified Iterative Lemma proven in Sect. 11.9 provides in a limit smooth functions in the whole domain Ω (not only smooth Whitney jets on the Cantor set Ω κ ) with a good control of the Hölder norms.

We need all these properties un the first part of the manuscript. The KAM theorems here are based on Theorem 10.1 which is a KAM theorem for C k (k=0; 1) or analytic families of C ∞ smooth Hamiltonians H t in T n × D with parameters ω ∈ Ω where H t are small perturbations of the normal form N (I; ω) := ω, I . The proof of the theorem, especially of the so called KAM step follows that of J. Pöschel [START_REF] Pöschel | Integrability of Hamiltonian systems on Cantor sets[END_REF] in the case of analytic Hamiltonians but it requires additional work in order to adapt it to the case of

C k families of Hamiltonians [0, 1] t → C ∞ (T n × D; Ω).
For this reason we give a complete proof of the KAM step. Next we adapt the Iterative Lemma in [START_REF] Pöschel | Integrability of Hamiltonian systems on Cantor sets[END_REF] to the case of smooth Hamiltonians. In this way one obtains an iteration schema which gives in a limit C ∞ Whitney jets on Ω κ . The Whitney extension theorem in the C ∞ case does not provide in general global estimates of the Hölder norms in Ω without loss of derivatives [START_REF] Duistermaat | The spectrum of positive elliptic operators and periodic bicharacteristics[END_REF].

For this reason we provide another iteration scheme based on a Modified Iteration Lemma given by Proposition 11. 

K t ∈ C ∞ (Ω), t ∈ [0, δ], in a domain Ω ⊂ R n ,
where by nondegenerate we mean that the gradient map

Ω ω → ∇K t (ω) ∈ D t := ∇K t (D t ) is a diffeomorphism for each t ∈ [0, δ]. We denote by H 0 t ∈ C ∞ (D t ) the Legendre transform K * t of K t given by H 0 t (I) = K * t (I) := Crit.val. ω∈Ω { ω, I -K t (ω)}. Then H 0 t ∈ C ∞ (D t ) is nondegenerate and (H 0 t ) * = K t . Theorem 9.1 provides a result of KAM type for C k families of Hamiltonians [0, δ] t → H t ∈ C ∞ (T n × D t )
which is a small perturbation of the family H 0 t . The constant in the smallness condition essentially depends only on the dimension n and on the exponent τ > n -1 in the Diophantine condition (1.3). To this end, given ω ∈ Ω we linearize H 0 t at I = ∇H 0 * t (ω) applying Taylor's formula and sending the nonlinear part of it to the functions with perturbation. The smallness condition and the estimates in Theorem 9.1 are given in terms of suitable weighted Hölder norms. In order to obtain estimates in Hölder norms with universal constants of a composition of functions with H 0 * t , we suppose that Ω is a strictly convex bounded domain in R n and that t → H 0 * t is a C k family with values in C ∞ (Ω, R), Ω being the closure of Ω. The idea is to use the interpolation inequalities for Hölder norms in R n or in T n × R n which simplify a lot the estimates of higher order Hölder norms for the inverse function and for the composition of functions. The problem about the composition of functions in Hölder spaces is quite delicate. It has been investigated recently by R. de la Llave and R. Obaya [START_REF] Kuksin | Analysis of Hamiltonian PDEs[END_REF]. We can not use directly their results here since we need estimates with universal constants. These estimates are obtained in Appendix A.4.

Theorem 9.5 is a counterpart of Theorem 10.1 in the discrete case for C 1 families of exact symplectic maps P t . Theorem 9.5 is obtained from Theorem 10.1 using an idea of R. Douady [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF]. The BNF of C k families of exact symplectic maps at C k families of Kronecker tori is obtained in Section 9.4. We point out that the constant in the corresponding smallness conditions (9.182) and (9.188) essentially depend only on the dimension and on the exponent τ . Moreover, the constants C m in the corresponding Hölder estimates (9.183), (9.189), (9.190) and in Theorem 11.22 are universal. This makes these results especially useful in the case when the symplectic maps P t have singularities. They can be applied for example for the billiard ball map B t near the singular set S * t Γ in the case when (X, g t ) is locally strictly geodesically convex and dim X = 2 (see Theorem 6.2).

Part I

Isospectral invariants and rigidity 2 Main Results

Before formulating the main results we recall from Birkhoff [START_REF] Birkhoff | Dynamical systems[END_REF] (see also [START_REF] Stein | Singular Integrals and Differentiability Properties of Functions[END_REF]) the definition of the billiard ball map B associated to a billiard table (X, g) with a smooth boundary Γ.

Billiard ball map

Let (X, g) be a smooth billiard table wioth boundary Γ. The "broken geodesic flow" given by the elastic reflection of geodesics hitting transversely the boundary induces a discrete dynamical system at the boundary which can be described as follows.

Denote by h the Hamiltonian on T * X corresponding to the Riemannian metric g on X via the Legendre transformation and by h 0 the Hamiltonian on T * Γ corresponding to the induced Riemannian metric on Γ. The billiard ball map B lives in an open subset of the open coball bundle B * Γ = {(x, ξ) ∈ T * Γ : h 0 (x, ξ) < 1}. It is defined as follows. Denote by S * X := {(x, ξ) ∈ T * X : h(x, ξ) = 1} the cosphere bundle, and set Σ = S * X| Γ := {(x, ξ) ∈ S * X : x ∈ Γ} and Σ ± := {(x, ξ) ∈ Σ : ± ξ, ν(x) > 0} where ν(x) ∈ T x X, x ∈ Γ, is the outward unit normal to Γ with respect to the metric g. Let B * Γ be closed coball bundle, i.e. the closure of B * Γ in T * Γ. Consider the natural projection π Σ : Σ → B * Γ assigning to each (x, η) ∈ Σ the covector (x, η| TxΓ ). Its restriction to Σ + ∪ Σ - admits two smooth inverses

π ± Σ : B * Γ → Σ ± , π ± Σ (x, ξ) = (x, ξ ± ) . (2.13) 
The maps π ± Σ can be extended continuously on the closed coball bundle B * Γ. Given ± ∈ Σ ± we consider the integral curve exp(sX h )( ) of the Hamiltonian vector field X h starting at . If it intersect Σ transversely at a time T = T ( ) and lies entirely in the interior of S * X for t between 0 and T we set

J( ± ) = exp(T X h )( ± ) ∈ Σ ∓ .
Notice that J is a smooth involution defined in an open dense subset of Σ. In this way we obtain a smooth exact symplectic map B :

B * Γ → B * Γ, given by B = π Σ • J • π + Σ , where B * Γ
is an open dense subset of B * Γ. The map J can be extended to a smooth involution of Σ in the case when X is a strictly convex billiard table in R n . In this case the billiard ball map is well defined and smooth in B * Γ and can be extended by continuity as the identity map on its boundary S * Γ. This case will be considered in more details in Sect. 

→ B t ∈ C ∞ ( B * t Γ, B * t Γ) is C 1 .
In this way we obtain a C 1 family of symplectic mappings t → (B t :

B * t Γ → B * t Γ).

Main Results

Recall that P 0 admits a C ∞ Birkhoff normal form at any Kronecker invariant torus Λ 0 (ω) with a Diophantine frequency ω (cf [START_REF] De La Llave | Regularity of the composition operator in spaces of Hölder functios[END_REF], Proposition 9.13). The Birkhoff normal form of P 0 at Λ 0 (ω) is said to be nondegenerate if the quadratic part of it is a nondegenerate quadratic form. The non-degeneracy of the Birkhoff normal form enables one to apply the KAM theorem. Recall that D 0 (κ, τ ) is the set of points of positive Lebesgue measure in D(κ, τ ), defined in the Introduction.

Theorem 1. Let (X, g t ), t ∈ [0, 1], be a C 1 family of billiard tables. Let Λ 0 (ω 0 ) ⊂ B * 0 Γ be a Kronecker invariant torus of P 0 := B m 0 of a Diophantine frequency ω 0 ∈ D 0 (κ 0 , τ ). Suppose that the Birkhoff normal form of P 0 at Λ 0 (ω 0 ) is nondegenerate. Then there exists δ 0 = δ 0 (κ 0 ) > 0 such that the following holds.

1. There exists a C 1 -family of Kronecker invariant tori

[0, δ 0 ) t → Λ t (ω 0 ) ⊂ B * t Γ of P t := B m t of a frequency ω 0 .
2. For any 0 < δ < δ 0 there exists a set Ξ ⊂ T n-1 of Diophantine frequencies such that

ω 0 ∈ Ξ, meas (B(ω 0 , ε) ∩ Ξ) meas (B(ω 0 , ε)) = 1 -O δ (ε) as ε → 0,
and for any ω ∈ Ξ there exists a C 1 -family of Kronecker invariant tori

[0, δ] t → Λ t (ω) ⊂ B * t Γ
of P t := B m t of a frequency ω.

If the the billiard tables satisfy the weak isospectral condition

(H 1 ) -(H 2 ) then β t (ω), I t (ω) and L t (I t (ω)) are independent of t ∈ [0, δ] for any ω ∈ Ξ.
We are going to apply this result for C 1 deformations of the boundary keeping the Riemannian metric fixed. Let X be a smooth compact manifold of dimension n ≥ 2 with non-empty boundary Γ := ∂X which is smoothly embedded into a Riemannian manifold ( X, g) of the same dimension and without boundary. We say that (X t , g), t

∈ [0, ε], is a C 1 variation of (X, g) if (X t , g) is a billiard table in ( X, g) with boundary Γ t = ∂X t , X 0 = X, and if there exists a C 1 family of embeddings [0, ε] t → ψ t ∈ C ∞ (Γ, X) (2.14)
such that ψ t (Γ) = Γ t . In this case we say that (X t , g) is a C 1 family of billiard tables. Then there exists a C 1 family of diffeomorphisms onto their images

[0, ε] t → Ψ t ∈ C ∞ (X, X) such that Ψ t (X) = X t , Ψ t | Γ = ψ t ,
and Ψ t is identity outside an open neighborhood of Γ in X. The family Ψ t can be constructed parameterizing a neighborhood of Γ in X by the exponential map (x, s) → exp x (sν(x)) corresponding to the Riemannian metric g = g 0 in X, where ν(x) is the outward unit normal to Γ. In particular, we get a family of billiard tables (X t , g), t ∈ [0, ε], which are isometric to (X, g t ), g t := Ψ * t g. We say that a family of Kronecker invariant tori

[0, δ) t → Λ t (ω) ⊂ B * Γ t is C 1 -smooth if the family [0, δ) t → ψ * t (Λ t (ω)) ⊂ B * Γ is C 1 .
Consider the corresponding Laplace-Beltrami operator ∆ t in (X t , g) with Dirichlet, Neumann or Robin boundary conditions on Γ t . As a corollary of the main theorem we obtain Theorem 2. Let (X t , g), t ∈ [0, 1], be a C 1 family of billiard tables. Let Λ 0 (ω 0 ) ⊂ B * Γ be a Kronecker invariant torus of P 0 := B m 0 of a Diophantine frequency ω 0 ∈ D 0 (κ 0 , τ ). Suppose that the Birtkhoff normal form of P 0 at Λ 0 (ω 0 ) is non-degenerate. Then there exists δ 0 = δ 0 (κ 0 ) > 0 such that the following holds.

1. There exists a C 1 -family of Kronecker invariant tori

[0, δ 0 ) t → Λ t (ω 0 ) ⊂ B * Γ t of P t := B m t of a frequency ω 0 .
2. For any 0 < δ < δ 0 there exists a set Ξ ⊂ T n-1 of Diophantine frequencies such that

ω 0 ∈ Ξ, meas (B(ω 0 , ε) ∩ Ξ) meas (B(ω 0 , ε)) = 1 -O δ (ε) as ε → 0,
and for any ω ∈ Ξ there exists a C 1 -family of Kronecker invariant tori

[0, δ] t → Λ t (ω) ⊂ B * Γ t of P t := B m t of a frequency ω.
3. If the the billiard tables satisfy the weak isospectral condition (H 1 ) -(H 2 ) then β t (ω), I t (ω) and L t (I t (ω)) are independent of t ∈ [0, δ] for any ω ∈ Ξ.

We shall denote by δ ν Γ t : Γ t → R the vertical component of the variation Γ s of Γ t which is defined by

∀ x ∈ Γ t , δ ν Γ t (x) := ψt (ψ -1 t (x)), ν t (x) = dψ s ds | s=t (ψ -1 t (x)), ν t (x) , (2.15) 
where ν t (x) is the outward unit normal to Γ t at x with respect to the metric g.

Let π t : T * Γ t → Γ t be the natural projection. Given ζ = (x, ξ) ∈ B * Γ t , we denote by ξ + t (ζ) ∈ T *
x X the corresponding outgoing unit covector which means that the restriction of the covector ξ + t to T x Γ t equals ξ, h t (ξ + t ) = 1, and

ξ + t (ζ), ν t (π t (ζ))
x ≥ 0, where •, • x stands for the paring between covectors in T *

x X with vectors in T x X (see Sect. 2.1). In this case the second part of Corollary 2 can be stated as follows.

Theorem 3. Let (X t , g), t ∈ [0, ε], be a C 1 -family of billiard tables satisfying the isospectral condition (H 1 ) -(H 2 ). Let [0, δ) t → Λ t (ω), 0 < δ ≤ ε, be a C 1 family of invariant tori of P t = B m t with a Diophantine vector of rotation ω. Then

m-1 j=0 Λt(ω) ξ + t (ζ), ν t (π t (ζ)) (δ ν Γ t ) (π t (ζ)) ζ=B j t (ρ) dµ t (ρ) = 0 (2.16)
for any t ∈ [0, δ).

There are three particular cases we will focus our attention at, namely, C 1 deformations of nondegenerate Liouville billiard tables, deformations of a manifold having non-degenerate elliptic periodic geodesics and deformations of strictly convex planar domains.

We shall prove a spectral rigidity result for analytic billiard tables of dimension two having the symmetries of the ellipse provided that one of the bouncing ball rays of the initial billiard table is elliptic, 4-elementary, and has a nondegenerate BNF. Define a class of billiard tables as follows. Let ( X, g), dim X = 2 be a Riemannian manifold of dimension two. Suppose that it admits two commuting involutions J k , k = 1, 2, acting as isometries. Consider the family B of billiard tables (X, g) in ( X, g) such that the boundary Γ = ∂X of X is connected and invariant with respect to J k , k = 1, 2. Then the set of fixed points of J k , k = 1, 2, in X defines a bouncing ball geodesic γ k of any (X, g) ∈ B. Denote by B an the set of analytic billiard tables which belong to B. Theorem 4. Let (X, g) ∈ B. Assume that the broken geodesic γ 1 given by the set of fixed points of J 1 in X is elliptic 4-elementary and that the corresponding Poincare map admits a nondegenerate BNF. Suppose that (X t , g) ∈ B, t ∈ [0, 1], is a C 1 deformation of (X, g) satisfying the weak isospectral condition (H 1 ) -(H 2 ). Then γ 1 is a bouncing ball geodesic of (X t , g) for each t ∈ [0, 1] and Γ t has a contact of infinite order to Γ 0 at the vertexes of γ 1 . In particular, X 1 = X 0 if the boundaries Γ 1 = ∂X 1 and Γ 2 = ∂X 2 are both analytic.

It turns out (see Corollary B.6) that the Poincaré map associated with the elliptic bouncing ball geodesic γ 1 is always non-degenerate (twisted) for Liouville Billiard Tables in surfaces of constant curvature. Let us fix the foci F 1 = F 2 and consider the corresponding confocal ellipses. Then, except of five confocal families of ellipses given explicitly by (A.73), the geodesic γ 1 is 4-elementary. Denote by E the set of ellipses which do not belong to these families. A billiard table in R 2 is said to be elliptical if its boundary is an ellipse.

Theorem 5. We have the following. Theorems 4 and 5 are proved in Section 5.

Remark 2.1. To obtain the preceding results we use only the leading term of the quasi-mode.

Replacing the second condition of (H 1 ) with a stronger one

lim a s/2 (b k -a k ) = 0 as k → +∞,
where s ∈ N is fixed, and using an analogue of Lemma 2.5 [START_REF] Popov | On the integral geometry of Liouville billiard tables[END_REF], one can obtain further isospectral invariants, which could be used to remove at least one of the symmetries.

Consider a strictly convex billiard table X in R 2 . Lazutkin has proved that any fixed τ > 1 and any 0 < κ < κ 0 1 there is a subset Ω κ ⊂ D(κ, τ ) of positive Lebesgue measure consisting (κ, τ )-Diophantine frquences such that for any ω ∈ Ω κ there is a Kronecker invariant circle Λ(ω) of the billiard ball map B of a frequency ω (see [START_REF] De La Llave | Regularity of the composition operator in spaces of Hölder functios[END_REF] and the references there). Morreover, the corresponding caustic C(ω) -the envelope of the rays issuing from Λ(ω) -is a closed smooth convex curve lying in the interior of X. As κ tends to 0 the invariant curves accumulate at the boundary S * (Γ) of B * (Γ).

Theorem 6. Let X t ⊂ R 2 , t ∈ [0, 1], be a C 1 family of compact billiard tables satisfying the weak isospectral condition (H 1 ) -(H 2 ). Suppose that X 0 is strictly convex. Then 1. X t is strictly convex for each t ∈ [0, 1]
2. There is a Cantor set Ξ ⊂ (0, 1] consisting of Diophantine numbers such that

meas (Ξ ∩ (0, ε)) = ε(1 -O(ε)) as ε → 0 + and such that ∀ ω ∈ Ξ there is a C 1 family of Kronecker invariant circles [0, 1] t → Λ t (ω) of B t of frequency ω, 3. ∀ω ∈ Ξ and t ∈ [0, 1], β t (ω) = β 0 (ω), L t (I 0 (ω)) = L 0 (I 0 (ω)), and I t (ω) = I 0 (ω).

Proof of Theorem 3

Theorem 3 follows from Theorem 2 and the following statement.

Proposition 2.2. Let [0, δ] t → Λ t (ω) ⊂ B * Γ t be a C 1 family of invariant tori of P t = B m t with a frequency ω ∈ Ω 0 κ . Then d dt β t (ω) = - 2 µ t (Λ t (ω)) m-1 j=0 Λt(ω) (δ ν Γ t ) (π t (ζ)) ξ + t (ζ), ν t (π t (ζ)) ζ=B j t (ρ)
dµ t (ρ) (2.17)

for each t ∈ [0, δ] and ω ∈ Ω 0 κ .
We are going to use the following

Lemma 2.3.. Consider a C 1 family of curves c : (-, ) × [0, l] → X, c s (•) ≡ c(s, •) : [0, l] → X, such that c(θ) := c 0 (θ)
is a geodesic of the metric g and denote by l(s) := l g (c s ) the length of the curve c s (•) : [0, l] → X with respect to the metric g. Then

dl ds (0) = -g ċ0 (0) || ċ0 (0)|| g , ∂c ∂s (0, 0) + g ċ0 (l) || ċ0 (l)|| g , ∂c ∂s (0, l) ,
where ċ0 (θ) := dc dθ (0, θ).

Proof. The Lemma follows from a straightforward differentiation of the length function l(s) and the Euler-Lagrange equation.
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Proof of Proposition 2.3. Using the notations introduced just before Theorem 2 we set p(θ, t)

:= f t (θ), θ ∈ T n-1 , where f t ≡ f t,ω : T n-1 → B * Γ t is the embedding of the Kronecker torus Λ t (ω) ⊂ B * Γ t . Consider the function x : T n-1 × [0, δ] → Γ t given by x(θ, t) := π t (p(θ, t)) = ψ π 0 ( ft (θ)), t . (2.18) 
where ft (θ) := ψ * t (f t (θ)). Clearly, x ∈ C 1 (T n-1 × [0, δ], X) and x(θ, 0) = π 0 (f 0 (θ)) for any θ ∈ T n-1 . Suppose first that m = 1, that means that P t = B t . By (1.5) we have

β s (ω) = - 1 (2π) n-1 T n-1 l x(θ, s), x R 2πω (θ), s dθ
where l(x, x ) is the corresponding length function which is well defined and smooth in a neighborhood of the projection of Λ t (ω) × Λ t (ω) in X × X.

First we prove (2.17) for t = 0. Setting θ := R 2πω (θ) and using Lemma 2.3 we get

- d ds s=0 β s (ω) = 1 (2π) n-1 T n-1 d ds l (x(θ, s), x(R 2πω (θ), s)) s=0 dθ = 1 (2π) n-1 T n-1 π + Σs (p( θ, s)), ∂x ∂s ( θ, s) -π - Σs (p(θ, s)), ∂x ∂s (θ, s) s=0 dθ = 1 (2π) n-1 T n-1 π + Σ -π - Σ (p(θ, 0)), ∂x ∂t (θ, 0) dθ = 2 (2π) n-1 T n-1 π + Σ (f 0 (θ)), ν(x(θ, 0)) g ∂ψ ∂t π 0 (f 0 (θ)), 0 , ν π 0 (f 0 (θ) dθ.
where π ± Σs : B * Γ s → Σ ± s is the map defined in (2.13). In the variables (x, ξ) = f 0 (θ), we get

d ds s=0 β s (ω) = - 2 µ 0 (Λ 0 (ω)) Λ 0 (ω) ξ + (ξ), ν(π 0 (ξ)) (δ ν Γ)(π 0 (ξ)) dµ 0 ,
where δ ν Γ(x) = ∂ψ ∂t (x, 0), ν(x) . The same argument holds for m ≥ 2. Finally, to prove (2.17) for any t ∈ [0, δ] we replace Γ 0 by Γ t and apply the same arguments. 2

3 Birkhoff Normal Forms of C k deformations.

The aim of this section is to prove items 1 and 2 of Theorem 1. We shall obtain a C k , k ∈ {0; 1}, family of Birkhoff Normal Forms for the C k family of exact symplectic maps t → P t around the corresponding invariant tori. This BNF will be used to construct a C k family of Quantum Birkhoff Normal Forms. In order to obtain the BNF we will apply Theorem 9.11 to a suitable C k family of exact symplectic mappings P t which will be constructed below. Let [0, 1] t → P t ∈ C ∞ (U, U ) be a C k family of exact symplectic maps where U ⊂ T * Γ is an open set. Suppose that P 0 has a Kronecker torus Λ 0 (ω 0 ) with frequency ω 0 ∈ D(κ 0 , τ ) where 0 < κ 0 < 1 and τ > n -1. Then P 0 admits a Birkhoff Normal Form (BNF) at Λ 0 (ω 0 ) (cf [START_REF] De La Llave | Regularity of the composition operator in spaces of Hölder functios[END_REF], Proposition 9.13 and [START_REF] Popov | On the integral geometry of Liouville billiard tables[END_REF], Proposition 3.3) which means the following. There exists an exact symplectic transformation χ : A → T * Γ, where A := T n-1 × D ⊂ T * T n-1 and D is a neighborhood of I 0 (ω 0 ) given by (1.6), χ(A) is a neighborhood of Λ 0 (ω 0 ), χ(T n-1 × {I 0 (ω 0 )} = Λ 0 (ω 0 ) and the exact symplectic map

P 0 := χ -1 • P 0 • χ has the form      P 0 (θ, r) = (θ + ∇K(r), r) + R(θ, r), ∂ α r R(θ, I 0 (ω 0 )) = 0, ∀ θ ∈ T n-1 , ∀ α ∈ N n-1 . (3.19)
We are going to use the following definition of a generating function of a symplectic map. Denote by pr : R n-1 → T n-1 the canonical projection.

Definition 3.1. Let D ⊂ R n-1 be an open set and F ∈ C ∞ (T n-1 × D). The function S ∈ C ∞ (R n-1 × D)
given by S(x, r) = x, r -F (pr(x), r) is said to be a generating function of a symplectic map

P in T n-1 × D if • the map x → ∇ r S(x, r) = x -∇ r F (pr(x), r
) projects to a diffeomorphism of T n-1 homothope to the identity for any fixed r ∈ D

• for any (θ, r)

∈ T n-1 × D P θ -∇ r F (θ, r), r = θ, r -∇ θ F (θ, r)
Hereafter, we slightly abuse the notations identifying

y = ∇ r F (θ, r) ∈ R n-1 with its image pr(y) ∈ T n-1 .
Shrinking U if necessary we set U = χ(A). We suppose that the BNF is nondegenerate, which means that the Hessian matrix ∂ 2 K(r 0 ) is nondegenerate at r 0 = I 0 (ω 0 ). Shrinking D if necessary we suppose that the map ∇K : D → ∇K(D) ⊂ R n-1 is a diffeomorphism. Then there exists δ > 0 such that the exact symplectic maps

P t = χ -1 • P t • χ admit for 0 ≤ t ≤ δ a C 1 family of generating functions [0, δ] t → G t ∈ C ∞ (R n-1 × D) such that G t (x, r) = x, r -K(r) -G t (pr(x), r) (3.20)
where the map t

→ G t ∈ C ∞ (T n-1 × D) is C 1 , pr : R n-1 → T n-1 is the canonical projection and ∂ α r G 0 (θ, I 0 (ω 0 )) = 0 ∀ θ ∈ T n-1 , α ∈ N n-1 . (3.21)
On the other hand,

∂ α θ ∂ β r G(θ, r) -G 0 (θ, r) ≤ C α,β t ∀ (θ, r) ∈ T n-1 × D(κ), t ∈ [0, δ].
These inequalities allow us to apply Theorem 9.8. Consider the Legendre transform K * of K in a ball B(ω 0 , ε) centered at ω 0 and with sufficiently small radius 0 < ε 1. Then ∇K * : B(ω 0 , ε) → ∇K * (B(ω 0 , ε)) becomes a diffeomorphism. Using Theorem 9.8 with κ = = κ 1 , where κ 1 ≤ κ 0 is sufficiently small, we obtain a C k family of Kronecker tori [0, δ 1 ] t → Λ t (ω 0 ) of P t with a frequency ω 0 , where δ 1 = δ 1 (κ 1 ) > 0. Following Lazutkin (cf [START_REF] De La Llave | Regularity of the composition operator in spaces of Hölder functios[END_REF], Proposition 9.13 and [START_REF] Popov | On the integral geometry of Liouville billiard tables[END_REF], Proposition 3.3) we obtain a C k family of Birkhoff Normal Forms of P t around the tori Λ t (ω 0 ) up to any order, which means the following. Fix N ≥ 4. There exist C k families of exact symplectic mappings t → χ 0 t ∈ C ∞ (T n-1 × D, T n-1 × D) and vector valued functions t → I t (ω 0 ) ∈ D, t ∈ [0, δ 1 ] (analytic in t if the map t → P t is analytic) with the properties

• χ 0 t (T n-1 × {I t (ω 0 )}) = Λ t (ω 0 ) for each t ∈ [0, δ 1 ];
• the exact symplectic map

P 0 t = (χ 0 t ) -1 • P t • χ 0 t admits for each 0 ≤ t ≤ δ 1 a generating function G 0 t (x, r) = x, r -K t (r) -G 0 t (pr(x), r), (3.22) such that the maps t → G 0 t ∈ C ∞ (T n-1 × D) and t → K t ∈ C ∞ (D) are C k (analytic in t if the map t → P t is analytic) and ∂ α θ ∂ β r G 0 t (θ, I t (ω 0 )) = 0 ∀ θ ∈ T n-1 , ∀ α, β ∈ N n-1 , with |β| ≤ 2N, (3.23) 
and for each 0 ≤ t ≤ δ 1 . Moreover, K t is a polynomial of degree 2N for each t fixed.

Let ω 0 be a point of positive Lebesgue density in D(κ 0 , τ ) ( ω 0 ∈ D 0 (κ 0 , τ ) ), which means that the Lebesgue measure meas (D(κ 0 , τ ) ∩ V ) > 0 for any neighborhood V of ω 0 in R n-1 . Then ω 0 ∈ D 0 (κ, τ ) for each 0 < κ ≤ κ 0 . We suppose that κ 1 ≤ ε 2 and for every 0

< κ ≤ κ 1 < 1 we set Ω(κ) := B(ω 0 , √ κ), Ω κ := D(κ, τ )∩B(ω 0 , √ κ-κ), Ω 0 κ := D 0 (κ, τ )∩B(ω 0 , √ κ-κ) (3.24)
It follows from [START_REF] De La Llave | Regularity of the composition operator in spaces of Hölder functios[END_REF], Proposition 9.9, that meas Ω(κ) \ Ω κ meas (Ω(κ))

≤ C κ. (3.25) 
Moreover, meas (Ω 0 κ ) = meas (Ω κ ). Set D t (κ) := ∇K * t (Ω(κ)) and A t = T n-1 × D t (κ). Notice that there exists c > 0 such that D t (κ) ⊂ B(I t (ω 0 ), c √ κ) and (3.23) implies that for every α, β ∈ N n-1 there exists C α,β,N such that

∂ α θ (κ∂ r ) β G t (θ, r) ≤ C α,β,N κ N ∀ (θ, r) ∈ T n-1 × D t (κ), t ∈ [0, δ 1 (κ 1 )].
This inequality allows one to apply Theorem 9.11 taking = εκ and 0 < κ ≤ κ 1 , where ε and κ 1 are sufficiently small in order In this way we obtain the following Theorem 3.2. (Birkhoff Normal Form) Let [0, δ] t → P t ∈ C ∞ (U, U ), U ⊂ T * Γ, be a C 1 family of symplectic maps. Let P 0 have a Kronecker torus Λ 0 (ω 0 ) with a frequency ω 0 ⊂ D 0 (κ 0 , τ ), where τ > n -1. Suppose that the BNF of P 0 at Λ 0 (ω 0 ) is nondegenerate. Then there exists 0 < κ 1 ≤ κ 0 and δ 1 = δ 1 (κ 1 ) > 0 such that for each M > 0 fixed and 0 < κ ≤ κ 1 the following holds (i) For each ω ∈ Ω 0 κ there exists a C 1 family of Kronecker invariant tori [0, δ 1 ] t → Λ t (ω) of P t with a frequency ω;

(ii) There exists a C 1 -smooth with respect to t ∈ [0, δ 1 ] family of exact symplectic maps χ t :

A t → U and of real valued functions

L t ∈ C ∞ (D t (κ)) and R 0 t ∈ C ∞ (A t ) (analytic in t if the map t → P t is analytic) such that 1. Λ t (ω) = χ t (T n-1 × {I t (ω)}) for each t ∈ [0, δ 1 ] and ω ∈ Ω 0 κ , where I t (ω) is given by (1.6); 2. The function R n-1 × D (x, I) → φ t (x, I) := x, I -L t (I) -R 0 t (x, I
) is a generating function in the sense of Definition 3.1 of the exact symplectic map

P 0 t := χ -1 t • P t • χ t : A → A; 3. ∇L t : D t → Ω is a diffeomorphism, L t = K t outside D 1 t := ∇K * t B ω 0 , √ κ -1 2 κ and ∇L * t (ω) = I t (ω) is given by (1.6) for each ω ∈ Ω 0 κ ; 4. R 0 t is flat at T n-1 × E κ t , where E κ t := ∇L * t (Ω 0 κ ). 5. ∇L t -∇K t m,Dt;κ + ∇R 0 t m,Dt;κ ≤ C m,M κ M for each α, β ∈ N n-1 and m ∈ N.
Moreover, if the map t → P t is analytic in a disc B(0, δ) in C, then the maps t → χ t , t → L t , t → R 0 t , are analytic in a disc B(0, δ 1 ) and the estimate in 5. holds for t ∈ B(0, δ 1 ).

To prove the Theorem we apply Theorem 9.11 taking N M , = εκ and 0 < κ ≤ κ 1 , where ε and κ 1 are sufficiently small in order to satisfy (9.188).

Observe that each I ∈ E κ t is an element of positive Lebesgue density of E κ t since the map ∇L * t : Ω(κ) → D t (κ) is a diffeomorphism. For any 0 < κ ≤ κ 1 fixed, we extend I t as a C 1 family of smooth functions setting

I t (ω) := ∇L * t (ω) ∀ ω ∈ Ω. Then we have P 0 t (ϕ, I) = (ϕ + ∇L t (I), I) + O N (|I -I t (ω)| N ) for each ω ∈ Ω 0
κ and N ∈ N. This formula can be differentiated with respect to (ϕ, I) as many times as we want. To summarize we give the following Definition 3.3. We say that the C 1 family of exact symplectic maps P t , t ∈ [0, δ], admits a C 1smooth family of nondegenerate Birkhoff Normal Forms associated with a C 1 family of invariant tori Λ t (ω) with frequencies ω ∈ Ω 0 κ if item (ii) of Theorem 9.11 holds true.

Recall as well that the complement of Ω 0 κ in Ω κ is of Lebesgue measure zero.

Setting Ξ := 0<κ≤κ 1 Ω 0 κ (3.26)
we prove items 1 and 2 of Theorem 1.

The advantage of working with Ω 0 κ instead of Ω κ is given by the following Lemma 3.4. Let Ω be an open subset of R d , d ≥ 1. Let E ⊂ Ω be a measurable set of positive Lebesgue measure and let E 0 ⊂ E be the set of points of positive Lebesgue density in E. Then any smooth function f on Ω which is zero on E 0 is flat at E 0 , i.e. the equality

f | E 0 = 0 implies ∂ k f | E 0 = 0 for any k ∈ N d . Moreover, the Lebesgue measure of E \ E 0 is zero by construction.
Proof. The result is evident when

d = 1. Suppose that d ≥ 2. Let ω = (ω 1 , ω ) ∈ E 0 . By Fubini's theorem, for any neighborhood U 1 ⊂ R of ω 1 and U ⊂ R d-1 of ω there is z ∈ U and a set of positive Lebesgue measure V 1 ⊂ U 1 such that (z 1 , z ) ∈ E 0 for any z 1 ∈ V 1 . Then f (z 1 , z ) = 0 for any z 1 ∈ V 1 and there is y 1 ∈ U 1 such that ∂ 1 f (y 1 , z ) = 0
. By continuity we obtain ∂ 1 f (ω) = 0. In the same way we prove by induction that the restriction of

∂ α f to Ω 0 E is zero for any α ∈ N d . 2 
We are going to give a relation between the function β t defined by (1.5) and the restrictions on Ω 0 κ of the functions I t and L t given by Theorem 3.2. As χ t : A → U ⊂ T * Γ is exact symplectic for each t ∈ J := [0, δ(κ)] there exists a C 1 family of functions Ψ t ∈ C ∞ (A) such that

χ * t (ξdx) = Idϕ + dΨ t .
Notice that the generating functions φ t of P 0 t are uniquely defined up to additive constants C t such that the function J t → C t is C 1 . Lemma 3.5. Choosing appropriately the C 1 function J t → C t we obtain the following (i) We have

I, ∇L t (I) -L t (I) = A t (χ t (ϕ, I)) + Ψ t (ϕ, I) -Ψ t (P 0 t (ϕ, I)) + R 1 t (ϕ, I)
where the function

R 1 t is flat at T n-1 × E κ t for each t ∈ J; (ii) β t (ω) + L t (I t (ω)) = ω, I t (ω) ∀ ω ∈ Ω 0 κ , t ∈ J.
Proof. The Poincaré identity implies

P * t (ξdx) = ξdx + dA t , (3.27) 
where ξdx is the fundamental one-form on T * Γ and A t (ρ), ρ = χ(ϕ, I) ∈ U is the action

A t (ρ) = γt(ρ)
ξdx along the broken bicharacteristic γ t (ρ) strating at π + t (ρ) and ending at π - t (P t (ρ)). Then we obtain (P 0 ) * (Idϕ) -

Idϕ = d((A • χ) + Ψ -Ψ • P 0 ). On the other hande, (P 0 ) * (Idϕ) = d(L t (I) -I, ∇L t (I) + R 1 t (ϕ, I))
where R 1 t is a flat function at T n-1 × E κ t and we obtain (i). To prove (ii) we use (1.5) (a) There exists a smooth quadratic in velocities integral of the geodesic flow I : T X → R that is invariant with respect to the reflection at the boundary

T M | Γ → T M | Γ , ξ → ξ -2g(ν, ξ),
where ν is the outward unit normal to Γ. In addition, we assume that the metric g does not allow global Killing symmetries;

(b) There is no point x 0 ∈ Γ and a constant c ∈ R such that g x 0 (ξ, ξ) = cI x 0 (ξ, ξ) for any ξ ∈ T x 0 X.

In view of Theorem 7 in Appendix B.1 there exists a double covering map with two branched points, τ : C → X, (4.28)

where C denotes the cylinder (R/Z) × [-N, N ], N > 0, coordinatized by the variables x and y respectively, so that the metric τ * (g) and the integral τ * (I) have the following form on C, dg 2 = f (x) -q(y) (dx 2 + dy 2 ) (4.29)

dI 2 = α dF 2 + β dg 2
where α = 0 and β are real constants and

dF 2 := f (x) -q(y) q(y) dx 2 + f (x) dy 2 . (4.30)
In other words, the integral dI 2 belongs to the pencil of dg 2 and dF 2 . Here

f ∈ C ∞ (R) is 1-periodic, q ∈ C ∞ ([-N, N ]), and (i) f is even, f > 0 if x / ∈ 1 2 Z, and f (0) = f (1/2) = 0;
(ii) q is even, q < 0 if y = 0, q(0) = 0 and q (0) < 0;

(iii) f (2k) (l/2) = (-1) k q (2k) (0), l = 0, 1, for every natural k ∈ N.

In particular, if f ∼ ∞ k=1 f k x 2k is the Taylor expansion of f at 0, then, by (iii), the Taylor expansion of q at 0 is q ∼ ∞ k=1 (-1) k f k x 2k . A Liouville billiard table is said to be of classical type if it satisfies the following additional conditions, (iv) the boundary Γ of X is locally geodesically convex which amounts to q (N ) < 0;

(v) f (x) = f (1/2 -x) for any x and f is strictly increasing on the interval [0, 1/4]; Remark 4.2. Note that in contrast to [60, Sec. 2] we do not assume that the functions f and g are analytic Morse functions.

The points F 1 := τ (0, 0) and F 2 := τ (1/2, 0) on X are the two branched points of the covering map τ : C → X. All other points on X are regular values of τ . The preimage of any regular value consists of two points. Note also that τ : C → X commutes with the involution on the cylinder C induced by the map σ : (x, y) → (-x, -y). The fixed points of this involution are precisely the singular points (0, 0) and (1/2, 0) of the covering map τ . One can see that any Liouville billiard table possesses the string property which means that any broken geodesic starting from the singular point F 1 (F 2 ) passes through F 2 (F 1 ) after the first reflection at the boundary and the sum of distances from any point of Γ to F 1 and F 2 is constant [START_REF] Popov | KAM theorem for Gevrey hamiltonians[END_REF]. In particular, the only Liouville billiard table in R 2 equipped with the Euclidean metric is the interior of the ellipse. Thus Liouville billiard tables can be regarded as a natural generalization of elliptic billiards to curved space. In view of condition (v) in the definition of the Liouville billiard tables of classical type, there is a group I(X) ∼ = Z 2 ⊕ Z 2 acting on (X, g) by isometries. This group is generated by the involutions σ 1 (x, y) = (x, -y) and σ 2 (x, y) = (π -x, y) of the cylinder.

The construction of Liouville billiards of dimension two involving the covering map τ was generalized to any dimension in [61, §5.3] (cf. also [62, §3]). As in the two dimensional case, one defines the subclass of Liouville billiards of classical type in a similar way. An important example of a Liouville billiard table of classical type is the interior of the n-axial ellipsoid in R n equipped with the Euclidean metric. More generally, there is a non-trivial two-parameter family of analytic Liouville billiard tables of classical type of constant scalar curvature K having the same broken geodesics (considered as non-parameterized curves) as the ellipsoid [START_REF] Popov | Liouville billiard tables and an inverse spectral result[END_REF]Theorem 3]. This family includes the ellipsoid (K = 0), and Liouville billiard tables on the sphere (K = 1) and in the hyperbolic space (K = -1).

In what follows we will apply Theorem 3 to Liouville billiard tables of classical type in dimensions two and three for obtaining several new isospectral results. The main idea is to interpret the integrals in (2.16) as values of a suitable Radon transform which is one-to-one.

Let (X, g) be a Liouville billiard table of classical type. The group of isometries of (X, g) has a subgroup I(X, g) isomorphic to (Z/2Z) n . One can extend (X, g) to an open Riemannian manifold (M, g) so that any isometry in I(X, g) can be extended to an isometry of (M, g). In this way, the group of isometries of (M, g) contains a subgroup I(M, g) isomorphic to I(X, g). Denote by Symm (M, g) the class of C ∞ -smooth billiard tables (Y, g), Y isometrically embedded in M , so that any isometry in I(M, g) is an isometry of (Y, g). Recall from Sec. 2 that δ ν Γ : Γ → R is the vertical component of the variation ψ0 : Γ → T M | Γ , where ψ 0 = id and Γ t = ψ t (Γ 0 ) is a C 1 -deformation of Γ = Γ 0 and (X t , g) is the billiard table with boundary Γ t = ∂X t . Theorem 4.3. Let (X, g) be a Liouville billiard table of classical type dimension 2 and let (X t , g), t ∈ (-ε, ε), be a C 1 -family of billiard tables in Symm (M, g) satisfying the weak isospectral condition (H 1 ) -(H 2 ) and such that X 0 = X. Then δ ν Γ ≡ 0. This means that any Liouville billiard table of classical type (X, g) is infinitesimally spectrally rigid in Symm (M, g) under the weak-isospectral condition (H 1 ) -(H 2 ).

Proof of Theorem 4.3. The theorem follows from Theorem 2 as in the proof of Corollary 1.4 in [START_REF] Popov | On the integral geometry of Liouville billiard tables[END_REF]. A first integral of B in B * Γ is the function I(x, ξ) = f (x) -ξ 2 the regular values h of which belong to (q(N ), 0) ∪ (0, f (1/4)) (see [START_REF] Popov | KAM theorem for Gevrey hamiltonians[END_REF], Lemma 4.1 and Proposition 4.2). Moreover, for each regular value h ∈ (q(N ), 0) the corresponding level set L h : {I = h} consists of two connected circles which are invariant with respect to B, having rotation numbers ω = ±ρ(h). By Proposition 4.4 [START_REF] Popov | KAM theorem for Gevrey hamiltonians[END_REF], the rotation function ρ is smooth and strictly increasing in an interval (q(N ), q(N ) + ε), and we obtain a diffeomorphism ρ : (q(N ), q(N ) + ε) → (0, ω 0 ). Then the Kolmogorov non-degeneracy condition is satisfied in that interval. Hence, one can apply Corollary 2 to any Kronecker invariant circle Λ 0 (ω), with a Diophantine vector of rotation ω = ρ(h) ∈ (0, ω 0 ).

We are going to interpret (2.16) as a value of a suitable Radon transform. The Leray form on the invariant circle Λ 0 (ω) ⊂ L h is

λ h =    dx √ f (x)-h , ξ > 0 , -dx √ f (x)-h , ξ < 0 .
Since ω ∈ (0, ω 0 ) is Diophantine and the Leray form is invariant with respect to B, there exists a constant c(h) = 0 such that λ h = c(h)dµ 0 , where dµ 0 is the unique probability measure on Λ 0 (ω) which is invariant with respect to B. Setting K := π * Γt (δ ν Γ t ) we consider the corresponding Radon transform which assigns to each circle Λ 0 (ω) := {(x, y(h)) : x ∈ T}, h = ρ -1 (ω), the integral

R K (Λ 0 (ω)) = Λ 0 (ω) ξ ± , ν K • π Γ λ h .
We have

ξ ± (x, y(h)), ν(x) = h -q(N ) f (x) -q(N ) , hence, R K (Λ 0 (ω)) = ±c(h) h -q(N ) 1 0 K 1 (x) f (x) -h dx , h ∈ (q(N ), 0) ,
where K 1 (x) = K(x)/ f (x) -q(N ). Since K is invariant with respect to the group of isometries I(X) then so is K 1 and applying (2.16) for t = 0 we get 0 =

1/4 0 K 1 (x) f (x) -h dx = f (1/4) 0 K 2 (s) √ s -h dx (4.31)
for any h ∈ (q(N ), q(N )+ε) such that ρ(h) ∈ D(κ, τ ), where

K 2 = (K 1 /f )•f -1 ∈ L 1 (0, f (1/4)).
On the other hand, the right hand side of (4.31) is analytic in h ∈ (q(N ), 0) and the set of h = ρ -1 (ω), ω ∈ D(κ, τ ) ∩ (0, ω 0 ) is of positive measure, and we obtain (4.31) for any h ∈ (q(N ), 0). Differentiating (4.31) with respect to h at h = q(N ) we get

f (1/4) 0 K 2 (s)
s -q(N ) (s -q(N )) -k ds = 0 for any k ∈ N, which implies K 2 = 0 since the set {(s-q(N )) -k : k ∈ N} is dense in L 1 (0, f (1/4)) and K 2 is continuous in (0, f (1/4)). This completes the proof of the theorem. 2

In order to apply Theorem 2 to Liouville billiard tables of dimension three we need to ensure that the following Kolmogorov nondegeneracy condition is satisfied. Consider a Liouville-Arnold chart which consists of an open set U of the phase space of the billiard ball map B and a symplectic map (ϕ, I) : U → T n × D, D being an open subset of R n , giving "action-angle" coordinates on U , i.e. B is given by the map (ϕ, I) → (ϕ + ∇K(I), I) in these coordinates. The Kolmogorov condition means that the map ∇K : D → D * := ∇K(D) is a diffeomorphism. We are interested in maximal charts with this property. It turns out that Liouville billiard tables of classical type of dimension two are always non-degenerate in a Kolmogorov sense close to the boundary [START_REF] Popov | KAM theorem for Gevrey hamiltonians[END_REF]. The non-degeneracy property of Liouville billiard tables of classical type of dimension three has been investigated in [START_REF] Popov | Discrete analog of the projective equivalence and integrable billiard tables[END_REF].

It is proved in [START_REF] Popov | Discrete analog of the projective equivalence and integrable billiard tables[END_REF] that any Liouville Billiard Table of classical type of dimension 3 admits four not necessarily connected maximal Liouville-Arnold charts U j , 1 ≤ j ≤ 4, of action-angle variables in B * Γ. Two of them, say U 1 and U 2 , have the property that any unparameterized geodesic in S * Γ can be obtained as a limit of orbits of B lying either in U 1 or in U 2 (then the corresponding broken geodesics approximate geodesics of the boundary). Moreover, in any connected component of U 1 and U 2 there is such a sequence of orbits of B, while any orbit of B in U 3 and U 4 is far away from S * Γ. In other words, the charts U 1 and U 2 can be characterized by the property that there is a family of "whispering gallery rays" issuing from any of their connected components. For this reason the two cases j = 1, 2 are referred as to boundary cases. Denote by F b the set of all regular invariant tori Λ ∈ F lying either in U 1 or in U 2 . We say that a Liouville Billiard This means that if (X t , g), t ∈ (-ε, ε) is a C 1 -family of billiard tables in Symm (M, g) satisfying the weak isospectral condition (H 1 ) -(H 2 ) and such that X 0 = X, then δ ν Γ ≡ 0.

A smooth deformation (X t , g), t ∈ (-ε, ε), is said to be flat at t = 0 if (2.14) is C ∞ smooth with respect to t in an interval (-ε, ε) and the vertical component of k-th variation δ k ν Γ is zero for any integer k ≥ 1, where

δ k ν Γ(x) := d dt k ψ t t=0 (x), ν(x) , x ∈ Γ.
Corollary 4.6. Let (X, g) be a classical Liouville billiard table of dimension 2 or a classical non-degenerate Liouville billiard table of dimension 3 and let (X t , g), t ∈ (-ε, ε), be a C ∞ -family of billiard tables in Symm (M, g) satisfying the weak isospectral condition (H 1 ) -(H 2 ) and such that X 0 = X. Then the deformation is flat at t = 0. In particular, Γ t = Γ 0 for t ∈ (-ε, ε) if the family is analytic with respect to t.

In the case of the ellipse similar results have been obtained by Hezari and Zelditch [START_REF] Herman | Inégalités "a priori" pour des tores lagrangiens invariants par des difféomorphismes symplectiques[END_REF] under the usual isospectral condition using the wave-trace method.

5 Isospectral deformations in the presence of elliptic geodesics.

Let (X, g) be a smooth billiard table with boundary Γ := ∂X. Consider a C 1 -smooth family [0, 1] t → (X, g t ) (5.32) of Riemannian metrics on X with g 0 = g. Suppose that (X, g) admits an elliptic closed broken geodesic γ with m ≥ 2 vertices. Denote by {B j (ρ) : 0 ≤ j ≤ m -1} the corresponding periodic trajectory of the billiard ball map B. Then ρ = (x, ξ) ∈ B * Γ is a fixed point of the local Poincare map P = B m which is symplectic. Recall that γ is elliptic if ρ is an elliptic fixed point of P which means that the eigenvalues of the linear Poincaré map dP (ρ) : T ρ Γ → T ρ Γ are all distinct, different from one and of modulus one, hence,

Spec (dP (ρ)) = {e ±iφ j : 1 ≤ j ≤ n -1}, where 0 < φ 1 < • • • < φ n-1 ≤ π. Set φ = (φ 1 , . . . , φ n-1
) and fix a positive integer N . The linear Poincaré map dP (ρ) is said to be N -elementary if the scalar product

φ, k / ∈ 2πZ for any integer vector k = (k 1 , . . . , k n-1 ) ∈ Z n-1 such that 0 < |k 1 | + • • • + |k n-1 | ≤ N .
We say as well that γ admits no resonances of order less or equal to N .

From now on we fix N ≥ 4 and suppose that γ 0 = γ is elliptic in (X, g 0 ) and that it admits no resonances of order less or equal to N . By the implicit function theorem there exists δ > 0 such that the following holds. There is a unique

C 1 curve [0, δ) t → ρ t ∈ T * Γ starting from ρ 0 = ρ such that ρ t ∈ B *
t Γ is an elliptic fixed point of P t = B m t for any t ∈ [0, δ). Moreover, the linear Poincare map dP t (ρ t ) is N -elementary. The eigenvalues of P t have the form exp(iφ j (t)), where 0 < φ 1 (t) < • • • < φ n-1 (t) < π and the map t → φ(t) := (φ 1 (t), . . . , φ n-1 (t)) is C 1 in [0, δ). Moreover, P t admits a Birkhoff normal form of order [N/2] ≥ 2 ([a] denotes the integer part of a ∈ R) in suitable polar symplectic coordinates which will be described below.

In order to avoid eventual singularities at r j = 0, j = 1, . . . , n -1, we fix 0 < c 0 1 and r 0 > 0, and set

D = D(c 0 ) := {r = (r 1 , . . . , r n-1 ) ∈ R n-1 : 0 < c 0 |r| < |r j | < r 0 , 1 ≤ j ≤ n -1} .
(5.33)

and A := T n-1 × D. Denote by pr : R n-1 → T n-1 the canonical projection.

Proposition 5.1. (Birkhoff Normal Form). For any 0 < δ < δ there exists -a C 1 -family of exact symplectic transformation [0, δ] t → χ t : A → U t := χ t (A) , where

U t ⊂ B * t Γ is an open set -a C 1 -family of polynomials K t ∈ R [N/2] [ξ 1 , . . . , ξ n-1 ] with real coefficients of n-1 variables ξ 1 , . . . , ξ n-1 and of degree N 2 -a C 1 -family of real valued functions G t ∈ C ∞ (A)
such that the following holds

1. the function G t ∈ C ∞ (R n-1 × D) defined by G t (x, r) := x, r -K t (r) -G t (pr(x), r) is a generating function of the symplectic map P t := χ -1 t • P t • χ t in T n-1 × D , 2. for any α, β ∈ N n-1 there exists C α,β > 0 such that |∂ α θ ∂ β r G t (θ, r)| ≤ C α,β |r| N +1 2 -|β|
for any t ∈ [0, δ], (θ, r) ∈ A, and 3. lim r→0 χ t (θ, r) = ρ t .

The first condition is satisfied for N ≥ 2 and |r| ≤ r 0 1 in view of the estimate in 2. and the inverse function theorem. Multiplying G t by a smooth cut-off function of the form f 0 (r) = f (r/r 0 ) where f is compactly supported in the unit ball and f (r) = 1 for |r| ≤ 1/2 we obtain a smooth function with support contained in the ball of radius r 0 . Notice that the estimates of 2 still hold for the function G t f 0 with constants C α,β depending on f but not on r 0 .

The polynomial K t is the so called Birkhoff polynomial,

∇K t (0) = φ(t)
and (r, θ) are local polar symplectic coordinates. The construction of the Birkhoff normal form follows from that of Moser [START_REF] Moser | On the construction of almost periodic solutions for ordinary differential equations[END_REF] (see also [START_REF] Kiyohara | Two Classes of Riemannian Manifolds Whose Geodesic Flows Are Integrable[END_REF], Lemma 3.3.2). The Birkhoff normal form of P t is said to be nondegenerate if the Hessian of K t at 0 does not vanish, i.e. det ∂ 2 K t (0) = 0. We say as well that P t is a twisted map at ρ t in this case. Suppose now that P 0 is twisted. Choosing δ > 0 sufficiently small we obtain by continuity that P t is twisted for any t ∈ [0, δ], i.e.

det ∂ 2 K t (0) = 0 ∀ t ∈ [0, δ].
(5.34)

Then ∇K t : D → D * t := ∇K t (D) is a diffeomorphism for any t ∈ [0, δ] provided that r 0 1. Denote by Q t : A → A the corresponding non-degenerate completely integrable map defined by Q t (θ, r) := (θ + ∇K t (r), r). The set of frequency vectors of Q t is Ω t := D * t .
This is an open cone-like set in R n-1 with vertex at φ(t).

The remaining of this Section is devoted to the spectral rigidity of the Kronecker tori in a vicinity of an elliptic geodesic. We address the following questions. Suppose that the C 1 family of billiard tables (X, g t ), 0 ≤ t ≤ 1, is weakly isospectral. Assume that (X, g 0 ) admits a periodic elliptic broken geodesic γ 0 and that the corresponding local Poincaré map is twisted. Does there exist a C 1 family of periodic elliptic broken geodesics [0, 1] t → γ t in (X, g t ) along the whole perturbation? Do the corresponding local Poincaré map remain twisted? Do the invariant tori Λ 0 (ω) associated to γ 0 give rise to C 1 families of invariant tori [0, 1] t → Λ t (ω) along the whole perturbation? We give an answer of these questions in the following Theorem.

Denote by B(α, ) = B n-1 (α, ) the ball of radius and center α in R n-1 . Recall that the functions β t (ω), I t (ω) and L t (I) are defined by (1.5), (1.6) and (1.7) respectively. Theorem 5.2. Let (X, g t ), t ∈ [0, 1], be a C 1 family of billiard tables of dimension n ≥ 2 satisfying the weak isospectral condition (H 1 ) -(H 2 ). Suppose that (X, g 0 ) admits a closed elliptic broken billiard trajectory γ 0 with m ≥ 2 vertices. Suppose as well that the corresponding linear Poincare map dP (ρ 0 ) is N ≥ 8 elementary and that P = B m is twisted at ρ 0 . Then there exists δ 0 > 0 such that for any interval I = [0, δ], 0 < δ < δ 0 the following holds.

(i) There exist a C 1 -family of elliptic fixed points I t → ρ t ∈ B * t Γ of P t = B m t , the corresponding linear Poincaré map dP t (ρ t ) is N -elementary and P t is twisted at ρ t . Moreover for any t ∈ I and |α| ≤ N 4 -1

∂ α ∇K t (0) = ∂ α ∇K 0 (0). ( 5 

.35)

(ii) There is a set Ξ of positive Lebesgue measure consisting of Diophantine frequencies such that lim 0 meas(Ξ ∩ B(φ(0), )) meas(B(φ(0), )) = 0

and for any ω ∈ Ξ there is a C 1 family of Kronecker invariant tori I t → Λ t (ω) ⊂ B * t Γ of P t of a frequency ω.

(iii) β t (ω) = β 0 (ω), L t (I 0 (ω)) = L 0 (I 0 (ω)), and I t (ω) = I 0 (ω) for any t ∈ I and ω ∈ Ξ.

It follows from (5.35) that the function [0, δ 0 ) t → φ(t) = ∇K t (0) is constant, i.e.

∀ t ∈ [0, δ 0 ), Spec (dP t (ρ t )) = Spec (dP 0 (ρ 0 )).

(5.36)

A natural question is to describe the largest interval I, if it exists, for which Theorem 5.2 holds.

The answer is given by Proposition 5.3. Let N ≥ 12. Then there are only two possibilities that may occur.

(i) the conclusion (i) -(iii) of Theorem 5.2 holds with I = [0, 1]

(ii) there is 0 < δ 0 ≤ 1 such that Theorem 5.2 holds in any interval I = [0, δ] with 0 < δ < δ 0 and the limit set

Σ δ 0 := lim t→δ 0 {ρ t , B(ρ t ), • • • , B m-1 (ρ t )} intersects the boundary of B * δ 0 Γ.
The case (ii) means that there is a generalized (glancing to the boundary at certain point) geodesic issuing from the limit set Σ δ 0 . If the billiard tables (X, g t ), t ∈ [0, 1], are locally strictly geodesically convex then each generalized geodesics of (X, g t ) lies entirely on Γ and the second case can not occur.

We are going to prove Theorem 4, Theorem 5.2 and Proposition 5.3. Firstly using Theorem 9.11 we will obtain a KAM theorem for the C 1 family of symplectic maps P t given by Proposition 5.1. To this end we will determine the convex set Ω, fix the parameters κ and , and then estimate the corresponding quantities B which appear in Theorem 9.11.

Consider the C 1 family of exact symplectic mappings

P t in A = T n-1 × D with generating functions G t (x, r) := x, r -K t (r) -G t (pr(x), r), (x, r) ∈ R n-1 × D, (5.37) 
given by Proposition 5.1. Recall that t → K t is a C 1 -family of polynomials with real coefficients of n -1 variables and of degree N 2 , i.e.

K t ∈ R [N/2] (ξ 1 , . . . , ξ n-1 ), while t → G t ∈ C ∞ (A) is a C 1 -family of real valued functions with support in B(0, r 0 ) such that |∂ α θ ∂ β r G t (θ, r)| ≤ C α,β |r| N +1 2 -|β| (5.38) for any t ∈ [0, δ], (θ, r) ∈ A, and α, β ∈ N n-1 . There exists a constant A ≥ 1 such that ∀ t, s ∈ [0, δ], K t -K s C [N/2] ≤ A|t -s|, (5.39) 
where the norm is taken in C [N/2] (B(0, 1)). The map P 0 is twisted, then by continuity P t remains twisted for any t ∈ [0, δ] provided that δ > 0 is sufficiently small. Choosing δ > 0 small enough, there exists ε > 0 such that the Legendre transform K * t of K t given by (9.146) is well defined in B(φ(0), ε) and

∇K * t : B(φ(0), ε) → V t := ∇K * t B(φ(0), ε) is a C 1 family of diffeomorphisms with respect to t ∈ [0, δ]
, where V t is a neighborhood of 0. Moreover, the corresponding inverse maps are ∇K t :

V t → B(φ(0), ε), hence, ∇K t • ∇K * t = id on B(φ(0), ε) for any t ∈ [0, δ]. In particular the inverse map of d∇K t (0) : R n-1 → R n-1 is d∇K * t (φ(t)).
We are ready to define suitable convex sets of frequencies Ω. Choose e = (e 1 , . . . , e n-1

) ∈ R n-1 such that 2c 0 < |e j | < 1 2n , j = 1, . . . , n -1, (5.40) 
where 0 < c 0 < 1/4n is fixed in (5.33) and set e * := d∇K t (0)e. Given 0 < a 0 < ε and 0 < η 0 < 1 we consider for any 0 < a ≤ a 0 the cube of center φ(t) + ae * with sides of length 2η 0 a defined by

Ω = Ω(t, a) := ω ∈ R n-1 : |ω j -φ j (t) -ae * j | < η 0 a, 1 ≤ j ≤ n -1 ,
Obviously, Ω(t, a) ⊂ B(φ(0), ε) for a 0 ε, hence, ∇K * t is well defined and smooth on the convex set Ω(t, a). Denote by I t,a the set of all s ∈ [0, δ] such that |t -s| ≤ η 0 a. Denote by D a the connected component of the set

r = (r 1 , . . . , r n-1 ) ∈ R n-1 : c 0 < |r j | < a/n, 1 ≤ j ≤ n -1 containing ae. Then D a is
a convex open set and ae ∈ D a . We claim that there exist 0 < a 0 < 1 and 0 < η 0 < 1 such that for any 0 < a ≤ a 0 , t ∈ [0, δ] and s ∈ I t,a the following relation holds

D s (t, a) := ∇K * s (Ω(t, a)) ⊂ D a ⊂ D , (5.41) 
where D is defined by (5.33). Indeed, for any ω ∈ Ω(t, a), using Taylor's formula up to order three for the function ω → ∇K * t (ω) at ω = φ(t) and the identity

∇K * t (φ(t)) = ∇K * t (∇K t (0)) = 0 we obtain |∇K * s (ω) -ae| ≤ Aη 0 a + |∇K * t (ω) -a(d∇K * t )(φ(t))e * | ≤ aC n (A + B)η 0 + Ba
where C n depends only on n, A > 0 is the constant in (5.39) and

B := 1 + sup 0≤t≤δ ∇K * t C 2 (B(φ(t),ε) .
Then the inclusion D s (t, a) ⊂ D a follows from (5.40) choosing η 0 and a 0 so that

C n (A + B)η 0 + Ba 0 < c 0 < 1/2n.
On the other hand, the inequalities c 0 a < |r j | < a/n, j = 1, . . . , n -1, imply c 0 |r| < c 0 a < |r j | and we obtain the second inclusion in (11.273), which proves the claim. Set A s (t, a) := T n-1 × D s (t, a) for s ∈ I t,a . The relation (11.273) allows one to apply Proposition 5.1 in D s (t, a) for any t ∈ [0, δ] fixed, where the parameter of the deformation s varies in I t,a . We point out that both Ω(t, a) and D a are convex open sets which allows us to apply Theorem 9.11 and to obtain the corresponding Hölder estimates.

Fix τ > n -1 and choose κ = ηa in the Diophantine condition (1.2), where 0 < η < η 0 . Denote by Ω t,κ the set of all ω ∈ Ω(t, a) ∩ D(τ, κ) such that dist(ω, R n-1 \ Ω) ≥ κ. There exists 0 < η 1 = c(n, τ )η 0 , where 0 < c(n, τ ) < 1 depends only on n and τ such that the Lebesgue measure of Ω t,κ is positive for any t ∈ [0, δ], 0 < η < η 1 and a ∈ (0, a 0 ]. Indeed, it follows from [START_REF] De La Llave | Regularity of the composition operator in spaces of Hölder functios[END_REF], Proposition 9.9 that meas (Ω(t, a)

\ Ω t,ηa ) ≤ C η η 0 meas (Ω(t, a)) , (5.42) 
where the positive constant C depends only on n and τ , and we take c = 1/C. Let us fix 0 < η < η 1 and denote by Ω 0 t,κ the set of points of positive Lebesgue density in Ω t,κ (see Sect. 9.4).

Theorem 5.4. Let [0, δ] t → P t be a C 1 family of symplectic mappings with generating functions G t given by (5.37), where

K t ∈ R [N/2] [ξ 1 , . . . , ξ n-1 ] while G t ∈ C ∞ (A) satisfies (5.38)
with N ≥ 4. Then for any t ∈ [0, δ] there exists a C 1 -family of exact symplectic maps

I t,a s → χ s : A s (t, a) → A s (t, a) and of real valued functions L s ∈ C ∞ (D s (t, a)) and R t ∈ C ∞ (A s (t, a)) such that for any s ∈ I t,a the following holds 1. G 0 s (x, I) = x, I -L s (I) -R s (pr(x), I) is a generating function of P 0 s := χ -1 s • P s • χ s 2. ∇L s : D s (t, a) → Ω(t, a) is a diffeomorphism 3. R s is flat at T n-1 × ∇L * s (Ω 0 t,κ )
4. for any m ∈ N there exists a constant C m > 0 independent of a ∈ (0, a 0 ] and t ∈ [0, δ] such that the following estimates hold

|∂ α ϕ (a∂ ω ) β σ -1 a (χ s -id)| + |∂ α ϕ (a∂ ω ) β σ -1 a (χ -1 s -id)| ≤ C m a N -3 4 
on A s (t, a), and

|(a∂ I ) β (∇L s (I) -∇K s (I))| ≤ C m a N +1 4 
(5.43) on D s (t, a) for any s ∈ I t,a and |α| + |β| ≤ m.

Moreover, if ∇K t (0) = ∇K 0 (0) for any t ∈ [0, δ], then for any 0 < a ≤ a 0 there exists a C 1family of exact symplectic maps χ s :

A 0 (0, a) → A 0 (0, a) in I = [0, δ] and of real valued functions L s ∈ C ∞ (D 0 (0, a)) and R t ∈ C ∞ (A 0 (0, a)) such that 1.) -4.
) hold for any s ∈ I and t = 0.

Proof. To prove the first part of the Theorem we apply Theorem 9.11 to the C 1 family of symplectic mappings

I t,a s → P s ∈ C ∞ (A s (t, a), A s (t, a)).
Let us estimate the corresponding quantities B l for ≥ 1 defined by (9.179)-(9.181). First of all the constant λ in (9.187) can be fixed by

λ = sup t∈[0,δ] ∂ 2 K t C [N/2] (B(0,1)) .
Given = m + µ with m ∈ N * and 0 ≤ µ < 1 we get by (11.273) that for any s

∈ I t,a G s ,A s (t,a);κ ≤ G s ,T n-1 ×Da;κ ≤ G s m+1,T n-1 ×Da;κ .
The second inequality follows from the fact that D a is convex. On the other hand,

G s m+1,T n-1 ×Da;κ = sup |α|+|β|≤m+1 ∂ α θ (κ∂ r ) β G t C 0 (T n-1 ×Da)
and using Proposition 5.1, 2, we obtain

G s ,A s (t,a);κ ≤ C m a N +1 2
for any s ∈ I t,a . We choose

= κ N +1 4 < κ, where N ≥ 4. Then G s ,A s (t,a);κ ≤ κ C m a N -3 4 
for any s ∈ I t,a , where

C m = C m η -N +5 4 . Moreover, |||∂ 2 K s ||| ,A s (t,a);κ ≤ |||∂ 2 K s ||| ,T n-1 ×B(0,1);κ ≤ C ∂ 2 K t C [N/2] (B(0,1)) and S (∇K * ) ≤ sup 0≤t≤δ 1 + ∇K * t C 1 (B(φ(0),ε)) -1 1 + ∇K * t C (B(φ(0),ε)) .
Thus for any ≥ 1 we obtain

B ≤ κ C a N -3 4 
where C > 0 depends neither on a ∈ (0, a 0 ] nor on t ∈ [0, δ]. Choosing a 0 1 we get B 2 ≤ κ λ -4 , which gives (9.188). Applying Theorem 9.11 we obtain 1-4.

The equality ∇K t (0) = ∇K 0 (0) means that φ(t) = φ(0) which implies Ω(t, a) = Ω(0, a). Then one can take I t,a = [0, δ] in (11.273) 

which implies 1-4 in [0, δ]. 2 
Proof of Theorem 4. The set of fixed points of J 1 in X t ∈ B defines a bouncing ball geodesic γ t in (X t , g) which is preserved by J 2 . We are going to apply Theorem 5.4 to the Birkhoff Normal Forms of the local Poincaré maps P t associated to γ t . Let t → ρ t be a C 1 family of fixed points of P t = B 2 t . Denote by ρ t,j = (x t,j , 0) = B j t (ρ t ), j = 1, 2, the corresponding periodic orbit of B t . Fix t ∈ [0, δ]. Denote by U ⊂ X a neighborhood of the vertices x t,0 and x t,1 of γ t,1 such that J k (U ) = U , k = 1, 2. Denote the restrictions of the two involutions to Γ t ∩U by J 1 and J 2 and by J j : T * (Γ t ∩U ) → T * (Γ t ∩U ) the corresponding lifts. The set Γ t ∩ U has two connected components Γ j t , j = 1, 2, and

J 1 (Γ 1 t ) = Γ 1 t while J 2 (Γ 1 t ) = Γ 2 t .
Since J 1 and J 2 act as isometries and commute with each other, using the definition of B t in Sect. 2.1, we obtain that the involutions Jj , j = 1, 2, commute with each other and also with B t .

Denote by Ξ the union of Ω t,ηa , 0 < a ≤ a 0 . For any ω ∈ Ξ we set

Λ 1 t (ω) = Λ t (ω) and Λ 2 t (ω) = B t (Λ t (ω)). Then J 1 (Λ j t (ω)), j = 1, 2, are also invariant circles of P t = B 2 t of frequency ω ∈ Ξ and Λ j t (ω) = J 1 (Λ j t (ω)) for j = 1, 2, while Λ 2 ω = J 2 (Λ 1 t (ω)).
To prove it we use the following argument. Since dim T * Γ t,j = 2 the KAM circle Λ j t (ω) divides T * Γ t,j into two connected components, and it contains the elliptic fixed point ρ t,j = (x t,j , 0) of P t in its interior D j . Moreover, J 1 (ρ j ) = ρ j , hence, J 1 (Λ j t (ω)) contains ρ t,j in its interior J1 (D j ) as well. On the other hand, J1 preserves the volume form of T * Γ t,1 , hence, Λ j t (ω) intersects J 1 (Λ j t (ω)). This implies Λ 1 t (ω) = J 1 (Λ 1 t (ω)), since P t acts transitively on both of them. In the same way we prove that Λ 2 t (ω) = J 2 (Λ 1 t (ω)). Recall that the family Γ t , t ∈ [0, 1], is given by a C 1 family of embeddings ψ t ∈ C ∞ (Γ, X), where ψ t (Γ) = Γ t . Without loss of generality we suppose that γ 0 = id Γ is the identity at Γ. Notice that that the vectors ∂ψt ∂x (x) and ν t (ψ t (x)) provide a base of T ψt(x) X for any x ∈ Γ, hence,

∀ x ∈ Γ t , ψt (x) = λ(t, x) ∂ψ t ∂x (x) + δ ν Γ t (ψ t (x))ν t (ψ t (x)) (5.44)
where t → λ(t, •) ∈ C ∞ (Γ) is continuous on [0, δ] and the function δ ν Γ t is defined by (2.15) and it belongs to C ∞ (Γ t ). We are going to show that the function δ ν Γ t is flat at x t,1 .

Using Corollary 3 and the symmetry with respect to J 1 given above we obtain

Λt(ω) ξ + t (ρ), ν t (π t (ρ)) δ ν Γ t (π t (ρ)) dµ t (ρ) = 0 (5.45)
for any ω ∈ Ξ, with 0 < a ≤ a 0 . Moreover, the functions

ρ → f t (ρ) := ξ + t (ρ), ν t (π t (ρ)) , ρ → h t (ρ) := δ ν Γ t (π t (ρ))
are invariant with respect to the involution J 1 . Let us parametrize Γ 1 t by its arclength y ∈ [-c, c] so that y(x t,1 ) = 0 and denote by (y, η) the corresponding local coordinates in T * Γ t,1 . Then J 1 (y) = -y for any y. For any invariant circle Λ

1 t (ω), ω ∈ Ξ, there is y(ω) > 0 such that π t (Λ 1 t (ω)) = [-y(ω), y(ω)]. Notice that f t (y, η) = ξ + t (y, η), ν t (y) > 0 for (y, η) ∈ Λ 1 t (ω) since Λ 1 t (ω) is contained in B * t (Γ t ).
On the other hand, h t (y, η) = h t (y) depends only on y. We are going to show that there exists an infinite sequence (y j ) j∈N ⊂ (0, c) such that lim y j = 0 and h t (y j ) = 0. Indeed, suppose that h t (y) = 0 in (0, b) for some b > 0. Take ω ∈ Ξ such that 0 < y(ω) < b. The function h t (y) is even because it is invariant with respect to J 1 , hence it will not change its sign in the interval [-y(ω), y(ω)]. Then h t (y, η)f t (y) will not change its sign on Λ 1 t (ω) and it is not identically null, which contradicts (5.45). This proves the existence of an infinite sequence {y j } j∈N such that h t (y j ) = 0, y j = 0 for any j ∈ N and lim y j = 0. Now there exists an infinite sequence (y j ) j∈N ⊂ (0, b) such that y j ≤ y j ≤ y j+1 and dht dy (y j ) = 0, and so on. This implies that the Taylor series of h t (y) vanishes at y = 0. In particular we obtain that x t,j = x 0,j since λ(t, x t,j ) = 0. Hence, the function Γ

t x → δ ν Γ t (x) is flat at x = x 0,1 .
Take local coordinates x : Γ 1 0 → R in the neighborhood Γ 1 0 of x 0,1 in Γ = Γ 0 such that x(x 0,1 ) = 0 and consider the equation

d dt u t (x) = -λ(t, u t (x)) (5.46)
with initial data u 0 (x) = x. This problem has a unique solution u t (x) for t in a neighborhood of 0 and

x in an open interval V ⊂ R containing x = 0. Moreover, u t : V → R is a C 1 family of local diffeomorphisms. Consider the C 1 family of embeddings v t = ψ t • u t : V → X. The set v t (V ) is an open neighborhood of x 0,1 in Γ t , v t gives a local parametrization of Γ t in v t (V ) and v 0 (x) = x.
Using (5.44) and (5.46) one obtains that the map

V x → vt (x) = δ ν Γ t (v t (x))ν t (v t (x)) is flat at x = 0 for any s ∈ [0, δ]. Then for any ϕ ∈ C ∞ ( X), the function V x → ϕ(v t (x)) -ϕ(x) = t 0 dϕ(v s (x)) vs (x)ds
is flat at x = 0 which means that Γ t is tangent to infinite order to Γ 0 at x 0,1 for t > 0 sufficiently small. Replacing Γ by Γ t , t ∈ [0, 1], we complete the proof of the Theorem. 

(ω) = I t (ω) and ∇L s (I t (ω)) = ∇L t (I t (ω)), hence, ∂ α I ∇L s (I t (ω)) = ∂ α I ∇L t (I t (ω)) for any α ∈ N n-1 in view of Lemma 3.4.
Then for any ω ∈ Ω t,κ , s ∈ I t,a and α ∈ N n-1 of length |α| ≤ N/4 -1 using (5.43) we obtain .

|∂ α I ∇K s (I t (ω)) -∂ α I ∇K t (I t (ω))| ≤ |∂ α I ∇K s (I t (ω)) -∂ α I ∇L s (I t (ω))| + |∂ α I ∇K t (I t (ω)) -∂ α I ∇L t (I t (ω))| ≤ Ca N +1 4 -|α| ≤ Ca
Taking s = t + a there is t(a) ∈ [t, t + a] such that d ds s=t(a) ∂ α I ∇K s (I t (ω)) ≤ Ca 1 4 ,
where the positive constant C is independent of a ∈ (0, a 0 ) and ω ∈ Ω 0 t,κ . Let a → 0. Then Ω 0 t,κ ⊂ Ω(t, a) shrinks to φ(t), hence, lim

a→0 sup{|I t (ω)| : ω ∈ Ω 0 t,κ } = 0 and we get d dt ∂ α ∇K t (0) = 0 for any t ∈ [0, δ]. This implies (5.35) in that interval. By assumption N ≥ 8, hence (5.36) holds for t ∈ [0, δ].
We are going to define the set of frequencies Ξ as a union of Ω 0 0,κ . Recall that κ = ηa, where 0 < η ≤ η 1 = c(n, τ )η 0 . Moreover, Ω(0, a) depends on the choice of e * := d∇K t (0)e, where d∇K t (0) is an isomorphisme of R n-1 and e satisfies (5.40), hence, Ω(0, a) depends as well as on the parameter 0 < c 0 < 1/4n defined in (5.33). Now varying the parameters 0 < c 0 < 1/2n, e satisfying (5.40), 0 < a ≤ a 0 and 0 < η ≤ η 1 = c(n, τ )η 0 we denote by Ξ the union of the corresponding sets Ω 0 0,κ . The set of frequencies Ξ satisfies (ii) by construction in view of (5.42).

Using the second part of Theorem 5.4 and Corollary 2 in I = [0, δ] we complete the proof of the Theorem. 2

Proof of Proposition 5.3. Denote by 0 < δ 0 ≤ 1 the supremum of all δ > 0 such that (i), Theorem 5.2 holds in [0, δ]. Suppose that δ 0 < 1 and that Σ δ 0 ⊂ B * δ 0 Γ. Fix ρ in the limit set lim t→δ 0 ρ t . Then P δ 0 = B m δ 0 is well-defined and smooth in a neighborhood of ρ. By continuity, ρ is a fixed point of P δ 0 and (5.36) holds true for t ∈ [0, δ 0 ]. Hence, ρ is an elliptic fixed point of P δ 0 and there are no resonances of order less or equal to N . Now Proposition 5.1 provides a C 1 family of Birkhoff normal forms of P t in an interval t ∈ [0, δ 0 + ε], where ε > 0. On the other hand, (5.35) 

implies that ∂ 2 K t (0) = ∂ 2 K 0 (0) for t ∈ [0, δ 0 [ since N ≥ 12.
By continuity, this equality is true for t ∈ [0, δ 0 ]. Then P t is twisted for any t ∈ [0, δ 0 + ε], provided that ε > 0 is sufficiently small. Applying Theorem 5.4 we show as above that (i) and (ii) in Theorem 5.2 hold in [0, δ 0 + ]. This contradicts the choice of δ 0 . If

δ 0 = 1 and Σ 1 ⊂ B * δ 0 Γ, then (i) holds in [0, 1] and Theorem 5.4 holds in I = [0, 1]. 2 
6 Isospectral deformation of locally strictly geodesically convex billiard tables of dimension two.

The aim of this Section is to prove Theorem 6. More generally we consider isospectral deformations of a billiard table (X, g) in an ambient Riemannian manifold ( X, g) with a locally strictly geodesically convex (with respect to the outward normal) boundary Γ = ∂X. This means that if a geodesic s → γ(s) of ( X, g) is tangent to Γ at s = 0 then the order of the tangency is exactly two and γ(s) / ∈ X for 0 < |s| 1. The behavior of the billiard ball map near S * Γ is investigated by Melrose [START_REF] Meinrenken | Semiclassical principal symbols and Gutzwiller's trace formula[END_REF] and Marvizi and Melrose [START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF] in the more general context of pairs of glancing surfaces.

Consider the hypersurfaces Σ 1 := S * X and Σ

2 := T * X Γ in T * X. Set f 1 = h -1,
where the Hamiltonian h is just the Legendre transform h(x, ξ) = g ij (x)ξ i ξ j of the Riemannian metric defined locally by g(x, v) = g ij (x)v i v j and denote by f 2 ∈ C ∞ (T * X) a smooth function which is constant on the fibers (f 2 (x, ξ) = f 2 (x)) and such that f 2 (x) > 0 for x in the interior of X, f 2 (x) < 0 in the exterior of X and f 2 (x) = 0, df 2 (x) = 0 for x ∈ Γ. Then the hypersurfaces Σ j , j = 1, 2, are just the zero level sets of the non-degenerate Hamiltonians f j (df j = 0 on Σ j = {f j = 0}). One can show that Γ is locally strictly geodesically convex with respect to the outward normal to Γ if and only if the following relation holds (6.47) where {, } is the Poisson bracket related to the canonical symplectic two-form ω of T * X. In particular

f 1 ( ) = f 2 ( ) = {f 1 , f 2 }( ) = 0 =⇒ {f 1 , {f 1 , f 2 }}( ) < 0 and {f 2 , {f 2 , f 1 }}( ) > 0,
K := { ∈ T * X : f 1 ( ) = f 2 ( ) = {f 1 , f 2 }( ) = 0}
is a smooth submanifold of T * X of co-dimension two. The characteristic foliations of the twoform ω Σ j given by the non-parametrized integral curves of the hamiltonian vector fields of f j define two involutions J j in a neighborhood U of the glancing manifold K in Σ := Σ 1 ∩ Σ 2 . For any ∈ U \ K, the point J j ( ) ∈ U is just the second point of intersection of the characteristic of ω Σ j passing through with U . The set of fixed points of J j is just K. Moreover, (6.47) implies that the differentials of J j are linearly independent at any point of K. The billiard ball map is given by the composition J := J 2 •J 1 : U → U . Moreover, J * j ω Σ = ω Σ , where ω Σ := ω Σ . Then the billiard ball map J preserves ω Σ as well. Notice that the map J is smooth in U but the two-form ω Σ is degenerate at K. To make the later symplectic one considers the quotient space U/J 2 of U by the action of J 2 . In our case it is given by the closed co-ball bundle B * Γ ⊂ T * Γ equipped with the canonical symplectic two-form. Let π : U → U/J 2 ∼ = B * Γ be the canonical projection. Then the billiard ball map is represented by the boundary map

B = π • J 1 • π + ,
where π + is defined by (2.13). We call B a billiard ball map as well.

A local normal form of the pair of involutions J j , j = 1, 2, and of the two form ω has been obtained by Melrose [START_REF] Meinrenken | Semiclassical principal symbols and Gutzwiller's trace formula[END_REF] in a neighborhood of any point of the glancing manifold K. This normal form leads to a local symplectic normal form of the billiard ball map B at any point of the projection π(K) = S * Γ (see also [START_REF] Hörmander | Fourier integral operators I[END_REF], Theorem 21.4.8).

Consider a C 1 family of Riemannian metrics [0, δ 0 ] t → g t in X and suppose that Γ is locally strictly geodesically convex in ( X, g 0 ) with respect to the outward normal field at Γ. Choosing 0 < δ ≤ δ 0 sufficiently small we obtain by (6.47) that Γ remains locally strictly geodesically convex in ( X, g t ) for any t ∈ [0, δ]. We denote by Σ j,t = {f j,t = 0}, j = 1, 2, the corresponding pairs of glancing hypersurfaces. Here f 1,t + 1 is the Hamiltonian corresponding to the Riemannian metric g t via the Legendre transform and f 2,t = f 2 , hence, both families of Hamiltonians are C 1 smooth with respect to t. Moreover, f j,t satisfy (6.47) for t ∈ [0, δ] and we denote by K t the corresponding glancing manifolds. Consider the corresponding C 1 family of billiard ball maps B t :

U t → B * t Γ, t ∈ [0, δ],
where U t are suitable open subsets of B * t Γ. The map B t is exact symplectic and smooth in U t , and it is extended by continuity as the identity map on S * Γ. Using the construction of the local symplectic normal form of B t at S * Γ in [START_REF] Meinrenken | Semiclassical principal symbols and Gutzwiller's trace formula[END_REF] and the interpolating Hamiltonian introduced by Marvizi and Melrose [START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF] we obtain below a

C 1 family of Birkhoff Normal Forms of B t , t ∈ [0, δ].
From now on we suppose that dim X = 2 and we denote by 2πl t the length of Γ with respect to the Riemannian metric g t . Set A t := T × (l t -ε, l t + ε), where ε > 0 will be chosen bellow small enough. Denote by pr : R → T the canonical projection. Proposition 6.1. Let (X, g t ), t ∈ [0, δ], be a C 1 family of connected locally strictly geodesically convex billiard tables in X. Then there exists

(1) a C 1 -family of exact symplectic transformation [0, δ] t → χ t ∈ C ∞ (A t , V t ), where V t := χ t (A t ) ⊂ T * Γ is a neighborhood of S * t Γ, χ t (T × {l t }) = S * t Γ and χ t (T × (l t -ε, l t )) ⊂ B * t Γ, (2) a C 1 -family of real valued functions ζ t ∈ C ∞ (R) and G t ∈ C ∞ 0 (A t ), t ∈ [0, δ], with ζ t (l t ) = 0 and ζ t (l t ) < 0 such that the following holds (i) the function G t ∈ C ∞ (R × R) defined by G t (x, r) := xr - 2 3 ζ t (r) 3 2 -G t (pr(x), r)
is a generating function of the symplectic map

P t := χ -1 t • B t • χ t in T × (l t -ε, l t ), (ii) G t is flat at r = l t , which means that ∂ α r G t (θ, l t ) = 0 for any θ ∈ T and α ∈ N.
The function

ζ t := ζ t • χ -1
t is an interpolating Hamiltonian of B t in the sense of Marvizi and Melrose [START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF], which means that for any ϕ ∈ C ∞ (T * Γ), the function

ϕ • B t -ϕ • exp ζ 1 2 X ζ is flat at S * t Γ, where t → exp(tX ζ ) is the flow of the Hamiltonian vector field X ζ of ζ on T * Γ.
Proof. The proof of the Proposition is based on a local normal form of pairs of glancing hypersurfaces near the glancing manifold obtained by Melrose in [START_REF] Meinrenken | Semiclassical principal symbols and Gutzwiller's trace formula[END_REF]. Consider the two involutions J j,t associated to the characteristic foliations of Σ j,t = {f j,t = 0} in a neighborhood U t of the glancing manifold

K t in Σ t := Σ 1,t ∩ Σ 2,t for t ∈ [0, δ].
In this way one obtains a C 1 family of billiard ball maps given by the compositions

J t = J 2,t • J 1,t : U t → U t and B t = π t • J 1,t • π + t .
Arguing as in the proof of [START_REF] Hörmander | Fourier integral operators I[END_REF], Theorem C.4.8, we first obtain a C 1 family of normal forms of the two involutions J j,t . More precisely, following the first part of the proof of that theorem we get a C 1 family of diffeomorfisms Ψ t : V → U t , where V is a neighborhood of a point

z 0 = (z 0 1 , 0, z 0 ) ∈ R 2n-2 such that Ψ -1 t • J 1,t • Ψ t (z 1 , z 2 , z ) = (z 1 + z 2 , -z 2 , z ) + O N (z N 2 ) , Ψ -1 t • J 2,t • Ψ t (z 1 , z 2 , z ) = (z 1 , -z 2 , z )
for any N ∈ N. In order to do this we consider an asymptotic expansion of Ψ t in formal power series

Ψ t (z 1 , z 2 , z ) ≈ Ψ t,k (z 1 , z )z k 2 .
The functions Ψ t,k (z 1 , z ) are obtained by solving linear systems of ordinary differential equations (see the proof of [START_REF] Hörmander | Fourier integral operators I[END_REF], Theorem C.4.8). In this way we obtain that the maps t → Ψ t,k ∈ C ∞ (V ) are C 1 smooth, and then using Borel's extension theorem we get a C 1 smooth family of maps

ψ t : V → U t such that | Ψ t (z 1 , z 2 , z ) - n k=0 Ψ t,k (z 1 , z )z k 2 | ≤ C N |z 2 | N .
Then following the proof of Theorem 21.4.4 in [START_REF] Hörmander | Fourier integral operators I[END_REF] (see also [START_REF] Gomes | Semiclassical scarring on tori in KAM Hamiltonian systems[END_REF]) one finds a C 1 family of diffeomorphisms Ψ t defined by Ψ -1

t : W → U t , where W is a neighborhood of a point 0 = (x 0 1 , x 0 , 0, ξ 0 ) ∈ T * R n-1 , U t := Ψ -1 t (W ) is an open neighborhood of the glancing manifold K t in Σ 1,t ∩ Σ 2,t and such that                    (Ψ -1 t ) * (ω Σt ) = dx 1 ∧ d(ξ 2 1 ) + n-1 k=2 dx k ∧ dξ k Ψ t • J 1,t • Ψ -1 t (x 1 , x , ξ 1 , ξ ) = (x 1 + ξ 1 , x , -ξ 1 , ξ ) + R t (x, ξ) , Ψ t • J 2,t • Ψ -1 t (x 1 , x , ξ 1 , ξ ) = (x 1 , x , -ξ 1 , ξ ) ∀ j ∈ N, ∂ j ξ 1 R t (x, 0, ξ ) = 0. (6.48)
We mention just for information that the formal power series are not convergent in general even when the hypersurfaces are analytic. It has been proved in [START_REF] Gomes | Semiclassical scarring on tori in KAM Hamiltonian systems[END_REF] that for any t fixed the corresponding functions in (6.48) belong to the Gevrey class G 2 of index two if the glancing hypersurfaces are analytic.

Suppose now that Σ 1,t = S * t X and Σ 2,t = T * X Γ . Then U t is an open subset of S * t X Γ . Choosing normal to Γ coordinates with respect to the metric g t one can assume that locally f 1,t (y, y n , η, η n ) = y n and f 2,t (y, y n , η, η n ) = η 2 n + q t (y, y n , η), where t → q t (y, y n , η) is a C 1 family of quadratic forms with respect to η = (η 1 , . . . , η n-1 ) and q t (y, 0, η) is the Hamiltonian corresponding to the induced metric on Γ via the Legendre transform. In these coordinates U t can be identified with the set of (y, y n , η, η n ), where y n = 0, (y, η) are local coordinates in T * Γ near a point 0 t ∈ S * t Γ and

η 2 n + q t (y, 0, η, η n ) = 1, while K t ⊂ U t is given by y n = η n = 0. Moreover, J 2,t (y, 0, η, -η n ) = -J 2,t (y, 0, η, η n ) and π ± t (y, η) = ± 1 -q t (y, 0, η) for (y, η) ∈ B * t Γ. Setting Ψ t (y, η, η n ) = (x t (y, η, η n ), ξ t1 (y, η, η n ), ξ t (y, η, η n ))
where η 2 n + q t (y, 0, η, η n ) = 1 one obtains from the third relation of (6.48) that x t and ξ t are even functions of η n while ξ t1 is odd. Then there exists a

C 1 family of functions t → ( x t , ξ t ) ∈ C ∞ (T * R n-1 ) such that Ψ t (y, 0, η, η n ) = ( x t (y, η, η 2 n ), η n ξ t1 (y, η, η 2 n ), ξ t (y, η, η 2 n )),
where η 2 n + q t (y, 0, η) = 1. We define a C 1 family of diffeomorphisms χ t by

χ -1 t (y, η) = ( x t (y, η, η n ), η n ξ t1 (y, η, η n ) 2 , ξ t (y, η, η n )),
where

η n := 1 -q t (y, 0, η). Then χ t : V → V t := χ t (V ) ⊂ T * Γ is a C 1 family of symplectic mappings, i.e. χ * t ( n-1 j=1 dy j ∧ dη j ) = n-1 j=1 dx j ∧ dξ j , where V ⊂ T * R n-1
is an open neighborhood of a given point (x 0 , 0, ξ 0 ) and we get the following symplectic normal form of the billiard ball maps

χ -1 t • B t • χ t (x 1 , x , ξ 1 , ξ ) = (x 1 + ξ 1 , x , ξ 1 , ξ ) + R t (x, ξ), where t → R t ∈ C ∞ (T * R n-1 , T * R n-1
) is a C 1 family of maps such that ∂ j ξ 1 R t (x, 0, ξ ) = 0 for any j ∈ N. The interpolating Hamiltonian ζ t is defined by the ξ 1 component of χ -1 t , i.e.

ζ t (y, η) = (1 -q t (y, 0, η)) ξ t1 (y, η, 1 -q t (y, 0, η)) 2 .
As in [START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF] and [START_REF] Popov | Length spectrum invariants of Riemannian manifolds[END_REF] one obtains that ζ t is uniquely defined modulo a flat function on S * t Γ. We suppose now that dim Γ = 2. To obtain the Hamiltonian ζ t we find action-angle coordinates of ζ t as in [START_REF] Popov | Length spectrum invariants of Riemannian manifolds[END_REF]. To simplify the notations we drop the index t. Denote by M u the closed curve { ∈ T * Γ : ζ( ) = u} in T * Γ where u varies in a small neighborhood of the origin. For any

∈ M u consider the map R t -→ exp(tX ζ )( ) ∈ M u and denote by 2πΠ(u) its period. Let S be a section transversal to M 0 in T * Γ. It is equipped with local coordinates S → u = ζ( ). Denote by O the discrete group in R × S generated by R × S (t, u) -→ (t + 2πΠ(u)), u), u = ζ( ).
Let (R × S)/O be the corresponding factor space. It is a symplectic manifold equipped with the symplectic two-form dt ∧ du and the mapping

R × S (t, ) -→ exp(tX ζ )( ) ∈ T * Γ lifts to a symplectic diffeomorphism from (R × S)/O to a neighborhood of M 0 . Making suitable symplectic change of the variables θ = t/Π(u), r = g(u),
in R × S we can suppose that O is generated by (θ, r) -→ (θ + 2π, r) while the symplectic two-form becomes dθ ∧ dr. Then g (u) = -Π(u) which yields

r(u) = l - u 0 Π(t) dt, (6.49) 
where l = length(Γ)/2π. Denote by ζ(r) the function inverse to r(u).

We have obtained symplectic coordinates (

θ t (x, ξ), r t (x, ξ)), t ∈ [0, δ], in a neighborhood of the boundary S * t Γ in the co-ball bundle of Γ with values in T × R such that S * t Γ = {r t = l t } and B * t ⊂ {r t < l t }. The map t → (θ t , r t ) ∈ C ∞ (T * Γ)) is C 1 by construction. The exact symplectic map B t is generated in this coordinates by the function G t . 2 
Recall that the functions β t (ω), I t (ω) and L t (I) are defined by (1.5), (1.6) and (1.7) respectively. Theorem 6.2. Let (X, g t ), t ∈ [0, δ], be a C 1 family of compact locally strictly geodesically convex billiard tables of dimension two satisfying the weak isospectral condition

(H 1 ) -(H 2 ). Then (i) There is a Cantor set Ξ ⊂ (0, 1] consisting of Diophantine numbers such that meas (Ξ ∩ (0, ε)) ε = 1 -O(ε 2 ) as ε → 0 +
and for any ω ∈ Ξ there exists a C 1 family of Kronecker invariant circles [0, δ] t → Λ t (ω) of B t of frequency ω,

(ii) ∀ω ∈ Ξ and t ∈ [0, δ], β t (ω) = β 0 (ω), I t (ω) = I 0 (ω) and L t (I 0 (ω)) = L 0 (I 0 (ω)), (iii) l t = r 0 and the function ζ t -ζ 0 is flat at r 0 for any t ∈ [0, δ].
We are going to prove Theorem 6.2. Firstly, using Theorem 9.11 we will obtain a suitable KAM theorem and a BNF at the corresponding family of invariant circles for the C 1 family of symplectic maps P t given by Proposition 6.1. To this end we will determine the convex set Ω, fix the parameters κ and , and then estimate the corresponding quantities B and λ which appear in Theorem 9.11.

Consider the function

K t := -2 3 ζ 3 2 t in [l t -ε, l t ]. Fix ε > 0 so that ζ t (r) < 0 for (r, t) ∈ [l t -ε, l t ]×[0, δ], and denote by K * t the Legendre transform of K t in an interval [0, a 0 ], 0 < a 0 1. One can easily show that the family t → K * t can be extended as a C 1 family of smooth odd functions [0, δ] t → K * t ∈ C ∞ ([-a 0 , a 0 ]
). Indeed, the function K t admits an asymptotic expansion of the form

K t (r) ≈ - ∞ k=1 1 1 2 + k (l t -r) 1 2 +k u k (t) as r l t ,
where

u k ∈ C 1 ([0, δ]) and u 1 (t) = (-ζ t (l t )) 3 2 > 0.
Moreover, this asymptotic expansion can differentiated infinitely many times with respect to r. Recall that for any t ∈ [0, δ] fixed the derivative

K * t of K * t satisfies the identity K t (K * t (ω)) = ω for any ω ∈ (0, a 0 ]. Moreover, K t (K * t (ω)) + K * t (ω) = ωK * t (ω), K * t (0) = l t ,
and we easily obtain the asymptotic expansion

K * t (r) ≈ ∞ k=0 1 2k + 1 ω 2k+1 v k (t) as ω 0 ,
where

v k ∈ C 1 ([0, δ]), v 0 (t) = l t , v 1 (t) = -u 1 (t) -2 = -(-ζ t (l t )) -3 < 0,
and so on. Fix τ > 1, set Ω(a) := [a/2, 2a], choose κ a = a 2 and denote by Ω κ (a) the set of Diophantine frequencies [a/2 + a 2 , 2a -a 2 ] ∩ D(κ, τ ). It follows from [START_REF] De La Llave | Regularity of the composition operator in spaces of Hölder functios[END_REF], Proposition 9.9, that meas (Ω(a) \ Ω κ (a)) meas (Ω(a))

≤ C κ = C a 2 . (6.50)
Choose a 0 > 0 so that the Lebesgue measure of Ω κ (a 0 ) is positive and denote by Ω 0 κ (a) the set of points of Ω κ (a) of positive Lebesgue density. We have

D(t, a) := K * t (Ω(a)) = [l t + v 1 (t)a 2 /4 + O(a 4 ), l t + 4v 1 (t)a 2 + O(a 4 )] ⊂ [l t -ε, l t ] (6.51) 
for 0 < a ≤ a 0 1. Set A(t, a) = T×D(t, a). We are ready to announce the corresponding KAM theorem for the C 1 family of symplectic mappings [0, δ] t → P t with generating functions G t satisfying (i) and (ii) in Proposition 6.1. Theorem 6.3. For any a ∈ (0, a 0 ] there exists a C 1 -family of exact symplectic maps

[0, δ] t → χ t : A(t, a) → A(t, a) and of real valued functions [0, δ] t → L t ∈ C ∞ (D(t, a)) and [0, δ] t → R t ∈ C ∞ (A(t, a)) such that for any t ∈ [0, δ] the following holds 1. G 0 t (x, I) = xI -L t (I) -R t (pr(x), I) is a generating function of P 0 t := χ -1 t • P t • χ t 2. L t : D(t, a) → Ω(a) is a diffeomorphism with inverse L * t : Ω(a) → D(t, a), where L * t is the Legendre transform of L t 3. R t is flat at T × L * t (Ω 0 κ (a))
4. for any integer N ≥ 1 and m ∈ N there exists a constant C = C m,N > 0 independent of a ∈ (0, a 0 ] and t ∈ [0, δ] such that the following estimates hold Proof. We are going to apply Theorem 9.11 to the C 1 family of symplectic mappings [0, δ] t → P t ∈ C ∞ (A(t, a), A(t, a)) given by Proposition 6.1.

|∂ α ϕ (κ∂ ω ) β σ -1 κ (χ s -id)| + |∂ α ϕ (κ∂ ω ) β σ -1 κ (χ -1 s -id)| ≤ Cκ 2N -m-
Let us estimate the corresponding quantities B m for m ∈ N and λ defined by (9.179) -(9.181) and (9.187). The constant λ can be fixed by

λ = λ a = sup t∈[0,δ] K t D(t,a);κ = C 0 a -1 = C 0 κ -1/2 , (6.53) 
where C 0 is a positive constant independent of a. Given = m + µ with m ∈ N * we get by (11.273) that for any t ∈ [0, δ) the following inequality holds

G t ,A(t,a);κ ≤ G t m+1,T×D(t,a);κ . since D(t, a) is an interval. Moreover, G t m+1,T×Da;κ = sup |α|+|β|≤m+1 ∂ α θ (κ∂ r ) β G t C 0 (T×D(t,a)) .
Fix N ≥ 2. It follows from Proposition 6.1, (ii), and the definition of D(t, a) that

G t ,A(t,a);κ ≤ C m,N a 8N +4 = C m,N κ 4N +2
for any t ∈ [0, δ], where C m,N is a positive constant. Choosing = κ 2N +5/4 < κ we obtain

G t ,A(t,a);κ ≤ C m κ κ 2N -1/4 for any t ∈ [0, δ]. Moreover, |||K t ||| ,D(t,a);κ ≤ K t m+1,D(t,a);κ ≤ C m a -1 = C m κ -1/2 (6.54) and S (∇K * ) ≤ sup 0≤t≤δ 1 + ∇K * t C 1 ([-a 0 ,a 0 ]) -1 1 + ∇K * t C ([-a 0 ,a 0 ]) ≤ C m
where C m is a positive constant. Thus for any m ∈ N we obtain from (9.179) -(9.181) that

B m ≤ C m B 0 m ≤ C κ 2N +3/4 = C κ κ 2N -1/4 (6.55)
where C m , C m > 0 depends neither on a ∈ (0, a 0 ] nor on t ∈ [0, δ]. Choosing a 0 1 we get B 2 ≤ κ λ -4 for any a ∈ (0, a 0 ] since N ≥ 2 and λ = C 0 κ -1/2 , which gives (9.188). Applying Theorem 9.11 we obtain 1-4. In particular, taking into account (6.53) -(6.55) we obtain from (9.190

) the estimate sup t∈[0,δ] sup I∈D(t,a) κ d dI m (L t (I) -K t (I)) ≤ C m κ 2N + 3 4 λ 2m (λ + κ -1 2 ) ≤ C m κ 2N -m+ 1
Proof of Theorem 6.2.

It follows from Theorem 6.3 that for any 0 < a ≤ a 0 1 and ω ∈ Ω 0 κ (a) with κ = a 2 there exists a C 1 family of Kronecker invariant tori [0, δ] t → Λ t (ω) of B t . Corollary 2 implies that I t (ω) = I 0 (ω) and L t (I 0 (ω)) = L 0 (I 0 (ω)). Notice that lim sup

a→0 {I t (ω) -l t : ω ∈ [a/2, 2a]} = 0. Then |l t -l 0 | ≤ lim sup a→0 {I t (ω) -l t : ω ∈ [a/2, 2a]} + lim sup a→0 {I 0 (ω) -r 0 : ω ∈ [a/2, 2a]} = 0 hence, l t = l 0 for any t ∈ [0, δ]. Moreover, the function ω → L t (I 0 (ω)) -L 0 (I 0 (ω)) is flat at the set Ω 0 κ (a) in view of Lemma 3.4. Then for any ω ∈ Ω 0 κ (a), t ∈ [0, δ],
and any m ∈ N using the equality I t (ω) = I 0 (ω) and the estimate (6.52) with N = m we obtain

|(d/dI) m (K t -K 0 ) (I 0 (ω))| ≤ |(d/dI) m (K t -L t ) (I t (ω))| + |(d/dI) m (K 0 -L 0 ) (I 0 (ω))| ≤ Cκ 1/4 = Ca 1/2 .
Taking the limit as a 0 we obtain that the function

K t -K 0 is smooth in [r 0 , r 0 + ε] and flat at r 0 . Then ζ t -ζ 0 = (3K t /2) 2/3 -(3K 0 /2) 2/3 is also flat at r 0 . The set of frequencies Ξ is defined as the union of Ω 0 κ (a). 2 
Proof of Theorem 6. It remains to show that Γ t is strictly convex for any t ∈ [0, 1]. To do this we are going to use an argument from [START_REF] Popov | Length spectrum invariants of Riemannian manifolds[END_REF]. To simplify the notations we will omit the index and we obtain that the Taylor coefficients of ν(r) at r = 0 determine those of ζ at I = and vice versa. The Taylor coefficients of ν(r) at r = 0, also called integral invariants, have been investigated by Sh. Marvizi and R. Melrose [START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF]. They are given by integrals on Γ of certain polynomials of the curvature κ(x) of Γ and its derivatives. In particular, (4.6) in [START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF] and (6.58) yield together

R (0) = - 1 π 0 κ(x) 2/3 dx (6.59) R (0) = 1 2160π 0 (9κ(x) 4/3 + 8κ(x) -8/3 κ (x) 2 )dx (6.60)
(see also [START_REF] Siburg | The Principle of Least Action in Geometry and Dynamics[END_REF]). Suppose now that X t is strictly convex for 0 ≤ t < δ but only convex for t = δ. Consider the function R t (r) inverse to r = ζ t (I). Then Theorem 6.2, (iii), yields

R t (r) = R 0 (r) + O N (r N ) as r → 0 for any N ∈ N and we obtain R t (0) = R 0 (0), R t (0) = R 0 (0), s ∈ [0, b 0 ). (6.61) Denote by κ t (x) > 0, x ∈ Γ t the curvature of Γ t and define f δ by f t (x) = κ t (x) -1/3 for t < δ and f δ (x) = κ δ (x) -1/3 if κ δ (x) = 0 and f δ (x) = 0 if κ δ (x) = 0.
The second equality of (6.61) and (6.60) yield together

Γt | f t (x) | 2 dx ≤ C, s ∈ [0, δ). (6.62) 
where C is a positive constant. On the other hand, the first equality of (6.61) and (6.59) imply that for any t ∈ [0, δ) there exists x t ∈ Γ t such that

κ t (x t ) ≥ C 1 := - π l 0 R 0 (0) 3/2 > 0. Then f t (x t ) ≤ C -1/3 1
for t ∈ [0, δ), and using Taylor's formula and (6.62) we obtain the estimate

Γt (| f t (x) | 2 + | f t (x) | 2 )dx ≤ C 2 , s ∈ [0, δ),
where

C 2 is a positive constant. Let [0, δ] t → ψ t : Γ → R 2 be a C 1 family of embeddings such that Γ 0 = Γ and ψ t (Γ) = Γ t . Then {f t • ψ t : t ∈ [0, δ)} is a compact subset of L 2 (Γ)
and we obtain that f δ • ψ δ ∈ L 2 (Γ) as well. On the other hand, Γ δ is convex but not strictly convex, hence the curvature its curvature k δ is a non-negative function and it has a zero of at least second order at a point x 0 ∈ Γ. Then

| f δ (x) | ≥ C | x -x 0 | -2/3
in any local coordinates in a neighborhood of x 0 in Γ δ . Hence f δ / ∈ L 2 (Γ) which leads to a contradiction. This implies that Γ t is strictly convex for any t ∈ [0, 1]. 2

Microlocal Birkhoff Normal Form of the monodromy operator

Starting from the BNF in Theorem 3.2 we are going to find a microlocal (quantum) Birkhoff normal form (shortly QBNF) at the union of the invariant tori Λ t (ω), ω ∈ Ω 0 κ , of the corresponding microlocal monodromy operator for the family of Laplace-Beltrami operators ∆ t in X with Dirichlet boundary conditions. A similar QBNF has been obtained in [START_REF] Popov | On the integral geometry of Liouville billiard tables[END_REF] for perturbations of the function in the Robin boundary conditions around a single Kronecker torus. In contrast to [START_REF] Popov | On the integral geometry of Liouville billiard tables[END_REF] the BNF of the tori here is nondegenerate which simplifies the construction.

Let us present the main steps in the construction. At first we reduce the problem to the boundary and introduce the corresponding microlocal monodromy operator M 0 t (λ)(λ), t ∈ J. The reduction to the boundary is obtained by a variant of the reflection method for the wave equation which consists in the following. Given a suitable function f (•; λ) on Γ depending on a large parameter λ the frequency support of which is contained in a small neighborhood of the union of the invariant tori Λ t (ω), we consider the corresponding outgoing solution of the reduced wave equation (the Helmholtz equation) in X and we reflect it at the boundary m -1 times if m ≥ 2. After each reflection at the boundary we consider the corresponding branch of the solution u t of the Helmholtz equation given by the outgoing parametrix. We denote by M t (λ)f the restriction at Γ of the last branch of the solution u t . We call M t (λ) a monodromy operator. By construction, the function f (•, λ) on Γ gives rise to an asymptotic solution u t (•, λ) of the Dirichlet problem of the Helmholtz equation

(-∆ t + λ 2 )u t = O N (|λ| -N )f t , u t | Γ = O N (|λ| -N )f t ,
or a quasi-mode (λ, u t ) of the Laplace-Beltrami operator with Dirichlet boundary conditions when u t L 2 = 1 if and only if

M 0 t (λ)(λ)f = f + O N (|λ| -N )f.
The family of operators M 0 t (λ)(λ), t ∈ J, is a C 1 family of Fourier Integral Operator with a large parameter λ (λ-FIO) the canonical relation of each of them being the graph of P t . For this reason we recall in Sect. 7.1 some properties of the λ-FIOs associated with a C 1 family of Lagrange immersions. The reduction to the boundary and the construction of the microlocal monodromy operator is done in Sect. 7.2.

Our next goal is to "separate the variables" microlocally near the whole family of invariant tori Λ t (ω), ω ∈ Ω 0 κ . This is done in Sect. 7.3. To this end we use the Birkhoff normal form of P t given by Theorem 3.2. First we conjugate M 0 t (λ) with a microlocally unitary λ-FIO T t (λ) the canonical relation of which is the graph of the symplectic transformation χ t given by Theorem 3.2. In this way we obtain a λ-FIO W t (λ) the canonical relation of which is just the graph of P 0 t (see Proposition 7.11). Then we obtain a microlocal Birkhoff normal form W 0 t (λ) of W t (λ) by conjugating it with a suitable λ-PDO and solving at any step the corresponding homological equation. In this way we separate microlocally the variables near the whole family of invariant tori. This means that the amplitude of W 0 t (λ) does not depend on the angular variables but only on the action variables at the family of invariant tori, which allows us to obtain a microlocal "spectral decomposition" of W t (λ) near the family Λ t (ω), ω ∈ Ω 0 κ . At any step the corresponding phase functions and amplitudes are C 1 with respect to the parameter t.

7.1 C 1 families of PDOs and FIOs with a large parameter λ. Let M d be a smooth paracompact manifold of dimension d. We are going to define a class of C 1 families of pseudo-differential operators depending on a large parameter λ (shortly λ-PDOs) acting on the half-density bundle Ω 1 2 (M d ) of M d . The large parameter λ will belong to the set

D := {λ ∈ C : |Re λ| ≥ C 0 , |Im λ| ≤ C 1 }, sup λ∈D |λ| = +∞ , (7.63) 
where C 0 , C 1 > 0. One can switch to the semi-classical setting by introducing := 1/λ. Let us first define the symbols we are going to deal with. Given an interval J ⊂ R we define a C 1 family of symbols J → a t of order 0 in T * R d as a map

J × D -→ C ∞ 0 (T * R d ) , (t, λ) -→ a t (•, λ), such that -The map J t → a t (•, λ) ∈ C ∞ (T * R d ) is C 1 for any λ ∈ D fixed; -The support supp a t (•, λ) is contained in a fixed compact subset of T * R d independent of (t, λ) ∈ I × D;
-For any α, β ∈ N d there exists a positive constant C α,β such that

|∂ k t ∂ α x ∂ β ξ a t (x, ξ, λ)| ≤ C α,β for every (t, λ) ∈ I × D, (x, ξ) ∈ T * R d and k ∈ {0, 1}.
In this case we say that a t is a C 1 family of symbols in S 0 (T * R d ×D) with respect to the parameter t ∈ J. We set

S p (T * R d × D) = λ p S 0 (T * R d × D) for p ∈ R and denote by S -∞ (T * R d × D) the residual set ∩ p≥0 S -p (T * R d × D). We say that J t -→ j∈N a t,j λ -j (7.64) is a C 1 family of formal symbols of order 0 if for any j ∈ N the map J t → a t,j ∈ C ∞ (T * R d ) is C 1 smooth and the support supp a t,j is contained in a fixed compact subset of T * R d independent of (t, j) ∈ I × N. A C 1 family of symbols J t → a t ∈ S 0 (T * R d × D
) is said to be a realizations of the C 1 family of formal symbols (7.64) if for any N ∈ N and α, β ∈ N d there exists a positive constant C N,α,β such that sup

(t,x,ξ,λ)∈J×T * R d ×D ∂ k t ∂ α x ∂ β ξ a t (x, ξ, λ) - N -1 j=0 a t,j (x, ξ)λ -j ≤ C N,α,β |λ| -N (7.65)
for k ∈ {0, 1}. Symbols admitting an asymptotic expansion of the form (7.65) for any N are said to be classical. We denote by S 0 cl (T * R d × D) the class of the classical symbols. Any C 1 family of formal symbols of order zero admits a C 1 family of realizations by Borel's theorem. Proposition 7.1. Any C 1 family of formal symbols (7.64) of order 0 admits a realization as a C 1 family of symbols J t → a t ∈ S 0 (T * R d × D). Moreover, if a t and a t are two C 1 family of realizations of (7.64) then J t → a t -a t ∈ S -p (T * R d × D) is a C 1 family for every p ≥ 0.

We give a prove of Borel's theorem in Appendix A. [START_REF] Bounemoura | Positive measure of KAM tori for finitely differentiable Hamiltonians[END_REF]. We say that the family of operators J t → Op (a t ) with Schwartz kernels

K Op (at) (x, y, λ) := λ 2π d R d e iλ x-y,ξ a t (x, ξ, λ) dξ |dx| 1 2 |dy| 1 2 (7.66)
is a C 1 family of λ-PDOs of order zero acting on 1 2 -densities if J t → a t ∈ S 0 (T * R d ×D) is a C 1 family of symbols. We say that a family of operators J t → A t acting on the smooth sections of the half-density bundle Ω

1 2 (M d ) of the manifold M d is a C 1 family of λ-PDOs if it
is given by a C 1 family of λ-PDOs with Schwartz kernels of the form (7.66) in any local coordinates.

7.1.2 C 1 families of λ-FIOs.
Consider a C 1 family of exact Lagrange immersions

ı t : Λ → T * M d , t ∈ [0, δ], (7.67) 
which means that the map [0

, δ] t → ı t ∈ C ∞ (Λ, T * M d ) is C 1 , ı t is an immersion and the pull-back ı * t (ξdx) of the canonical one-form ξdx of T * M d is exact for each t ∈ [0, δ]. Then there exists a C 1 mapping [0, δ] t → f t ∈ C ∞ (Λ) such that ı * t (ξdx) = df t t ∈ [0, δ]. (7.68) Fix t ∈ [0, δ].
Recall from [START_REF] Douady | Une démonstration directe de l'équivalence des théorèmes de tores invariants pour difféomorphismes et champs de vecteurs[END_REF] and [START_REF] Hörmander | Fourier integral operators I[END_REF] that a real valued phase function Φ t (x, θ) defined in a neighborhood of a point (x

0 , θ 0 ) ∈ R d × R N with d θ Φ t (x 0 , θ 0 ) = 0 is nondegenerate at (x 0 , θ 0 ) if rank d (x,θ) d θ Φ t (x 0 , θ 0 ) = N. (7.69)
Then there exists a neighborhood V ⊂ R d × R N of (x 0 , θ 0 ) such that (7.69) holds for any (x, θ) ∈ V and

C Φt := {(x, θ) ∈ V : d θ Φ t = 0}
is a smooth manifold of dimension d. Moreover, the differential of the map

ı Φt : C Φt (x, θ) -→ (x, d x Φ(x, θ)) ∈ Λ Φt := ı Φt (C Φt ) (7.70)
is of rank d and shrinking V if necessary we obtain that Λ Φt is an embedded Lagrangian submanifold of T * M d . We say that the nondegenerate function Φ t (x, θ), (x, θ) ∈ V , defines locally the Lagrange immersion

ı t : Λ → T * M d if there is an open subset W t ⊂ Λ such that ı t : W t → Λ Φt is a diffeomorphism. (7.71)
We can take Φ t = Φ t (x) depending only on the coordinates h (N = 0) if the corresponding Lagrangian manifold is "horizontal" which means that the projection to the base is a local diffeomorphism. The collection (ı

-1 t (Λ Φt ), ı -1 Φt • ı t ) provides the Lagrangian immersion ı t : Λ → T * M d with an atlas of local charts. Given an interval J ⊂ [0, δ] we say that a C 1 map J t → Φ t ∈ C ∞ (V, R) is a C 1 family
of nondegenerate phase functions generating locally the C 1 family of Lagrange immersions (7.67) in J if for any t ∈ J the phase function Φ t is nondegenerate in V and (7.71) holds. Such C 1 families of phase functions can always be constructed locally.

Consider the function Φ

Λ t := k t • ı -1 Φt • ı t * Φ t on ı -1 t (Λ Φt ) where k t : C Φt → R d × R N is the inclusion map. Observe that dΦ Λ t = ı -1 Φt • ı t * k * t ∂Φ t ∂x dx + ∂Φ t ∂θ dθ = ı * t k t • ı -1 Φt * ∂Φ t ∂x dx = ı * t ξdx = df t and we choose Φ t so that Φ Λ t = f t on ı -1 t (Λ Φt ), where f t is defined in (7.68). Given a C 1 family of classical amplitudes [0, δ] t → a t ∈ S 0 cl (V × D
) such that a t = 0 for t / ∈ J we consider the C 1 family of oscillatory 1 2 -densities

I Φt,at (x, λ) |dx| 1 2 = λ 2π m+ d+2N 4 R N e iλΦt(x,θ) a t (x, θ, λ) dθ |dx| 1 2 (7.72)
with the convention that there is no integration when N = 0. Notice that the function

[0, δ] t → I Φt,at ∈ C ∞ (M d ) is C 1 for each λ ∈ D fixed.
Its oscillation is detected as λ → ∞ by the corresponding semi-classical wave front set. Integrating by parts one obtains WF λ (I Φt,at (•, λ)) ⊂ Λ Φt , where WF λ is the frequency set (or semi-classical -wave-front with = 1/λ) (cf. [START_REF] Alexandrova | Semi-Classical Wavefront Set and Fourier Integral Operators[END_REF], [START_REF] Simoi | Dynamical spectral rigidity among Z 2 -symmetric strictly convex domains close to a circle[END_REF], [START_REF] Zelditch | The inverse spectral problem[END_REF], [START_REF] Guillemin | Some inverse spectral results for semiclassical Schrödinger operators[END_REF]). A (global) C 1 family of oscillatory 1 2 -densities is given by

u t (x, λ) = j I Φ j t ,a j t (x, λ) |dx| 1 2 (7.73) 
where Φ j t are nondegenerate phase functions in

V j ⊂ R d × R N j such that ı -1 t (Λ Φ j t
), j = 1, 2, . . ., is a locally finite covering of Λ with open sets for each t fixed.

We denote the class of these oscillatory 1 2 -densities by

I m (M d , Λ t ; Ω 1 2 (M d ))
or simply by I m (M d , Λ t ). In order to simplify the notations we denote the immersion ı t : Λ → T * M d by Λ t .

To any oscillatory integral u t (x, λ) of the form (7.72) one can associate a principal symbol

e iλft σ t where σ t = λ 2π m σ 1,t ⊗ σ 2,t (7.74) 
t → σ 1,t is a C 1 family of sections of the half-density bundle Ω 1 2 (Λ) and σ 2,t is a section of the Keller-Maslov bundle M (Λ t ) for each t fixed (cf. [START_REF] Douady | Une démonstration directe de l'équivalence des théorèmes de tores invariants pour difféomorphismes et champs de vecteurs[END_REF][START_REF] Marvizi | Melrose: Spectral invariants of convex planar regions[END_REF][START_REF] Guillemin | Some inverse spectral results for semiclassical Schrödinger operators[END_REF]).

In any local chart the half-density part σ 1,t can be written in terms of the nondegenerate phase functions Φ t and the leading part a 0,t of the amplitude t in (7.72) as follows

ı -1 t • ı Φt * (σ 1,t ) = a t,0 d C Φ t 1 2 (7.75) (cf. [31], Sect. 25.3), where d C Φ t is a Leray form on C Φt , i.e. d C Φ t = k * t d C Φ t is the pull-back via the inclusion map k t : C Φt → R d × R N of a form d C Φ t such that d C Φ t ∧ d ∂Φ t ∂θ 1 ∧ • • • ∧ d ∂Φ t ∂θ N = dx 1 ∧ • • • ∧ dx d ∧ dθ 1 ∧ • • • ∧ dθ N .
Given for any t a suitable system of coordinates µ = (µ 1 , . . . , µ d ) on C Φt extended to a neighborhood of C Φt one obtains

         d C Φ t = b t dµ 1 ∧ • • • ∧ dµ d with b t = dx 1 ∧ • • • ∧ dx d ∧ dθ 1 ∧ • • • ∧ dθ N dµ 1 ∧ • • • ∧ dµ d ∧ d ∂Φt ∂θ 1 ∧ • • • ∧ d ∂Φt ∂θ N = D(µ, (Φ t ) θ ) D(x, θ) -1 . (7.76)
More generally, given a vector bundle E over M d , we denote by

I m (M d , Λ t ; Ω 1 2 (M d ) ⊗ E)
the corresponding class of oscillatory 1 2 -densities of order m with values in the space of sections Γ(E), and by S m (Λ t , Ω

1 2 (Λ) ⊗ M (Λ t ) ⊗ E t ) the corresponding class of symbols, where E t is the lifting of E to Λ t .
Given two manifolds M j , j = 1, 2, we denote by ω j the corresponding canonical symplectic forms on T * (M j ) and consider the symplectic manifold T * (M 2 )×T * (M 1 ) equipped with the exact symplectic form ω 2 -ω 1 . A C 1 family of (exact) canonical relations C t , t ∈ [0, δ], "from T * (M 1 ) to T * (M 2 )" is given by a C 1 family of (exact) Lagrange immersions ı t : C → T * (M 2 ) × T * (M 1 ). To any C 1 family of (exact) canonical relations C t one associates a C 1 family of (exact) Lagrangian submanifolds C t of T * (M 2 ×M 1 ) defined by the exact Lagrange immersions ı t : C → T * (M 2 ×M 1 ) where ı t =  • ı t and

 : T * (M 2 × M 1 ) → T * (M 2 ) × T * (M 1 ), (x 2 , x 1 , ξ 2 , ξ 1 ) = (x 2 , ξ 2 , x 1 , -ξ 1 ). (7.77)
We use the same notations as in [START_REF] Hörmander | Fourier integral operators I[END_REF], Sect. 25, for the corresponding classes of λ-FIOs. Given vector bundles E j on M j and a C 1 family of exact canonical relations

C t from T * (M 1 ) to T * (M 2 ) we say that A t : C ∞ 0 M 1 , Ω 1 2 (M 1 ) ⊗ E 1 → C ∞ M 2 , Ω 1 2 (M 2 ) ⊗ E 2
is a C 1 family of λ-FIOs of order m if the family of the corresponding Schwartz kernels K At is a C 1 family of oscillatory 1 2 -densities belonging to

I m M 2 × M 1 , C t ; Ω 1 2 (M 2 × M 1 ) ⊗ Hom(E 1 , E 2
) . The composition of λ-FIOs with exact canonical relations having transversal and more generally a clean composition can be defined in the same way as in the case of classical FIOs [START_REF] Guillemin | Some inverse spectral results for semiclassical Schrödinger operators[END_REF][START_REF] Marvizi | Melrose: Spectral invariants of convex planar regions[END_REF]. The microlocal calculus is even simpler since the amplitudes are uniformly compactly supported with respect to θ. In particular we have the following analogue of Theorem 25.2.4 [START_REF] Hörmander | Fourier integral operators I[END_REF] (see [START_REF] Douady | Une démonstration directe de l'équivalence des théorèmes de tores invariants pour difféomorphismes et champs de vecteurs[END_REF], [START_REF] Guillemin | Some inverse spectral results for semiclassical Schrödinger operators[END_REF]) Theorem 7.2. Let P t be a C 1 family of classical λ-PDOs of order 0 acting on 1 2 -densities in M 2 with principal symbol p t and subprincipal symbol c t . Let C t be a C 1 family of exact canonical relations from

T * (M 1 ) to T * (M 2 ) with Schwartz kernels K At ∈ I k M 2 × M 1 , C t ; Ω 1 2 (M 2 × M 1 )
with principal symbols e iλft σ t . Suppose that p t vanishes on the projection of

C t to X 2 . Then P t A t is a C 1 family of λ-FIOs of order k -1 with kernels K PtAt in I k-1 M 2 × M 1 , C t ; Ω 1 2 (M 2 × M 1 ) and principal symbols e iλft i -1 L Xp t σ t + c t σ t
where X pt is the Hamiltonian vector field of p t lifted to functions in T * (M 2 × M 1 ) and L Xp t is the Lie derivative. The aim of this section is to construct a family of monodromy operators quantizing billiard ball maps of a C 1 family of billiard tables. The monodromy operators will arise as boundary values of the microlocal outgoing parametrizes H t (λ) :

L 2 (Γ) → C ∞ ( X), t ∈ [0, δ],
of the Dirichlet problem for the Helmholtz equation. We will construct H t (λ) for t ∈ [0, δ] as a C 1 family of λ-FIOs satisfying asymptotically the Helmholtz equation at high frequencies (|λ| → ∞), i.e.

∀ N ∈ N , (∆ t -λ 2 )H t (λ)u = O N (|λ| -N )u (7.78)
in a neighborhood of X in a smooth extension ( X, g t ) of the Riemannian manifold of (X, g t ).

Hereafter,

O N (|λ| -N ) : L 2 (Γ) → L 2 ( X)
stands for a C 1 family with respect to t of operators A t (λ) :

L 2 (Γ) → L 2 ( X) depending on λ ∈ D such that A t (λ) L 2 ≤ C N (1 + |λ|) -N
for each t and λ ∈ D where C N > 0 is a constant independent of t and of λ. Moreover, u are suitable "initial data" on Γ. Set

Λ := {(s, ρ) ∈ R × T * Γ : ρ ∈ U, -ε < s < T 0 (ρ) + 2ε}, (7.79) 
where U is a compact subset of the domain of definition B * 0 Γ of the billiard ball map B 0 , 0 < ε 1, and T t : U → (0, +∞) is the "return time function" which assigns to each ρ ∈ U the time of the first impact at the boundary, i.e. the smallest positive s = T t (ρ) such that exp(sX ht )(π + t (ρ)) ∈ Σ - t . Recall from Sect. 2.1 that h t is the Hamiltonian corresponding to the Riemannian metric g t via the Legendre transform, X ht is the corresponding Hamiltonian vector field, and the map π + t : B * Γ → Σ + t is defined by (2.13). In particular, exp(sX ht )(π + t (ρ)) lies on the cosphere bundle

Σ t := S * t X = {(x, ξ) ∈ T * X : h t (x, ξ) = 1}. (7.80)
The FIOs H t (λ), t ∈ [0, δ], will be associated to the C 1 family of canonical relations C t in T * X × T * Γ given by the C 1 family of immersions

ı t : Λ → T * X × T * Γ, ı t (s, ρ) = exp sX ht (π + t (ρ)), ρ . (7.81) 
Choosing δ > 0 sufficiently small we suppose that the set U in (7.79) is a connected open subset of T * Γ such that

• U is contained in B * t Γ for any t ∈ [0, δ]; • T t (ρ) < T 0 (ρ) + ε for any t ∈ [0, δ] and ρ ∈ U .
Then T t is a smooth function on U , its image is a compact interval and there exist 0 < a < b such that T t (U ) ⊂ [a, b] for any t. Moreover, Lemma A.1. in [START_REF] Popov | On the integral geometry of Liouville billiard tables[END_REF] implies that

ı t =  • ı t : Λ → T * ( X × Γ).
is a C 1 family of exact Lagrangian immersions which will be denoted by C t , t ∈ [0, δ]. We choose the corresponding function f t in (7.68) to be just the action f t (s, ρ) = 2s on the bicharacteristic arc associated with ı t (s, ρ) ∈ C t , where (s, ρ) ∈ Λ ⊂ R × T * Γ.

Our aim now is to define the immersed Lagrangian manifold C t locally by a nondegenerate phase function. Fix t 0 ∈ [0, δ] and take 0 = (x 0 , y 0 , ξ 0 , -η 0 ) ∈ C t 0 . Choose a smooth submanifold M 0 of X of dimension n -1 passing through x 0 and transversal at x 0 to the geodesic of g t 0 starting from y 0 with codirection (η 0 ) + . Consider the symplectic map χ t : U 0 → T * M 0 defined in a neighborhood U 0 of ρ 0 = (y 0 , η 0 ) in B * t Γ by

χ t (ρ) = (π • exp(s(ρ)X ht ) • π + t )(ρ), ρ ∈ U 0 ⊂ B * t Γ,
where s(ρ) > 0 is the arrival time at T * X |M 0 and π(x , x n , ξ , ξ n ) = (x , ξ ). If M 0 = Γ, this is just the billiard ball map B t defined in Sect. 2.1. Denote by C χt ⊂ T * (M × Γ) the Lagrangian manifold corresponding to the canonical relation

C χt := {(χ t (ρ), ρ) : ρ ∈ U 0 }. Let J t → x t = (x t , x t,n ) ∈ C ∞ (O, R n ) be a C 1
family of normal coordinates to M 0 with respect to the metrics g t , where J ⊂ [0, δ] is an interval containing t 0 and O is a sufficiently small neighborhood of x 0 . For any fixed t ∈ J we have M 0 ∩ O = {x n = 0} ∩ O and the normal vector field to M 0 ∩ O associated to g t and determined by ξ 0 (ν t (x 0 )) > 0 becomes ν t = (0, . . . , 0, 1) in these coordinates. Then the Hamiltonian h t is of the form

h t (x, ξ) = ξ 2 n + r t (x, ξ ) (7.82)
in these coordinates, where J t → r t is a C 1 family of smooth functions in a neighborhood of (x 0 , ξ 0 ). If x 0 ∈ Γ, we take M 0 to be a neighborhood of x 0 in Γ, then r t (x , 0, ξ ) = h 0 t (x , ξ ) is the Hamiltonian corresponding to the induced Riemannian metric g 0 t on Γ. Following the proof of Hörmander [START_REF] Hörmander | Fourier integral operators I[END_REF], Proposition 25.3.3, we can find local coordinates

y ∈ R n-1 in a neighborhood of y 0 in Γ such that projection C χ t 0 (x , ξ , y, η) → (x , η) ∈ T * R n-1
is a local diffeomorphism in a neighborhood of (x 0 , ξ 0 , y 0 , η 0 ). Shrinking J if necessary we obtain that the map C χt (x , ξ , y, η) → (x , η) ∈ T * R n-1 is a local diffeomorphism as well for any t ∈ J. Then there exists a C 1 family of smooth functions φ 0 t defined in a neighborhood V 0 of (x

0 , η 0 ) in R n-1 × R n-1 such that det ∂ 2 φ 0 t ∂x ∂η (x , η) = 0 for (x , η) ∈ V 0 . (7.83) and graph χ t = {(x , (φ 0 t ) x (x , η); (φ 0 t ) η (x , η), η); (x , η) ∈ V 0 } (7.84)
(see [START_REF] Hörmander | Fourier integral operators I[END_REF], Theorem 22.2.18). Then solving a suitable Hamilton-Jacobi equation we obtain a C 1 family of nondegenerate phase functions

Φ t (x, y, η) = φ t (x, η) -y, η (7.85) in a neighborhood of (x 0 , y 0 , η 0 ) in R n × R n-1 × R n-1 generating locally C t in a neighborhood C Φt of 0 where φ t (x 0, η) = φ 0 t (x , η).
In particular, we have det

∂ 2 φ t ∂x ∂η (x, η) = 0 in a neighborhood V of (x 0 , η 0 ). (7.86)
We summarize this construction as follows.

Lemma 7.3.

There exists an open interval interval J ⊂ [0, δ] containing t 0 , local coordinates y ∈ R n-1 in a neighborhood of y 0 in Γ and independent of t, a neighborhood V 0 ⊂ R n-1 ×R n-1 of (x 0 , η 0 ) and a C 1 family of function φ 0 t ∈ C ∞ (V 0 ) satisfying (7.83) and such that the following holds 1. the function Φ 0 t (x , y, η) := φ 0 t (x , η)-y, η is a local generating function of the Lagrangian manifold C χt ⊂ T * (M 0 × Γ) for every t ∈ J; 2. the Lagrangian manifold C t is defined in a neighborhood of 0 by a phase function

Φ t (x, y, η) = φ t (x, η) -y, η ,
where φ t (x, η) is a local solution of the Hamilton-Jacobi equation

∂ xn φ t (x, η) = 1 -r t (x, ∂ x φ t (x, η)) , φ t (x , 0, η) = φ 0 t (x , η), (7.87) 
and r t is given by (7.82).

3. there exists a neighborhood V ⊂ R n × R n-1 of (x 0 , η 0 ) such that the family of functions

J t → φ t ∈ C ∞ (V, R
) is C 1 and (7.86) holds for any t ∈ J.

In particular,

Φ t (x, y, η) = φ 0 t (x , η) -y, η + x n φ 1 t (x, η), (7.88) 
where

J t → φ 1 t ∈ C ∞ (V, R) is a C 1 map.
We take φ 0 t (x , η) = x , η if the image of 0 by the involution in (7.77) belongs to Σ + t 0 × U , which means that x 0 = (y 0 , 0) and ξ 0 = (η 0 ) + . In order to obtain the Maslov part of the principal symbol picked up by the phase functions constructed by the Lemma we need the following. Fix t 0 ∈ [0, δ], take 0 = ( x 0 , y 0 , ξ 0 , -η 0 ) ∈ C t0 and denote by M 0 the corresponding submanifold transversal at x 0 to the geodesic of g t0 starting from y 0 with codirection ( η 0 ) + and by χ t : U 0 → T * M 0 the corresponding symplectic map. Let J be the corresponding interval about t 0 and Φ t ( x, y, η) = φ t ( x, η)-y, η , t ∈ J, the corresponding C 1 family of phase functions given by Lemma 7.3. Suppose that τ ∈ J ∩ J = ∅ and that there exists

ζ ∈ Λ such that ı τ (ζ) ∈ C Φt ∩ C Φt .
Lemma 7.4. There exists a neighborhood I ⊂ J ∩ J of τ and a neighborhood V of ζ in Λ such that the function µ :

V × I → 2Z defined by µ( , t) := sgn (φ t ) ηη (x, η) -sgn ( φ t ) η η ( x, η), ı t (ρ) = ı Φt (x, (φ t ) η (x, η), η) = ı Φt ( x, ( φ t ) η ( x, η), η).
is constant on V × I.

Proof. The assurtion follows from an argument in [13] using Hörmander's index σ(M 1 , M 2 ; L 1 , L 2 ) ∈ Z of four Lagrangian spaces M 1 , M 2 , L 1 , L 2 in the Lagrangian Grassmannian Λ(n -1), where L 1 and L 2 are transversal to both M 1 and M 2 in T * R n-1 (see [START_REF] Douady | Une démonstration directe de l'équivalence des théorèmes de tores invariants pour difféomorphismes et champs de vecteurs[END_REF], Definition 3.4.2). It is known that σ is locally constant and continuous with respect to all the variables (M

1 , M 2 , L 1 , L 2 ). Set ı τ (ζ) = (u, (φ τ ) u (u, v), (φ τ ) v (u, v), v) ∈ T * X × T * Γ
where φ t , t ∈ J, is the phase function in Lemma 7.3 corresponding to the coordinates x t : O → R n . Take a section M in X passing trough the point u and transversal to the geodesic starting from ∂ v φ τ (u, v) ∈ Γ and havig a codirection v + . We can suppose that M = {x n = g(x )} in these coordinates with some smooth function g. Let us change the x coordinates in a neighborhood of M by z = x and z n = x n -g(x ) and set ψ t (z, η) = φ t (z , z n + g(z ), η). Consider the (local) symplectic transformation χ 0 t :

T * Γ → T * M defined by χ 0 t (ρ) = π 0 • exp(s 0 t (ρ)X ht ) • π + t (ρ), ρ ∈ U 0 ⊂ B * t Γ
, for t sufficiently close to τ , where s 0 t (ρ) > 0 is the arrival time at T * X |M and π 0 (z , z n , ξ , ξ n ) = (z , ξ ). Then (z , η) → ψ t (z , 0, η) is a generating function of χ 0 t in the sense of (7.84). Given (x, y, η) ∈ C Φt in a neighborhood of (u, ∂ u φ τ (v), v) with x ∈ M , we obtain as in [START_REF] Duistermaat | Oscillatory integrals, lagrange immersions and unfolding of singularities[END_REF] p. 69

sgn (Φ t ) ηη (x , g(x ), y, η) = sgn (ψ t ) ηη (z , 0, η) = sgn (V, H t ; (dχ 0 t ) -1 (V ))
where sgn (M 1 , M 2 ; L) is defined in [START_REF] Douady | Une démonstration directe de l'équivalence des théorèmes de tores invariants pour difféomorphismes et champs de vecteurs[END_REF], Definition 3.4. 

= sgn (V, H t ; (dχ 0 t ) -1 (V )) -sgn (V, H t ; (dχ 0 t ) -1 (V )) = 2σ(H t , H t ; (dχ 0 t ) -1 (V ), V )
where H t is the horizontal space {(δz , δξ ) : δξ = 0} for the corresponding local coordinates x t : O → R n used in the construction of Φ t . This shows that µ is idependent of t and of in a small neighborhood of (τ, ζ). 2

Using the phase functions obtained in Lemma 7.3 one can define the space of λ-FIOs corresponding to the C 1 family of canonical relations C t . We are looking for solutions H t (λ) of (7.78) with Schwartz kernels in I -1/4 ( X × Γ, C t ). To any C 1 family of nondegenerate phase function Φ t (x, y, η) of the form (7.85) generating C t in a neighborhood of a point 0 = (x 0 , y 0 , ξ 0 , -η 0 ) ∈ C (Φ t is given by Lemma 7.3) there is a C 1 family of classical amplitudes

b t (x, η, λ) ∼ b 0,t (x, η) + b 1,t (x, η)λ -1 + • • •
such that the Schwartz kernel of H t (λ) can be written microlocally near 0 as a C 1 family of oscillatory 1 2 -densities

I Φt (x, y, λ) = λ 2π n-1 R n-1 e iλΦt(x,y,η) b t (x, η, λ)dη |dx| 1/2 |dy| 1/2 . ( 7.89) 
(see (7.72)).

Notice that the Hamiltonian p t in T * (X × Γ) obtained by lifting of the principal symbol h t -1 of the operator λ -2 ∆ t -1 vanishes on C t . Thus to compute the principal symbol of (∆ t -λ 2 )H t (λ) we can use Theorem 7.2. Note also that the corresponding subprincipal symbol is c t = 0.

We are going to define suitable sections σ 1,t and σ 2,t of the half density bundle and of the Keller-Maslov bundle of C t . The lifting of the Hamiltonian vector field X ht to T * X × T * Γ is Y t = (X ht , 0) and its flow S τ t restricted to C t is given by S τ t (x, ξ, y, η) = S τ t (exp(sX h )(π + Σ (y, η)), y, η) = (exp((s + τ )X ht )(π + t (y, η)), y, η) (7.90)

for any (x, ξ, y, η) ∈ C t . The volume form β t on C t given by the pull-back by ı t of ds ∧ (dy

1 ∧ dη 1 ) ∧ • • • ∧ (dy n-1 ∧ dη n-1 ) ∈ Ω(Λ)
is invariant with respect to the flow S τ t or equivalently, the Lie derivative L Yt β 0 vanishes. Then the Lie derivative of the 1 2 -density σ 0,t := | * (β 0 )|

1 2 ∈ Ω 1 2 (C t )
with respect to X pt is zero. Recall that  is given by (7.77) and that X pt is the Hamiltonian vector field of h t -1 lifted to functions in T * ( X × Γ). We set

σ 1,t = b 0,t σ 0,t , b 0,t ∈ C ∞ 0 (C t ). (7.91)
The relation between b 0,t and the principal part b 0,t of the amplitude b t in (7.89) is obtained in [START_REF] Popov | On the integral geometry of Liouville billiard tables[END_REF], (A.23). More precisely, let us denote by η t = η t (x, ξ ) the local solution of ξ = (φ t ) x (x, η) obtained by the implicit function theorem and set

b 0,t (x, ξ ) = b 0,t (π -1 1 (x, ξ , ξ n )),
where

π 1 : C t → Σ t ⊂ T * X is the projection π 1 (x, y, ξ, -η) = (x, ξ). Then [63], (A.23), yields b 0,t (x, η t (x, ξ )) = b 0,t (x, ξ ) 2|ξ n | det(φ t ) x η (x, η(x, ξ )) 1 2 
(7.92) in a neighborhood of (x 0 , ξ 0 ), where ξ n = 1 -r t (x, ξ ). The Keller-Maslov bundle M (C t ) of C t admits a natural trivialization by locally constant sections. Recall from Hörmander [START_REF] Hirzebruch | Topological Methods in Algebraic Geometry[END_REF], p. 148, that a section of the line bundle M (C t ) is given by a family of functions f Φt : C Φt → C, where Φ t is a nondegenerate phase function generating locally The section will be called "natural" if f Φt are constant functions taking values in {i k : k ∈ Z}.

C t at C Φt = ı Φt (C Φt ) (see (7.70)) such that f Φt = i µt f Φ on C Φt ∩ C Φt . The function µ t = µ ΦtΦt is defined by µ ΦtΦt ( ) := 1 2 (sgn (Φ t ) θθ (x, y, θ) -N ) -(sgn (Φ t ) θ θ (x, y, θ) -N ) , ( 7 
In our case M (C t ) can be trivialized in a band |s| < using the phase functions Φ t given by Lemma 7.3, where φ 0 t (x , η) = x , η . Then (Φ t ) ηη (y, 0, y, η) = 0 in view (7.88) and we get sgn (Φ t ) ηη (y, 0, y, η) = 0. This yields a natural trivialization of the Keller-Maslov bundle in a band C ∩ {|s| < } for some > 0, choosing a locally constant section which equals 1 in that band. In particular, the Lie derivative L Yt σ 2,t vanishes for each t. This argument holds whenever C | s=0 is a conormal bundle of a smooth submanifold (see [START_REF] Hirzebruch | Topological Methods in Algebraic Geometry[END_REF] Sect. 3.3 and [START_REF] Duistermaat | Oscillatory integrals, lagrange immersions and unfolding of singularities[END_REF], p. 65).

Using Lemma 7.4 one can obtain a natural section σ 2,t of M (C t ) which is independent of t in a small neighborhood of t 0 for any t 0 ∈ [0, δ]. The section σ 2,t of M (C t ) can be described as in [START_REF] Duistermaat | Oscillatory integrals, lagrange immersions and unfolding of singularities[END_REF], [START_REF] Hirzebruch | Topological Methods in Algebraic Geometry[END_REF] and [START_REF] Marvizi | Melrose: Spectral invariants of convex planar regions[END_REF] as a Maslov index of a suitable path. Let 1 = (x 0 , y 0 , ξ 0 , -η 0 ) ∈ C t 0 and (x 0 , ξ 0 ) = exp(T X h t 0 )(y 0 , η 0 ). Let M be a submanifold transversal to the corresponding geodesic in x 0 and let Φ t be a C 1 family of generating function of C t in a neighborhood of 1 given by Lemma 7.3. Consider the path γ t on C t defined by

π 1 ( γ t (s)) = exp(sX ht )(π + t (y 0 , η 0 )), s ∈ [0, T ].
We have

γ t 0 (0) := 0 = (y 0 , y 0 , (η 0 ) + , -η 0 ) ∈ C t 0 | s=0 and γ(T ) = 1 ∈ C t 0 .
Choose a partition 0 = s 0 < s 1 < • • • < s k = T and phase functions Φ t,j , j = 1, . . . , k, as in Lemma 7.3 generating locally C t in a neighborhood of γ t (s j ) for t in a small neighborhood of t 0 and such that

γ t ([s j-1 , s j ]) ⊂ C Φ t,j , Φ t,k = Φ t and Φ t,1 (x , 0, y, η) = x -y, η .
Then trivializing M (C t ) in a neighborhood of 1 by the phase function Φ t we get

(σ 2t ) Φt = i µ( γt)
, where

µ( γ t ) := 1 2 k-1 j=1 sgn (Φ t,j ) ηη ( γ t (s j )) -sgn (Φ t,j+1 ) ηη ( γ t (s j )) ∈ Z.
(7.94) Now Lemma 7.4 implies that µ( γ t ) is independent of t ∈ I where I is a sufficiently small neighborhood of t 0 in [0, δ]. In other to construct σ 2,t one can use finitely many paths γ t since C t 0 is compact, hence I can be chosen to be common for all the paths. We set

σ t = σ 1,t × σ 2,t = b 0,t σ 0,t × σ 2,t .
According to Theorem 7.2 the oscillatory integral (∆ t -λ2 )K Ht (x, y, λ) belongs to I 3/4 ( X × Γ, C t ) and its principal symbol is just the Lie derivative L Yt σ t multiplied by (λ/2π) 3/4 since the subprincipal symbol of the Laplace-Beltrami operator is 0. Moreover, the Lie derivative with respect to Y of the sections σ 0,t and σ 2,t vanishes, hence, the transport equation L Yt σ t = 0 becomes (S t ) * b0,t = b0,t . (7.95)

Multiplying b0 with a suitable cut-off function, which equals 1 in a neighborhood of C t ∩T * (X×Γ), we can suppose that b0 has a compact support with respect to (s, y, η) ∈ Λ. In this way we obtain a C1 family of λ-FIOs H 0,t (λ) with Schwartz kernels in I -1/4 ( X × Γ, C t ) such that the Schwartz kernel of (∆ t -λ 2 )H 0,t (λ) belongs to I -1/4 (X × Γ, C t ). Repeating this procedure we get an operator H 1,t (λ) such that H 0 (λ) + H 1 (λ) solves (7.78) modulo a λ-FIO of order -5/4 and so on. The initial data b0 | s=0 will be determined by Lemma 7.5 below. Denote by ı * Γ : C ∞ ( X) → C ∞ (Γ) the operator of restriction ı * Γ (u) = u |Γ . We would like to represent ı * Γ microlocally as a λ-FIO. To this end, denote by N the conormal bundle of the graph of the inclusion map ı Γ : Γ → X and by R = N -1 the corresponding inverse canonical relation. In other words,

R := {(x, ξ; x, ξ) ∈ T * Γ × T * X : x ∈ Γ, ξ = ξ| TxΓ }.
The operator ı * Γ can be considered microlocally as a λ-FIO with Schwartz kernel of the class I 1/4 (Γ × X, R; Ω and π 2 : C t → T * Γ are given by π 1 (x, y, ξ, -η) = (x, ξ) and π 2 (x, y, ξ, -η) = (y, η). Denote by dv(ρ) := dy ∧ dη the symplectic volume form on T * Γ. Recall that ν t (x) ∈ T x X Γ is the unit inward normal to Γ related to the metric g t and that π

± t (x, ξ) = (x, ξ ± t ) ∈ Σ ± t for (x, ξ) ∈ B * t Γ. Moreover, ξ ± t , ν t (x, ξ) := ξ ± t (x, ξ), ν t (x) = ± 1 -r t (x, ξ
) in the normal coordinates used in Lemma 7.3. Using (7.91) and (7.92) and the theorem about the composition of h-FIOs one obtains Lemma 7.5. The composition of canonical relations R • C t is transversal and it is a disjoint union ∆ 0 C 0 t of the diagonal ∆ 0 in U × U (for s = 0) and the graph C 0 t of the billiard ball map

B t : U → B t (U ) (for s = T ). Moreover, ı * Γ H t (λ) = P t (λ) + G t (λ) + O M (|λ| -M ) , (7.96) 
where P t (λ) is a C 1 family of classical λ-PDOs on Γ of order 0 and G t (λ) is a C 1 family of λ-FIOs with Schwartz kernels in I 0 (Γ, Γ, C 0 t ). The principal symbol of the operator P t (λ) can be identified with b

0 (π -1 2 (ρ)) (2| ξ + t , ν t (ρ)|) -1/2 |dv(ρ)| 1/2 , ρ ∈ U. (7.97)
The principal symbol of G t (λ) can be identified with

b 0,t (π -1 1 (π - t (ρ))) |2 ξ - t , ν t (ρ)| -1/2 e iλA γ t (ρ) |dv(ρ)| 1/2 ⊗ σ t , ρ ∈ B t (U ), (7.98) 
where A γt = γt ξdx is the action along the integral curve γ t of the Hamiltonian vector field X ht starting from π + t (B -1 t (ρ)) and with endpoint π - t (ρ) and σ t is a natural section of the Maslov bundle M (C 0 t ). Moreover, for each t 0 ∈ [0, δ] one can choose σ t to be independent of t in a neighborhood of t 0 .

The Lemma is proved in [START_REF] Popov | On the integral geometry of Liouville billiard tables[END_REF], Sect. A.1.4. Let Ψ(λ) be a classical λ-PDO of order 0 with frequency set in U and principal symbol Ψ 0 (ρ), ρ ∈ U . We take Ψ(λ) as initial data of H 0 (λ) as s = 0 setting P t (λ) = Ψ(λ) in Lemma 7.5. Recall that b 0 satisfies (7.95). On the other hand

(x , ξ ) = B t (y, η) if and only if π -1 1 (x , 0, ξ -) = S Tt(y,η) (π -1 2 (y, η))
where T t is the return time function. Then (7.95) and (7.97) imply

b 0 (π -1 1 (x , 0, ξ -)) = b 0 ((π -1 2 (y, η))) = Ψ 0 (y, η)(2| η + , ν (y, η)|) 1/2 .
Then parameterizing C 0 t by the variables (y, η) ∈ U and using (7.98) we write the principal symbol of G t (λ) as follows

σ(G t (λ)) = Ψ 0 (y, η) | η + t , ν t (y, η)| 1 2 | ξ - t , ν t (B t (y, η))| 1/2 e iλAt(y,η) |dy ∧ dη| 1 2 ⊗ σ t , (7.99) 
where A t (y, η) = γt ξdx is the action along the integral curve γ t of the Hamiltonian vector field X ht starting from π + t (y, η) and with endpoint π - t (B t (y, η)).

In the same way, using Lemma 7.5 we determine the initial conditions of H 1,t (λ) and so on. In this way we obtain a C 1 family of λ-FIOs

H t (λ) = H 0t (λ) + H 1,t (λ) + • • • (7.100)
with Schwartz kernels in I -1/4 ( X, Γ, C t ) satisfying (7.78) and such that P t (λ) = Ψ(λ). From now on, to simplify the notations we drop the corresponding 1 2 -density. Denote by E t (λ) a C 1 family of classical λ-PDOs of order 0 on Γ with principal symbols 

E 0,t ∈ C ∞ 0 ( B * t Γ) such that E 0,t (ρ) = | ξ + t , ν t (ρ)| 1 2 = | ξ - t , ν t (ρ)| 1 
(∆ t -λ 2 )u t = O N (|λ| -N )f.
Moreover,

ı * Γ H t (λ) = Ψ(λ) + G t (λ) + O M (|λ| -M ) , G t (λ) = E t (λ) -1 G 0 t (λ)E t (λ) , (7.102) 
where E t (λ) is a family λ-PDOs of order 0 which are of elliptic microlocally in a neighborhood of WF λ (Ψ), the principal symbol of G 0 t (λ) can be identified with

Ψ 0 (ρ)e iλAt(ρ) |dv(ρ)| 1 2 ⊗ σ t , ρ ∈ U, (7.103) 
and σ t could be chosen to be independent of t in a small neighborhood of any t 0 .

In particular, the frequency set

W F of G t (λ) is contained in B t (U ) × U .
We are going to estimate the L 2 -norm of u t = H t (λ)f , where f is a 1 2 -density on Γ. Consider the L 2 -adjoint operator H t (λ) * of H t (λ) which is well-defined for any λ ∈ D fixed as an operator from L 2 ( X) to L 2 (Γ). Moreover, it can be considered as a λ-FIO associated with the canonical relation C -1 t the Schwartz kernel of which belongs to I -1/4 (Γ, X, (C -1 t ) ). As in [START_REF] Popov | On the integral geometry of Liouville billiard tables[END_REF], Sect. A.1.4, we obtain Proposition 7.7. The family t → C t (λ) := H t (λ) * H t (λ) : L 2 (Γ) → L 2 (Γ) is a C 1 family od classical λ-PDOs of order 0. The principal symbol of C t (λ) can be identified with by

C 0,t (y, η) := R | b 0 (s, y, η)| 2 ds , (y, η), (x, η) ∈ U. Moreover, C 0,t (y, η) ≥ T t (y, η)| ξ + t , ν t (y, η)|Ψ 0 (y, η)| 2 , (y, η) ∈ U
, where T t is the return time function. In particular, there exists C > 1 such that

C -1 Ψ(λ)f L 2 (Γ) ≤ H t (λ)f L 2 (X) ≤ C Ψ(λ)f L 2 (Γ)
for each (t, λ) ∈ [0, δ] × D.

Reduction to the boundary

The reduction to the boundary is a variant of the reflection method for the wave equation. We shall describe it in the case of Dirichlet boundary conditions. In the case of Neumann and more generally of Robin boundary conditions it is done in [START_REF] Popov | On the integral geometry of Liouville billiard tables[END_REF].

Denote by ( X, g t ) a C ∞ extension of (X, g t ) and by h t the Hamiltonian corresponding to g t via the Legendre transform. Consider a C 1 family of Kronecker invariant tori [0, δ] t → Λ t (ω) ⊂ B * t Γ of B t having frequencies in the set Ω 0 κ of points of positive Lebesgue density in Ω κ = (Ω -κ) ∩ D(κ, τ ), where Ω = B(ω 0 , ε), 0 < κ < ε/2 1 and 0 ≤ δ ≤ 1. For 0 < δ 1 such families of Kronecker invariant tori of B t are provided by Theorem 3.2. Denote by

T j t : = ∪{B j t (Λ t (ω)) : ω ∈ Ω 0 κ } ⊂ B * t Γ
the cooresponding union of the invariant tori of P t • B j t for 0 ≤ j < m and set

T j := ∪{T j t , 0 ≤ j < m.
Fix t 0 ∈ [0, δ] and choose open sets U j ⊂ V j ⊂ T * Γ for 0 ≤ j ≤ m and a sufficiently small interval J ⊂ [0, δ] around t 0 such that

T j ⊂ U j ⊂⊂ V j ⊂⊂ B t Γ and B t (V j ) ⊂ U j+1
for each t ∈ J and 0 ≤ j ≤ m -1 and

U 0 ∪ U m ⊂ V m ⊂⊂ B t Γ
for each t ∈ J. The relation U ⊂⊂ V means here that U ⊂ V where U is the closure of U . We suppose that the C 1 family of exact symplectic mappings J t → P t admits a C 1 family of BNFs in a neighborhood U of V 0 in the sense of Definition 3.3 (see also Theorem 3.2). In other words, we suppose that there exist C 1 -smooth with respect to t ∈ J families of exact symplectic diffeomorphisms χ t : A → χ t (A) ⊂ U and of real valued functions

L t ∈ C ∞ (D) and R 0 t ∈ C ∞ (A)
where A = T n-1 × D and D = ∇L * t 0 (Ω) such that for each t ∈ J the following holds

1. V 0 ⊂ χ t (A); 2. Λ t (ω) = χ t (T n-1 × {I t (ω)}) ⊂ U 0 for ω ∈ Ω 0
κ , where I t (ω) is given by (1.6);

3. The function

R n-1 × D (x, I) → φ t (x, I) := x, I -L t (I) -R 0 t (x, I)
is a generating function of the exact symplectic map

P 0 t := χ -1 t • P t • χ t : A → A in the sense of Definition 3.1; 61 4. ∇L t : D → Ω is a diffeomorphism and L t = L t 0 outside D 1 := ∇L * t 0 (Ω -κ/2); 5. R 0 t is flat at T n-1 × E κ t , where E κ t = ∇L * t (Ω 0 κ ).
Chose the λ-PDO Ψ(λ) giving the "initial data" of the operators H t (λ) in (7.102) such that

WF λ (Ψ -Id)) ∩ V j = ∅ ∀ 0 ≤ j ≤ m. (7.104)
Recall from Proposition 7.6 that

ı * Γ H t (λ) = Ψ(λ) + G t (λ) + O M (|λ| -M )
where G t (λ) is described in (7.102) and (7.102). Take now a classical λ-pseudodifferential operator λ-PDO Ψ 0 (λ) such that

WF λ (Ψ 0 ) ⊂ V 0 and WF λ (Ψ 0 -Id) ∩ U 0 = ∅.
Consider the "outgoing" solution of the Helmlotz equation

(∆ t -λ 2 )u t = O N (|λ| -N )f (7.105)
for λ ∈ D and t ∈ J with "initial data" Ψ 0 (λ)f which is given by u t := H 0 t (λ)f , where

H 0 t (λ) = H t (λ)Ψ 0 (λ). Recall that O N (|λ| -N ) : L 2 (Γ) → L 2 ( X)
stands here for a family of operators

A t (λ) : L 2 (Γ) → L 2 ( X) such that A t (λ) L 2 ≤ C N (1 + |λ|) -N
for each t ∈ J and λ ∈ D where C N > 0 is constant independent of t and of λ. Then

ı * Γ H 0 t (λ) = Ψ 0 (λ) + G t (λ)Ψ 0 (λ) + O M (|λ| -M )
since WF λ ((Ψ -Id)Ψ 0 ) = ∅ in view of (7.104).

To satisfy the "boundary conditions" on U 1 in the case when m ≥ 2 we use the reflexion method. Let Ψ 1 (λ) be a classical λ-PDO such that

WF λ (Ψ 1 ) ⊂ V 1 and WF λ (Ψ 1 -Id) ∩ U 1 = ∅. Set H 1 t (λ) = H t (λ)Ψ 1 (λ)G t (λ)Ψ 0 (λ) and consider u t (λ) = H t (λ)f := H 0 t (λ)f -H 1 t ( 
λ)f. Then u t satisfies (7.105) and it satisfies microlocally the Dirichlet boundary conditions on

U 1 . Notice that WF λ (ı * Γ (u t )) ⊂ U 0 ∩ U 2 .
Similarly if m > 2 one can treat the boundary conditions in U j for any 0 < j < m which leads to a solution u t = H t (λ)f satisfying the boundary conditions microlocally in U j for each 0 < j < m. Let Ψ j (λ), 0 ≤ j ≤ m -1 be a classical λ-PDO such that WF λ (Ψ j ) ⊂ V j and WF λ (Ψ j -Id) ∩ U j = ∅.

We set

H 0 t (λ) = H t (λ)Ψ 0 (λ) if m = 1 and        H t (λ)f = m-1 j=0
(-1) j H j t (λ)f where

H j t (λ) = H t (λ)Ψ m-1 (λ)G t (λ)Ψ m-2 (λ) • • • G t (λ)Ψ 0 (λ) (7.106) if m ≥ 2.
Then u t satisfies (7.105) and

WF λ (ı * Γ (u t )) ⊂ U 0 ∩ B t (U m-1 ) ⊂⊂ V m . More precisely, ı * Γ (u t ) = Ψ 0 (λ)f -M t (λ)f + O N (λ -N )f where M t (λ) := -G t (λ)Ψ 0 (λ) for m = 1 and M t (λ) := (-1) m-1 G t (λ)Ψ m-1 (λ) • • • G t (λ)Ψ 0 (λ) if m ≥ 2. Taking into account (7.102) we obtain M t (λ) = E(λ) -1 M 0 t (λ)E(λ)
, where

M 0 t (λ) := (-1) m-1 Q t (λ)Ψ m-1 (λ) • • • Q t (λ)Ψ 0 (λ). (7.107) 
Moreover, using Proposition 7.6 and the theorem about the composition of λ-FIOs (here we use it in the simple case of canonical transformations) and parameterizing graph(P t ) ⊂ V m × V 0 by its projection on V 0 we obtain that for each t ∈ J the principal symbol of M 0 t (λ) is given by

(-1) m-1 exp(iλA t (x, ξ))|dv(ρ)| 1 2 ⊗ σ m
over U 0 , where

A t (x, ξ) = m-1 j=0 A t (x j t , ξ j t ), (x j t , ξ j t ) = B j t (x, ξ),
is the action along the corresponding broken geodesic and σ m is a "natural" section of the corresponding Keller-Maslov bundle which can be chosen to be independent of t ∈ J. Let ψ 0 (λ) be a classical λ-PDO of order zero such that WF (ψ 0 (λ)) ⊂ U 0 and WF (ψ 0 (λ) -Id) ∩ T 0 = ∅.

We summarize the above construction by the following

Proposition 7.8. Let v t,λ ∈ L 2 (Γ) and u t,λ = H t (λ)ψ 0 (λ)v t,λ where (t, λ) ∈ J × D. Then (∆ t -λ 2 )u t,λ = O N (λ -N q )u t,λ , ı * Γ u t,λ = O N (λ -N q )u t,λ
if and only if

(M 0 t (λ) -Id )ψ 0 (λ)v t,λ = O N (λ -N q ) v t,λ . (7.108)
The structure of the monodromy operator M 0 t (λ) is given by Proposition 7.9. The canonical relation of M 0 t (λ) := E t (λ)M t (λ)E t (λ) -1 is given by the graph graph (P t ) ⊂ V m × V 0 of the symplectic map P t = B m t : V 0 → V m , which is C 1 with respect to t. The family J t → M 0 t (λ) of classical λ-FIO of order 0 with a large parameter λ ∈ D is C 1 smooth with respect to t ∈ J. Parameterizing graph P t by its projection on V 0 for t ∈ J, the principal symbol of M 0 t (λ) becomes

σ(M 0 t ) = (-1) m-1 exp(iλA t (x, ξ)) |dv(ρ)| 1 2 ⊗ σ m
over U 0 , where σ m is a "natural" section of the corresponding Keller-Maslov bundle which does not depend on t ∈ J.

Quantum Birkhoff Normal Form

Using the C 1 family of exact symplectic transformations χ t given by Theorem 3.2 we identify the first cohomology groups

H 1 (Λ t (ω), Z) = H 1 (T n-1 , Z) = Z n-1
for ω ∈ Ω 0 κ and t ∈ J, and we denote by ϑ 0 ∈ Z n-1 the Maslov class of the invariant tori Λ t (ω). Notice that ϑ 0 ∈ Z n-1 does not depend on t ∈ J and ω ∈ Ω 0 κ . Consider as in [START_REF] De Verdière | Quasimodes sur les variétés Riemannienes[END_REF] the flat Hermitian line bundle L over T n-1 associated to the representation : Z n-1 → SU (1) of the fundamental one group [START_REF] Klingenberg | Lectures on closed geodesics[END_REF], Sect. 1.2). More precisely, L is the quotient of R n-1 ×C by the action of Z n-1 given by k.(x, z) = (x+2πk, (k)z). Then sections s of L can be identified canonically with smooth functions s :

π 1 (T n-1 ) = Z n-1 defined by (k) = exp i π 2 ϑ 0 , k , k ∈ Z n-1 (see
R n-1 → C such that s(x + 2πk) = e i π 2 ϑ 0 ,k s(x) ∀ x ∈ R n-1 , k ∈ Z n-1 . (7.109) An orthonormal basis of L 2 (T n-1 , L) is given by e k , k ∈ Z n-1
, where

e k (x) = exp (i k + ϑ 0 /4, x ) .
We quantize the family of exact symplectic transformations χ t : A = T n-1 × D → T * Γ as in [START_REF] De Verdière | Quasimodes sur les variétés Riemannienes[END_REF], Sect. 5 and [START_REF] Popov | On the integral geometry of Liouville billiard tables[END_REF], Sect. 3.3. Denote by C χt the graph of χ t in T * Γ × T * T n-1 and by C χt = (C χt ) the corresponding Lagrangian submanifold of T * (Γ×T n-1 ), where  is defined in (7.77). Consider the class of λ-FIOs T t (λ) :

C ∞ (T n-1 , L) → C ∞ (Γ, C
) of order 0 associated with the canonical relation C χt . The Schwartz kernel K Tt(λ) of T t (λ) belongs to the class I 0 (Γ × T n-1 , C χt ; p * 2 (L)), where p 2 : Γ × T n-1 → T n-1 is the projection on the second factor. Recall from [START_REF] De Verdière | Quasimodes sur les variétés Riemannienes[END_REF], Sect. 5, that the principal symbol σ(K Tt )(λ) of K Tt(λ) can be canonically identified with a smooth function in T * T n-1 . Indeed, σ(K t T )(λ) belongs to the symbol class S 0 (C χt , M (C χt ) ⊗ π * 2 (L )), where

π 2 : C χt → T n-1 × D and π 2 •  : C χt → T n-1 × D is the restriction at C χt of the projection T * Γ × T * T n-1 → T * T n-1
on the second factor while L is the dual bundle to L (the base manifold of L and L here is T n-1 × D instead of T n-1 ). On the other hand, M (C χt ) = π * 2 (L) and using the parametrization of C χt given by π 2 we identify the above class of symbols with S 0 (T n-1 × D, L ⊗ L ) which can be canonically identified with [START_REF] Hezari | C ∞ spectral rigidity of the ellipse[END_REF], Chapter I, 3.7). This allows us to obtain a λ-FIO T t (λ) of order 0 associated to the canonical relation C χt , which is microlocally unitary over A 0 := T n-1 × D 0 , where D 0 is a neighborhood of ∪ t∈J E κ t in D and

C ∞ 0 (T n-1 × D) since L ⊗ L is trivial (cf.
E κ t = ∇L * t (Ω 0 κ ) = I t (Ω 0 κ )
has been defined in 4, Theorem 3.2. This means that

WF (T t (λ) * T t (λ) -Id) ∩ A 0 = ∅.
Trivializing the , where dv is the symplectic volume form on T * T n-1 , we take the principal symbol of T t (λ) to be equal to one in T n-1 × D 0 modulo a Liouville factor exp(iλΨ t (ϕ, I)), where the function Ψ t is real valued. Consider the C 1 family of λ-FIOs of order zero

M 1 t (λ) := T t (λ) * M 0 t (λ)T t (λ) : C ∞ (T n-1 , L) → C ∞ (T n-1 , L).
The corresponding canonical relation C t is just the graph of

P 0 t = χ t -1 • P t • χ t i.e. C t := {(P 0 t (ρ), ρ) : ρ ∈ A}. (7.110)
Denote by C t the corresponding Lagrangian submanifold of T * (T n-1 ×T n-1 ). Using the theorem about the composition of λ-FIOs in the special case of canonical transformations we obtain that the Schwartz kernel of

M 1 t (λ) belongs to I 0 (T n-1 × T n-1 , C t ; M (C t ) ⊗ End (L)).
Let us find its principal symbol, parameterizing C by the variables ρ = (ϕ, I) ∈ A.

Lemma 7.10. The principal symbol of M 1 t (λ) is given by

σ(M 1 t )(λ) = (-1) m exp(iλf t )s t,0 ⊗ σ 0 ⊗ |dv(ρ)| 1/2
where s t,0 is a C 1 family of smooth function in

T n-1 × D such that s t,0 (ϕ, I) = 1 in T n-1 × D 0 , dv (ρ 
) the symplectic volume form on T * T n-1 , σ 0 is a natural section of the Keller-Maslov bundle M (C t ) independent of t and

f t (ϕ, I) = A t (χ t (ϕ, I)) + Ψ t (ϕ, I) -Ψ t (P 0 (ϕ, I)) , (ϕ, I) ∈ T n-1 × D. (7.111) 
Proof. Notice that End (L) ∼ = L ⊗ L is trivial as a bundle over T n-1 × D, hence, smooth sections can be canonically identified with smooth functions in T n-1 × D. Then parameterizing C t by the variables ρ = (ϕ, I) ∈ A and using the λ-FIO calculus and Proposition 7.9 we obtain the principal symbol of M 1 t (λ). To prove (7.111) we write microlocally the Schwartz kernels of the corresponding λ-FIOs in as oscillatory integrals of the form (7.89) with suitable phase functions and then we evaluate the phase function of the composition at the stationary points. The claim that σ 0 is natural and independent of t follows from the fact that the section σ m in Proposition 7.9 is natural and from the composition law of FIOs.

2

Recall that the Lagrangian manifolds C t are generated by the C 1 family of functions Φ t (x, y, I) = φ t (x, I) -y, I , where φ t (x, I) = x, I -L t (I) -R 0 t (x, I) satisfies 3 -5 in Sect. 7.2 (see also Definition 3.3 and Theorem 3.2). Proposition 7.11. We have

T t (λ) * M 0 t (λ)T t (λ) = e iπϑ/2 W t (λ)
where ϑ ∈ Z is a Maslov's index independent of t ∈ J and

J t → W t (λ) : C ∞ (T n-1 , L) → C ∞ (T n-1 , L)
is a C 1 family of λ-FIOs of order zero with canonical relations given by the graph of P 0 t over A. Moreover, the Schwartz kernel of W t (λ) is of the form

W t (x, y, λ)|dx| 1 2 |dy| 1 2 = λ 2π n-1 R n-1
e iλ(φt(x,I)-y,I ) w t (x, I, λ) dI |dx| where t → w t = ∞ j=0 w t,j is a C 1 family of classical amplitudes 2π-periodic with respect to x and w t,0 (x, I) = 1 for (x, I) ∈ R n-1 × D 0 .

Proof.

The Schwartz kernel of M 1 t (λ) can be written in the form (7.112) with a phase function C + Φ t (x, y, I), where C is a constant since Φ t is a globally defined generating function of C t . We are going to show that C = 0. Indeed, the exponent on the Liouville factor picked up by these phase functions is

C + I, ∇L t (I) -L t (I) + I, ∇ I R 0 t (ϕ, I) -R 0 t (ϕ, I) = f 0 t (ϕ, I),
then taking (ϕ, I) ∈ E κ t and using Lemma 3.5, (7.111) and the equality R 0 t E t κ = 0 we get C = 0. Trivializing the Maslov bundles M (C t ) by the C 1 family of phase phase functions Φ t we get (σ 0 ) Φt = exp i π 2 ϑ 1 for some ϑ 1 ∈ Z independent of t since σ 0 does not depend on t. We set ϑ = ϑ + mπ. Moreover, by (7.75) and (7.76) we obtain that d C Φ = dxdI. Hence, w t,0 (x, I) = s t,0 (pr (x), I) = 1 for each (x,

I) ∈ R n-1 × D 0 . 2 
In the case of Neumann and Robin boundary conditions we have ϑ = ϑ 1 .

Our aim is to make w t,j (x, I) independent of the angle variable x for I ∈ E κ t conjugating W t (λ) by a suitable C 1 in t family of λ-PDOs which are elliptic on T n-1 × D 0 . Proposition 7.12. There exists a C 1 family of λ-PDOs J t → A t (λ) of order 0 acting on C ∞ (T n-1 , L) and a C 1 family of λ-FIO J t → W 0 t (λ) of the form (7.112) such that

W t (λ)A t (λ) = A t (λ)W 0 t (λ) + Z t (λ) , (7.113) 
where

(1) the full symbols of A t (λ) and of W 0 t (λ) are

σ(A t )(ϕ, I, λ) := a t (ϕ, I, λ) ∼ ∞ j=0
λ -j a j t (ϕ, I, λ) and

σ(W 0 t )(ϕ, I, λ) := p t (I, λ) ∼ ∞ j=0 λ -j p j t (I) ,
where J t → a t (ϕ, I, λ) and J t → p t (I, λ) are C 1 families of classical symbols and a 0 t (ϕ, I) = 1 and p 0 t (I) = 1 for I ∈ D 0 ,

(2) J t → Z t (λ) is a C 1 family of λ-FIOs of order 0 of the form (7.112) with symbols

S t (ϕ, I, λ) ∼ ∞ j=0 λ -j S j t (ϕ, I)
such that the functions S j t , j ≥ 0, are flat on T n-1 × E κ t .

Proof. The proof of the proposition is similar to that in [START_REF] Cardoso | Quasimodes with exponentially small errors associated with elliptic periodic rays[END_REF] and [START_REF] Popov | On the integral geometry of Liouville billiard tables[END_REF]. First, comparing the symbols of order -j of the left and the right hand side of (7.113) we shall derive the corresponding homological equation. Set

φ 0 t (x, I) = L t (I) + R t (x, I).
We write the Schwartz kernel of the operator W t (λ)A t (λ) of the form (7.112) with amplitude

u t (x, I, λ) = λ 2π n-1 R 2n-2
e iλ( x-z,ξ-I -(φ 0 t (x,ξ)-φ 0 t (x,I))) w t (x, ξ, λ)a t (z, I, λ) dξdz , which belongs to C ∞ (T n-1 × D) for each λ fixed. Changing the variables we write u t (x, I, λ) of the form

λ 2π n-1 R 2n-2 e -iλ v,η w t (x, I + η, λ)a t (v + x + K t (I, η) + H t (x, I, η), I, λ) dηdv ,
where K t (I, η) := 1 0 ∇ I L t (I + sη)ds and H t (x, I, η) := 1 0 ∇ I R t (x, I + sη)ds. Note that K t (I, 0) = ∇L t (I). Moreover, ∂ α I ∂ β η H t (x, I, 0) = 0 for each I ∈ E κ t and any α, β ∈ Z n-1 since the function I → R t (x, I) is flat at E κ t for every x ∈ R n-1 in view of 5, Sect. 7.2. Using the Taylor formula for the amplitude at v = 0 and integrating by parts we get

u t (x, I, λ) ∼ ∞ j=1 u j t (x, I)λ -j
where

u j t (x, I) := r+s+|γ|=j 1 γ! D γ η (a r t (x, I + η) ∂ γ x a s t (x + K t (I, η) + H t (x, I, η), I)) |η=0 .
In the same way we write the Schwartz kernel of A t (λ)W 0 t (λ) in the form (7.112) with amplitude q t (x, I, λ) given by the oscillatory integral

λ 2π n-1 p 0 (I, λ) R 2n-2
e iλ( x-z,ξ-I -(φ 0 t (z,I)-φ 0 t (x,I))) a t (x, ξ, λ)dξdz .

Changing the variables we obtain q t = q 0 t + q 1 t , where q 0 t (x, I, λ) = a t (x, I, λ)p t (I, λ) and q 1 t (x, I, λ) is given by

λ 2π n-1 p t (I, λ) R 2n-2 e -iλ v,η [a t (x, η + I + H 1 t (x, v, I), λ) -a t (x, η + I, λ)] dηdv ,
where

H 1 t (x, v, I) = 1 0 ∇ x R t (x + τ v, I)dτ . Moreover, all the derivatives of H 1 t (x, v, I) vanish for I ∈ E κ t since the function I → R t (x, I) is flat at E κ t for every x ∈ R n-1 .
In this way we obtain for any j ≥ 1 that S j t (ϕ, I) = a j t (ϕ + ∇L t (I), I) -a j t (ϕ, I) -p j t (I) -F j (ϕ, I, t) , (7.114) where F j is a polynomial of ∂ α ϕ ∂ β I a l t and ∂ β I p l t for l < j and |α| + |β| ≤ 2j and of ∂ β I L t for |β| ≤ 2j + 1.

We are looking for functions a j t and p j t (I) such that S j t (ϕ, I) = 0 on T n-1 × E κ t . We shall solve this equation recursively with respect to j changing the variables by I = I t (ω), ω ∈ Ω, and we consider Ω as a subset of R n-1 . Set f (ϕ, ω, t) := a j t (ϕ, I t (ω)), c(ω, t) := p j t (I t (ω)) and F (ϕ, ω, t) := F j (ϕ, I t (ω), t). Then we get the homological equation

f (ϕ + ω, ω, t) -f (ϕ, I, t) = c(ω, t) + F (ϕ, ω, t) , ω ∈ Ω 0 κ . (7.115)
We are looking for smooth functions f and c on T n-1 × Ω and Ω respectively, which solve (7.115) for every ω ∈ Ω 0 κ . We have the following Lemma 7.13.

Let J t → F (•, •, t) ∈ C ∞ (T n-1 × Ω) be a C 1 family of functions such that F (ϕ, ω, t) = 0 for each ω ∈ Ω 0 κ . Then there exist C 1 families functions J t → f (•, •, t) ∈ C ∞ (T n-1 × Ω) and J t → c(•, t) ∈ C ∞ (Ω) such that the function (ϕ, ω) → S(ϕ, ω, t) := f (ϕ + ω, ω, t) -f (ϕ, I, t) -c(ω, t) -F (ϕ, ω, t) is flat at T n-1 × Ω 0 κ for each t fixed.
Proof. Given g ∈ L 1 (T n-1 ) we denote by ĝk , k ∈ Z n-1 , its Fourier coefficients. For any k ∈ Z n-1 we have Ŝk (ω, t) = fk (ω, t) e i ω,k -1 -c(ω, t) -Fk (ω, t).

We set c(ω, t) = -F0 (ω, t), which gives Ŝ0 (ω, t) = 0. We are going to find S k (ω, t) for k = 0. To this end we choose φ ∈ C ∞ 0 (R) such that 0 ≤ φ ≤ 1, φ(x) = 1 for |x| ≤ π/5 and φ(x) = 0 for |x| ≥ π/4.

For any 0 = k ∈ Z n-1 set φ k (x) := j∈Z φ((x -2πj)|k| τ κ -1 ).
We have |k| τ κ -1 ≥ κ -1 > 1, hence, φ((x -2πj)|k| τ κ -1 ) = 0 for j = [x] π , where [x] π /2π ∈ Z is the unique integer such that -π ≤ x -[x] π < π. Then φ k (x) = φ({x}|k| τ κ -1 ), where {x} = x -[x] π . Fix k = 0 in Z n-1 and consider the smooth function

ω → z k (ω) = 1 -e i ω,k + 1 3 κ(1 + |k|) -τ φ k ( ω, k ) .
Lemma 7.14. We have

|z k (ω)| ≥ 1 3 κ(1 + |k|) -τ ∀ ω ∈ Ω. (7.116) Moreover, z k (ω) = 1 -e i ω,k ∀ ω ∈ Ω κ . (7.117) Proof. Let Ω 1 be the set of all ω ∈ Ω such that π/6 ≤ |{ ω, k }| |k| τ κ -1 ≤ π and Ω 2 the set of all ω ∈ Ω such that |{ ω, k }| |k| τ κ -1 ≤ π/6.
For every ω ∈ Ω 1 we have

|1 -exp(i k, ω )| = 2| sin( 1 2 { ω, k })| ≥ 4 π |{ ω, k }| ≥ 2 3 κ(1 + |k|) -τ .
This implies

|z k (ω)| ≥ 1 3 κ(1 + |k|) -τ ∀ ω ∈ Ω 1 . If ω ∈ Ω 2 , then φ k ( ω, k ) = φ { ω, k }|k| τ κ -1 = 1, hence, Re (z k (ω)) ≥ 1 3 κ(1 + |k|) -τ
which proves (7.116). Moreover, for any ω ∈ Ω κ we have

φ k ( ω, k ) = φ { ω, k }|k| τ κ -1 = 0 in view of (1.
2), which implies (7.117). 2

Let us go back to the homological equation (7.115). For every k = 0 we set fk (ω, t) := -Fk (ω, t) z k (ω) .

Using Lemma 7.14 we obtain that the function

(ϕ, I) → f (ϕ, ω, t) := k∈Z n-1 fk (ω, t)e i ϕ,k
belongs to C ∞ (T n-1 × Ω) for any t fixed and the map

J t → f (•, •, t) ∈ C ∞ (T n-1 × Ω) is C 1 . Hence, the map J t → S(•, •, t) ∈ C ∞ (T n-1 × Ω) is C 1 as well.
Moreover, F k (ϕ, ω, t) = 0 for each ω ∈ Ω 0 κ and k ∈ Z n-1 and using (7.117) we obtain that that S(ϕ, ω, t) = 0 for ω ∈ Ω 0 κ . Now Lemma 3.4 implies that the function ω → S(ϕ, ω, t) is flat at Ω 0 κ for each ϕ and t fixed. Now using This completes the proof of Lemma 7.13.

2

Using Lemma 7.13 we find a j t and p j t (I) such that ∂ α I S j t (ϕ, I, t) = 0 for every I ∈ E κ t and α ∈ Z n-1 . Using Lemma 7.1 we find C 1 of realisations S t (ϕ, I, λ) and p t (I, λ) of the formal symbols and such that which completes the proof of Proposition 7.12.

2

We are looking for C 

φ 0 t (x, ξ + iη) = L t (ξ + iη) + R t (x, ξ + iη)
where

L t (ξ + iη) = |α|≤M ∂ α ξ L t (ξ)(iη) α (α!) -1 and R t (x, ξ + iη) = |α|≤M ∂ α ξ R t (x, ξ)(iη) α (α!) -1 .
It is easy to see that

∂ ζ φ 0 t (x, ξ + iη) = O(|η| M ). Moreover, ∂ α ζ ∂β ζ R t (x, ξ + iη) = O M |ξ -E κ t | M , |η| ≤ C, (7.119) for α, β ∈ N n-1 since R t is flat at R n-1 × E κ t .
In the same way we obtain almost analytic extensions S t (ϕ, ζ, λ) of S j t and p j t (ζ) of p j t , ζ := ξ + iη, such that

∂ ζ p j t (ξ + iη) = O(|η| M ), ∂ α ξ ∂ β η ∂ ζ S j t (x, ξ + iη) = O α,β (|η| M -|β| ), (7.120) for α, β ∈ N n-1 , |β| ≤ M . Moreover, ∂ α ξ ∂ β η S j t (ϕ, ξ + iη) = O |ξ -E κ t | N , (7.121) 
for |η| ≤ C, and supp ζ S j t ⊂ K, supp p j t ⊂ K for j ∈ N, where K is a fixed compact subset of R n-1 . We have as well p 0 t (ξ + iη) = 1 whenever ξ ∈ D 0 . Proposition 7.15. For each t ∈ J we have

W 0 t (λ)e k (ϕ) = exp -iλφ 0 t ϕ, (k + ϑ 0 /4)λ -1 × N j=0 p j t (k + ϑ 0 /4)λ -1 λ -j e k (ϕ) + O N (|λ| -N -1 )e k (ϕ) (7.122) and S t (λ)e k (ϕ) = O N |λ| -N -1 + |E κ t -(k + ϑ/4)λ -1 | N +1 e k (ϕ) (7.123)
where λ ∈ D and k ∈ Z n-1 .

Proof. The proof of the proposition is close to that of Proposition 3.11, [START_REF] Popov | On the integral geometry of Liouville billiard tables[END_REF] but we give it for the sake of completeness. We have

W 0 t (λ)e k (x) = e k (x) e -iλφ 0 t (x,ξ k ) × λ -j λ 2π n-1 N j=0 R 2n-2 e iλ x-y+wt(x,ξ k ,η k ),η k p j t (I) dI dy + O N |λ| -N -1 e k (x) ,
where λ ∈ D and

w t (x, ξ, η) = 1 0 ∇ ξ φ 0 t (x, ξ + τ η)dτ, ξ k = (k + ϑ 0 /4)/λ, η k = I -(k + ϑ 0 /4)/λ.
If |k| ≥ C 0 |λ| and C 0 1 (C 0 depends only on the compact set K ⊂ R n-1 such that supp p j t ⊂ K for every j ∈ N) then |η k | ≥ 1 and we can integrate by parts with respect to y gaining O N (|λ| -N -1 ). Suppose now that |k| ≤ C 0 |λ|. We have

Im (k + ϑ 0 /4)/λ ≤ C |λ| for |k| ≤ C 0 |λ| and λ ∈ D. (7.124)
Then deforming the contour of integration we obtain

W 0 t (λ)e k (ϕ) = e k (ϕ) e -iλφ 0 t (ϕ,(k+ϑ 0 /4)/λ) × N j=0 λ -j λ 2π n-1 R 2n-2
e -iλ u,v p j t (v + (k + ϑ 0 /4)/λ) du dv + O N (|λ| -N -1 )e k (ϕ) , which implies (7.122).

To prove (7.123) we write S t (λ)e k (x) as an oscillatory integral as above, and then for |k| ≤ C 0 |λ| we change the contour of integration with respect to y by

y → v = y -x -w t x, (k + ϑ 0 /4)/λ, I -(k + ϑ 0 /4)/λ
while for |k| ≥ C 0 |λ| we integrate by parts to gain O N (|λ| -N -1 ). This implies, using (7.124), that

S t (λ)e k (ϕ) = e k (ϕ) e -iλφ 0 t (ϕ,(k+ϑ 0 /4)/λ) × N j=0 λ 2π n-1 R 2n-2
e -iλ v,I-(k+ϑ 0 /4)/λ S j t (ϕ, I)λ -j dI dv + O N (|λ| -N -1 )e k (ϕ).

Since M > 2N + n + 2, taking the Taylor expansion of order N of the function

[0, 1] s → ψ(s) := S j t ϕ, (k + ϑ 0 /4)/λ) + s(I -(k + ϑ 0 /4)/λ)
at s = 0 with an integral reminder and using (7.120) and (7.124) we get

S j t (ϕ, I) = |α≤N | ∂ α ζ S j t (ϕ, (k + ϑ 0 /4)/λ)(I -(k + ϑ 0 /4)/λ) α /α! + T N (ϕ, I) + O(|λ| -N -n-1 )
where the reminder term is

T N (ϕ, I) := (N + 1) |α|=N +1 1 0 (1 -s) N ∂ α I S j t ϕ, I + s(k + ϑ 0 /4)/λ I -(k + ϑ 0 /4)/λ α /α! ds.
We have

∂ α ζ S j t (ϕ, (k + ϑ 0 /4)/λ) = O N,α,β |E κ t -(k + ϑ/4)λ -1 | N +1
, λ ∈ D, for every N ∈ N and α ∈ N n-1 in view of (7.121).

To estmate the reminder we integrate N + 1 times by parts with respect to v in the corresponding oscillatory integral with amplitude

(N + 1) |α|=N +1 1 0 (1 -s) N ∂ α I S j t ϕ, I + s(k + ϑ 0 /4)/λ I -(k + ϑ 0 /4)/λ α /α! ds
and we estimate it by C N |λ| -N -1 . This implies (7.123). 2

Proposition 7.15 suggests that we should look for pairs (λ, k) ∈ D × Z n-1 such that |λ| 1 and

|E κ t -(k + ϑ/4)λ -1 | ≤ C |λ| (7.125)
where C > 0 is a constant. Then (7.122) and (7.123) imply

W 0 t (λ)e k (ϕ) = exp -iλL t (k + ϑ 0 /4)λ -1 × N j=0 p j t (k + ϑ 0 /4)λ -1 λ -j e k (ϕ) + O N (|λ| -N -1 )e k (ϕ) and S t (λ)e k (ϕ) = O N |λ| -N -1 e k (ϕ)
Thus taking e = e k in (7.118) we obtain exp

-iλL t (k + ϑ 0 /4)λ -1 + iπϑ/2 N j=0 p j t (k + ϑ 0 /4)λ -1 λ -j e k (ϕ) = O N (|λ| -N -1 )e k (ϕ)
for every N ∈ N. Recall that p 0 t (ξ + iη) = 1 if ξ ∈ D 0 . Then for |λ| 1 and t ∈ J we can write the above equation as follows

λ L t k + ϑ 0 /4 λ = 2πk n π + πϑ/2 + 1 i Log 1 + N j=1 p j t k + ϑ 0 /4 λ λ -j + O N (|λ| -N -1 ) (7.126) 
where k n ∈ Z and Log z = ln |z| + i arg z, -π < arg z < π. Hence, to construct quasi-modes we have to find pairs (λ, k) satisfying both (7.125) and (7.126).

C 1 families of quasi-modes and iso-spectral invariants

Given t ∈ J and ω ∈ Ω 0 κ the formulas (7.125) and (7.126) suggest that the quantization condition of the Lagrangian torus Λ t (ω) should be of the form

λI t (ω) -(k + ϑ 0 /4) + λ L t k + ϑ 0 /4 λ -2πk n π -πϑ/2 ≤ C
for some C > 0, where I t (ω) ∈ E κ t is the corresponding action on the torus Λ t (ω), (k, k n ) ∈ Z n and λ ∈ D. To obtain iso-spectral invariants from C 1 -families of quasi-modes we need a stronger quantization condition which will be formulated below.

Quantization condition

Fix t ∈ J. The quantization condition corresponding to a Lagrangian torus Λ t (ω) with a frequency ω ∈ Ω 0 κ will be given by means the following Lemma.

Lemma 8.1. Given t ∈ J there is a set Ξ t κ ⊂ Ω 0 κ of full Lebesgue measure in Ω 0 κ such that the following holds.

For any ω ∈ Ξ t κ there is an infinite sequence M(ω) of (q, λ)

∈ Z n × [1, ∞) such that q = (k, k n ) ∈ Z n-1 × Z , λ = µ 0 q ≥ 1 satisfies c -1 0 |q| ≤ µ 0 q ≤ c 0 |q| with c 0 > 0, (8.127) 
and lim

|q|→∞ µ 0 q I t (ω), L t (I t (ω)) -k + ϑ 0 4 , 2π k n + ϑ 4 = 0. (8.128)
Proof. Denote by Ξ t κ the set of all ω ∈ Ω 0 κ such that

2πk n I t (ω) = L t (I t (ω))k for each 0 = (k, k n ) ∈ Z n-1 × Z. (8.129)
We claim that the complement Ω 0 κ \ Ξ t κ of Ξ t κ in Ω 0 κ is of Lebesgue measure zero. Suppose the contrary. Then there is 0

= (k, k n ) ∈ Z n-1 × Z and a set of positive Lebesgue measure R t ⊂ Ω 0 κ such that 2πk n I t (ω) = L t (I t (ω))k ∀ ω ∈ R t .
On the other hand, the map Ω ω → I t (ω) = ∇L * t (ω) ∈ D is a local diffeomorphism with inverse I → ∇L t (I) by 4, Theorem 3.2, hence, the set R 0

t := {I t (ω) : ω ∈ R t } is of positive Lebesgue measure in R n-1 . Moreover, 2πk n I = L t (I)k ∀ I ∈ R 0 t (8.130) and R t := {∇L t (I) : I ∈ R 0 t } by definition. Let I 0 ∈ R 0 t be a point of positive Lebesgue density in R 0 t . Set ω 0 = (ω 0 1 , . . . , ω 0 n-1 ) := ∇L t (I 0 ) ∈ Ω 0 κ .
Differentiating (8.130) with respect to I at I 0 and using Lemma 3.4 we get 2πk n = k j ω 0 j , for j = 1, . . . , n -1, which contradicts (1.2). Hence, the Lebesgue measure of Ω 0 κ \ Ξ t κ is zero. On the other hand, (8.129) implies that for any ω ∈ Ω 0 κ the trajectory {λ(I t (ω), L t (I t (ω))) (mod

Z n ) : λ ≥ 1 } ⊂ R n /Z n
is not periodic, hence, it is dense on the torus R n /Z n which implies that there exists an infinite sequence (q j , λ j ) j∈N satisfying (8.128). The inequality in (8.127) follows from (8.128) since the continuous function

ω → (I t (ω), L t (I t (ω))) = (∇L * t (ω), L t (∇L * t (ω)))
does not vanish on the compact set Ω 0 κ in view of (1.5) and (1.9). 2

We point out that the set Ξ t κ and the sequence M(ω) may depend on t.

From now on we fix ω in the set Ξ t κ given by Lemma 8.1 and denote by M ⊂ Z n the image of the projection of M(ω) ⊂ Z n × [1, ∞) on the first factor. M will be the index set of the C 1 family of quasi-modes that we are going to construct and (8.128) -the quantization condition for s = t. To obtain a quantization condition for the tori Λ s (ω) for s close to t we consider for any q ∈ M the interval J q := t, t + 2|q| -1 .

Getting rid of finitely many elements q ∈ M we suppose that J q is contained in J ⊂ [0, δ] for every q ∈ M. Recall from Theorem 3.2 that the maps s → L s ∈ C ∞ (D) and s → I s ∈ C ∞ (Ω; R n-1 ) are C 1 on the interval J. Then using (8.127) and (8.128) we obtain that there exists a constant C = C(ω) > 0 independent of q ∈ M and s ∈ J q such that

µ 0 q I s (ω), L s (I s (ω)) -k + ϑ 0 4 , 2π k n + ϑ 4 ≤ C ∀ q ∈ M, s ∈ J q . (8.131)
The quantization condition (8.131) will be used below to construct a C 1 quasi-mode with an index set M for s ∈ J q , q ∈ M. Condition (8.128) is not needed for the the construction of the quasi-mode, but it is essential for the proof of Lemma 8.4 below.

Construction of C 1 families of quasi-modes

Fix a positive integer M ≥ 0. For any q ∈ M with |q| ≥ q 0 1 we are going to construct a family of quasi-modes of order M depending on s ∈ J q such that the corresponding family of quasi-eigenvalues s → µ q (s) 2 belongs to C 1 (J q ). Theorem 8.2. For every q = (k, k n ) ∈ M and s ∈ J q there exists a quasi-mode (µ q (s) 2 , u s,q ) of ∆ s of order M such that (i) u s,q ∈ D(∆ s ) and u s,q L 2 (X) = 1;

(ii) There exists a constant C M > 0 such that

     ∆ u s,q -µ 2 q (s) u s,q ≤ C M µ -M q (s) in L 2 (X) , B u s,q | Γ = 0 (8.132)
for every q ∈ M and s ∈ J q ;

(iii) We have µ q (s) = µ 0 q + c q,0 (s) + c q,1 (s)

1 µ 0 q + • • • + c q,M (s) 1 (µ 0 q ) M
, where (iv) The functions s → c q,j (s) are real valued and C 1 on the interval J q ;

(v) There exists a constant C M > 0 such that |c q,j (s)| ≤ C M for every q ∈ M, 0 ≤ j ≤ M , and any s ∈ J q ;

(vi) There exists C > 0 such that

µ q (s)L s k + ϑ 0 /4 µ q (s) -2π k n + ϑ 4 ≤ C µ q (s)
for every q ∈ M and s ∈ J q ;

(vii) We have

k + ϑ 0 /4 µ q (t) = I t (ω) + o 1 |q| as |q| → ∞.
Proof. We are looking for a perturbation λ = µ q (s) of µ 0 q satisfying (7.126) which means that

µ q (s)L s k + ϑ 0 /4 µ q (s) - 1 i Log 1 + M j=1 p s k + ϑ 0 /4 µ q (s) µ q (s) -j = 2π k n + ϑ 4 + O M 1 (µ 0
q ) M +1 uniformly with respect to q ∈ M and s ∈ J q . Introducing a small parameter ε q = (µ 0 q ) -1 we are looking for

     µ q (s) = µ 0 q + c q,0 (s) + c q,1 (s)ε q + • • • c q,M (s)ε M q , ζ q (s) = I 0 s (ω) + b q,0 (s)ε q + • • • b q,M (s)ε M +1 q (s) + b q,M +1 (s)ε M +2 q (8.133) such that            µ q (s)ζ q (s) = k + ϑ 0 4 µ q (s)L s (ζ q (s)) = 2π k n + ϑ 4 + 1 i Log 1 + M j=1 p j s (ζ q (s))µ q (s) -j + O M (ε M +1 q ) .
(8.134) We are going to find µ q (s). Using (8.133) we write

µ q (s)ζ q (s) -k -ϑ 0 /4 = M j=0 ε j q [b q,j (s) + c q,j (s)I s (ω) -W q,j (s)] + ε M +1 q [(ε q µ q )b q,M +1 (s) -W q,M +1 (s)] ,
where

                 W q,0 (s) = k + ϑ 0 /4 -µ 0 q I s (ω) , W q,j (s) = - r+s=j-1
c q,r (s)b q,s (s) for 1 ≤ j ≤ M, and

W q,M +1 (s) = - M l=0 M r=M -l c q,r (s)b q,l (s). 
(8.135)

Expanding L s (ζ q (s)) and p j s (ζ q (s)), 1 ≤ j ≤ M , in Taylor series at ζ = I s (ω) up to order M we obtain from (8.134) the following linear systems

     b q,j (s) + c q,j (s)I s (ω) = W q,j (s)
L s (I s (ω))c q,j (s) + ω, b q,j (s) = V q,j (s) , for 0 ≤ j ≤ M , and we put b q,M +1 (s) = (ε q µ q ) -1 W q,M +1 (s), where W q,j (s) is given by (8.135), and V q,j (s) is a polynomial of c q,r (s) and b q,r (s) with 0 ≤ r, r ≤ j -1 and with C 1 with respect to s coefficients. By (1.5) and (1.9) the corresponding determinant is

D(I s (ω)) := L s (I s (ω)) -I s (ω), ω = -β s (ω) = 2 Λs(ω)
A s (ρ)dµ s > 0 and we obtain a unique solution (c q,j (s), b q,j (s)), 0 ≤ j ≤ M -1. More precisely,      c q,j (s) = D(I s (ω)) -1 [V q,j (s) -2π ω, W q,j (s) ] b q,j (s) = W q,j (s) -c q,j (s)I s (ω). (8.136) We have

     W q,0 (s) = k + ϑ 0 /4 -µ 0 q I s (ω) = O(1), V q,0 (s) = 2πk n -πϑ/2 -µ 0 q L s (I s (ω)) = O(1) , q ∈ M , (8.137) 
uniformly with respect to q ∈ M and s ∈ J q , in view of (8.131). Hence, b q,0 (s) and c q,0 (s), q ∈ M, are C 1 in J q and uniformly bounded. By recurrence we prove that b q,j (s) and c q,j (s), q ∈ M, are C 1 in J q and uniformly bounded with respect to q ∈ M and s ∈ J q . To evaluate b q,M +1 (s) observe that ε q µ q = 1 + O(ε q ). For such µ q (s) the quantization condition (8.131) gives the estimate

k + ϑ 0 /4 µ q (s) = ζ q (s) = I s (ω) + O µ q (s) -1
uniformly with respect to s ∈ J q . Then Proposition 7.15 for N = M implies that (λ = µ q (s), e k ) satisfy (7.118) and we obtain that

     ∆ u s,q -µ 2 q (s) u s,q ≤ C M µ -M q (s) in L 2 (X) , B u s,q ≤ C M µ -M q (s) in L 2 (Γ) .
In order to prove the property (i) and to satisfy the boundary conditions in (ii) exactly we follow the proof given in [START_REF] Popov | On the integral geometry of Liouville billiard tables[END_REF], Sect. 3.6.3, using Proposition 7.7. The property (vi) follows from the second equation of (8.134). To prove (vii) observe that

     W q,0 (t) = k + ϑ 0 /4 -µ 0 q I t (ω) = o(1) V q,0 (t) = 2πk n -πϑ/2 -µ 0 q L t (I t (ω)) = o(1)
as |q| → ∞ in view of (8.128). Then (8.136) implies that c q,0 (t) = o(1) and b q,0 (t) = o(1) and we obtain

k + ϑ 0 /4 µ q (t) = ζ t (ω) = I t (ω) + b q,0 (t)ε q + O(ε 2 q ) = I t (ω) + o 1 |q| as |q| → ∞.
This completes the proof of the Theorem. 2

From quasi-modes to isospectral invariants

We are going to complete the proof of Theorem 1. The items (i) and (ii) have been proven in Sect. 3. We are going to prove item (iii) which states that the functions β t (ω), I t (ω) and α t (I t (ω)) = L t (I t (ω)) are independent of t ∈ [0, δ] for any ω ∈ Ξ provided that the billiard tables satisfy the weak isospectral condition (H 1 ) -(H 2 ). Recall that the set Ξ is of the form (3.26), hence, it suffices to prove the statement for each ω in Ω 0 κ ⊂ Ξ. Given α ∈ R we say that a family of functions f q : J q → C, q ∈ M, is o (|q| α ) as q → ∞ uniformly with respect to s in J q if lim q→∞ |q| -α sup s∈Jq |f q (s)| = 0 . We say that "f q = O (|q| α ) uniformly with respect to s in J q " if there is C > 0 such that |q| -α |f q (s)| ≤ C for any q ∈ M and s ∈ J q . The isospectral condition implies Lemma 8.3. Suppose that (H 1 ) -(H 2 ) holds. Fix an integer M > 2d ≥ 0. Then

µ q (s) -µ q (t) = o(1) as q → ∞ and µ q (s) = µ q (t) 1 + o 1 |q| as q → ∞
uniformly with respect to s ∈ J q .

Proof. It is easy to see that for any q ∈ M and s ∈ J q , the distance from µ q (s) 2 to the spectrum of ∆ s can be estimated above by

d s,q := Spec (∆ s ) -µ q (s) 2 ≤ C M µ q (s) -M .
Indeed, if d s,q = 0 the spectral theorem and (8.132) yield

1 d s,q ≥ (∆ s -µ q (s) 2 ) -1 ≥ (∆ s -µ q (s) 2 )u s,q -1 ≥ µ q (s) M C M .
Then Theorem 8.2 and (8.127) imply that for any q ∈ M, |q| ≥ q 0 1, and s ∈ J q there is λ s,q ∈ Spec (∆ s ) such that λ s,q ≥ µ q (s) 2 /4 ≥ (2c 0 ) -2 |q| 2 and λ s,q -µ q (s) 2 ≤ C λ -M/2 s,q (8.138) where C = 2 M C M . Now using (H 2 ) we get for any q ∈ M with |q| ≥ q 0 1 and s ∈ J q an integer k = k(s, q) ≥ 1 such that

λ s,q ∈ [a k , b k ]. (8.139)
Fix γ so that M > 2γ > 2d ≥ 0. Then choosing q 0 sufficiently large we obtain from (8.138) and (8.139) that for any q ∈ M with |q| ≥ q 0 and s ∈ J q the quasi-eigenvalue µ q (s) 2 belongs to the interval

I k := a k - c 2 a -γ k , b k + c 2 a -γ k , (8.140) 
where k = k(s, q) and c > 0 is the constant of the third assumption of (H 1 ). In particular,

b k(q,s) ≥ µ q (t) 2 - c 2 a -γ k(s,q) ≥ C 1 |q| 2 -C 2 ,
for some positive constants C 1 and C 2 , which implies that lim k(s, q) = ∞ as q → ∞ uniformly with respect to s ∈ J q . On the other hand, using the third assumption of (H 1 ), the relation

b k = a k (1 + o(1)
) as k → ∞, which follows from the first two assumptions in (H 1 ), and the inequality γ > d, we get

(a k+1 - c 2 a -γ k+1 ) -(b k + c 2 a -γ k ) = (a k+1 -b k ) - c 2 a -γ k+1 - c 2 a -γ k ≥ cb -d k -ca -γ k > 0
for any k ≥ k 0 , where k 0 1. This shows that the intervals I k in (8.140) do not intersect each other for k ≥ k 0 . Choose q 0 1 so that k(s, q) ≥ k 0 for any q ∈ M with |q| ≥ q 0 and s ∈ J q (recall that k(s, q) → ∞ as |q| → ∞ uniformly with respect to s ∈ J q ). The function µ q (s) 2 is continuous on J q (even C 1 ), hence, it can not jump from one interval to another when |q| ≥ q 0 . Consequently, k(s, q) does not depend on s for |q| ≥ q 0 . We have proved that for any q ∈ M such that |q| ≥ q 0 there is k = k(q) ∈ N independent of s such that

µ q (s) 2 ∈ a k - c 2 a -γ k , b k + c 2 a -γ k ∀ s ∈ J q . (8.141)
Moreover, k(q) → ∞ as q → ∞ and we obtain

µ q (s) 2 ≥ a k(q) - c 2 a -γ k ≥ 1 4 a k(q)
for |q| ≥ q 0 1 and s ∈ J q . Thus for |q| ≥ q 0 1 we obtain

|µ q (s) -µ q (t)| < µ q (t) -1 |µ q (s) 2 -µ q (t) 2 | ≤ 2a -1/2 k(q) b k(q) -a k(q) + ca -γ k(q) := q
where C > 0 is independent of q and of s ∈ J q . Now (H 1 ) implies that q → 0 as q → ∞. Hence, µ q (s) -µ q (t) = o(1) as q → ∞ uniformly with respect to s ∈ J q . Moreover,

µ q (s) = µ q (t) 1 + o(1) µ q (t) = µ q (t) 1 + o 1 |q| as q → ∞
uniformly with respect to s ∈ J q since µ q (t) ≥ µ 0 q /2 ≥ (2c 0 ) -1 |q| for |q| ≥ q 0 1. 2

Consider the function t → β t (ω) = ω, I t (ω) -L t (I t (ω)).

Lemma 8.4. Suppose that (H 1 )-(H 2 ) holds. Then β t (ω) = β 0 (ω) for any t ∈ [0, δ] and ω ∈ Ω 0 κ .

Proof. We are interested in the variation βt (ω) := d dt β t (ω).

Fix t ∈ [0, δ) and choose ω in the set Ξ t κ given by Lemma 8.1. Consider the quasi-mode of order N > 2d + 2 ≥ 2 constructed by Theorem 8.2. Now Lemma 8.3 and Theorem 8.2, (vii), imply together that

ζ q (s) = k + ϑ 0 /4 µ q (s) = k + ϑ 0 /4 µ q (t)(1 + o(1/|q|)) = k + ϑ 0 /4 µ q (t) + o 1 |q| = I t (ω) + o 1 |q| (8.142)
as |q| → ∞ and uniformly with respect to s ∈ J q . On the other hand Theorem 8.2, (vi), yields

L s (ζ q (s)) = 2π k n -ϑ/4 µ q (s) + O(|q| -2 )
uniformly with respect to s ∈ J q and using Lemma 8.3 we obtain as in (8.142) that

L s (ζ q (s)) = L t (ζ q (t)) + o 1 |q| as q → ∞ (8.143)
uniformly with respect to s ∈ J q . Then setting η := 1/|q| → 0 we obtain by (8.142) and (8.143) the equality

L t+η I t (ω) = L t+η ζ q (t + η) + o(η) = L t+η ζ q (t + η) + o(η) = L t ζ q (t) + o(η) = L t I t (ω) + o(η).
We have used also that the map [0 

, δ] → L s ∈ C ∞ (D) is C 1 . Hence, Lt (I t (ω)) = d ds L s (I t (ω)) s=t = 0 ∀ ω ∈ Ξ t κ . ( 8 
(ω) = ω, İt (ω) -Lt (I t (ω)) -∇L t (I t (ω)), İt (ω) = 0 ∀ ω ∈ Ω 0 κ since ∇L t (I t (ω)) = ω.
Hence, β t (ω) = β 0 (ω) for every t ∈ [0, δ) and ω ∈ Ω 0 κ . By continuity we get the last equality for every t ∈ [0, δ] as well.

2

Recall that Ω 0 κ is a set of points of positive Lebesgue density. Differentiating the equality

ω, I t (ω) -L t (I t (ω)) = β t (ω) = β 0 (ω) = ω, I 0 (ω) -L 0 (I 0 (ω))
with respect to ω ∈ Ω 0 κ and using Lemma 3.4 we get I t (ω) = I 0 (ω). Then plugging it in the expression of β t (ω) we obtain E κ,t = E κ,0 as well as the equality L t (I) = L 0 (I), I ∈ E κ,0 . This completes the proof of Theorem 1.

2

Part II KAM theorems and Birkhoff Normal Forms

KAM theorems

In this Section we prove KAM theorems and obtain BNF for C k smooth families of Hamiltonians t → H t or exact symplectic maps t → P t . The main novelty in it can be briefly summarized as follows

• The constant in the smallness condition depends only on the dimension of the configuration space and on the exponent in the Diophantine condition;

• C k smooth families of invariant tori t → Λ t (ω) with Diophantine frequencies are obtained;

• C k smooth with respect to the parameter t BNF is obtained around the union of Λ t (ω);

• Uniform estimates in the whole scale of Hölder spaces are obtained. To this end a new approach to the iterative schema is proposed. The Modified Iterative Lemma proven in Sect. 11.9 provides in a limit smooth functions in the whole domain Ω (not only on the Cantor set Ω κ ) with a good control of the Hölder norms. In particular, it avoids the Whitney C ∞ extension theorem.

In order to formulate the main results we recall the notion of the Legendre transform. Let D ⊂ R d , d ≥ 1, be an open set. We say that a real valued function

F ∈ C ∞ (D, R) is non- degenerate if ∇F : D -→ D * := ∇F (D) ⊂ R d is a diffeomorphism. (9.145)
The Legendre transform F * of F is defined by

F * (ξ) := Crit.val. x∈D { x, ξ -F (x)}
which is equivalent to is given by (s, θ, r) → (θ + s∇F (r), r). The frequency vector of the restriction of the flow to the invariant torus T d × {r} is ω = ∇F (r) ∈ Ω := D * and the corresponding rotation vector is ω/2π. We work here with frequency vectors instead of rotation vectors because they are more adapted to the Fourier analysis. One can parameterize the invariant tori by their frequency vectors ω ∈ Ω since F is non-degenerate. We are interested below in families of non-degenerate completely integrable Hamiltonians F t , t ∈ [0, δ], with frequency vectors in a fixed open set Ω ⊂ R d . To this end we consider a family of non-degenerate functions F * t ∈ C ∞ (Ω) and define F t as the Legendre transform of F * t in D t := ∇F * t (Ω). The advantage is that the set of frequency vectors is independent of the parameter t. In particular, the Diophantine conditions will be the same for all t. The same discussion holds as well for families of completely integrable exact symplectic maps.

F (x) + F * (ξ) = x,
This part is organized as follows. The basic KAM theorem is proved in Sect. 10.

KAM theorems for C k families of Hamiltonians

Let Ω ⊂ R n be an open convex bounded set, k ∈ {0; 1}, and δ > 0. Denote by Ω the closure of Ω in R n . Consider a C k family H 0 * of real valued functions

[0, δ] t → H 0 * (•, t) = H 0 * t (•) ∈ C ∞ (Ω, R)
satisfying the non-degeneracy condition

∇H 0 * t : Ω -→ D t := ∇H 0 * t (Ω) is a diffeomorphism. (9.147)
The corresponding family H 0 of Legendre transforms

[0, δ] t → H 0 t = H 0 * * t ∈ C ∞ (D t , R)
is C k as well and H 0 t satisfies (9.145) on D t for each t. Consider a C k family H of perturbations

[0, δ] t → H(•, t) = H t (•) ∈ C ∞ (A t , R) of H 0 where A t := T n × D t .
Let us introduce the arithmetic conditions on the frequency vectors. Fix κ > 0 and τ > n-1, and denote by D(κ, τ ) the set of all ω ∈ R n satisfying the (κ, τ )-Diophantine condition

∀ 0 = k ∈ Z n : | ω, k | ≥ κ |k| τ . (9.148)
Denote by Ω κ the set of all (κ, τ )-Diophantine vectors ω ∈ Ω such that the distance from ω to the complement R n \ Ω of Ω is ≥ κ. We will often use the following notation

     Ω + κ := {ω ∈ R n : dist(ω, Ω) < κ} Ω -κ := {ω ∈ Ω : dist(ω, R n \ Ω) > κ}.
(9.149)

Then Ω κ = D(κ, τ ) ∩ Ω -κ.
In order to formulate the smallness condition we need the following notations. Firstly we define weighted C Hölder norms as in [START_REF] Parernain | Spectral rigidity and invariant distributions on Anosov surfaces[END_REF]. Given ≥ 0, 0 < κ ≤ 1, and a domain D ⊂ R n , we denote the weighted (with respect to the small parameter κ 

) C -norm of u ∈ C (T n × D, R k ) evaluated at T n × D by u ,T n ×D;κ := u • σ κ C (σ -1 κ (T n ×D)) (9 
u := {u t ∈ C ∞ (Ω, R) : t ∈ [0, δ]} we set S (u) := sup 0≤t≤δ 1 + u t C 1 (Ω) -1 1 + u t C (Ω) . (9.152)
This expression arises when one evaluates the C -norms of a composition of functions the form Here ∂ 2 H 0 t (I) is the Hessian matrix of H 0 t at I ∈ D t . The role of the small parameter is to compensate the norm of the Hessian matrix which could be very large. The function m → A m , m ≥ 0, is increasing when Ω is convex.

f t • u t with u t = ∇K 0 * t (see Appendix, Sect. A.4.2). If Ω is convex then u t C (Ω) ≤ u t C µ (Ω) for 0 ≤ ≤ µ
Let Φ s t := exp (sX Ht ), s ∈ R, be the flow of the Hamiltonian vector field X Ht with Hamiltonian H t in A t = T n × D t . Recall that for any ω ∈ Ω the map R ω : T n → T n stands for the translation R ω (ϕ) = ϕ + ω (mod 2π). Fix k ∈ {0, 1}. Theorem 9.1. There exists = (n, τ, ϑ 0 ) > 0 depending only on n, τ and ϑ 0 such that the following holds.

Let

Ω ⊂ R n be an open convex bounded set, 0 < ≤ κ ≤ 1 and Ω κ = ∅. Let H 0 * be a C k family of real-valued functions [0, δ] t → H 0 * t ∈ C ∞ (Ω, R) satisfying (9.147), and let [0, δ] t → H t ∈ C ∞ (A t , R) be a C k family of Hamiltonians such that S 0 (∇H 0 * ) A 0 0 = sup 0≤t≤δ 2 |||∂ 2 H 0 t ||| 0 ,Dt;κ + |||H t -H 0 t ||| 0 ,At;κ S 0 (∇H 0 * ) ≤ κ. (9.156)
Then there exists a

C k mapping [0, δ] t → Ψ t = ( U t , V t ) ∈ C ∞ (T n × Ω; T n × D t ) such that (i) for any ω ∈ Ω κ , [0, δ] s → Λ t (ω) = Ψ t,ω (T n
) is a C k family of Kronecker invariant tori of the Hamiltonian vector fields X Ht with a frequency vector ω, where Ψ t,ω := Ψ t (•; ω). Moreover, for any ω ∈ Ω κ and s ∈ R the following diagram is commutative

T n Rsω -→ T n ↓ Ψ t,ω ↓ Ψ t,ω Λ t (ω) Φ s t -→ Λ t (ω) (ii) for any m ∈ {0} ∪ [1, +∞) the following estimates hold ∂ α ϕ (κ∂ ω ) β U t (ϕ; ω) -ϕ ≤ C m A m κ ∂ α ϕ (κ∂ ω ) β V t (ϕ; ω) -∇H 0 * t (ω) ≤ C m A m 1 + A 1 m (9.157) for each t ∈ [0, δ], (ϕ, ω) ∈ T n × Ω and α, β ∈ N n with |α| + |β|(τ + 1) ≤ m(τ + 1) + 1,
where the constant C m > 0 depends only on n, τ , ϑ 0 and m.

(iii) supp ( U t , V t ) -(id, ∇H 0 * t ) ⊂ T n × (Ω -κ/2).
Remark 9.2. If P is analytic with respect to t in the disc B(0, a) := {t ∈ C : |t| < a} and (9.156) holds for t ∈ B(0, a), then Ψ and φ can be chosen to be analytic with respect to t in B(0, a). Moreover, for any α, β ∈ N n of length |α| + |β|(τ + 1) ≤ m(τ + 1) + 1 and 0 < a 1 < a, the estimate (9.157) holds true for t ∈ B(0, a 1 ), where the supremum with respect to t in the definition of A m is taken in B(0, a).

Proof. The idea of the proof is given by Pöschel in [START_REF] Pöschel | Integrability of Hamiltonian systems on Cantor sets[END_REF]. It can be summarized as follows. Let us fix ω ∈ Ω set r = ∇H 0 * t (ω) + I and apply Taylor's formula up to order two to the function I → H 0 t (∇H 0 * t (ω) + I) at I = 0. Then the afine linear with respect to I term is just N t (I; ω) = e t (ω) + I, ω and we put the quadratic term in the perturbation. Multiplying the perturbation by suitable cut-off functions we obtain a Hamiltonian H t (θ, I; ω) = N (I; ω) + P t (θ, I; ω), where t → P t ∈ C ∞ (T n × R n × Ω) is C k and P t are compactly supported with respect to (I; ω). The smallness condition allows one to apply Theorem 10.1. The main difficulty in the proof is to obtain the corresponding estimates in C , ≥ 0. We devide the proof in several steps.

Step 1. Construction of the Hamiltonian H t (θ, I; ω). Given ω ∈ Ω -κ/4 and I in the ball B n (0, ) ⊂ R n of center 0 and radius , we set r = ∇H 0 * t (ω) + I. Choosing = (n, τ, ϑ 0 ) ≤ 1/9 in (9.156) we will show that

ω ∈ Ω -κ/4, I ∈ B n (0, ) =⇒      ∇H 0 * t (ω) + I ∈ D t and ∇H 0 t (∇H 0 * t (ω) + I) ∈ Ω - 1 8 κ (9.158) for each t ∈ [0, δ]. Fix t ∈ [0, δ]. The smallness condition (9.156) implies that ∂ 2 H 0 t C 0 (Dt) ≤ κ/ since S 0 (∇H 0 * ) > 1.
Then for each ω ∈ Ω -κ/4 there is a positive number c ≤ such that for any I ∈ B n (0, c) the following relation holds

     ∇H 0 * t (ω) + I ∈ D t and |∇H 0 t (∇H 0 * t (ω) + I) -ω| ≤ ∂ 2 H 0 t C 0 (Dt) |I| ≤ κ c < κ 9 .
(9.159)

Using the notations (9.149) one obtains ∇H 0 t (∇H 0 * t (ω) + I) ∈ (Ω -κ/4) + κ/9 = (Ω -κ/8) -κ/72 for any I ∈ B n (0, c). If c < , then there exists c < c ≤ such that (9.159) still holds for each I ∈ B n (0, c ). This proves (9.158). Then Taylor's formula yields

H 0 t (r) = e t (ω) + I, ω + 1 0 (1 -s) ∂ 2 H 0 t (∇H 0 * t (ω) + sI)I, I ds.
for ω ∈ Ω -κ/4 and I ∈ B n (0, ), where e t (ω) := H 0 t (∇H 0 * t (ω)). In order to apply Theorem 10.1 we need suitable cut-off functions. Lemma 9.3. For any open set U ⊂ R n and 0 < ε ≤ 1 there exists a smooth cut-off function 

ψ U ε ∈ C ∞ 0 (R n , [0, 1]) such that ψ U ε = 1 on U -ε, ψ U ε =
P 0 t (I; ω) := 1 0 (1 -s) ∂ 2 H 0 t (∇H 0 * t (ω) + sI)I, I ψ κ (ω) ψ (I) ds,
is well defined and compactly supported in B n (0, ) × Ω. Setting for I ∈ B n (0, /2) and ω ∈ Ω -3κ/4.

P 1 t (θ, I; ω) := (H t -H 0 t )(θ, ∇H 0 * t (ω) + I)ψ κ (ω)
Step 2. Hölder estimates of P t . For any ≥ 1 we are going to evaluate the weighted norm

P t ;r,κ := P t • σ r,κ C (U ) , U := σ -1 r,κ (T n × B n (0, ) × Ω),
introduced in (10.204). In order to estimate P 0 t ;r,κ we set Γ := B n (0, )

× (Ω -8κ/9), Γ t := B n (0, ) × D t , Q 1 t (I, r) = 1 0 (1 -s) ∂ 2 H 0 t (r + sI) ds and Q 0 t (I, r) = Q 1 t (I, r)I, I for (I, r) ∈ Γ t .
Then we write

P 0 t (I, ω) = ψ κ (ω) ψ (I)Q 0 t (I, ∇H 0 * t (ω)).
The function

Q 0 t • (id, ∇H 0 * t ) belongs to C ∞ (Γ)
, where Γ is convex. Then using Remark A.2, (9.160) and (9.161) we obtain

P 0 t ; ,κ ≤ C Q 0 t • (id, ∇H 0 * t ) ; ,κ .
Proposition A.12, 3, and Remark A.13 imply for any ≥ 1 the estimate

Q 0 t • (id, ∇H 0 * t ) ; ,κ ≤ C |||Q 0 t ||| ,Γt; ,κ S (∇H 0 * ),
where the norm ||| • ||| is defined in (9.151). Using (A.22) and the inequality 0 < ≤ κ we obtain 

Q 0 t ,Γt; ,κ ≤ C 2 |||Q 1 t ||| ,Γt; ,κ ≤ C 2 |||Q 1 t ||| ,Γt;κ,κ ≤ C 2 |||∂ 2 H 0 t |||
P t 0 ; ,κ ≤ C A 0 S 0 (∇H 0 * t ) ≤ C κ . (9.164)
This allows us to apply Theorem 10.1 to the Hamiltonian (θ,

I) → H t (θ, I; ω). Set Ψ t = ( U t , V t ), where U t = U t and V t = (∇H 0 * t ) • φ t + V t
, where (U t , V t , φ t ) are given by Theorem 10.1. Notice that V t C 0 ≤ c in view of the estimates in (ii), Theorem 10.1, where the constant c depends only on n, τ and ϑ 0 , and taking < min(1, 1/c)/2 we obtain V t (θ; ω) ∈ B n (0, /2) for any θ ∈ T n and ω ∈ Ω -κ. In the same way we get φ t (ω) ∈ Ω -3κ/4 for ω ∈ Ω -κ. In particular, ψ (V t (θ; ω)) = 1 and ψ κ (φ t (ω)) = 1 for any (θ, ω) ∈ T n × (Ω -κ).

By (10.207) and (10.208), we have

|d θ U t (θ; ω) -Id| ≤ C 1 (n, τ, ϑ 0 ) ≤ 1/2 for (θ, ω, t) ∈ T n × Ω × [0, a]
, choosing sufficiently small. Now Remark 10.3 implies that for any ω ∈ Ω κ and t ∈ [0, δ] the Lagrangian manifold Λ t (ω) := Ψ t (T n ; ω) is a Kronecker invariant torus of H t of a frequency vector ω satisfying (i) in Theorem 9.1.

Step 4. Estimates of U t and V t . The estimates (ii), Theorem 10.1, imply (ii) in Theorem 9.1 using the estimates of P t ; ,κ given above. To estimate the derivatives of 

V t -∇H 0 * t = V t + (∇H 0 * t ) • φ t -∇H 0 *
(∇H 0 * t ) • φ t -∇H 0 * t m,Ω;κ ≤ C m A m 1 + A 1 m .
Proof. The proof of the lemma is based on higher order Hölder estimates of a composition of functions given in the Appendix. We write

∇H 0 * t (φ t (ω)) -∇H 0 * t (ω) = u t (ω) • v t (ω)
where

u t (ω) = φ t (ω) -ω ∈ M 1,n (R) and v t (ω) = 1 0 (∂ 2 H 0 * t )(ω + s(φ t (ω) -ω)) ds ∈ M n,n (R).
Theorem 10.1 and (9.163) imply

φ t -id m,Ω;κ ≤ C m A 0 m S (m) (∇H 0 * )
where

S (m) (∇H 0 * ) = sup 0≤t≤δ 1 + ∇H 0 * t 1 (m)-1 1 + ∇H 0 * t (m)
is increasing with respect to m ∈ N since Ω is convex. Moreover, (9.156) yields φ t -id 0 ≤ Cεκ.

Notice that v t is well-defined and C ∞ smooth in the convex set Ω. Indeed, the image of Ω under the map

ω → ω + s(φ t (ω) -ω) is contained in Ω when ε < 1/2C since supp (φ t -id) ⊂ Ω -κ/2 and φ t -id 0 < κ/2. Let m = 0. Then (∇H 0 * t ) • φ t -∇H 0 * t C 0 (Ω) ≤ C 0 A 0 0 S 0 (∇H 0 * ) ∇H 0 * t C 1 (Ω) < C 0 A 0 0 S 0 +1 (∇H 0 * ) = C 0 A 0 since Ω is convex. Let m ≥ 1. Using Remark A.2 we get ∇H 0 * t • φ t -∇H 0 * t m,Ω;κ ≤ C m φ t -id m,R n ;κ v t C 0 (Ω) + φ t -id C 0 (R n ) v t m,Ω;κ .
We obtain as above

φ t -id m,R n ;κ v t C 0 (Ω) ≤ C m A 0 m S (m) (∇H 0 * ) ∇H 0 * t C 1 (Ω) < C m A 0 m S (m)+1 (∇H 0 * ) = C m A m
since Ω is convex. On the other hand, Proposition A.9, 3,

applied to f = (id + s(φ t -id)) • σ κ and g = ∂ 2 H 0 * t ∈ C ∞ (Ω, M n,n (R)) yields v t m,Ω;κ ≤ C m 1 + φ t -id m-1 1;κ × ∇H 0 * m+1 (1 + φ t -id 1 ) + ∇H 0 * 2 φ t -id m;κ
where the corresponding C norms of ∇H 0 * are evaluated on Ω. Then

φ t -id C 0 (R n ) v t m,Ω;κ ≤ C m A 0 0 1 + A 1 m-1 S 0 (∇H 0 * ) × ∇H 0 * m+1 1 + A 1 + ∇H 0 * 2 A 0 m S (m) (∇H 0 * )
The interpolation inequalities (A.8) and Remark A.2 yield for any r, s ≥ 1 and f ∈ C r+s-1 (Ω) the estimate f r f s ≤ C r,s f 1 f r+s-1 , where C r,s > 0 depends only on r, s and n. Applying this inequality to f = ∇K * t and using the convexity of Ω we obtain

S 0 (∇H 0 * ) ∇H 0 * t m+1 < C m S 0 +m (∇H 0 * ) < C m S (m)+1 (∇H 0 * ) and S (m) (∇H 0 * ) ∇H 0 * t 2 ≤ C m S (m)+1 (∇H 0 * ).
On the other hand A 0 0 S 0 (∇H 0 * ) ≤ εκ by (9.156) and A 0 0 ≤ A 0 m for m ≥ 0 by definition and we obtain

φ t -id C 0 (R n ) v t m,Ω;κ ≤ C m A m 1 + A 1 m
This completes the proof of the Lemma. 2

Statement (iii) follows from the definition of U and V using Theorem 10.1. 2

KAM theorem with parameters for symplectic maps

We are going to prove an analogue of Theorem 10.1 for symplectic maps. More precisely, given a C k family of "small" exact symplectic perturbations (θ, r) → P t (θ, r; ω) of the translation (θ, r) → R ω (θ, r) := (θ + ω, r) with a Diophantine frequency ω, we are going to find a C k family of Kronecker invariant tori of P t (θ, r; φ t (ω)), where t → φ t is a C k family of diffeomorphisms close to the identity map. Moreover, we will estimate the C m , m ∈ N, norm of φ t -id, and of the displacement of the Kronecker tori with respect to the corresponding inperturbed tori.

Let Ω ⊂ [0, 2π) n-1 be an open convex set. We identify Ω with an open convex subset of T n-1 . Fix k ∈ {0, 1} and 0 > 0 and consider a C k family of exact symplectic maps

[0, δ] t → P t (•; ω) ∈ C ∞ (T n-1 × B n-1 (0, 0 ), T n-1 × R n-1 )
depending smoothly on a parameter ω ∈ Ω. We suppose that P t (•; ω) is defined by a generating functions G t (•; ω) of the form

G t (θ, r; ω) := θ, r -ω, r -G t (θ, r; ω) (9.165) i.e. P t (θ -ω -∇ r G t (θ, r; ω), r; ω) = (θ, r -∇ θ G t (θ, r; ω), r)
for any (θ, r) ∈ T n-1 × B n-1 (0, 0 ) and ω ∈ Ω and that the C 2 norm of G t (•; ω) is sufficiently small. If G t = 0 then P t (•; ω) becomes a translation with ω, namely, R ω (θ, r) = (θ + ω, r). In general we consider G t as a small perturbation depending smoothly on the frequency ω as well.

Thus the perturbation is a real valued function (θ, I; ω, t) → G(θ, I; ω, t)

defined in A × Ω × [0, δ],
where A := T n × B(0, 0 ). Hereafter, we assume that

G ∈ C k ([0, δ]; C ∞ (A × Ω)) (9.166) with k = 0 or k = 1, i.e. the map t → G t := G(•, t) ∈ C ∞ (T n-1 × B(0, ρ 0 ) × Ω) is C k -smooth on the interval [0, δ].
Given > 0 and 0 < , κ ≤ 1 we denote by G t ; ,κ the weighted Hölder norm

G t ; ,κ := G t • σ ,κ C (σ -1 ,κ (A×Ω)) (9.167)
where σ ,κ is the partial dilation σ ,κ (ϕ, I; ω) := (ϕ, I; κω) and the Hölder norms are defined in Section A.1. Note that the function → G t ; ,κ is increasing in the interval [0, +∞) since the set B(0, ρ 0 ) × Ω is convex. Fix τ > n -1 and κ ∈ (0, 1), and define Ω κ as the set of all (κ, τ )-Diophantine vectors satisfying (1.2) and such that dist (ω, T n-1 \ Ω) ≥ κ, i.e.

Ω κ = D(κ, τ ) ∩ Ω -κ. (9.168)
Recall that ϑ 0 , 0 and (m) are defined in (9.153). The following statement is a counterpart of Theorem 10.1 in the case of exact symplectic mappings.

Theorem 9.5. There is a positive constant = (n, τ, ϑ 0 ) depending only on n, τ and on ϑ 0 such that for any δ > 0, 0 < κ < 1 and 0 < ≤ ρ 0 the following holds.

Let P t be a C k family of exact symplectic maps with generating functions G t satisfying (9.165) and (9.166) and such that sup

t∈[0,δ] G t 0 +1; ,κ ≤ κ . (9.169)
Then there exists a C k family of maps

[0, δ] t → φ t ∈ C ∞ (Ω; Ω), [0, δ] t → Ψ t = (U t , V t ) ∈ C ∞ (T n-1 × Ω; T n-1 × B n-1 (0, )) such that (i) supp (φ t -id) ⊂ Ω -κ/2, supp (U t , V t ) -(id, 0) ⊂ T n-1 × (Ω -κ/2);
(ii) For each ω ∈ Ω κ and t ∈ [0, δ] the map Ψ t,ω := Ψ t (•, ω) :

T n-1 → T n-1 × B(0, ) is a smooth embedding, Λ t (ω) := Ψ t,ω (T n-1
) is an embedded Lagrangian torus invariant with respect to the exact symplectic map given by P t,φt(ω) (θ, I) := P (θ, I; φ t (ω), t), and

P t,φt(ω) • Ψ t,ω = Ψ t,ω • R ω on T n ;
(iii) For any m ∈ N there is C m > 0 depending only on m, n, τ and ϑ 0 such that for any α, β ∈ N n with |α| + |β|(τ + 1) ≤ m(τ + 1) + 1 the following estimate holds

∂ α θ (κ∂ ω ) β (U t (θ; ω) -θ) + -1 ∂ α θ (κ∂ ω ) β V t (θ; ω) + κ -1 (κ∂ ω ) β (φ t (ω) -ω) ≤ C m ( κ) -1 G t (m)+1; ,κ (9.170) uniformly in (θ, ω, t) ∈ T n-1 × Ω κ × [0, δ].
If P t is analytic with respect to t in a disc B(0, a) then so are U , V and φ.

Proof. To simplify the notations we fix k = 1. The first step in the proof will be to modify P t by multiplying G t by suitable cut-off functions without changing the corresponding estimates. This allows us to work with compactly supported functions. To this end we use the cut-off functions ψ and ψ κ constructed in the previous sub-section by means of Lemma 9.3. We set G 1 t (θ, I; ω) := G t (θ, I; ω) ψ (I)ψ κ (ω) and denote by P 1 t the exact symplectic map with generating function G 1 t (θ, r; ω) := θ, r -ω, r -G 1 t (θ, r; ω). The function → G t ; ,κ is increasing in the interval [0, +∞) since the set B(0, ρ 0 ) × Ω is convex. Then using (A.22) one obtains

G 1 t ; ,κ ≤ C G t ; ,κ ,
where C depends only on n and . In particular, it follows from (9.169) that

σ -1 sgrad G 1 t 1; ,κ ≤ C 1 σ -1 sgrad G t 0 -1; ,κ ≤ C 1 κ
which allows one to apply Lemma A.15. Hereafter sgrad

G 1 t (θ, r; ω) := (∇ r G 1 t (θ, r; ω), -∇ θ G 1 t (θ, r; ω))
is the simplectic gradient of G 1 t . We have

P 1 t (θ, r; ω) = (θ + ω, r) for (r, ω) / ∈ B n-1 (0, 7 /8) × (Ω -κ/4).
Moreover,

P 1 t (θ, r; ω) = P t (θ, r; ω) for (θ, r; ω) ∈ T n-1 × B n-1 (0, /2) × (Ω -κ)
since G 1 t = G t on that set. This allows us to replace G t by G 1 t and P t by P 1 t in the theorem. From now on we suppose that supp G t ⊂ A := T n-1 × B n-1 (0, ) × (Ω -κ/4).

Set

N ω,ωn (r,

r n ) := ω, r + ω n r n , (ω, ω n ) ∈ Ω × I, I = (π, 3π),
Using an argument of Douady [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF] (see also Theorem 1.1 [START_REF] Popov | On the contribution of degenerate periodic trajectories to the wave-trace[END_REF] and Theorem 3.1 [START_REF] Popov | Length spectrum invariants of Riemannian manifolds[END_REF]), we are going to find a C 1 family of Hamiltonians

(θ, θ n , r, r n ) → H t (θ, θ n , r, r n ; ω, ω n ) = ω, r + ω n r n + h t (θ, θ n , r; ω) (9.171)
in T n × R n depending smoothly on parameters (ω, ω n ) ∈ Ω × I with the following propertiesh t is "small" and the corresponding Poincaré map is given by P t at any energy surface. Then we will apply Theorem 10.1 to the family H t . We set y = (y

, y n ) ∈ R n , (θ, θ n ) = pr(y) ∈ T n , η = (η , η n ) = (r, r n ) and ω := (ω, ω n ) ∈ Ω := Ω × I.
We shall denote by Σ c the energy surface

Σ c := {H t = c} ⊂ T n × R n for c ∈ R and by ı c : T n-1 × R n-1 → Σ c ∩ {θ n = 0} the corresponding inclusion map, i.e. ı c (θ, r) = (θ, 0, r, (c -ω, r -h t (θ, 0, r; ω))/ω n ).
Proposition 9.6. There is a C 1 family of Hamiltonians

H t (θ, η; ω) := N ω (η) + h t (θ, η ; ω) , h t ∈ C ∞ (T n × R n-1 × Ω) , ω ∈ Ω × (π, 3π), such that (i) P t = ı -1 c • Φ 2π ωn t
• ı c for any c ∈ R, where ı c is the corresponding inclusion map and Φ x t , x ∈ R, is the Hamiltonian flow of H t , (ii) supp (h t ) ⊂ A := T n × B n-1 (0, ) × Ω and the following estimate holds

h t ,A ; ,κ ≤ C G t +1,A ; ,κ
for any ≥ 2 and 0 < , κ ≤ 1, where T n × R n-1 × Ω, C > 0 depends only on and n.

(iii) h t (θ, η ; ω) = 0 for |θ n | ≤ π/2. Proof. Choose η ∈ C ∞ (R) such that 0 ≤ η ≤ 1, η(s) = 0 for |s| ≤ 1/4 and η(s) = 1 for |s| ≥ 1/2. Consider the family of exact symplectic maps s → P s t in A = T n-1 × R n-1 for s ∈ R having generating functions of the form G s t (θ, r; ω) := θ, r -s ω, r -η(s)G t (θ, r; ω), (θ, r; ω) ∈ R n-1 × R n-1 × Ω.
We have

P s t = Q s • W s t ,
where Q s (θ, r; ω) = (θ + sω, r) and the generating function of W s t is θ, r -η(s)G t (θ, r; ω). Set G(θ, r; ω, t) = G t (θ, r; ω) and denote the symplectic gradient of G with respect to (θ, r) by sgrad G(θ, r; ω, t) := (∇ r G(θ, r; ω, t), -∇ θ G(θ, r; ω, t)).

Notice that

P s t (θ, r; ω) = (θ + sω, r) ∀ s ∈ [-1/4, -1/4] P s t (θ, r; ω) = P t (θ, r; ω) ∀ s ∈ (-∞, -1/2] ∪ [1/2, +∞).
(9.172) Denote by

ξ s t := dP s t ds • (P s t ) -1 , s ∈ R
the corresponding vector field and set v(θ, s, r; ω) = (ω, 0). Then

ξ s t (θ, r; ω) = v(θ, s, r; ω) = (ω, 0) ∀ s ∈ (-∞, -1/2] ∪ [-1/4, 1/4] ∪ [1/2, +∞).
We set ξ t (θ, s, r; ω) = ξ s t (θ, r) where (θ, s)

∈ T n-1 × [0, 1]. Lemma 9.7. We have ξ s t (θ, r; ω) = (ω, 0) for s ∈ [0, 1/4] ∪ [1/2, 1] and supp (ξ t -v) ⊂ A := T n-1 × (0, 1) × B n-1 (0, ) × Ω.
Moreover, the following estimates hold

σ -1 (ξ t -v) ,A ;ρ,κ ≤ C σ -1 sgrad G t (•; ω) ,A ;ρ,κ
where ≥ 1 and C > 0 depends only on and n.

Proof. We have ξ s t = v + dW s t /ds • (W s t ) -1 . By Lemma A.14 the support of W s t -id is contained in A . The estimates of dW s t /ds and (W s t ) -1 follow from Proposition A.12, Lemma A.14 and Lemma A.15 taking into account (9.169). To obtain the corresponding estimates for the composition dW s t /ds • (W s t ) -1 we use Proposition A.12.
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Notice that the one-form ı(ξ s t )dθ ∧ dr is exact, where dθ ∧ dr = n-1 j=1 dθ j ∧ dr j is the standard symplectic two-form in T * T n-1 and ı(v) is the inner product with the vector field v. This follows from the identity ı(ξ s t )dθ ∧ dr = (P s t ) * (

d ds (P s t ) * (rdθ) -d(ı(ξ s t )rdθ)) since (P s t ) * (rdθ) -rdθ is exact. Let h s t be a primitive of      ı(ξ s t -v)dθ ∧ dr = -dh s t h s t (0, 0; ω) = 0. (9.173)
The first equality in (9.173) means that

∂ ϕ h s t ∂ r h s t = 0 I -I 0 (ξ s t -v).
The second one combined with Lemma 9.7 implies that supp (h t ) ⊂ A and

h t ,A ; ,κ ≤ C ∂ θ h t ,A ; ,κ + ( ∂ I )h t ,A ; ,κ ≤ C ∂ θ h t ,A ; ,κ + ( ∂ I )h t -1,A ; ,κ ≤ C G t +1,A ; ,κ .
We denote as above y = (y , y n ) ∈ R n , where y n = 2πs, (θ, θ n ) = pr(y) ∈ T n , η = (η , η n ) = (r, r n ), and set

h t (y, η ; ω) := h yn/2π t (y , η ; ω), H t (y, η; ω, ω n ) := ω, η + ω n η n + h t (y, η ; ω).
Let N (η; ω, ω n ) = ω, η + ω n η n be the corresponding normal form. The Hölder norms of H t -N = h t have been estimated above which proves (ii).

Notice that

h s t (θ, r) = 0 for s ∈ [0, 1/4] ∪ [1/2, 1] since ξ s t (θ, r; ω) = (ω, 0) there. Then h t (θ, η n , r, ω) = 0 ∀ θ n ∈ [0, π/2] ∪ [π, 2π]
which gives (iii). To obtain (i), consider the Hamiltonian vector field X Ht given by ı(X Ht )dy ∧ dη = -dH t (y, η).

By (9.173) we get

(∂ r H t (θ, y n , r, r n ), -∂ θ H t (θ, y n , r, r n )) = (∂ r h yn/2π t (θ, r) + ω, -∂ θ h yn/2π t (θ, r)) = ξ yn/2π t (θ, r).
Moreover, ∂ rn H t (θ, y n , r, r n ) = ω n . Setting P s t (θ, r) = (p s t (θ, r), q s t (θ, r)) we obtain that the Hamiltonian flow Φ s t of H t is given by

Φ x t (θ, y n , r, r n ) = (p xωn/2π t (θ, r), y n + xω n , q xωn/2π t (θ, r), q xωn/2π n (θ, y n , r, r n ))
for x ∈ R, where t → q n is a C 1 family of smooth functions. This yields Φ 2π ωn t (θ, 0, r, r n ) = (p 1 t (θ, r), 2π, q 1 t (θ, r), q 1 n (θ, 0, r, r n )).

This implies (i) and completes the proof of the proposition. 2

In particular, we have

h t 0 ,A ; ,κ ≤ C κ for t ∈ [0, a],
where C > 0 depends only on 0 and n. Then Proposition 9.6 allows us to apply Theorem 10.1 to the perturbation H t of N in T n × B n (0, ) × Ω, where Ω := Ω × (π, 3π). Denote by Ψt = ( Ũt , Ṽt , φt ) :

T n × B n (0, ) × Ω → T n × B n (0, ) × Ω
the map given by Theorem 10.1. To obtain the map Ψ t from Ψt we use an argument of Douady [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF]. Fix ω ∈ Ω κ and t ∈ [0, δ]. Then ω := (ω, 2π) for any y ∈ T n . The function T n y → U t,n (y; ω) ∈ T is determined up to a translation and we fix it by U t,n (0; ω) = 0. Then Ũt,n (y; ω) = a t (ω), y and a t (ω) ∈ Z n . On the other hand, |∇ y Ũt (y; ω) -Id| ≤ C(n, τ, ϑ 0 ) in view of (10.208) and (10.207). Taking = (n, τ, ϑ 0 ) small enough we obtain that a t = (0, . . . , 0, 1) and Ũt,n (y; ω) = y n . Now we set

∈ Ωκ := D(κ, τ ) ∩ ( Ω -κ),
Ψ t (θ, r) = (U t (θ, ω), V t (θ, ω)) := p( Ũt (θ, 0, ω), Ṽt (θ, 0, ω)), φ t (ω) = φt (ω), ω = (ω, 2π),
where p is the projection given by p(θ, θ n , r, r n ) = (θ, r). Using Proposition 9.6 one obtains that for each ω ∈ Ω κ , the torus

Λ t (ω) := p( Λt (ω))
is a Kronecker invariant torus of P t,φt(ω) with a frequency vector ω and we obtain (ii). Moreover, (9.157) implies (9.170). To prove the analyticity with respect to t we use Cauchy theorem at any step of the construction. This completes the proof of Theorem 9.8. 2

KAM theorems for C k families of symplectic maps

The aim of this section is to obtain C k families of Kronecker invariant tori of C k families of exact maps close to the family (θ, r) → (θ + ∇K t (r), r), t ∈ [0, δ].

Let Ω ⊂ [0, 2π] n-1 be an open convex set which we identify with an open convex subset of T n-1 . Fix k ∈ {0, 1} and consider a C k -family of real-valued functions

[0, δ] t → K * t ∈ C ∞ (Ω, R)
satisfying the non-degeneracy condition

∇K * t : Ω -→ D t := ∇K * t (Ω) is a diffeomorphism. (9.175)
where Ω is the closure of Ω. For any t ∈ [0, δ] the Legendre transform R) and it satisfies the non-degenerate condition (9.145). Moreover, the corresponding family of functions [0, δ] t

K t : D t → Ω of K * t is in C ∞ (D t ,
→ K t ∈ C ∞ (D t , R) is C k smooth. We set A t := T n-1 × D t and denote by Q t : A t → A t , Q t (θ, r) = (θ + ∇K t (r), r) (9.176)
the corresponding family of exact symplectic maps on A t . The frequency vector of Q t on the invariant torus

T n-1 × {r} is ω = ∇K t (r) ∈ Ω.
We consider a C k -family of exact symplectic maps

[0, δ] t → P t ∈ C ∞ (A t , T n-1 × R n-1 ) (9.177) close Q t .
We suppose that P t is defined by a generating function G t of the form

G t (θ, r) := θ, r -K t (r) -G t (θ, r) (9.178)
which means that

P t (θ -∇K t (r) -∇ r G t (θ, r), r) = (θ, r -∇ θ G t (θ, r))
for any (θ, r) ∈ A t . We suppose as well that the map

[0, δ] t → G t ∈ C ∞ (T n-1 × D t , R) is C k smooth with k = 0 or k = 1.
We assume as well that the C 2 norm of G t is sufficiently small. Then the inverse function theorem implies that the map θ → θ -∇ r G t (θ, r) is a diffeomorphism of T n-1 for any fixed r ∈ D t and P t is well defined.

Denote by R t the exact symplectic map with generating function (θ, r)

→ θ, r -G t (θ, r), i.e. R t (θ -∇ r G t (θ, r), r) = (θ, r -∇ θ G t (θ, r)). One can show that P t = R t • Q t on A t (see Lemma A.16).
Given , κ ∈ (0, 1) and m ≥ 0 we set Recall that ϑ 0 , 0 and (m) are defined in (9.153). The sequence B 0 m , m ≥ 0, is increasing by definition.

B 0 m := sup 0≤t≤δ 2 |||∂ 2 K t ||| (m)+1,Dt;κ + |||G t ||| (m)+1,At;κ , (9.179) where G t ,At;κ := G t • σ κ C (σ -1 κ (At)) , σ κ is defined by σ κ (x, ξ) = (x,
To formulate the smallness condition in the KAM theorem below we need as well the notation Let

S (∇K * ) := sup 0≤t≤δ 1 + ∇K * t C 1 (Ω) -1 1 + ∇K * t C (Ω) (9.
Ω ⊂ T n-1 be an open convex set, [0, δ] t → K * t ∈ C ∞ (Ω, R) a C k family satisfying (9.175) and let > 0 and κ > 0 be such that 0 < ≤ κ ≤ 1 and Ω κ = ∅. Consider a C k family of exact symplectic maps [0, δ] P t ∈ C ∞ (A t , T n-1 × R n-1
) with generating functions G t of the form (9.178) such that

B 0 0 S 0 +1 (∇K * ) = sup 0≤t≤δ 2 |||∂ 2 K t ||| 0 +1,Dt;κ + |||G t ||| 0 +1,At;κ S 0 +1 (∇K * ) ≤ κ. (9.182)
Then there is a

C k family [0, δ] t → f t = (u t , v t ) ∈ C ∞ (T n-1 × Ω; T n-1 × D t ) such that (i) for any ω ∈ Ω κ , [0, δ] s → Λ t (ω) = f t,ω (T n-1
) is a C k family of Kronecker invariant tori of of P t with a frequency vector ω, where f t,ω := f t (•; ω), and the following diagram is commutative

T n-1 Rω -→ T n-1 ↓ f t,ω ↓ f t,ω Λ t (ω) Pt -→ Λ t (ω) (ii) for any m ∈ {0} ∪ [1, +∞) the following estimates hold ∂ α ϕ (κ∂ ω ) β u t (ϕ; ω) -ϕ) ≤ C m B m κ ∂ α ϕ (κ∂ ω ) β v t (ϕ; ω) -∇K * t (ω) ≤ C m B m 1 + B 1 m (9.183) for any (ϕ, ω) ∈ T n-1 × Ω κ , t ∈ [0, δ],
and multi-indices α, β ∈ N n-1 with |α| + |β|(τ + 1) ≤ m(τ + 1) + 1, where the constant C m > 0 depends only on n, τ , ϑ 0 and m,

(iii) supp (u t , v t ) -(id, ∇K * t ⊂ T n-1 × (Ω -κ/2).
If P is analytic with respect to t in a disc B(0, a) then so are u and v.

We note that the C 1 families of invariant tori Λ t (ω), t ∈ [0, δ], given by the theorem are uniquely defined.

Proof. The proof is similar to that of Theorem 9.1 and we give only the main steps in it. We are going to apply Theorem 9.5. To this end we will firstly construct the function G t (θ, r; ω) in (9.165).

Step 1. Construction of the generating function G t (θ, r; ω). Given ω ∈ Ω -κ/4 and I the ball B n-1 (0, ), we set r = ∇K * t (ω) + I. Choosing = (n, τ, ϑ 0 ) < 1/9 in (9.182) we obtain as in the proof of of Theorem 9.1 the following relation

∀ ω ∈ Ω -κ/4, ∀ I ∈ B n-1 (0, ),      ∇K * t (ω) + I ∈ D t and ∇K t (∇K * t (ω) + I) ∈ Ω - 1 8 κ. 
(9.184) By Taylor's formula we obtain

G t (θ, r) = θ, ∇K * t (ω) + θ, I -K t (∇K * t (ω)) -ω, I -G 0 t (I; ω) -G 1 t (θ, I; ω), (9.185) 
where

G 0 t (I; ω) = 1 0 (1 -s) ∂ 2 K t (∇K * t (ω) + sI)I, I ds
and G 1 t (θ, I; ω) := G t (θ, ∇K * t (ω) + I). It follows from (9.184) that the functions G 0 t and G 1 t are well defined for I ∈ B n-1 (0, ) and ω ∈ Ω -κ/4. Denote by P t,ω : A t → T n-1 × R n-1 the exact symplectic map defined by means of the generating function

(θ, I) → G t,ω (θ, I) := θ, I -ω, I -G 0 t (I; ω) -G 1 t (θ, I; ω) = G t (θ, ∇K * t (ω) + I) -θ, ∇K * t (ω) -K t (∇K * t (ω))
and set ψ ω (θ, I) = (θ, ∇K * t (ω) + I).

Lemma 9.9. For any ω ∈ Ω -κ/4 the map P t,ω : A t → T n-1 × R n-1 is well defined and

P t,ω = ψ -1 ω • P t • ψ ω on T n-1 × B n-1 (0, ) provided that the constant = (n, τ, ϑ 0 ) in (9.182) is sufficiently small. Proof. The smallness condition (9.182) implies that ∇ θ ∇ I G t,ω (θ, I) -Id n ≤ C for (θ, I; ω) ∈ T n-1 × B n-1 (0, ) × (Ω -κ/4
), where C = C(n) depends only on the dimension n and Id n ∈ M n (R n-1 ) is the identity matrix. Choosing = (n, τ, ϑ 0 ) sufficiently small we obtain that the map θ → ϕ = ∇ I G t,ω (θ, I) is a diffeomorphism on T n-1 for any fixed I ∈ B n-1 (0, ) and ω ∈ Ω -κ/4, hence, P t,ω is well-defined. Notice that

∇ I G t,ω (θ, I) = ∇ r G t (θ, ∇K * t (ω) + I) and ∇ θ G t,ω (θ, I) = ∇ θ G t (θ, ∇K * t (ω) + I) -∇K * t (ω). Then (ψ ω • P t,ω ) ∇ r G t (θ, ∇K * t (ω) + I), I = θ, ∇ θ G t (θ, ∇K * t (ω) + I) .
On the other hand,

(P t • ψ ω ) ∇ r G t (θ, ∇K * t (ω) + I), I = P t ∇ r G t (θ, ∇K * t (ω) + I), ∇K * t (ω) + I = θ, ∇ θ G t (θ, ∇K * t (ω) + I)
and we obtain that

ψ ω • P t,ω = P t • ψ ω since the map θ → ∇ r G t (θ, r) is a diffeomorphism. 2
Step 2. Hölder estimates of G t . We are going to apply Theorem 9.5 to the family of exact symplectic maps P t (•; ω) := P t,ω (•). To this end we evaluate the weighted norms of G 0 t and G 1 t . We have

G 0 t = Q 0 t • (id, ∇K * t )
, where

Q 0 t (I; r) = 1 0 (1 -s) ∂ 2 K t (r + sI)I, I ds
is well defined and smooth in Γ, Γ := B n-1 (0, ) × (Ω -κ/4). As in the proof of Theorem 9.1 we obtain that

|||Q 0 t ||| ,Γ; ,κ ≤ C 2 |||∂ 2 K t ||| ,Dt;κ .
Since Ω is convex and K * t ∈ C ∞ (Ω) using Proposition A.12, 3., and Remark A.13 as in the proof of Theorem 9.1we obtain for any ≥ 1 the estimate

G 0 t ; ,κ ≤ C 2 |||∂ 2 K t ||| ,Dt;κ S (∇K * ). Moreover, G 1 t ; ,κ ≤ G 1 t ;κ,κ ≤ C |||G t ||| ;κ S (∇K * ) since 0 < ≤ κ ≤ 1 and we obtain G 0 t ; ,κ + G 1 t ; ,κ ≤ C 2 |||∂ 2 K t ||| ,Dt;κ + |||G t ||| ,At;κ S (∇K * ). (9.186) 
Step 3. Applying Theorem 9.5. Now (9.182) gives

G 0 t 0 +1; ,κ + G 1 t 0 +1; ,κ ≤ B 0 S 0 +1 (∇K * ) ≤ κ.
This allows us to apply Theorem 9.5 to the family of exact symplectic maps

P t (•; ω) = P t,ω (•). Set Ψ t = (u t , v t ), where u t = U t , v t = (∇K * t ) • φ t + V t and (U t , V t , φ t
) are given by Theorem 9.5. Notice that V t C 0 ≤ c in view of the estimates in (ii), Theorem 9.5, where the constant c depends only on n, τ and ϑ 0 , and taking < min(1, 1/c) we obtain V t (θ; ω) ∈ B n-1 (0, ) for any θ ∈ T n-1 and ω ∈ Ω -κ. In the same way we get φ t (ω) ∈ Ω -κ/4 for ω ∈ Ω -κ. Now Lemma 9.9 implies that for any ω ∈ Ω κ and t ∈ [0, δ] the Lagrangian manifold Λ t (ω) := Ψ t (T n-1 ; ω) is a Kronecker invariant torus of P t of a frequency vector ω satisfying (i) in Theorem 9.8.

Step 4. Estimates of u t and v t .

The estimates (ii), Theorem 9.5, imply (ii) in Theorem 9.8. To estimate the derivatives of

v t -∇K * t = V t + (∇K * t ) • φ t -∇K * t
we use (ii), Theorem 9.5 and the following Lemma which is an analogue of Lemma 9.4.

Lemma 9.10. For any m ∈ N the following estimate holds

(∇K * t ) • φ t -∇K * t m,Ω;κ ≤ C m B m 1 + B 1 m .
To prove (iii) we use suitable cut-off functions in ω given by Lemma 9.3. 2

Birkhoff Normal Forms for C k -families of symplectic maps

Let Ω ⊂ [0, 2π] n-1 be an open convex set which we identify with an open convex subset of T n-1 . Fix τ > n -1 and denote by κ 0 (Ω) the supremum of all 0 < κ ≤ 1 such that the set Ω κ = D(κ, τ ) ∩ Ω -κ is of positive Lebesgue measure. Given 0 < κ < κ 0 (Ω) we denote by Ω 0 κ the set of points of Ω κ of positive Lebesgue density. Recall that ω ∈ Ω 0 κ if the Lebesgue measure of Ω κ ∩ U is positive for any neighborhood U of ω. Then Ω κ \ Ω 0 κ is a set of measure zero. Recall that 0 and (m) defined in (9.153), i. e. 0 := 2τ + 2 + 2ϑ 0 and (m) := 2m(τ + 1) + 0 for m ≥ 0.

We are going to use as well the notations B m and S (∇K * t ) introduced in (9.181) and (9.180). To construct a BNF we have to deal with the second differential d 2 K t of the Legendre transform K t of K * t . We denote by ∂ 2 K t (I) its Hessian matrix. Its norm could be very large, as in the case of the billiard ball map close to the boundary, and to measure it we introduce a parameter λ ≥ 1. More precisely, we suppose below that sup t∈[0,δ]

∂ 2 K t 2,Dt;κ ≤ λ < ∞ , (9.187) 
where λ ≥ 1.

Theorem 9.11. There exists = (n, τ, ϑ 0 ) > 0 depending only on n, τ , and ϑ 0 such that the following holds.

Let Ω ⊂ T n-1 be an open convex set and 0 < < κ < κ 0 (Ω). Let [0, δ] t → K * t ∈ C ∞ (Ω, R) be a C k family satisfying the non-degeneracy condition (9.175) and suppose that its Legendre transform K t satisfies (9.187). Let [0, δ] P t ∈ C ∞ (A t , A), be a C k family of exact symplectic maps defined by generating functions

G t (θ, r) = θ, r -K t (r) -G t (θ, r) such that B 2 ≤ κλ -4 . (9.188) 
Then (i) there exist C k -smooth with respect to t ∈ [0, δ] families of exact symplectic maps χ t : A t → A t and of real valued functions

L t ∈ C ∞ (D t ) and R 0 t ∈ C ∞ (A t ) such that (a) (ϕ, I) → ϕ, I -L t (I) -R 0 t (ϕ, I) is a generating function of P 0 t := χ -1 t • P t • χ t ; (b) ∇L t : D t → Ω is a diffeomorphism, L t = K t outside D 1 t := ∇K * t (Ω -κ/2), and ∇L * t (ω) = I t (ω) is given by (1.6) for each ω ∈ Ω 0 κ ; (c) R 0 t is flat at T n-1 × ∇L t (Ω 0 κ ;
(ii) For any t ∈ [0, δ] and m ∈ N the following estimates hold

σ -1 κ (χ t -id) m,At;κ + σ -1 κ (χ -1 t -id) m,At;κ ≤ C m κ B m+1 λ 2m λ + ∂ 2 K t m+1,Dt;κ (9.189) and ∇L t -∇K t m,Dt;κ + σ κ ∇R 0 t m,Dt;κ ≤ C m B m+1 λ 2m λ + ∂ 2 K t m+1,Dt;κ , (9.190) 
where the constant C m > 0 depends only on n, τ , ϑ 0 and m.

If G is analytic with respect to t, then so are χ, L and R 0 .

Before proving the Theorem we observe that Remark 9.12. (Birkhoff Normal Form) Let k = 1. Then for any ω ∈ Ω 0 κ the map

[0, δ] t → Λ t (ω) := χ t (T n-1 × {I t (ω)})
provides a C 1 family of invariant tori of P s with a frequency vector ω and taking into account Lemma 3.4 we obtain

P 0 t (ϕ, I) = (ϕ + ∇L t (I), I) + O N (|I -∇L * t (ω)| N )
for any N ∈ N . Moreover, the last formula can be differentiated N -1 times with respect to (ϕ, I). Hence, Theorem 9.11 gives a simultaneous Birkhoff Normal Form of P t on the invariant tori Λ t (ω), where t ∈ [0, δ] and the frequency vectors ω are in Ω 0 κ . Recall as well that the complement of Ω 0 κ in Ω κ is of Lebesgue measure zero.

Proof of Theorem 9.11. Without loss of generality we consider only the case when k = 1. We devide the proof in several staps.

Step 1. Writing Λ t (ω) as graphs. For any ω ∈ Ω κ and t ∈ [0, δ] the Lagrangian manifold

Λ t (ω) := {(u t (θ; ω), v t (θ; ω)) : θ ∈ T n }
given by Theorem 9.8 is a Kronecker invariant torus of P t of a frequency vector ω satisfying (i) of Theorem 9.8. Firstly we will solve the equation ϕ = u t (θ, ω) with respect to θ and get the respective estimates of the solution. To this end we consider the map w t : A → A defined by w t (θ, ω) = (u t (θ, ω), ω), where A = T n-1 × R n-1 . Recall from Theorem 9.8, (iii), that supp (w t -id) ⊂ T n-1 × (Ω -κ/2). It follows from (9.183) and (9.188) that

σ -1 κ (w t -id) 1;κ = w t -id 1;κ ≤ C 1 < (2n -2) -1
choosing = (n, τ, ϑ 0 ) small enough (recall that C 1 depends only on n, τ and ϑ 0 ). Then applying Proposition A.11 we obtain a solution θ t (ϕ, ω) = ϕ+ψ t (ϕ, ω) of the equation ϕ = u t (θ, ω), where (ϕ, ω) ∈ T n-1 × Ω. Then supp ψ t ⊂ T n-1 × (Ω -κ/2) and

ψ t m;κ ≤ C m κ B m (9.191)
for any m ∈ N, where the constant C m > 0 depends only on n, τ , ϑ 0 and m. Setting F t (ϕ, ω) = v t (θ t (ϕ, ω), ω) and

F t (ϕ, ω) := -∇K * t (ω) + F t (ϕ, ω)) (9.192) for (ϕ, ω) ∈ T n-1 × Ω we write Λ t (ω) = {(ϕ, F t (ϕ, ω)) : ϕ ∈ T n-1 } = {(ϕ, ∇K * t (ω) + F t (ϕ, ω)) : ϕ ∈ T n-1 }, ω ∈ Ω κ . (9.193) Notice that that supp F t ⊂ T n-1 × (Ω -κ/2
). We are going to prove that

F t m;κ ≤ C m B m , (9.194) 
for any m ∈ N, where the constant C m > 0 depends only on n, τ , ϑ 0 and m. To this end we write

F t (ϕ, ω) = v t (ϕ, ω) -∇K * t (ω) + v t (θ t (ϕ, ω), ω) -v t (ϕ, ω) . The estimate of v t (ϕ, ω) -∇K *
t (ω) follows directly from (9.183) using the inequality B 1 ≤ B 2 ≤ εκ ≤ . To obtain the estimate of the second term of (11.221) we write

v t (θ t (ϕ, ω), ω) -v t (ϕ, ω) = 1 0 (d θ v t )(ϕ + sψ t (ϕ, ω)) ψ t (ϕ, ω) ds.
Then one uses (A.9), Proposition A.12, 2, and (9.188) as well.

Denote by p : R n-1 → T n-1 the natural projection.

Lemma 9.13. There is a C 1 family of real-valued functions

h t ∈ C ∞ (R n-1 ×Ω) and I t ∈ C ∞ (Ω) in t ∈ [0, δ] such that h 0 t (x, ω) := h t (x, ω) -x, I t (ω) is 2π-periodic with respect to x and (i) ∀(x, ω) ∈ R n-1 × Ω κ , ∇ x h t (x, ω) = F t (p(x), ω), (ii) ∇ x h 0 t (x, ω) = 0 and I t (ω) = ∇K * t (ω) for ω / ∈ Ω -κ/2, (iii) h 0 t m;κ + I t -∇K * t m;κ ≤ C m B m
for m ∈ N , where C m is a positive constant depending only on n, τ , ϑ 0 and m.

Proof. To obtain h t we consider the function

h t (x, ω) = γx σ = 1 0 F t (p(sx), ω), x ds = ∇K * t (ω), x + 1 0 F t (p(sx), ω), x ds for (x, ω) ∈ R n-1 × Ω, where γ x = {(sx, F t (p(sx), ω)) : 0 ≤ s ≤ 1} and σ = ξdx is the canonical one-form on T * R n-1 .
In view of (9.194), the function

Q 0 t (x, ω) := h t (x, ω)-∇K * t (ω), x satisfies the estimate Q 0 t m;κ ≤ C m B m (9.195)
for m ∈ N. We set

I tj (ω) = h t (2πe j , ω)/2π, ω ∈ Ω,
where {e 1 , . . . , e n-1 } is the canonical basis in R n-1 . Then (9.195) implies

I t -∇K * t m;κ ≤ C m B m (9.196) for m ∈ N and t ∈ [0, δ].
As Λ t (ω) is a Lagrangian torus for ω ∈ Ω κ , we get

∀ y ∈ R n-1 , h t (x + y, ω) -h t (x, ω) = lt(x,y) σ (9.197)
where l t (x, y) = {(x + sy, F t (p(x + sy), ω)) : 0 ≤ s ≤ 1} and σ is the pull-back to Λ t (ω) of the fundamental one-form Idx. The integral in (9.197) is equal to

lt(x,y) σ = 1 0 F t (p(x + sy), ω), y ds = F t (p(x), ω), y + O(y 2 ),
and we obtain ∇ x h(x, ω) = F t (p(x), ω) for any ω ∈ Ω κ . In particular, the function ∇ x h t (x, ω) is 2π-periodic with respect to x and we get

∀ ω ∈ Ω κ , ∀ α ∈ Z n-1 , h t (x + 2πα, ω) -h t (x, ω) = h t (2πα, ω) -h t (0, ω) = 2πα, I t (ω) .
Consider the function

h 0 t (x, ω) = h t (x, ω) -x, I t (ω).
It is 2π-periodic with respect to x for ω ∈ Ω κ and h 0 t satisfies the estimates (9.195) in [0, δ] × R n-1 × Ω. We are going to average h 0 t on T n-1 using the following Lemma 9.14.

There exists f ∈ C ∞ (R n-1 ) with supp f ⊂ [π, 7π] n-1 such that k∈Z n-1 f (x -2πk) = 1 for each x ∈ R n-1 .
Consider the function

h 0 t (x, ω) = k∈Z n-1 (f h 0 t )(x -2πk, ω).
It is 2π-periodic with respect to x by construction and

h 0 t (x, ω) = h 0 t (x, ω) for (x, ω) ∈ R n-1 ×Ω κ . Moreover, h 0 t satisfies (9.195) in [0, δ] × R n-1 × Ω. We set h t (x, ω) = h 0 t (x, ω) + x, I t (ω) . Recall that dist (Ω κ , R n-1 \ Ω) ≥ κ.
Then multiplying h 0 t and I t -∇K * t by a suitable cut-off function which is equal to one on Ω-3κ/4 and zero outside Ω -κ/2, we can assume that h t (x, ω) = x, ∇K * t (ω) and I t (ω) = ∇K * t (ω) outside Ω -κ/2 (see Lemma 9.3). This proves (ii). The statement (iii) follows from (9.195), the definition of h 0 t and (9.196). 2

Step 2. Inverting I t .

Lemma 9.15. Choosing = (n, τ, ϑ 0 ) > 0 small enough one has the following for each t ∈ [0, δ].

1. The map I t : Ω → D t is a diffeomorphism and its inverse ω t : D t → Ω satisfies the estimates ω t -∇K t 1,Dt;κ ≤ C 0 κ and

ω t -∇K t m,Dt;κ ≤ C m B m λ m λ + ∂ 2 K t m,Dt;κ (9.198)
for any m ∈ N * . Moreover, ω t = ∇K t outside the set D

1 t := ∇K * t (Ω -κ/2).

For any

x ∈ R n-1 the map Ω ω → ∇ x h t (x, ω) ∈ D t is a diffeomorphism.
Proof. We are going to show that the map Ω ω → I t (ω) a diffeomorphism. To this end we write

I t = (id + ϕ t ) • ∇K * t , ϕ t := (I t -∇K * t ) • ∇K t .
Moreover, Lemma 9.13, (9.187) and (9.188) imply

ϕ t 1 ≤ I t -∇K * t 0 + I t -∇K * t 1 (1 + ∇K t 1 ) ≤ C λ -2
where C = C(n, τ, ϑ 0 ) > 0. Recall that I t = ∇K * t outside Ω -κ/2, hence supp ϕ t ⊂ D t . Then choosing 0 < < 1/(2C) and applying Proposition A.11 we obtain that id + ϕ t : R n-1 → R n-1 is invertible and that (id + ϕ t ) -1 = id + ψ t , where supp ψ t ⊂ D t . Hence, I t (Ω) = D t and I t : Ω → D t is a diffeomorphism with inverse

ω t = ∇K t • (id + ψ t ) : D t → Ω.
Lemma 9.16. For any m ∈ N * there exists C m > 0 depending only on m, n, τ and ϑ 0 such that

ϕ t m,κ ≤ C m B m λ m-1 λ + ∂ 2 K t m-1,Dt;κ .
Proof. The support of ϕ t is contained in the closure of

D 1 t := ∇K * t (Ω -κ/2). Set 2r t := dist (D 1 t , R n-1 \ D t ) and fix I 0 in D 1 t .
Applying Remark A.2 to the restriction of K t to the closed ball B(I 0 , r t ) as well as Proposition A.12, (9.187) and (9.188) one obtains

|(κ∂ I ) β ϕ t (I)| ≤ C m 1 + ∂ 2 K t m-1 C 0 (Dt) × I t -∇K * t m,κ ∂ 2 K t C 0 (Dt) + I t -∇K * t C 1 ∂ 2 K t m-1,Dt;κ ≤ C m B m λ m-1 λ + ∂ 2 K t m-1,Dt;κ , for (I, t) ∈ B(I 0 , r t ) × [0, δ] and β ∈ N n-1 , |β| = m ∈ N * ,
where C m > 0 depends only on m and n and C m > 0 depends only on m, n, τ and ϑ 0 . On the other hand, ϕ t = 0 outside D 1 t which completes the proof of the Lemma. This argument will be used many times in the sequel. 2

Proposition A.11 applied to id + κ -1 ϕ t • σ κ implies that supp ψ t ⊂ D 1 t , ψ t C 0 ≤ C 0 /λ and ψ t m,κ ≤ C m B m λ m-1 λ + ∂ 2 K t m-1,Dt;κ for m ∈ N * . In particular, dψ t C 0 ≤ C 1 . Consider ω t (I) -∇K t (I) = 1 0 d(∇K t )(I + sψ t (I)) ψ t (I) ds, I ∈ D t .
The support of ω t -∇K t is contained in D 1 t . Moreover, ω t -∇K t C 0 (Dt) ≤ C 0 κ, and using Remark A.2 and Proposition A.12 one obtains as in the proof of Lemma 9.16 the estimate

(κ∂) α (ω t -∇K t ) C 0 ≤ C m ∂ 2 K t C 0 (Dt) ψ t m,κ + C m ψ t C 0 1 + dψ t m-1 C 0 ∂ 2 K t 1,Dt;κ dψ t m-1,κ + ∂ 2 K t m,Dt;κ dψ t C 0 (Dt)
for any m ∈ N * and α ∈ N n-1 with |α| = m . Then using (9.187), (9.188) and the previous estimates we obtain (9.198). The estimate dω t -d∇K t C 0 (Dt) ≤ C λ follows from (9.198) with m = 1 and (9.188). We are going to prove that for each x ∈ R n-1 the map Ω ω → ∇ x h t (x, ω) is a diffeomorphism. To this end we fix x and we write the map ω → ∇ x h t (x, ω) as follows

∇ x h t = (id + ϕ 1 t ) • ∇K * t , ϕ 1 t := (∇ x h 0 t + I t -∇K * t ) • ∇K t .
Then supp ϕ 1 t ⊂ D 1 t and

ϕ 1 t C 1 ≤ ( ∇ x h 0 t C 1 + I t -∇K * t C 1 )(1 + ∂ 2 K t C 0 ) ≤ C 1 /λ
and we complete the proof of 2 as above. 2

Step 3. Construction of χ t . The second statement of the Lemma implies that there is a

C ∞ - foliation of T n-1 × D t by Lagrangian tori Λ t (ω) = {(p(x), ∇ x h t (x, ω)) : x ∈ R n-1 }, ω ∈ Ω,
which is a smooth extension of the family of the Kronecker invariant tori (9.193) of P t . Notice that I t (ω) is the action along the basis of cycles [γ t,j (ω)], . . . ,

[γ t,n-1 (ω)] of H 1 (Λ t (ω), R), where γ t,j (ω) = {(p(s2πe j ), ∇ x h t (s2πe j , ω)) : 0 ≤ s ≤ 1}. Indeed, it follows from the definition of h t that I t (ω) = ∇ x h t (x, ω) -∇ x h 0 t (x, ω)
, where h 0 t is 2π-periodic in x and we obtain

I t (ω) = γ t,1 (ω) 
σ, . . . ,

γ t,n-1 (ω) σ (9.199)
for ω ∈ Ω. Now we set Φ t (x, I) = h t (x, ω t (I)). Then

Φ 0 t (x, I) := x, I -Φ t (x, I) = -h 0 t (x, ω t (I))
is 2π-periodic with respect to x, and it has a compact support in T n-1 × D t . Moreover, it follows from Lemma 9.13, Lemma 9.15, Remark A.2 and Proposition A.9 that

Φ 0 t m,At;κ ≤ C m 1 + dω t m-1 C 0 (Dt) h 0 t m,κ dω t C 0 (Dt) + h 0 t 1,κ ∂ 2 K t m-1,Dt;κ + h 0 t 1,κ (dω t -d∇K t ) m-1,Dt;κ ≤ C m B m λ 2m-2 λ + ∂ 2 K t m,Dt;κ
for t ∈ [0, δ] and m ∈ N * , where C m depends only on m, n, τ and ϑ 0 . This implies

σ -1 κ sgradΦ 0 t m,At;κ ≤ C m κ B m+1 λ 2m λ + ∂ 2 K t m+1,Dt;κ (9.200)
for t ∈ [0, δ] and m ∈ N, where C m depends only on m, n, τ and ϑ 0 . In particular, one obtains by means of (9.187) and (9.188) that

σ -1 κ sgrad Φ 0 t 1,At;κ ≤ c /λ (9.201) for t ∈ [0, δ],
where c = c(n, τ, ϑ 0 ) > 0. Using Lemma A.14 we obtain Lemma 9.17. Choosing = (n, τ, ϑ 0 ) > 0 small enough we have the following 1. Φ t is a generating function of a symplectic transformation χ t :

T n-1 × D t → T n-1 × D t and the map [0, δ] t → χ t ∈ C ∞ (A t , A t ) is C 1 ; 2. χ t (Λ t (ω)) = T n-1 × {I t (ω)} for any ω ∈ Ω and t ∈ [0, δ];
3. χ t -id and χ -1 t -id are compactly supported in T n-1 × D 1 t , where D 1 t = ∇K * t (Ω -κ/2) and they satisfy the estimates (9.189). Moreover,

σ -1 κ (χ -id) 1,At;κ + σ -1 κ (χ -id) 1,At;κ ≤ c /λ.
Proof. Using Lemma A.14 one obtains a symplectic transformation χ t :

T n-1 × D t → T n-1 × R n-1 defined by χ t (∇ I Φ t (θ, I), I) = (θ, ∇ θ Φ t (θ, I)), (θ, I) ∈ T n-1 × R n-1 .
Notice that the map

D t I → ∇ θ Φ t (θ, I) = I + ∇ θ h 0 t (θ, ω t (I)) ∈ D t is a diffeomorphism since the map Ω ω → I t (ω) + ∇ θ h 0 t (θ, ω) = ∇ θ h t (θ, ω) ∈ D t is a dif- feomorphism in view of Lemma 9.15, 2, hence, χ t (A t ) = A t . For any ω ∈ Ω and any θ we have (θ, ∇h t (θ, ω)) = (θ, ∇ θ Φ t (θ, I t (ω))) = χ t (∇ I Φ t (θ, I t (ω)), I t (ω)), hence, Λ t (ω) = χ t (T n-1 × {I t (ω)}). Moreover, χ t (ϕ, I t (ω)) = (ϕ, I t (ω)) = (ϕ, ∇K * t (ω)) if dist (ω, R n-1 \ Ω) ≤ κ/2, hence, the support of both χ t -id and χ -1 t -id is contained in T n-1 × D 1 t .
The estimate (9.189) follows from (9.200) and Lemma A.14. 2

Step 4. Estimates. Consider the exact symplectic map P 0 t = χ -1 t P t χ t . Using Lemma A.16 we write P t as a composition P t = W t Q t , where W t is the exact symplectic map defined by the generating function (x, r) → x, r -G t (x, r) and Q t (θ, r) = (θ + ∇K(r), r). Then

P 0 t = W 0 t Q t ,
where

W 0 t = χ -1 t W t + χ -1 t W t Q t (χ -1 t -id)Q -1 t .
Lemma 9.18. The exact symplectic map W 0 t , t ∈ [0, δ], admits a generating function of the form

(x, I) → x, I -G 0 t (x, I) such that the map [0, δ] t → G 0 t ∈ C ∞ (A) is C 1 , supp (dG 0 t ) ⊂ T n-1 × D 1 t and σ -1 κ sgrad G 0 t m,At;κ ≤ C m κ B m+1 λ 2m λ + ∂ 2 K t m+1,Dt;κ
for any m ∈ N, where C m depends only on m, n, τ and ϑ 0 .

Proof. We have

W 0 t -id = W t -id + (χ -1 t -id)W t + Q t (χ t -id)Q -1 t + W t -id + (χ -1 t -id)W t • Q t (χ t -id)Q -1 t . (9.202) 
We estimate the C m norms of it term by term. Notice that the support of each term is contained in T n-1 × D 1 t . Lemma A.14 and (9.188) imply σ -1 κ (W t -id) 1,At;κ < C /λ and

σ -1 κ (W t -id) m,At;κ ≤ C m κ B m .
The last estimate, Lemma 9.17, 3, and Lemma A.12, 2, imply

σ -1 κ (χ -1 t -id)W t m,At;κ ≤ C m κ B m+1 λ 2m λ + ∂ 2 K t m+1,Dt;κ . and σ -1 κ (χ -1 -id)W t 1,At;κ ≤ c /λ. Using the argument in the proof of Lemma 9.16 first to (χ t -id)Q -1 t and then to Q t (χ t -id)Q -1 t
we obtain the estimate

σ -1 κ Q t (χ t -id)Q -1 t m,At;κ ≤ C m κ B m+1 λ 2m λ + ∂ 2 K t m+1,Dt;κ .
This yields the estimate of the first line of (9.202). To obtain the estimates for the composition in the second line one uses the preceding estimates and the argument of Lemma 9.16. It remains to apply Lemma A.14 in order to complete the proof of the Lemma. 2

Step 4. Proof of (i). Now Lemma A.16 implies that the function

G 0 t (x, I) = x, I -K t (I) -G 0 t (ϕ, I)
is a generating function of P 0 t . The function G 0 t is uniquely defined modulo a constant depending only on t which is chosen appropriately in order to obtain a C 1 -smooth the map t → G 0 t . Set L t (I) := K t (I) -G 0 t (0, I) and R t (θ, I) = G 0 t (θ, I) -G 0 t (0, I). We have

P 0 t (T n-1 × {I t (ω)}) = (χ -1 t • P t )(Λ t (ω)) = χ -1 t (Λ t (ω)) = T n-1 × {I t (ω)}
for any ω ∈ Ω κ , which implies

I t (ω) -∇ x R 0 t (x, I t (ω)) = ∇ x G 0 t (x, I t (ω)) = I t (ω)
for any such x ∈ R n-1 . On the other hand, R 0 t (0,

I) = 0, hence, R 0 t (θ, I) = 0 on T n-1 × E t,κ , where E t,κ := I t (Ω κ ). Now Lemma 3.4 implies that ∂ β I R 0 t (θ, I) = 0 for any (θ, I) ∈ T n-1 × E 0 t,κ
, where E 0 t,κ := I t (Ω 0 κ ) is the set of points of positive Lebesgue density in E t,κ . Then

P 0 t (θ + ∇L t (I), I) = (θ, I) on T n-1 × E 0 t,κ ,
and we obtain that

∇ I L t (I t (ω)) = ω for each ω ∈ Ω 0 κ . Hence ∇L * t (ω) = I t (ω) for each ω ∈ Ω 0 κ
, where I t (ω) is given by (1.6) for such ω, according to (9.199). The estimates of the derivatives of L t and R 0 t follow from that of Lemma 9.18. 2

KAM theorem with parameters

The theorems formulated above follow from a KAM theorem with parameters. A complete and very comprehensive proof of it has been given by Pöschel [START_REF] Pöschel | Integrability of Hamiltonian systems on Cantor sets[END_REF] and Kuksin [START_REF] Kozlov | Topological obstacles to the integrability of natural mechanical systems[END_REF] in the analytic case. It can be extended to the case of smooth Hamiltonians using suitable approximation lemma. In the case of Gevrey Hamiltonians this has been done in [START_REF] Popov | Invariants of the length spectrum and spectral invariants for convex planar domains[END_REF]. The advantage of this approach is that frequencies are separated from action variables which makes it easier to obtain smoothness with respect to them. Moreover, it allows one to prove Hölder estimates of the transformations putting the Hamiltonian to a normal form. Here, the normal form of the Hamiltonian is N (I; ω) := ω, I . The perturbation is a real valued function (θ, I; ω, t) → P (θ, I; ω, t) defined in A n × Ω × [0, a], where A n := T n × B(0, ρ 0 ), B(0, ρ 0 ) ⊂ R n is the ball centered at I = 0 with radius ρ 0 ∈ (0, 1] and Ω is a bounded domain in R n . Hereafter, we assume that

P ∈ C k ([0, a]; C ∞ 0 (A n × Ω)) , k ∈ {0; 1}, (10.203) 
i.e. the map t → P

t := P (•, t) ∈ C ∞ 0 (T n × B(0, ρ 0 ) × Ω) is C k -smooth on the interval [0, a]
. This means that the support of the function (I, ω) → P (θ, I; ω, t) is contained in a fixed compact subset of B(0, ρ 0 ) × Ω independent of (θ, t) ∈ T n × [0, a] and that the maps

t → P t := ∂ q t P (•, t) ∈ C j (T n × B(0, ρ 0 ) × Ω), 0 ≤ q ≤ k,
are continuous in t ∈ [0, a] for j ∈ N. Given > 0 and 0 < r, κ ≤ 1, r ≤ ρ 0 , we denote by P t ;r,κ the weighted Hölder norm

P t ;r,κ := P t • σ r,κ C (σ -1 r,κ (A n ×Ω)) (10.204) 
where σ r,κ is the partial dilation σ r,κ (ϕ, I; ω) := (ϕ, rI; κω). The Hölder norms are defined in Section A.1 (see also [START_REF] Parernain | Spectral rigidity and invariant distributions on Anosov surfaces[END_REF]). 

L ω := X N (•, ω) = ω, ∂/∂θ . We consider C k -families, k ∈ {0; 1}, of Hamiltonians t → H t,ω , t ∈ [0, δ],
where H t,ω (θ, I) := H(θ, I; ω, t) = N (I; ω) + P (θ, I; ω, t)

and P satisfies (10.203). Recall that for given 0 < κ ≤ 1 and τ > n -1, the set Ω κ = D(κ, τ ) ∩ Ω -κ consists of all (κ, τ )-Diophantine frequencies ω in Ω (ω satisfies (9.148)) such that the distance from ω to the complement of Ω in R n is greater or equal to κ. Set

P (0) (m);r,κ = sup t∈[0,a] P t (m);r,κ P (1) (m);r,κ = P (0) (m);r,κ P (0) (0);r,κ 0≤p≤1 sup t∈[0,a] ∂ p t P t (m);r,κ . (10.206) 
The following result is an analogue of Theorem A in [START_REF] Pöschel | Integrability of Hamiltonian systems on Cantor sets[END_REF].

Theorem 10.1. There exists a positive constant = (n, τ, ϑ 0 , ϑ 1 ) > 0 depending only on n, τ , ϑ 0 and ϑ 1 such that, for any a > 0, 0 < κ < 1, 0 < r < ρ 0 and any real valued Hamiltonian H = N + P , where N (I; ω) = ω, I and P satisfies (10.203) and the smallness hypothesis

sup t∈[0,a] P t 0 ;r,κ ≤ κr , (10.207) 
the following holds.

There exist C k families of maps

[0, a] t → φ t ∈ C ∞ (Ω; Ω) and [0, a] t → Ψ t = (U t , V t ) ∈ C ∞ (T n × Ω; T n × B(0, r)) such that supp (φ t -id) ⊂ Ω -κ/2, supp (U t , V t ) -(id, 0) ⊂ T n × (Ω -κ/2), and 
(i) For each ω ∈ Ω κ and t ∈ [0, a] the map Ψ t,ω := Ψ t (•, ω) : T n → T n × B(0, r) is a smooth embedding, Λ t (ω) := Ψ t,ω (T n
) is an embedded Lagrangian torus invariant with respect to the Hamiltonian flow of H t,φt(ω) (θ, I) := H(θ, I; φ t (ω), t), and

X H t,φ t (ω) • Ψ t,ω = DΨ t,ω • L ω on T n , (ii) 
For any m ≥ 0 there is C m > 0 depending only on n, τ , ϑ 0 , ϑ 1 , and m, such that for any α, β ∈ N n of length |α| + |β|(τ + 1) ≤ m(τ + 1) + ϑ 1 and 0 ≤ q ≤ k the following estimate holds

∂ α θ (κ∂ ω ) β ∂ q t (U t (θ; ω) -θ) + r -1 ∂ α θ (κ∂ ω ) β ∂ q t V t (θ; ω) + κ -1 (κ∂ ω ) β ∂ q t (φ t (ω) -ω) ≤ C m (κr) -1 P (q) (m);r,κ (10.208 
)

uniformly in (θ, ω, t) ∈ T n × Ω × [0, a].
Remark 10.2. If P is analytic with respect to t in the disc B(0, a) := {t ∈ C : |t| < a} and (10.207) holds for t ∈ B(0, a), then Ψ and φ can be chosen to be analytic with respect to t in B(0, a). Moreover, for any α, β ∈ N n of length |α| + |β|(τ + 1) ≤ m(τ + 1) + ϑ 1 and 0 < δ < a, the following estimate holds

∂ α θ (κ∂ ω ) β (U t (θ; ω) -θ) + r -1 ∂ α θ (κ∂ ω ) β V t (θ; ω) + κ -1 (κ∂ ω ) β (φ t (ω) -ω) ≤ C m,δ (κr) -1 sup t∈B(0,a) ∂ p t P t (m);r,κ uniformly in (θ, ω, t) ∈ T n × Ω × B(0, a -δ), with C m,δ > 0 depending only on n, τ , ϑ 0 ,ϑ 1 , δ, m.
Before starting the proof of Theorem 10.1 and Remark 10.2 we are going to list several comments. For each t ∈ [0, δ] and ω ∈ Ω denote by Φ s t,ω := exp sX Ht,ω , s ∈ R, the flow of the Hamiltonian vector field X Ht,ω of the Hamiltonian H t,ω and set

g s ω (θ) = θ + p(sω), θ ∈ T n , s ∈ R, ω ∈ Ω,
where p : R n → T n is the canonical projection. By (10.207) and (10.208), we have

|d θ U t (θ; ω) -Id| ≤ C 1 (n, τ, ϑ 0 ) ≤ 1/2 for (θ, ω, t) ∈ T n × Ω × [0, a],
choosing sufficiently small and we obtain Remark 10.3. The assertion (i) of Theorem 10.1 means that for each ω ∈ Ω κ the family [0, δ] t → Λ t (ω) is a C k family of Kronecker invariant tori with respect to the flow Φ s t, ω , where ω = φ t (ω). More precisely, for each t ∈ [0, δ], ω ∈ Ω κ , and s ∈ R, the following diagram is commutative

T n g s ω -→ T n ↓ Ψ t,ω ↓ Ψ t,ω Λ t (ω) Φ s t, ω -→ Λ t (ω)
Remark 10.4. -1. The Theorem could be obtained for any k ∈ N (then C m depends on k as well). We suppose here that k ∈ {0; 1} to simplify the proof. 2. We point out that the parameter ε > 0 does not depend on the parameters κ and r, the domain Ω, the annulus Theorem 11.22).

A n = T n × B(0, ρ 0 ), nor on the interval [0, a]. 3. (ii) still holds if P ∈ C k ([0, 1]; C (M ) 0 (A n × Ω)) with M ≥ 0 (see
Remark 10.5. Without loss of generality one can assume that κ = r = 1. Indeed, consider the C k -family of Hamiltonians H t = (κr) -1 (N + P t ) • σ κ,r = N + P t , where P t (θ, I; ω) = (κr) -1 P t (θ, rI; κω), (θ, I; ω) ∈ T n × R n × (κ -1 Ω).

If P t satisfy (10.207), then so do P t with κ = r = 1. Let φ t and Ψ t = ( U t , V t ) be the family of maps obtained by Theorem 10.1 for the family of Hamiltonians H t with κ = ρ = 1. Then taking

φ t := κ φ t • σ -1 κ , Ψ t := ( U t , r V t ) • σ -1 κ,r
we obtain items (i)-(iii) in Theorem 10.1 for H t and for 0 < κ ≤ 1, 0 < r ≤ 1.

In order to avoid the repeating use of the parameters κ and and ρ, we suppose from now on that κ = ρ = 1. (10.209)

Idea oh the Proof. The proof of Theorem 10.1 and Remark 10.2 is organized as follows. In Sect.

11.1 we prove the KAM Lemma and choose the parameters for the next iteration. The KAM Lemma is close to that of Pöschel in [START_REF] Pöschel | Integrability of Hamiltonian systems on Cantor sets[END_REF] but one needs additional arguments to estimate the derivatives with respect t. To this end we give a complete prove of it skipping some details. In Sect. 11.2 we iterate the KAM Step infinitely many times. The choice of the parameters leads to an exponentially converging scheme. Additional efforts are needed to get convergence for the derivatives with respect to t and to obtain the corresponding estimates in the Iterative Lemma. ) is said to be real analytic if

D 1 ∩ R n 1 = ∅ and f (D 1 ∩ R n 1 ) ⊂ R. Introduce the complex domains D s,r = {θ ∈ C n /2πZ n : |Im θ| < s} × {I ∈ C n : |I| < r}, O h = {ω ∈ C n : |ω -Ω 1 | < h}. Hereafter, |v| = |(v 1 , . . . , v n )| = sup j |v j | is the sup-norm of v ∈ C n .
The sup-norm of functions in V := D s,r × O h will be denoted by | • | s,r,h and the corresponding space of analytic functions in V by A(V). We state below a variant of the KAM Lemma following Pöschel [START_REF] Pöschel | Integrability of Hamiltonian systems on Cantor sets[END_REF]. It involves a small parameter ε > 0 and several parameters σ, s, r, η, K such that 0 < s, r < 1, 0 < η < 1/8, 0 < 5σ < s < 1, K ≥ 1, (11.210) as well as a positive c 0 = c 0 (n, τ ) ≤ 1 depending only on n and τ . We suppose that the following inequalities are satisfied

(a) ε ≤ c 0 ηrσ τ +1 , (b) ε ≤ c 0 hr , (c) h ≤ 1 2K τ +1 .
Moreover, we will require below the inequality

(d) 2h ≤ σ τ +1
which follows from (c) provided that Kσ ≥ 1. Fix k ∈ {0; 1}. (1) There exists a C k family of real analytic transformation F = (Φ, φ), where

Φ ∈ C k ([0, a], A(D s-5σ,ηr × O h/4 , D s,r )) and φ ∈ C k ([0, a], A(O h/4 , O h ))
such that H • F = N + + P + with N + (I; ω, t) = e + (ω, t) + ω, I and

P + ∈ C k ([0, a], A(D s-5σ,ηr × O h/4 ))
satisfying the estimate

|∂ p t P + (•, t)| s-5σ,ηr,h/4 ≤ C 0 ε 2 rσ τ +1 + (η 2 + σ -n e -Kσ )ε (11.212)
for any t ∈ [0, a] and 0 ≤ p ≤ k, where C 0 = C 0 (n, τ ) > 0 depends only on n and τ ;

(2) Φ(θ, I; ω, t) = (U (θ; ω, t), V (θ, I; ω, t)), where V is affine linear with respect to I and the transformation (θ, I) → Φ(θ, I; ω, t) is canonical for each (ω, t) fixed. Moreover, for any 0 ≤ p ≤ k, α, β ∈ N n , and |γ| ≤ 1 the maps Φ and φ satisfy the estimates We recall as well the standard estimates of the Fourier coefficients

|W ∂ p t (σ∂ θ ) α (r∂ I ) β (Φ(θ, I; ω, t) -(θ, I))| ≤ C α,β ε rσ τ +1 , |(h∂ ω ) γ ∂ p t (φ t -id)| ≤ C ε r
f k = T n f (θ)e -2πi k,θ dθ , k ∈ Z n , of an analytic function f in a strip T n + s := {θ ∈ C n /Z n : |Im θ| < s}, s > 0, with a bounded sup-norm |f | s , namely, |f k | ≤ e -|k|s |f | s , (11.214) 
where |k| = n j=1 |k j |.

Proof of Proposition 11.1. For Hamiltonians independent of t the proposition is formulated and proved in [START_REF] Pöschel | Integrability of Hamiltonian systems on Cantor sets[END_REF]. It follows easily from [START_REF] Pöschel | Integrability of Hamiltonian systems on Cantor sets[END_REF] in the case k = 0. The proof of the corresponding estimates of ∂ t P t requires additional efforts. For this reason we give a complete proof in the case k = 1.

Step 

|∂ p t (Q -R)| s-σ,r < C 0 σ -n e -Kσ ε and |∂ p t R| s-σ,r < C 0 ε. (11.215)
The Cauchy estimates imply

|∂ p t (σ∂ θ ) α (r∂ I ) β R| s-2σ,r/2 ≤ C α,β ε |∂ p t (σ∂ θ ) α (r∂ I ) β (P -R)| s-2σ,2ηr ≤ C α,β (η 2 + σ -n e -Kσ )ε (11.216) for 0 ≤ p ≤ 1 uniformly in (ω, t) ∈ O h × [0, a].
Hereafter C 0 ≥ 1 stands for a constant depending only on n and τ and we denote by C α,β a positive constant depending only on n, τ , α and β.

Step 2. Homological equation. The idea is to put ∂ p t (P -R) in the error term and to to kill ∂ p t R by means of a canonical transformation Φ which is the time-one-map of a Hamiltonian vector field X F = (∇ I F, -∇ θ F ). More precisely, consider the Hamiltonian flow (x, θ, I) → exp(xX F )(θ, I) = (u(x, θ, I), v(x, θ, I))

and set Φ = (U, V ) := exp(X F ), where

U (•) = u(1, •) and V (•) = v(1, •).
The corresponding Hamiltonian system is

             du dx = ∇ v F (u, v; ω, t) dv dx = -∇ u F (u, v; ω, t) u(0) = θ , v(0) = I .
(11.217)

The Lie method is based on the identity

d dx (f • exp(xX F )) = {f, F } • exp(xX F ) ,
where {f, F } = ∇ I f, ∇ θ F -∇ θ f, ∇ I F is the Poisson bracket. Using Taylor's formula with respect to x at x = 0 and the above identity one gets Differentiating (11.217) with respect to t and using (11.225) one gets

(N + R) • Φ = N • exp(xX F )| x=1 + R • exp(xX F )| x=1 = N + {N, F } + R + 1 0 {(1 -x){N, F } + R, F } • exp(xX F ) dx.
(N + R) • Φ = N + N + 1 0 {(1 -x) N + xR, F } • exp(xX F )dx. ( 11 
v ≤ 1 σr sup 0≤x≤1 |∂ t (σ∇ θ )F | + 1 σr sup 0≤x≤1 |(σ∂ θ )(σ∇ θ )F | u + 1 σr sup 0≤x≤1 |(r∂ I )(σ∇ θ F | v ≤ C ε rσ τ +1 + ε rσ τ +1 u + ε rσ τ +1 v
where C = C(n, τ ) > 0 and by (a) one obtains

v ≤ C ε rσ τ +1 + Cc 0 (u + v) in D s-4σ,r/4 × O h × [0, a]. Choosing c 0 ≤ (4C) -1 this gives v ≤ C ε rσ τ +1 + 1 4 (u + v).
The same estimate holds for u and we get (11.229). By Cauchy this implies Step 4. New error term. The identity (11.223) yields

     1 σ |∂ p t (σ∂ θ ) α (r∂ I ) β (u(x, θ, I; ω, t) -θ)| ≤ C α,β ε rσ τ +1 1 r |∂ p t (σ∂ θ ) α (r∂ I ) β (v(x, θ, I; ω, t) -I)| ≤ C α,β ε rσ τ +1 (11.230) in [0, 1] × D s-5σ,r/8 × O h × [0, a]. Since η < 1/8
H • Φ = (N + R) • Φ + (P -R) • Φ = N + + P + (11.232)
where the Hamiltonian N + = N + N is independent of θ and affine linear in I and

P + = 1 0 {(1 -x) N + xR, F } • exp(xX F )dx + (P -R) • Φ (11.233)
is the new error term. We are going to prove (11.212). In the case p = 0 it follows from the corresponding estimates in [START_REF] Pöschel | Integrability of Hamiltonian systems on Cantor sets[END_REF]. Take p = 1 and consider firstly

∂ t ((P -R) • Φ) = (∂ t (P -R)) • Φ + (D(P -R) • Φ) ∂ t Φ,
where D stands for the differential with respect to (θ, I). By (11.231) and (11.216) we have

|∂ p t (P -R) • Φ| s-5σ,ηr ≤ |∂ p t (P -R)| s-4σ,2ηr ≤ C 0 (η 2 + σ -n e -Kσ )ε.
Moreover, (11.216) implies

|D(P -R)W -1 | s-4σ,2ηr ≤ C 0 (η 2 + σ -n e -Kσ ),
while (11.230) gives |W ∂ t Φ| ≤ C 0 ε/rσ τ +1 on D s-5σ,r/8 , and we get

|(D(P -R) • Φ) ∂ t Φ| s-5σ,ηr ≤ |D(P -R)W -1 | s-4σ,r/2 |W ∂ t Φ| s-5σ,r/8 ≤ C 0 (η 2 ε + σ -n e -Kσ ε) ε rσ τ +1
uniformly with respect to (ω, t) ∈ O h × [0, a]. To evaluate the derivative with respect to t of the first term in (11.233), we consider

G := ∂ t ({R, F } • exp(xX F )) = G 1 + G 2 + G 3 ,
where

G 1 := {∂ t R, F } • exp(xX F ) , G 2 := {R, ∂ t F } • exp(xX F )
and

G 3 := D{R, F } • exp(xX F ) .∂ t exp(xX F ).
Using (11.228) one obtains

|{∂ p t R, ∂ q t F } • exp(xX F )| s-5σ,ηr ≤ |{∂ p t R, ∂ q t F }| s-3σ,r/2
for 0 ≤ p, q ≤ 1. Now (11.216) and (11.225) imply

|{∂ p t R, ∂ q t F }| s-3σ,r/2 ≤ |∂ p t ∇ I R||∂ q t ∇ θ F | + |∂ p t ∇ I F ||∂ q t ∇ θ R| ≤ C 0 ε r • ε σ τ +1 + ε rσ τ • ε σ = 2C 0 ε 2 rσ τ +1
uniformly with respect to (ω, t) ∈ O h × [0, a], which gives the desired estimate for G 1 and G 2 . By the same argument one obtains

|(σ∂ θ ) α (r∂ I ) β {R, F }| s-3σ,r/2 ≤ C α,β ε r • ε σ τ +1 + ε rσ τ • ε σ = 2C α,β ε 2 rσ τ +1 .
Using (11.230) and the preceding estimate one gets

|G 3 | s-5σ,ηr ≤ |(σD θ ){R, F }| s-3σ,r/2 |σ -1 ∂ t u| s-5σ,ηr +|(rD I ){R, F }| s-3σ,r/2 |r -1 ∂ t v| s-5σ,ηr ≤ C 0 ε 2 rσ τ +1
where D θ and D I are the partial differentials with respect to θ and I respectively. The function ∂ t ({ N , F } • exp(xX F )) can be evaluated in the same way using (11.226). This proves (11.212).

Step 5. Transforming the frequencies. Consider N (I; ω, t) + N (I; ω, t) = e + (ω, t) + ω + (∇ I N )(ω, t), I = e + (ω, t) + ω + (∇ I R 0 )(ω, t), I .

Following Pöschel [START_REF] Pöschel | Integrability of Hamiltonian systems on Cantor sets[END_REF], Sec. 4, we obtain a real analytic inverse 

φ t : O h/4 → O h/2 of the map ω → ω + := ω + (∇ I R 0 )(ω, t) i.e. φ t (ω) + (∇ I R 0 )(φ t (ω), t) = ω , ω ∈ O h/4 ,
|(h∂ ω ) γ ∂ p t ∇ I R 0 (ω, t)| ≤ C γ ε r in (ω, t) ∈ O h/4 × [0, a] (11.235) 
for each 0 ≤ p ≤ 1 and γ ∈ N n (recall that R 0 is affine linear in I). In particular, using (b) we obtain 

|D∇ I R 0 (ω, t)| ≤ C(n, τ ) ε hr ≤ C(n, τ )c 0 (n, τ ) < 1 2 in (ω, t) ∈ O h/4 × [0, a] (11 
|∂ t φ t (ω)| ≤ C(n, τ ) ε r ≤ C 0 (n, τ )h in (ω, t) ∈ O h/4 × [0, a]
Differentiating (11.237) with respect to ω we obtain

(h∂ ω j )∂ t φ t (ω) + (D∇ I R 0 )(φ t (ω), t) .(h∂ ω j )∂ t φ t (ω) = Q t (ω)
where

Q t = -(hD) 2 (∇ I ∂ p t R 0 )(φ t , t)[∂ ω j φ t , h -1 ∂ t φ t ] -(h∂ ω j )(hD)∇ I R 0 (φ t , t) .h -1 ∂ t φ t -(h∂ ω j )(∇ I ∂ t R 0 )(φ t , t) -hD(∇ I ∂ t R 0 )(φ t , t) .∂ ω j φ t
Hereafter, D 2 f [•, •] stands for the quadratic form representing the second differential of f . Using (11.235), (11.236) and (b), we obtain

|(h∂ ω j )∂ p t (φ t -id)| ≤ C ε r in O h/4 .
This completes the proof of the KAM Step Lemma. 2

The analyticity with respect to t in Remark 11.3 follows from the theorem of Cauchy. 2

Does the transformation F obtained by the KAM Step Lemma depend on the choice of the parameters K, σ, h, r, η and how? Following the construction of F we obtain the following Remark 11.5 (Uniqueness by construction in the KAM Lemma). The transformation F, the new normal form N + and the error term P + depend on the choice of K via the truncation in Step 1. If K is fixed, then they do not depend on the choice of the other parameters σ, h, r and η in the following sense. Let σ , h , r and η be another admissible choice of the parameters and F , N + and P + , be the corresponding transformation, normal form and error term. Then F = F, N + = N + and P + = P + on the intersection of their domains of definition.

Preparing next iteration.

We are going to prepare the next iteration. Choose a "weighted error" E satisfying 0 < E ≤ η 2 < 1/64 (11.238) fix 0 < ε ≤ 1 and set ε = εrσ τ +1 E. (11.239) where 0 < σ < 1/5. Define K and h by We are going to fix η and determine the parameters s + , σ + , r + , η + , K + , h + , ε + , and the weighted error E + for the next iteration. Suppose that σ -n exp(-Kσ) = σ -n exp -ln 2 (σ) ≤ η 2 .

K = σ -1 ln 2 (σ), 2h = 1 K τ +1 = σ/ ln 2 (σ) τ +1 . ( 11 
(11.243)

Then using (11.238) and (11.239), one obtains from (11.212) the following inequality

|∂ p t P + | s-5σ,ηr,h/4 ≤ C 0 εrσ τ +1 E E + η 2 + σ -n e -Kσ < 3C 0 εη 2 rσ τ +1 E := 1 2 ε + , (11.244) 
where 0 ≤ p ≤ k and C 0 = C 0 (n, τ ) > 1 depends only on n and τ . Set

r + = ηr, s + = s -5σ, σ + = δσ, s = 5 1 -δ σ, (11.245) 
where 0 < δ < 1/6 will be fixed below and put ε + := εr + σ τ +1 + E + . Plugging the expression of ε + in (11.244) and using (11.245) we get

E + = 6C 0 (n, τ )δ -τ -1 ηE
which leads to an exponentially converging iteration scheme if 6C 0 (n, τ )δ -τ -1 η < 1. Now we fix 0 < ϑ < min(ϑ 0 /4, 1), δ := (6C 0 (n, τ )) -1 ϑ , η := δ τ +1+ϑ+ν , (11.246) where ν is a positive number which will be determined in Sect. 11.2 and ϑ 0 > 1 is fixed in (10.205). In particular, (11.246) implies that 0 < δ < 1/(6C 0 ) < 1/6 and η < δ 2 < 1/6, since C 0 > 1 and τ > n -1 ≥ 1. Moreover,

E + = δ ν E. (11.247) 
Set η + = ηδ ν + -ν with certain ν + ≥ ν which will be determined by the next iteration and put h + = (1/2)K -τ -1

+

, where K + = σ -1 + ln 2 (σ + ). Notice that

s + = s -5σ = δs, s + -5σ + = δ(s -5σ) > 0,
and one obtains that σ + , s + , r + , η + and K + satisfy (11.210). Moreover, As in [START_REF] Pöschel | Integrability of Hamiltonian systems on Cantor sets[END_REF] we are going to iterate the KAM step infinitely many times choosing appropriately the parameters 0 < s, r, σ, h, η < 1 and so on. Our goal is to get a convergent scheme. We are going to define suitable strictly decreasing sequences of positive numbers {s j } ∞ j=0 , {r j } ∞ j=0 and {h j } ∞ j=0 , tending to 0. Set s j = s 0 δ j , σ j = σ 0 δ j , s 0 = 5σ 0 (1 -δ) -1 ∈ (0, 1), (11.250) where δ = δ(n, τ, ϑ) < 1/6 is given by (11.246).

h + h < σ + σ (τ +1) < δ τ +1 < 1 6 , ( 11 
Given m ≥ 0, we define an increasing sequence ν(m) := (ν j (m)) j∈N as follows. We set

ν j (m) =      ϑ 0 -ϑ for j < J(m) m(τ + 1) + ϑ 0 -ϑ for j ≥ J(m), (11.251) 
where 0 < ϑ < min(ϑ 0 /4, 1), and

J(m) ≥ m(τ + 1)ϑ -1 (11.252)
is an integer which will be determined in Sect. 11.2.5. If m = 0, we have ν j (0) = ϑ 0 -ϑ for any j ∈ N and we set J(0) = 0. Taking into account (11.245), (11.246) and (11.247), we define the sequences {r j (m)} j∈N , {η j (m)} j∈N and {E j (m)} j∈N as follows. Fix r 0 = s 0 < 1, η 0 = δ τ +1+ϑ+ν 0 = δ τ +1+ϑ 0 , and set for j ≥ 1      η j = η j (m) := δ ν j -ν j-1 η j-1 = δ ν j -ν 0 η 0 = δ ν j +τ +1+ϑ , r j = r j (m) := η j-1 r j-1 = δ p j r 0 , p j = j(τ + 1 + ϑ) + (ν 0 + • • • + ν j-1 ), (11.253) and

E j = E j (m) := δ ν j-1 E j-1 = δ ν 0 +•••+ν j-1 E 0 . (11.254)
Take the positive number E 0 = E 0 (n, τ, ϑ 0 ) sufficiently small so that

E 0 < η 2 0 = δ 2τ +2+2ϑ 0 .
The inequality (11.252) implies that

2ν j -2ν 0 ≤ ν 0 + • • • + ν j-1 , j ≥ 1. (11.255)
Indeed, if m = 0 then ν j = ν 0 = ϑ 0 -ϑ > 0 for each j. Let m ≥ 1. For j < J(m) have ν j = ν 0 = ϑ 0 -ϑ > 0 and for j ≥ J(m) we get

2ν j -2ν 0 = 2m(τ + 1) ≤ J(m)ϑ ≤ 2jϑ < j(ϑ 0 -ϑ) ≤ ν 0 + • • • + ν j-1
which yields the inequality for any m ∈ N and j ∈ N. Now, (11.253), (11.254) and (11.255) yield

0 < E j < η 2 j ≤ η 2 0 < 1/64, j ∈ N. (11.256)
Taking into account (11.239), we put

ε j := εr j σ τ +1 j E j = εr 0 σ τ +1 0 E 0 δ q j , (11.257) 
where q 0 = 0 and q j = q j (m) is given for j ≥ 1 by

q j := p j + j(τ + 1) + (ν 0 + • • • + ν j-1 ) = j(2τ + 2 + ϑ) + 2(ν 0 + • • • + ν j-1
).

(11.258)

The parameter 0 < ε ≤ 1 will be chosen later. Finally, taking into account (A.64) we set

K j = σ -1 j ln 2 (σ j ) and 2h j = K -τ -1 j = σ j / ln 2 (σ j ) τ +1 , j ∈ N. (11.259) 
We have s j+1 = s j -5σ j , σ j = 5 -1 (1 -δ)s j and h j+1 /h j < δ τ +1 < 1/6 (11.260) in view of (11.248) and (11.250). Moreover, s j+1 -5s j+1 = δ(s j -5s j ) and (11.210) holds for each j ∈ N. We are going to show that (11.243) and hypothesis (a) -(d) of Proposition 11.1 are satisfied for any j ∈ N.

Lemma 11.7. There exist constants

0 < σ 0 = σ 0 (n, τ, ϑ 0 , ϑ) < (1 -δ)/5, 0 < E 0 = E 0 (n, τ, ϑ 0 , ϑ) < 1/64,
depending only on n, τ , ϑ 0 and ϑ, such that (11.210), (11.243), (11.256), and the hypothesis (a)-(d) are satisfied for any j ∈ N, provided that

0 < σ 0 ≤ σ 0 , 0 < E 0 ≤ E 0 , 2 ln 2τ +2 (σ 0 )E 0 ≤ c 0 .
Proof. We have already obtained (11.210) and (11.256) for j ∈ N. Choosing E 0 ≤ E 0 (n, τ, ϑ 0 ) ≤ c 2 0 we get (a) for any j ∈ N, while (11.259) implies (c). Moreover, (d) holds since K j σ j = ln 2 (σ j ) > 1. On the other hand, (b) holds if E j and σ j verify (11.241). By (11.251) and since ϑ 0 > 4ϑ, we obtain 2 ln 2τ +2 (σ j )E j = 2 ln 2τ +2 (σ 0 δ j )δ ν 0 +•••+ν j-1 E 0 < 2 ln 2τ +2 (σ 0 δ j )δ 2jϑ E 0 = f (δ j ), where the function x → f (x) = 2 ln 2τ +2 (σ 0 x)x 2ϑ E 0 is increasing in the interval (0, 1], provided that 0 < σ 0 ≤ σ 0 := exp -(τ + 1)ϑ -1 . Then we have 2 ln 2τ +2 (σ

j )E j < f (δ j ) ≤ f (1) = 2 ln 2τ +2 (σ 0 )E 0 ≤ c 0 for 0 < σ 0 ≤ σ 0 .
We are going to prove (11.243). For j = 0 this means that

σ -n 0 exp -ln 2 (σ 0 ) δ -2τ -2-2ϑ 0 ≤ 1.
The function x → x -n exp -ln 2 x is increasing in the interval (0, e - √ n ] and δ depends only on n, τ and ϑ, hence, there exists a positive constant σ 0 = σ 0 (n, τ, ϑ) ≤ e - √ n such that the inequality is satisfied for any 0 < σ 0 ≤ σ 0 .

Suppose now that j ≥ 1. Notice that (11.251) and (11.252), hence,

ν j (m) ≤ jϑ + ϑ 0 -ϑ in view of
η j ≥ δ jϑ+τ +1+ϑ 0 = δ jϑ η 0 .
This implies σ -n j exp -ln 2 (σ j ) η -2 j ≤ σ -n 0 δ -jn exp -ln 2 (σ 0 δ j ) δ -2jϑ η 2 0 := g(δ -n j ). The function x → g(x) := x -n-2ϑ exp -ln 2 (σ 0 x) σ -n 0 η 2 0 is increasing in the interval 0 < x ≤ 1 for 0 < σ 0 ≤ σ 0 := e - √ n+2ϑ and we get σ -n j exp -ln 2 (σ j ) η -2 j ≤ g(δ -n j ) ≤ g(1) = σ -n 0 exp -ln 2 (σ 0 ) η -2 0 ≤ 1. for 0 < σ 0 ≤ σ 0 (n, τ, ϑ). This yields (11.243) for any j ∈ N.
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We fix 0 < σ 0 < (1 -δ)/5 ones forever by 0 < σ 0 = σ 0 (n, τ, ϑ 0 , ϑ) := min 1 37 , σ 0 , σ 0 , σ 0 , (11.261) and then choose E 0 in Lemma 11.7 such that 2 E 0 ≤ c 0 ln -2τ -2 (σ 0 ). Then (b) holds for any 0 < E 0 ≤ E 0 and j ∈ N. The choice of σ 0 is motivated by the previous Lemma and by (11.264).

Using the proof of (b) in Lemma 11.7 we obtain the inequality

ε j r j h j ≤ 2 ln 2τ +2 (σ j )E j ≤ 3σ -3ϑ 0 ln 2τ +2 (σ j )σ 3ϑ j E 0 ≤ C(n, τ, ϑ 0 , ϑ)σ 2ϑ j E 0 , (11.262) 
since ϑ < ϑ 0 /4.

Remark 11.8. The sequences of η j = η j (m), r j = r j (m) and weighted errors E j = E j (m) depend on the choice of m ∈ N, but σ j , h j and K j do not depend on m.

11.2.2 Analytic smoothing of P t .

The Hamiltonian P t is not analytic and one can not apply directly the KAM step to it. We are going to approximate it by real analytic functions. To this end we recall some facts about the analytic smoothing technique in Section A.1. We are going to apply the Approximation Lemmas A.1 to the real valued Hamiltonian P ∈ C k [0, a]; C L 0 (A n × Ω) , where a > 0 and 0 < L ≤ ∞. Set u j = u 0 δ j , j ∈ N, (11.263) where 0 < u 0 = 6s 0 = 30(1 -δ) -1 σ 0 ≤ 36σ 0 < 1, (11.264) the small parameter 0 < δ = δ(n, τ, ϑ) < 1/6 is given by (11.246) and σ 0 is fixed in (11.261).

Let us denote by U j the complex strips in by means of the Approximation Lemma A.1. This is a C k family with respect to t ∈ [0, a] of real analytic in C n /2πZ n × C n × C n functions. In view of (A.7), for each finite ≤ L and 0 ≤ ≤ , the following inequality is true

C n /2πZ n × C n × C n consisting
P j t -P ≤ C(n, ) u - j P (11.267) 
in the corresponding Hölder norms on T n × R n × Ω. On the other hand, the inequality (A.6) with ρ = u j and ρ = u j-1 = δ -1 u j , yields the estimate

∂ p t (P j t -P j-1 t ) u j ≤ C 0 u j-1 ∂ p t P t = Cu j ∂ p t P t
for each finite , 0 ≤ ≤ L and 0 ≤ p ≤ k, where C = C( , n, τ, ϑ 0 ) = C 0 (n, )δ -is a positive constant depending only on , n, τ, ϑ 0 . Moreover, and C = C( , n, τ, ϑ 0 ) > 0 depends only on , n, τ and ϑ 0 . We would like to deal with P j at the j-th iteration putting P j -P j-1 in the error term. To this end we need for 0 ≤ p ≤ k the following inequalities

∂ p t P 0 t u 0 ≤ C 0 ∂ p t P t 0 ≤ Cu 0 ∂ p t P t where C = C 0 (n)u - 0 . The positive constant C := max(c, c) = C (n,
∂ p t P 0 t u 0 ≤ ε 1 2 and ∂ p t P j t -∂ p t P j-1 t u j ≤ ε j+1 4 for j ≥ 1.
(11.270) These inequalities will be obtained in Sect. 11.2.5, choosing appropriatelly the sequence ν and the small constants and ε.

Using the notations introduced in the beginning of Sect. 11.1.1 we set

D j := D s j ,r j , O j := O h j , V j := D j × O j . (11.271)
Moreover, given an integer 1 ≤ q ≤ 3 we set D q j := D q 4 s j , q 4 r j , O q j := O q 4 h j and V q j := D q j × O q j . (11.272)

We have

D j+1 × O j+1 ⊂ D 1 j × O 1 j
since sup {s j+1 /s j , r j+1 /r j , h j+1 /h j } ≤ δ < 1/6.

Iterative Lemma.

We are ready to make the iterations. Consider the real analytic in U j Hamiltonian H j t (ϕ, I; ω) = H j (ϕ, I; ω, t) := N 0 (I; ω) + P j t (ϕ, I; ω),

where N 0 (I; ω) := ω, I and U j is defined by (11.265). Let us denote by U 0 j the subset of C n /2πZ n × C n × C n consisting of all (θ, I; ω) such that |Im θ| , |Im I| , |Im ω| < 1 2 u j .

We have 2s j < u j , which yields D j × O j ⊂ U 0 j . Using the notations introduced in (11.272) we obtain

D j+1 × O j+1 ⊂ D 2 j × O 2 j ⊂ D j × O j ⊂ U 0 j ⊂ U j (11.273)
since sup {s j+1 /s j , r j+1 /r j , h j+1 /h j } ≤ δ < 1/6. For any j ∈ N, let us denote by D j the class of real-analytic diffeomorphisms

F j : D j+1 × O j+1 → D 2 j × O 2 j
of the form F j (θ, I; ω) = (Φ j (θ, I; ω), φ j (ω)) , Φ j (θ, I; ω) = (U j (θ; ω), V j (θ, I; ω)) , (11.274) where V j (θ, I; ω) is affine linear with respect to I, and (θ, I) → Φ j (θ, I; ω) is a canonical transformation for any fixed ω. To simplify the notations we denote the sup-norm of functions f :

D j × O j → C by |f | j = |f | s j ,r j ,h j . Fix k ∈ {0; 1}.
Proposition 11.9 (Iterative Lemma). Let P j ∈ C k ([0, a], A(U j )), j ∈ N, be a C k family of real analytic Hamiltonians in U j satisfying (11.270) and H j = N 0 + P j . Then for each j ∈ N there is a normal form N j (I; ω, t) = e j (ω, t) + ω, I and a C k family of real analytic transformations

F j ∈ C k ([0, a], A(D j × O j , (D 0 × O 0 ) ∩ U 0 j )), F j t = F j (•, t), (11.275 
)

such that 1. F 0 = id and F j+1 t = F t,0 • • • • • F t,j
, for j ≥ 0, where

F j ∈ C k ([0, a], A(D j+1 × O j+1 , D 2 j × O 2 j )) and F t,j (•, t) := F j (•, t) ∈ D j ; (11.276) 2. H j • F j+1 = N j+1 + R j+1 and |∂ p t R j+1 | j+1 ≤ ε j+1 /2 for 0 ≤ p ≤ k;
3. The following estimates hold

|W j ∂ p t (F t,j -id)| j+1 + |W j ∂ p t (DF t,j -Id)W -1 j | j+1 < C 0 ε j r j h j , (11.277) 
|∂ p t (F j+1 t -F j t )| j+1 < C 0 ε j r j h j , (11.278) 
for 0 ≤ p ≤ k and uniformly with respect to t ∈ [0, a], where C 0 = C 0 (n, τ, ϑ 0 , ϑ) > 0, DF j t stands for the Jacobian of F j t with respect to (θ, I; ω), and

W j = diag σ j -1 Id, r j -1 Id, h j -1 Id .
Proof. For k = 0 the proof is similar to that of the Iterative Lemma in [START_REF] Pöschel | Integrability of Hamiltonian systems on Cantor sets[END_REF] and it is done in [START_REF] Popov | Invariants of the length spectrum and spectral invariants for convex planar domains[END_REF] in the case of Gevrey Hamiltonians independent of t. Additional efforts are required for the proof of the estimates (11.277) and (11.278) in the case when p = k = 1.

Consider firstly the Hamiltonian H 0 = N 0 + P 0 . It satisfies the hypothesis of Proposition 11.1 in D 0 × O 0 for t ∈ [0, a] in view of (11.270) and Lemma 11.7. Hence, applying the KAM Step Lemma to the Hamiltonian H 0 we find

F 1 = F 0 such that H 0 • F 1 = N 1 + R 1 , where R 1 (•, t) is real analytic in D 1 × O 1 and |∂ p t R 1 (•, t)| 1 ≤ ε 1 /2.
Moreover, (11.277) holds for j = 0. Given j ≥ 1 we suppose that the Proposition holds for all indexes 0 ≤ l ≤ j -1. We are going to prove it for l = j. We are looking for a transformation F j+1 = F j • F j , where F j belongs to D j . By the inductive assumption we have

H j-1 • F j = N j + R j , where N j (I; ω, t) = e j (ω, t) + ω, I , R j (•, t) is real analytic in D j × O j , and |∂ p t R j (•, t)| j ≤ ε j /2. Then we write H j • F j+1 = (N 0 + P j-1 ) • F j+1 + (P j -P j-1 ) • F j+1 = H j-1 • F j • F j + (P j -P j-1 ) • F j+1 = N j + R j + (P j -P j-1 ) • F j • F j .
Consider the Hamiltonian H j = N j + R j + (P j -P j-1 ) • F j in D j × O j for t ∈ [0, a] and set R 1 j = (P j -P j-1 ) • F j . Using (11.270) we get

|(P j t -P j-1 t ) • F j (•, t)| j ≤ |P j t -P j-1 t | U 0 j ≤ ε j 4 .
On the other hand, by the inductive assumptions (11.275) we obtain

|∂ t ((P j t -P j-1 t ) • F j (•, t))| j ≤ |∂ t P j t -∂ t P j-1 t | U 0 j + |(D(P j -P j-1 t ) • F j (•, t)) .∂ t F j (•, t)| j .
The firs term of the right hand side is estimated by ε j 4 in veiw of (11.270). Using (11.275) we estimate the second one by

|D(P j t -P j-1 t )W -1 j | U 0 j |W j ∂ t F j (•, t)| j
(here we consider W j as a linear operator acting on C 3n ). Now Cauchy estimates (see Remark 11.4 ) and (11.270) yield 

D(P j t -P j-1 t )W -1 j U 0 j = (s j ∇ θ , r j ∇ I , h j ∇ ω ) (P j t -P j-1 t ) U 0 j ≤ sup{s j , r j , h j } 2 u j |P j t -P j-1 t | U j ≤ 2 × 1 6 × ε j 4 < ε j 4 . ( 11 
F j (•, t) : D j+1 × O j+1 → D 2 j × O 2 j
which belong to the class D j , satisfy (11.277) and such that (

N j + R j ) • F j = N j+1 + R j+1 , where |∂ p t R j+1 | j+1 ≤ 1 2 εj r j+1 σ τ +1 j+1 E j+1 ≤ 1 2 εj+1 r j+1 σ τ +1 j+1 E j+1 = ε j+1 2 .
We are going to show that

F j+1 : D j+1 × O j+1 -→ U 0 j . (11.280) 
To prove (11.280) we estimate the norm of the linear operator W q W -1 q+1 . We have

|W q W -1
q+1 | = sup {s q+1 /s q , r q+1 /r q , h q+1 /h q } = s q+1 /s q = δ, since r q+1 /r q ≤ δ τ +1 < δ and h q+1 /h q ≤ δ τ +1 < δ for any q ∈ N by (11.253) and (11.260).

Recall that δ and E 0 depend only on n, τ , ϑ 0 and ϑ. Then using (11.262) and the inductive assumption (11.277), we estimate the Jacobian of F j+1 in D j+1 × O j+1 as follows (see also [START_REF] Pöschel | Integrability of Hamiltonian systems on Cantor sets[END_REF])

W 0 DF j+1 W -1 j j+1 = W 0 D(F 0 • • • • • F j )W -1 j j+1 ≤ j-1 q=0 W q DF q W -1 q q+1 W q W -1 q+1 W j DF j W -1 j j+1 ≤ δ j ∞ k=0 1 + Cε k r k h k ≤ δ j exp ∞ k=0 Cε k r k h k < δ j exp C(1 -δ 2ϑ ) -1 E 0 ,
where C = C(n, τ, ϑ 0 , ϑ) stands for different positive constants depending only on n, τ , ϑ 0 and ϑ. Choosing the parameter E 0 = E 0 (n, τ, ϑ 0 , ϑ) > 0 sufficiently small we obtain

W 0 DF j+1 W -1 j j+1 < δ j , j ∈ N. (11.281) Set z = (θ, I, ω) = x + iy ∈ D j+1 × O j+1 ,
where x and y are respectively the real and the imaginary part of z. Then |W j+1 y| ≤ 1, where | • | stands for the sup-norm. We have

F j+1 (x + iy) = F j+1 (x) + iW -1 0 T j+1 (x, y)W j y , T j+1 (x, y) = 1 0 W 0 DF j+1 (x + ity)W -1 j dt
(we consider W j as a linear operator acting in (R 3n , | • |)). Moreover, |T j+1 (x, y)| < δ j and since |W j y| ≤ δ|W j+1 y| ≤ δ ≤ 1/6, we get

|T j+1 (x, y)W j y| < 1 2 δ j , x + iy ∈ D j+1 × O j+1 .
Denote by Z j+1 (x, y) the imaginary part of F j+1 (x+iy). Since F j+1 (x) is real valued, Z j+1 (x, y) is equal to the real part of W -1 0 T j+1 (x, y)W j y. Then we get

u -1 j |Z j+1 (x, y)| ≤ δ -j u -1 0 |W -1 0 ||T j+1 (x, y)W j y| < 1 2 , x + iy ∈ D j+1 × O j+1 ,
and we obtain (11.280). It remains to prove (11.278). In the case when p = 0 it follows from the arguments in [START_REF] Pöschel | Integrability of Hamiltonian systems on Cantor sets[END_REF]. Suppose now that p = k = 1. Denote by DF j (z) the differential of F j with respect to z = (θ, I, ω) acting on vectors η ∈ C 3n by η → DF j-1 (z) . η. Consider

∂ t (F j+1 -F j ) = ∂ t (F j • F j -F j ) = (DF j • F j ) .∂ t F j + (∂ t F j ) • F j -∂ t F j = Σ 1 + Σ 2 where Σ 1 := (DF j • F j ) • ∂ t F j , Σ 2 := 1 0 (D∂ t F j )(xF j + (1 -x) id ) . (F j -id ) dx.
We are going to estimate Σ l , 1 ≤ l ≤ 2. By (11.276), (11.277) and (11.281) we get for any j ≥ 1

|Σ 1 | j+1 < h -1 0 W 0 DF j W -1 j j W j ∂ t F j j+1 < C 0 ε j r j h j . (11.282) Consider Σ 2 now. Set F 0 = F -1 = id and put F q,j = F q • • • • • F j-1
for q ≤ j -1 and F j,j = id. For j ≥ 1 we have

∂ t F j = ∂ t (F 0 • • • • • F j-1 ) = j-1 q=0 (DF q • F q,j ) . ((∂ t F q ) • F q+1,j ) .
125 Using (11.276), (11.277), (11.281) and (11.262) we get as above

∂ t F j j < h -1 0 j-1 q=0 W 0 DF q W -1 q q W q ∂ t F q q+1 ≤ C j q=0 ε q r q h q < C(1 -δ 2ϑ ) -1 E 0
where C stands for different constants depending only on n, τ , ϑ 0 and ϑ. By Cauchy this implies

D∂ t F j W j ≤ C (11.283) uniformly on D 2 j × O 2 j × [0, a],
and we get

|Σ 2 | j+1 ≤ sup D 2 j ×O 2 j ×[0,a] W 0 D∂ t F j W -1 j W j (F j -id) j+1 ≤ C ε j r j h j (11.284)
where C = C(n, τ, ϑ 0 , ϑ) stands for different positive constants depending only on n, τ , ϑ 0 and ϑ. This proves (11.278) for p = k = 1. In the case when p = 0 we use the same arguments. This completes the proof of Proposition 11.9.
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Remark 11.10 (Uniqueness by construction in the Iterative Lemma). The transformations F t,j , the normal forms N t,j := N j (•, t) and the error terms P t,j := P j (•, t) do not depend on the choice of m ≥ 0 in (11.251) in the following sense. Let m ≥ 0 and let F t,j , N t,j and P t,j , be the corresponding transformations, normal forms and error terms. Then F t,j = F t,j , N t,j = N t,j and P t,j = P t,j on the intersection of their domains of definition.

Remark 11.10 follows from Remark 11.5 and Remark 11.8 by induction whit respect to j ∈ N.

The Iterative Lemma provides a convergent schema giving in a limit a C ∞ function on T n ×Ω 1 in a Whitney sense. To avoid inconveniences arising from the Whitney extension theorem, we propose a modified Iterative Lemma in the next section.

Modified Iterative Lemma.

We are going to modify F j t multiplying F j t -id by a suitable almost analytic cut-off function in ω ∈ C n .

Construction of almost analytic cut-off functions.

We say that a function f : Such a function is "very small" for y small. If f is an almost analytic Gevrey functions, then it is even exponentially small. Given ρ > 1 and L ≥ 1, we say that f belongs to the Gevrey class

C n → C n , given by x + iy → f (x + iy) := f (x, y) for x, y ∈ R n , is R-smooth, or C ∞ in a real sens, if the function R n × R n (x, y) → f (x, y) is C ∞ -smooth.
G ρ L (C n ) if it is R-smooth and f L := sup α,β∈N n sup (x,y)∈R n ×R n |∂ α x ∂ β y f (x, y)| L -|α|-|β| α! -ρ β! -ρ < ∞ , where |α| = α 1 + • • • + α n and α! = α 1 ! • • • α n ! for α = (α 1 , . . . , α n ) ∈ N n . We say that f is Gevrey-G ρ function. If the function f ∈ G ρ L (C n
) is almost-analytic, then there exist positive constants C = C(n, ρ) and c = c(n, ρ) depending only on n and ρ, such that

|∂ α x ∂ β y ∂l f (x + iy)| ≤ C f L L |α|+|β| α! ρ β! ρ exp -c(L|y|) -1 ρ-1
for any α, β ∈ N n and 1 ≤ l ≤ n. (ii) χ j L/h j+1 ≤ C for j ∈ N;

(iii) the following estimate holds

|∂ α x ∂ β y ∂χ j (x + iy)| ≤ C(L/h j+1 ) |α|+|β|+1 (α! β!) ρ exp -c(|y|/h j+1 ) -1 ρ-1 on C n for any j ∈ N and α, β ∈ N n .
The proposition will be proved in Section A.2.

Modified transformations.

From now on we take ρ = 2 in Proposition 11.11. We define the modified transformations

H t,j : D j+1 × C n → C n /2πZ n × C n × C n by H t,j (z) := z + χ j (ω) (F t,j (z) -z) , z = (θ, I; ω) ∈ D j+1 × C n . (11.285) Setting H t,j = ( Φ t,j , φ t,j ), this means that Φ t,j (θ, I; ω) = (θ, I) + χ j (ω) (Φ t,j (θ, I; ω) -(θ, I)) , φ j,t (ω) = ω + χ j (ω) (φ t,j (ω) -ω) , for (θ, I; ω) ∈ D j+1 × C n .
Lemma 11.12. The following relations hold for any j ∈ N provided E 0 = E 0 (n, τ, ϑ 0 , ϑ) is sufficiently small

(1) H t,j :

D j+1 × C n → D 2 j × C n , (2) φ t,j (O j+1 ) ⊂ O 2 j and H t,j : D j+1 × O j+1 → D 2 j × O 2 j . Proof. (1) Recall from (11.277) that |W j (Φ t,j -id)| D j+1 < C 0 ε j r j h j < C 0 C(n, τ, ϑ 0 , ϑ)E 0
by (11.277) and (11.262), where W j = diag σ j -1 Id, r j -1 Id . Moreover,

|χ j | C n < χ j 1/h j+1 ≤ C(n)
in view of Proposition 11.11,(ii). This yields

|W j ( Φ t,j -id)| D j+1 < C 1 (n, τ, ϑ 0 , ϑ)E 0 ≤ 1 8
choosing E 0 = E 0 (n, τ, ϑ 0 , ϑ) sufficiently small, and we obtain (1).

(2) Let ω ∈ O j+1 . Then there exists ω ∈ Ω 1 such that |ω -ω | ≤ h j+1 and we get as above

| φ t,j (ω) -ω | ≤ |ω -ω | + χ j 1/h j+1 |φ t,j (ω) -ω | ≤ h j+1 + C(n)C 0 ε j r j < h j+1 + C(n, τ, ϑ 0 , ϑ)E 0 h j < h j+1 + 1 3 h j < 1 2 h j , for E 0 = E 0 (n, τ, ϑ 0 , ϑ) > 0 sufficiently small, hence, φ t,j (ω) ∈ O 2 j . 2 
Let us define H j = ( Φ j , φ j ) and H j by H j (•, t) = H t,j and H j (•, t) = H j t for t ∈ [0, a], where

H 0 t = id , H j+1 t := H t,0 • • • • • H t,j : D j+1 × C n → D 0 × C n .
We set ∂l = ∂ ∂ ωl for 1 ≤ l ≤ n and ∂ = ( ∂1 , . . . , ∂n ) . We are going to use as well the convention 1 +0 = +∞ and exp(-∞) = 0. Proposition 11.13 (Modified Iterative Lemma). Under the assumptions of Proposition 11.9, the transformations H j are well defined on D j × C n × [0, a] and have the following properties

(i) H j ∈ C k ([0, a], C ∞ (D j × C n , D 0 × C n )) and H j t = F j t on D j × O 2 j for t ∈ [0, a]. Moreover, supp (H j+1 t -H j t ) ⊂ D j+1 × O 3 j+1 and H j+1 t -H j t = F j t • H t,j -F j t ; (ii) |∂ p t (H j+1 t -H j t )(z)| < C 0 ε j r j h j for z = (θ, I; ω) ∈ D j+1 × C n , t ∈ [0, a], and 0 ≤ p ≤ k ,
where C 0 = C 0 (n, τ, ϑ 0 , ϑ) > 0;

(iii) H j+1 -H j is analytic with respect to (θ, I) ∈ D j and almost analytic and Gevrey-G 2 with respect to ω. Moreover, for any 0 ≤ p ≤ k the following estimate holds

∂∂ p t H j+1 -H j (θ, I; ω, t) ≤ Ch -1 j+1 exp -c h j+1 |Im (ω)| ε j r j h j , for (θ, I; ω) ∈ D 3 j+1 × C n , t ∈ [0, a], (11.286) 
where C = C(n, τ, ϑ 0 , ϑ) and c = c(n) are positive constants;

(iv) the following estimate is true

∂ p t ∂ β θ ∂ γ ω H j+1 -H j (θ, I; ω, t) ≤ C β,γ ε j r j h j σ -|β| j+1 h -|γ| j+1 ln 2|γ|+2 (σ j+1 ) (11.287) for (θ, I; ω) ∈ D 2 j+1 × R n , t ∈ [0, a], and 0 ≤ p ≤ k, β, γ ∈ N n , where C β,γ = C β,γ (n, τ, ϑ 0 , ϑ) > 0. Proof. (i) Recall that χ j-1 = 1 on O 2 j , hence, H t,j-1 = F t,j-1 on D j × O 2 j . Moreover, F t,j-1 : D j × O j → D 2 j-1 × O 2 j-1
by Proposition 11.9 and χ j-2 = 1 on O 2 j-1 , which implies

(H j-1 t • H t,j-1 )(z) = (H j-1 t • F t,j-1 )(z) = (F j-1 t • F t,j-1 )(z)
for any z ∈ D j × O 2 j . Repeating this argument we obtain the equality

H j t (z) = (H j-1 t • F t,j-1 )(z) = • • • = (F t,0 • • • • • F t,j-1 )(z) = F j t (z). If ω / ∈ O 3 j+1 , then χ j (ω) = 0, H t,j (θ, I; ω) = (θ, I; ω) and H j+1 t (θ, I; ω) = H j t (θ, I; ω), hence, supp (H j+1 t -H j t ) ⊂ D j+1 × O 3 j+1 . Let z = (θ, I; ω) ∈ D j+1 ×O 3 j+1 ⊂ D j+1 ×O j+1 . Lemma 11.12 implies that H t,j (z) ∈ D 2 j ×O 2 j , hence, χ j-1 ( φ j (ω)) = 1 and we obtain (H t,j-1 • H t,j )(z) = (F t,j-1 • H t,j )(z) ∈ D 2 j-1 × O 2 j-1 .
On the other hand χ j-2 = 1 on O 2 j-1 and repeating this argument we get

(H j t • H t,j )(z) = (H t,0 • • • • • H t,j-1 • H t,j )(z) = (H t,0 • • • • • F t,j-1 • H t,j )(z) = • • • = (F t,0 • • • • • F t,j-1 • H t,j )(z) = (F j t • H t,j )(z).
Moreover,

H j t (z) = F j t (z) since z ∈ D j+1 × O j+1 ⊂ D 2 j × O 2 j
, and we obtain the equality

H j+1 t -H j t = F j t • H t,j -F j t on D j+1 × O 3 j+1 .
On the other hand, both sides of it vanish at any z ∈ D j+1 × (C n \ O 3 j+1 ). Hence, the above equality is true on D j+1 × C n . This completes the proof of (i).

(ii) Let p = 0. Using (i) we obtain 

H j+1 -H j = F j • H j -F j = χ j 1 0 (DF j )(xH j + (1 -x) id ) . (F j -id ) dx. Moreover, for any z ∈ supp (H j+1 t -H j t ) ⊂ D j+1 × O j+1 ⊂ D 2 j × O 2 j we have xH j (z) + (1 -x)z ∈ D 2 j × O 2 j for 0 ≤ x ≤ 1, ( 11 
|H j+1 -H j | j+1 ≤ C(n)h -1 0 W 0 DF j W -1 j j W j (F j -id ) j+1 < C 0 ε j r j h j .
Let p = 1. By the chain rule we get

∂ t (H j+1 -H j ) = ∂ t (F j • H j -F j ) = (DF j • H j ) .∂ t F j + (∂ t F j ) • H j -∂ t F j = Σ 1 + Σ 2 where Σ 1 := (DF j • H j ) • ∂ t F j , Σ 2 := 1 0 (D∂ t F j )(xH j + (1 -x) id ) . (F j -id ) dx.
Using (11.288), we estimate Σ 1 and Σ 2 as in (11.282) and (11.284).

(iii) Let p = 0. Recall that F j is analytic on D j × O j , F j is analytic with respect to z = (θ, I; ω) ∈ D j+1 × O j+1 , and that H j (z, t) = z + χ j (ω)(F j (z, t) -z).

Differentiating the identity in (i) we obtain for any 1 ≤ l ≤ n the following one 

∂l (H j+1 -H j )(z, t) = ∂ ∂ ωl (F j • H j -F j )(z, t) = ∂l χ j (ω)DF j t (H j (z, t)) . (F j (z, t) -z) ( 
| ∂l χ j (ω)| ≤ Ch -1 j+1 exp -c h j+1 |Im (ω)| . (11.290) Morreover, z ∈ D j+1 × O 3 j+1 and H j (z, t) ∈ D 2 j × O 2 j in view of item (i)
, and arguing as in the proof of (11.282) we obtain (iii) for p = 0. Let p = k = 1. Differentiating the identity (11.289) with respect to t we obtain

∂ t ∂l (H j+1 -H j )(z, t) = ∂l χ j (ω)∂ t DF j t (H j (z, t)) . (F j (z, t) -z) + ∂l χ j (ω)DF j t (H j (z, t)) .∂ t F j (z, t) +χ j (ω) ∂l χ j (ω)D 2 F j t (H j (z, t)) [∂ t F j (z, t), F j (z, t) -z)] for z ∈ supp (H j+1 t -H j t ). Consider for any z = (θ, I; ω) ∈ D j × O j the symmetric bilinear form (ξ, η) → D 2 F j t (z, t)[ξ, η], ξ, η ∈ C 3n ,
representing the second differential of F j t at z. We have Lemma 11.14. There exists C = C(n, τ, ϑ 0 , ϑ) > 0 such that 

D 2 ∂ p t F j t (z)[W -1 j ξ, W -1 j η] ≤ C|ξ| C 3n |η| C 3n , ξ, η ∈ C 3n , (11.291) for any z ∈ D 2 j × O 2 j , t ∈ [0, a], 0 ≤ p ≤ k, and j ∈ N. 130 Proof. The expression D 2 ∂ p t F j (z, t)[W -1 j ξ, W -1 j η] is a sum of monomials of the form (σ j ∂ θ ) α (r j ∂ I ) β (h j ∂ ω ) γ ∂ p t F j (
d β f dx β (x) = β! 2πi ∂Dr(x) (z -x) -β-1 f (z) dz + Dr(x) (z -x) -β-1 ∂f (z) dz ∧ dz (11.292)
(see e.g. [START_REF] Guillemin | Semi-classical analysis[END_REF], Proposition 1.1). Notice that the second integral is well defined since the function ∂f is flat at R.

Set R j = h j+1 ln -2 (σ j+1 ) and I β,γ 1 (θ, I; ω, t) := ∂ p t ∂ β θ ∂ γ 1 ω 1 H j+1 -H j (θ, I; ω, t) for (θ, I; ω) ∈ D 2 j+1 × R n , t ∈ [0, a].
Recall that H j is analytic with respect to (θ, I) ∈ D j+1 . Applying first the Cauchy inequality with respect to θ, we get

|I β,γ 1 (θ, I; ω, t)| ≤ (2σ j+1 ) -|β|-1 |I 0,γ 1 (θ, I; ω, t)|. for (θ, I; ω) ∈ D 2 j+1 × R n , t ∈ [0, a].
We are going to estimate |I 0,γ (θ, I; ω, t)|. Applying Cauchy formula (11.292) to the variable x = ω 1 ∈ R, keeping ω = (ω 2 , . . . , ω n ) fixed in R n-1 , we obtain

I 0,γ 1 (θ, I; ω, t) = γ 1 ! 2πi D R j (ω 1 ) ∂ p t ∂1 (H j+1 -H j )(θ, I; z, ω , t) (z -ω 1 ) γ 1 +1 dz + γ 1 ! 2πi D R j (ω 1 ) ∂ p t ∂1 (H j+1 -H j )(θ, I; z, ω , t) (z -ω 1 ) γ 1 +1 dz ∧ dz (11.293) for (θ, I; ω) ∈ D 2 j+1 × R n and t ∈ [0, a]. Using (ii) we estimate the first integral by C β,γ 1 ε j r j h j h -γ 1 -1 j+1 ln 2γ 1 +2 (σ j+1 ) for (θ, I; ω) ∈ D 2 j+1 × R n and t ∈ [0, a].
In order to estimate the second integral we are going to use the following estimate

1 |z -ω 1 | γ 1 +1 exp -c h j+1 |Im (z)| h -1 j+1 ≤ 1 |Im (z)| γ 1 +1 exp - c 2 h j+1 |Im (z)| 2 τ +1 σ -τ -1 j+1 ln 2τ +2 (1/σ j+1 )e -c 2 ln 2 (σ j+1 ) ≤ C γ 1 1 h γ 1 +1 j for z = ω 1 .
Using (iii) and the estimate above, we estimate the second integral by

C γ ε j r j h j h -γ 1 -1 j+1 for (θ, I; ω) ∈ D 2 j+1 × R n and t ∈ [0, a]. This implies |I 0,γ 1 (θ, I; ω, t)| ≤ C γ 1 ε j r j h j h -γ 1 -1 j+1 ln 2γ 1 +2 (1/σ j+1 ) for (θ, I; ω) ∈ D 2 j+1 × R n and t ∈ [0, a]. Finally we obtain |I β,γ 1 (θ, I; ω, t)| ≤ C β,γ 1 ε j r j h j h -γ 1 -1 j+1 ln 2γ 1 +2 (1/σ j+1 )σ -|β| j+1 for (θ, I; ω) ∈ D 2 j+1 × R n and t ∈ [0, a].
This proves (iv) in the case when γ = (γ 1 , 0, . . . , 0). By a permutation of the indexes, we obtain it as well for γ = (0, . . . , 0, γ l , 0, . . . , 0). It remains to prove the estimate for the mixed derivatives with respect to ω. To this end we shall use the following We proceed by induction with respect to n ≥ 2. Let n = 2 and γ = (γ 1 , γ 2 ) with γ 2 = 0. Denote by e 1 and e 2 the canonical basis of R 2 and set v = e 1 + λ e 2 , where λ > 0. We have

L N v = N l=0 λ l L l , L l := N ! l!(N -l)! ∂ N -l 1 ∂ l 2 .
Choosing λ m = m/(N + 1) and v m = e 1 + λ m e 2 for 1 ≤ m ≤ N + 1, we obtain the linear system

N l=0 λ l m L l = L N vm , m = 0, . . . , N.
This system has a unique solution with respect to L l , 0 ≤ l ≤ N , since the corresponding determinant is just the Vandermonde determinant. Then we use induction with respect to n. 2

Applying the preceding argument for each derivative L N vm , we complete the proof of (iv). 2

Remark 11.16 (Uniqueness in the Modified Iterative Lemma). The transformations H j do not depend on the choice of m ≥ 0 in (11.251) in the sense of Remark 11.10.

11.2.5

Choice of the sequence ν and the small parameters and ε.

Given m ∈ N we consider the sequence (ν j (m)) j∈N introduced in (11.251) and set

j (m) =      0 = 2τ + 2 + 2ϑ 0 for j < J(m), m = 2m(τ + 1) + 0 for j ≥ J(m), (11.294) 
where J(0) = 0 and J(m), m > 0, will be a suitable integer satisfying (11.252). Consider the family of functions P j t , j ∈ N, defined by (11.266). In order to apply the Iterative Lemma and the Modified Iterative Lemma to that family, we have to show that it satisfies (11.270), To this end we will choose appropriately the small constants and ε as well as the integer J(m) for each m > 0. By (11.268) 

σ τ +1 0 (δ/6s 0 ) 4C δ M j (m) with = j (m), (11.296) 
where M j (m) := q j+1 -(j + 1) j (m) = (j + 1)(2τ + 2 + ϑj (m)) + 2(ν 0 (m) + • • • + ν j (m)).

(11.297)

Since r 0 = s 0 r > σ 0 r, the inequality (11.296) will follow from the following one sup 0≤t≤a

∂ p t P t j (m) ≤ ε j (m)δ M j (m) , 0 ≤ p ≤ k, (11.298) 
where

j (m) := σ τ +2 0 E 0 (δ/6s 0 ) j (m) 8C j (m) . (11.299) 
We have

j (m) =      0 = σ τ +2 0 E 0 (δ/6s 0 ) 0 8C 0 for j < J(m); m = σ τ +2 0 E 0 (δ/6s 0 ) m 8C m for j ≥ J(m).
For m = 0, taking into account (11.251) and (11.294), we obtain M j (0) = -(j + 1)ϑ.

Lemma 11.17. There exist

C m = C m (n, τ, ϑ, ϑ 0 ) > 0,
depending only on n, τ, ϑ, ϑ 0 and m, such that

C m ε ≤ A 0 J(m) (m) ≤ ε. (11.304) Proof. If J(m) -1 ≥ m(τ + 1)ϑ -1 , then A 0 J(m)-1 (m) > ε, and we get ε ≥ A 0 J(m) (m) = δ 2m(τ +1)+ϑ A 0 J(m)-1 (m) > εδ 2m(τ +1)+ϑ . If J(m) < m(τ + 1)ϑ -1 + 1, then ε ≥ A 0 J(m) (m) ≥ C 0 (m)δ J(m)(2m(τ +1)+ϑ) sup 0≤t≤a P t 0 ≥ C 0 (m)δ b(m) ε,
where b(m) = (m(τ + 1)ϑ -1 + 1)(2m(τ + 1) + ϑ), and we obtain (11.304) since C 0 (m), and δ depend only on n, τ, ϑ, ϑ 0 and m. 2

(2) The case when p = k = 1.

Choosing ε and J(m) as in the case (1), we obtain that P t satisfies (11.298) for p = 0. To satisfy (11.298) for p = 1, we need an additional argument. We rescale t by setting t = tT (m) ∈ [0, ã(m)], where ã(m) = aT (m) and How do the maps F j t ,j ∈ N, constructed by the Iteration Lemma and H j t given by the Modified Iteration Lemma, depend on m ∈ N? The answer of this question is given in Remark 11.10 and Remark 11.16 and we summarize it by the following Lemma 11.19 (Uniqueness by construction). We have the following:

(i) The transformations F j t and H j t , j ∈ N, do not depend on m in the following sense. If m ∈ N and F j t and H j t , are the corresponding transformations, then F j t = F j t and H j t = H j t on the intersection of their domains of definition.

(ii) Let k = 1 and F j t and H j t , j ∈ N, be the transformations corresponding to P t, where t = tT (m) ∈ [0, T (m)a]. Let F j t and H j t be the transformations corresponding to P t , t ∈ [0, a]. Then F j t = F j t and H j t = F j t .

Item (ii) means that the map [0, a] → H j t is C 1 , if k = 1, and that

∂ t H j t = T (m)∂ t H j t | t=tT (m) .
In order to prove (ii), Theorem 10.1, we need the following Lemma 11.20. For each m ≥ 0 there exists C m = C m (n, τ, ϑ, ϑ 0 ) > 0 depending only on m, n, τ, ϑ, ϑ 0 such that

εE j (m) ≤ C m σ m(τ +1)+ϑ 0 -ϑ j+1 sup 0≤t≤a P t (m) .
Proof. Let m = 0. We have

E j (0) = δ ν 0 (0)+•••+ν j-1 (0) E 0 = δ j(ϑ 0 -ϑ) E 0 < (σ 0 δ) -ϑ 0 σ ϑ 0 -ϑ j+1 E 0
and the estimate holds in view of the choice of ε in (11.302). Suppose now that m > 0. Using Lemma 11.17 and (11.303) we obtain

εE j (m) ≤ C -1 m A 0 J(m) (m)E j (m) = C -1 m C 0 (m)δ Fm(j) sup 0≤t≤a P t (m) , where F m (j) := J(m)(2m(τ + 1) + ϑ) + ν 0 (m) + • • • + ν j-1 (m).
Let j ≤ J(m). Using (11.251), we get

F m (j) = J(m)(2m(τ + 1) + ϑ) + j(ϑ 0 -ϑ) ≥ j(2m(τ + 1) + ϑ 0 ).
If j ≥ J(m) + 1, we obtain by (11.251) the inequality 

F m (j) = J(m)(2m(τ + 1) + ϑ) + J(m)(ϑ 0 -ϑ) + (j -J(m))(m(τ + 1) + ϑ 0 -ϑ) ≥ j(m(τ + 1) + ϑ 0 -ϑ). Choosing C m := C -1 m C 0 (m)(σ 0 δ) -m(τ +1)-
p t ∂ β θ ∂ γ ω H j+1 -H j (θ, I; ω, t) ≤ C β,γ ε j r j h j σ -|β| j+1 h -|γ| j+1 ln 2|γ| (1/σ j+1 )T (m) p ≤ C m,β,γ σ m(τ +1)+ϑ 0 -ϑ j+1 σ -|β| j+1 h -|γ| j+1 ln 2|γ| (1/σ j+1 ) P (p) (m) ≤ C m,β,γ σ (m-|γ|)(τ +1)-|β|+ϑ 0 -ϑ j+1 ln 4|γ| (1/σ j+1 ) P (p) (m) ≤ C m,β,γ σ (m-|γ|)(τ +1)-|β|+ϑ 0 -2ϑ j+1 P (p) (m) on D j+1 × R n × [0, a],
where C m,β,γ stands for possibly different positive constants. Let us fix ϑ = (ϑ 0 -ϑ 1 )/4. Then

∂ p t ∂ β θ ∂ γ ω H j+1 -H j (θ, I; ω, t) ≤ C m,β,γ σ (m-|γ|)(τ +1)-|β|+ϑ 1 +2ϑ j+1 P (p) (m) ≤ C m,β,γ σ 2ϑ j+1 P (p) (m) (11.307) on D j+1 × R n × [0, a] provided that |β| + |γ|(τ + 1) ≤ m(τ + 1) + ϑ 1 . Set H j (θ, I; ω, t) = (Φ j (θ, I; ω, t), φ j (ω, t))
where Φ j (θ, I; ω, t) = (U j (θ; ω, t), V j (θ, I; ω, t)) and V j is affine linear in I by construction. Set 

     Ψ(θ; ω, t) = Ψ t (θ; ω) = (U (θ; ω, t), V (θ; ω, t)) = lim j→∞ Φ j (θ, 0; ω, t), φ(ω, t) = φ t (ω) = lim j→∞ φ j (ω, t), (θ, ω, t) ∈ T n × R n × [0, a]. ( 
∂ γ ω Ψ t , ∂ γ ω φ t ) ∈ C ϑ 1 is C k for
for any m ≥ 0 and α, β ∈ N n such that |α| + |β|(τ + 1) ≤ m(τ + 1) + ϑ 1 . Moreover, the estimates in Theorem 10.1, (ii), hold (here κ = ρ = 1).

We are going to prove (i). To this end we use the identity

H j = F j on D 2 j × O 2 j × [0, a]
given in Proposition 11.13, (i). As in Sect. 5.d, [START_REF] Pöschel | Integrability of Hamiltonian systems on Cantor sets[END_REF], we obtain that

X H j • F j -DΦ j • X N ≤ cε j r j h j on T n × {0}
× Ω 1 for all j ≥ 0, where X H j and X N = L ω stand for the Hamiltonian vector fields of H j (θ, I; ω, t) and N (θ, I; ω) = ω, I , respectively. On the other hand, ∇ (θ,I) H j converges uniformly to ∇ (θ,I) H as j → ∞ in view of the estimate (11.267), with = 0 and = ϑ 1 hence,

X H(•;φ(ω,t),t) • Ψ(•; ω, t) = DΨ(•; ω, t) • L ω on T n × {0} × Ω 1 . Moreover, (11.307) implies that U (•, ω, •) = lim U j (•, ω, •) ∈ C k ([0, a], C 1+ϑ (T n ))
, for each ω ∈ Ω, and U (•; ω, t) -id 1+ϑ < C(n, τ, ϑ 0 , ϑ 1 ) P

(m) ≤ C(n, τ, ϑ 0 , ϑ 1 ) < 1/2, choosing small enough in a function of n, τ ,ϑ 0 and ϑ 1 , hence, U (•, ω, t) is an embedding. Then t → {Ψ(θ; ω, t) : θ ∈ T n } is a C k family of embedded invariant tori of the Hamiltonians (θ, I) → H(θ, I; φ(ω, t), t) with frequency ω ∈ Ω 1 . They are Lagrangian by construction (see also [START_REF] Hedenmalm | Formal power series and nearly analytic functions[END_REF], Sect. I. 

ρ(m) = ((m(τ + 1) + ϑ 1 , m + ϑ 2 ), m ≥ 0, 1 < ϑ 1 < ϑ 0 , ϑ 2 = (ϑ 0 -ϑ 1 )/(4τ + 4).
Denote the corresponding weighted Hölder norms by • ρ(m);κ .

Theorem 11.22. There exists a positive constant = (n, τ, ϑ 0 , ϑ 1 ) > 0 depending only on n, τ , ϑ 0 and ϑ 1 such that, for any a > 0, 0 < κ < 1, 0 < r < ρ 0 and M ≥ 0, and any real valued Hamiltonian H = N + P , where the perturbation P ∈ C k [0, a]; C and N (I; ω) = ω, I is the normal form, the following holds. There exist families of maps [0, a] t → φ t ∈ C M +ϑ 2 (Ω; Ω) , [0, a] t → Ψ t = (U t , V t ) ∈ C ρ(M ) (T n × Ω; T n × B(0, r)) (11.310) such that supp (φ t -id) ⊂ Ω -κ/2, supp (U t , V t ) -(id T n , 0) ⊂ T n × (Ω -κ/2) and item (i) of Theorem 10.1 holds true.

Moreover, for any 0 ≤ m ≤ M there is C m > 0 depending only on n, τ , ϑ 0 , ϑ 1 , and m, such that ∂ q t (U t -id T n ) ρ(m);κ + r -1 ∂ q t V t ρ(m);κ + κ -1 ∂ q t (φ t -id) m+ϑ Proof. Firstly we apply Whitney's extension theorem (see e.g. [START_REF] Sorrentino | Computing Mather's beta-function for Birkhoff billiards[END_REF], Chapter VI, Theorem 4) to f ∈ C k,µ (D), where D is compact, k ∈ N, 0 < µ ≤ 1. We obtain an extension f ∈ C k,µ (R m ) of f such that

f C k,µ (R m ) ≤ C f C k,µ (D) ,
where C = C (m) > 0 depends only on = k + µ and m. Moreover,

f C k,1 (D) ≤ f C k+1 (D) ,
since f is C ∞ -smooth on the compact D and D is convex. Then we apply the interpolation inequalities (A.8) to the extension f ∈ C k,µ (R m ) of f . In the same way we prove the product estimate. 2

Consider a subdivision x = (x (1) , . . . , x (p) ) ∈ R n 1 × • • • × R np , n = n 1 + • • • + n p , where 1 ≤ p ≤ n. Given a = (a 1 , . . . , a p ), where a j are positive numbers for 1 ≤ j ≤ p, we denote by σ a : R n → R n the dilation σ a (x) = (a 1 x (1) , . . . , a p x (p) ). More generally, for any d ∈ N we denote by σ a : T d × R n → T d × R n the partial dilation σ a (θ, x) = (θ, a 1 x (1) We are going to extend the jet F j to a Gevrey-G ρ function using a Whitney extension theorem in Gevrey classes.

Let us first recall the notion of Gevery smoothness of Whitney jets. Let K be a compact set in R d , d ≥ 1, and F = f β β∈N d a jet of continuous functions f β ∈ C(K). For each N ∈ N we denote by T N u F the formal Taylor polynomial of order N centered at u ∈ K, i.e. For each α ∈ N d , the corresponding Taylor remainder is defined by

R N u F (α) (z) = f α (z) -∂ α z T N u (F )(z) = f α (z) -T N -|α| u F (α) (z) = f α (z) - |β|≤N -|α| f α+β (u)(z -u) β /β! .
Recall from Stein [START_REF] Sorrentino | Computing Mather's beta-function for Birkhoff billiards[END_REF] p. 177 the following identity The corresponding norm of F is defined by F L := inf A. The space W G ρ L (K) equipped with this space is a Banach space. We recall the Whitney extension theorem of Bruna [START_REF] Bruna | An extension theorem of Whitney type for non quasi-analytic classes of functions[END_REF] as it has been presented in [START_REF] Popov | Invariants of the length spectrum and spectral invariants for convex planar domains[END_REF], Theorem 3.8.

∂ α z T N v F (z) -∂ α z T N u F (z) = |β|≤N (z -v) β R u F (α+β) (v)/β! (A.
Theorem A.4. There exist positive constants A 0 = A 0 (d, ρ) and C 0 = C 0 (d, ρ) such that the following holds.

For any compact subset K of R d and jet F = (f β ) β∈N d ∈ W G ρ L (K), satisfying (A.16) on K with some L > 0, there exists f ∈ G ρ C 0 L (R d ) such that (i) ∂ β f = f β on K for any β;

2. Let z = (x , y ) ∈ K j , y = 0 and u ∈ K j . Set v = (x , 0). Remark A.3 implies

f γ j (z) = ∂ γ z T N v F j (z)
and by means of (A.15) we obtain This completes the proof of the lemma. 2

R N u F (γ) j (z) = ∂ γ z T N v F j (z) -∂ γ z T N u F j (z) = |β|≤N (z -v) β R N u F ( 
Lemma A.5 enables us to apply Theorem A.4 and we denote by χ j the corresponding extension of the jet F j+1 ∈ W G ρ L j+1 (K j+1 ). By construction, the Taylor series of χ j-1 at (x, 0) coincides with the power series (A.13), which implies that χ j is almost analytic. The function χ j satisfies item (i) of Proposition 11.11 since it coincides with fj+1 on K j+1 . It satisfies (ii), taking L = 385n 2 2 nρ λC 0 , where λ is introduced in (A.11) and C 0 is the constant in Theorem A.4. Fixing for any n the function ϕ and the constants λ and C 0 , we may suppose that L = L(n, ρ) depends only on n and ρ.

It remains to prove (iii). Expanding ∂ α x ∂ β y χ j (x, y) in Taylor series at y = 0, we obtain for any α, β ∈ N n and m ∈ N 

A.3 Borel's Theorem

Proof of Proposition 7.1. We follow the standard proof of the Borel's theorem (see [START_REF] Zelditch | The inverse spectral problem[END_REF] where C m depends only on m and on the dimension n.

Consider now the composition of Hölder functions.

Lemma A.6. Let U j ⊂ R n j , j = 1, 2, be open sets. Suppose that U 1 is convex. Let 0 < µ < 1 and

f 1 ∈ C 1 (U 1 ), f 2 ∈ C µ (U 1 ). Then |f 2 • f 1 | ,U 1 ≤ |f 2 | ,U 2 |f 1 | 1,U 1 .
To estimate higher Hölder norms of the composition of two functions we apply the Faa di Bruno formula. To this end we introduce the following notations. Given ≥ 1, f ∈ C (U ) and an integer 1 ≤ m ≤ we set Proposition A.7. Let f j ∈ C (U j , U j+1 ), j = 1, 2, where ≥ 1 and U j ⊂ R n j are open sets such that f 1 (U 1 ) ⊂ U 2 . Then the following holds:

1. If ∈ N * then |f 2 • f 1 | ,U 1 ≤ C m=1 |f 2 | m,U 2 P ,m U 1 (f 1 )
where the constant C depends only on and on the dimensions n j , j = 1, 2, 3.

2. If ∈ [1, ∞) and U 1 is convex, then

|f 2 • f 1 | ,U 1 ≤ C 1 + |f 1 | { } 1,U 1 × [ ] m=1 |f 2 | m+{ },U 2 P [ ],m U 1 (f 1 ) + |f 2 | m,U 2 P ,m U 1 (f 1 )
where the constant C depends only on [ ] and on the dimensions n j , j = 1, 2, 3.

Proof. Statement 1. follows directly from the Faa di Bruno formula

∂ α (f 2 • f 1 ) = (∂ β f 2 ) • f 1 β! (∂ α 1 f 1 ) • • • (∂ αm f 1 ) α 1 ! • • • α m ! α!
where We are going to prove 2. Suppose now that U 1 is convex and that = m + µ, where m ∈ N * and 0 < µ < 1. Firstly we apply (A.21) to the product in the Faa di Bruno formula. Then we estimate |(∂ β f 2 ) • f 1 | µ,U 1 by means of Lemma A.6, which yields

|(∂ β f 2 ) • f 1 | µ,U 1 ≤ |∂ β f 2 | µ,U 2 |f 1 | µ 1,U 1 .

This implies 2. 2

Similar inequalities can be proven for compensated domains U 1 ([42], Theorem 5.4) but then the constants depend on U 1 .

Proposition A.8. Let > 0 and let f ∈ C +1 (U, V ) be a difeomorphism with inverse g = f -1 , where U and V = f (U ) are open subsets of R n , n ≥ 1. Then the following holds: Proof. To prove the statement one needs a sort of Lagrange inversion formula for higher derivatives of the Jacobian matrix Dg ∈ C ∞ (U, M n (R)). Hereafter M n (R) = M n,n (R) is the space of real n × n matrices equipped with the corresponding sup-norm and we denote by A • B the product of two matrices A and B. Denote by L p : M n (R) → M 1,n (R) the linear operator which assigns to each matrix A ∈ M n (R) its p th -line and by C q : M n (R) → M n,1 (R) the linear operator which assigns to each matrix A ∈ M n (R) its q th -column. We identify L p and C q with the corresponding matrices in M 1,n (R) and M n,1 (R), respectively. Since (Dg)(f (x)) = Df (x) -1 , where Df (x) -1 is the inverse of the matrix Df (x), we get for any 1 ≤ p, q ≤ n the equality ∂ ∂y q g p (y) = L p • Df (x) -1 • C q ∈ R as y = f (x). (A.24)

Then differentiating the identity Dg(y) = (Df ) -1 (g(y)) with respect to y q we obtain ∂ ∂y q Dg (y) = We are going to prove 2 and 3 . Since V is convex, we have in view of Lemma A.6

h • g C µ (V ) ≤ h C µ (U ) Dg µ C 0 (V ) = h C µ (U ) (Df ) -1 µ C 0 (U )
for any h ∈ C µ (U ) and 0 < µ < 1. Moreover, (Df ) -1 C µ (U ) ≤ Df C µ (U ) (Df ) -1 2 C 0 (U ) .

We have Dg = (Df ) -1 • g, hence, taking h = (Df ) -1 we obtain 2. for any x, y, z ∈ R n and 0 < ε ≤ 1. This implies

ψ U ε ;ε ≤ 2ε n 1 1 U * φ ε L 1 χ ε ;ε ≤ 2 φ ε L 1 χ = 2 φ L 1 χ = C
which proves the Lemma. where C > 0 depends only on ≥ 1 and on the dimensions n j and d j .

2. Let A j = T n j × R d j , j = 1, 2. Then

g • f ,A 1 ≤ C (1 + df 0,A 1 )
× ( g ,A 2 df 0,A 1 + g 1,A 2 df -1,A 1 ) (A.28)

where C > 0 depends only on ≥ 1 and on the dimensions n j and d j .

3. Let D j , j = 1, 2, be open convex subsets of R d j and A j = T n j × D j . Then (A.28) holds for any f ∈ C ∞ (A 1 , A 2 ) and g ∈ C ∞ (A 2 , R) with a constant C depending only on ≥ 1 and the dimensions n j and d j .

Proof. To prove the first statement we make use of Proposition A.7 and of the interpolation inequalities. Consider a typical term of (A.23) given by x p + 1 q y q < x p + y q , where x and y are non-negative and p and q are positive numbers such that 1 p + 1 q = 1. Putting s = m, t = , u = g, v = dg, and then s = m -1 + { }, t = -1, u = dg, v = dg, and using 1, we obtain 2. The inequality in 2 has been proven for more general domains in ([42], Proposition 5.5) but the constants there depend on the domains. Statement 3 follows from 2 and Remark A. 

A := |f | k 1 • • • |f | k j-1 |f | k j +{ } |f | k j+1 • • • |f | km
v • u ,A 1 ;κ ≤ C [ ] 1 + d(σ -1 κ • u • σ κ ) -1 C 0 × [ ] m=1 v m,A 2 ;κ d(σ -1 κ • u • σ κ ) C -m (A 1 ) + v m+{ },A 2 ;κ d(σ -1 κ • u • σ κ ) C [ ]-m (A 1 )
where C > 0 depends only on and on the dimensions n j and d j .

Let

A 1 = T n 2 × D 1 , where D 1 is an open convex subset of R d 1 , A 2 = T n 2 × R d 2 , and u ∈ C ∞ (A 1 , A 2 ). Then |v • u| ,A 1 ;κ ≤ C 1 + d(σ -1 κ • u • σ κ ) -1 C 0 × v ;κ d(σ -1 κ • u • σ κ ) C 0 + v 1;κ d(σ -1 κ • u • σ κ ) C -1
for any ≥ 1, where C > 0 depends only on and on the dimensions n j and d j . In particular, if where C > 0 depends only on , ε 0 and d. On the other hand, the map W t is exact symplectic and close to the identity and there exists a C 1 -family of generating functions G t such that G t is compactly supported and ∇ r G t (ϕ, r) = -φ t (ϕ, r) , ∇ ϕ G t (ϕ, r) = V t (ϕ + φ t (ϕ, r), r) -r.

A 2 = T n 2 (d 2 = 0) then v • u ;κ ≤ v • u C 0 + C 1 + u -
We are going to prove (A.36). The estimate of ∇ r G t follows from (A.39). To prove the estimate of κ -1 ∇ ϕ G t we write ∇ ϕ G t (ϕ, r) = (V t (ϕ, r) -r) + Then the function (θ, r) → θ, r -G(θ, r) is a generating functions of a symplectic transformation W : A → A, G is a generating functions of a symplectic transformations P : A → A, the support of W -id is contained in T n-1 × F and P = W • Q.

Proof. The assertions about W follow from Lemma A.14. As in the proof of Lemma A.14 one obtains that the map θ → θ -∇ r G(θ, r) is a diffeomorphism of T d homothope to the identity mapping. Then comparing the identities P (θ -∇ r K(r) -∇ r G(θ, r), r) = (θ, r -∇ θ G(θ, r)) where ν is the outward unit normal to Γ. In addition, we assume that the metric g does not allow global Killing symmetries;

(b) There is no point x 0 ∈ Γ and a constant c ∈ R such that g x 0 (ξ, ξ) = cI x 0 (ξ, ξ) for any ξ ∈ T x 0 X.

Then (X, g) is isometric to a Liouville billiard table. 1 Conversely, any Liouville billiard table satisfies the properties stated above.

Remark B.1. The assumption that g does not allow global Killing symmetries is needed for excluding the case when (X, g) is a surface of revolution. Condition (b) can be replace by a similar condition but can not be avoided. One can easily see this by considering the billiard table on the surface of the ellipsoid x2 a 2 + y 2 b 2 + z 2 c 2 = 1 , 0 < a < b < c, defined by the condition y ≥ 0. This billiard table is completely integrable but it is not a Liouville billiard table. Its boundary is the geodesic that corresponds to the intersection of the coordinate plane O xz with the ellipsoid. In particular, this curve is not locally geodesically convex and it contains the four umbilics of the ellipsoid. One can easily see that the billiard table defined this way satisfies all conditions of Theorem 7 except (b). Condition (b) is also needed to ensure that the integral is non-trivial, i.e. I ≡ cg where c is a real constant.

As a consequence of Theorem 7 we see that there exists a double covering map with two branched points, τ : C → X, where C denotes the cylinder (R/Z) × [-N, N ], N > 0, coordinatized by the variables x and y respectively, so that the metric τ * (g) and the integral τ * (I) have the following form on C, dg 2 = f (x) -q(y) (dx 2 + dy 2 ) (A.42)

dI 2 = α dF 2 + β dg 2
where α = 0 and β are real constants and dF 2 := f (x) -q(y) q(y) dx 2 + f (x) dy 2 . (A. [START_REF] De La Llave | Regularity of the composition operator in spaces of Hölder functios[END_REF] In other words, the integral dI 2 belongs to the pencil of dg 2 and dF 2 . Here f ∈ C ∞ (R) is 1-periodic, q ∈ C ∞ ([-N, N ]), and

(i) f is even, f > 0 if x / ∈ 1 2 Z, and f (0) = f (1/2) = 0;

(ii) q is even, q < 0 if y = 0, q(0) = 0 and q (0) < 0;

(iii) f (2k) (l/2) = (-1) k q (2k) (0), l = 0, 1, for every natural k ∈ N.

In particular, if f ∼ ∞ k=1 f k x 2k is the Taylor expansion of f at 0, then, by (iii), the Taylor expansion of q at 0 is q ∼ ∞ k=1 (-1) k f k x 2k .

Remark B.2. The branched points of the covering correspond to the points (0, 0) and (1/2, 0) of the cylinder C. The metric (A.42) and the integral (A.43) on C vanish at these points.

Proof of Theorem 7. Consider a tubular neighborhood V ≡ V (Γ) ⊆ X of the boundary Γ in X that is diffeomorphic to the strip (R/Z) × [-, 0], > 0, and assume that the boundary Γ corresponds to the circle (R/Z) × {0}. By gluing two 2-dimensional closed disks along the boundaries of this strip and then by extending the Riemannian metric g to a smooth Riemannian metric g on the corresponding 2-sphere, we obtain an isometrical embedding of our tubular neighborhood V of the boundary Γ into a Riemannian manifold diffeomorphic to the unit 2sphere S 2 in R 3 . Using the metric g on S 2 and passing to isothermal charts we obtain a complex atlas on S 2 , that transforms S 2 into a Riemann surface. Then, by the Riemann mapping theorem, this Riemann surface is biholomorphically equivalent to the standard Riemann sphere that we identify with the complex projective plane CP 1 . Taking a point N on CP 1 that does not lie in the image of the strip V and then applying stereographic projection CP 1 \ {N } → C we obtain an embedding of the strip V into the complex plane. By construction, the push-forward of the metric g is conformally equivalent to the Euclidean metric on C. Let {(x, y)} and z = x + iy be the coordinates in C. For simplicity, we will identify the metric g, the integral I, and the neighborhood V and Γ with their corresponding push-forward images. Then we have, In view of (A.65), (A.66), (A.67), and (A.68) we obtain

I(h) = 2 x h x h f (x) -h dx = 2 √ α 0 -h - √ α 0 -h p (u) (α 0 -h) -y 2 dy = 2(α 0 -h) 1 -1 p u α 0 -h 1 -u 2 du = - π √ -α 1 (h -α 0 ) + 3α 2 π 8α 2 1 √ -α 1 (h -α 0 ) 2 + O (h -α 0 ) 3 .
Hence, 
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 34652 A(t, a), andκ d dI m (L t (I) -K t (I)) ≤ Cκ 2N -m+ 1on D(t, a) for any t ∈ [0, δ] and m ∈ N.

  t ∈ [0, 1]. Consider the interpolating Hamiltonian ζ(x, ξ) = ζ( χ -1 (x, ξ)) of B, where the function ζ and the symplectic transformation χ are given by Proposition 6.1. For any r with |r| small enough the level set M (r) = {(x, ξ) ∈ T * Γ : ζ(x, ξ) = r} is an "circle" and we set ν(r) = M (r) d z M (r) (6.56) where r → d z M (r) is a smooth family of 1-forms on M (r) such that d z M (r) (X ζ ) = 1. One can consider z M (r) as a multivalued function on the circle M (r) which is well defined on the corresponding covering space R → M (r) so that { ζ, z} = dz(X ζ ) = 1. (6.57) It is easy to show that the set of Taylor coefficients of ν(r) at r = 0 is algebraically equivalent to the set of Taylor's coefficients of ζ(I) at I = l. Indeed, performing the symplectic change of the variables (x, ξ) = χ(ϕ, I), (ϕ, I) ∈ A, and using (6.57) we easily get ζ (I)ν(ζ(I)) = 2π. Denote by R r the function inverse to I → ζ(I). Then (6.56) implies ν(r) = 2πR (r) (6.58)

7. 1 . 1 C

 11 1 families of symbols and λ-PDOs .

7. 1 . 3

 13 Quantization of C 1 families of billiard ball maps.

  .93) where θ ∈ R N , θ ∈ R N , (Φ t ) θ (x, y, θ) = 0, (Φ t ) θ (x, y, θ) = 0 and = ı Φt (x, y, θ) = ı Φt (x, y, θ) ∈ C Φt ∩ C Φt . Moreover, µ ΦtΦt ∈ Z and it is constant on each connected component of C Φt ∩ C Φt .

  ξ , where x ∈ D and ξ = ∇F (x) ∈ D * . (9.146) It is easy to see that F * ∈ C ∞ (D * , R) and that ∇F * : D * -→ D is the inverse to the map (9.145). Moreover, D * * = D and F * * = F . The real valued function F defines a non-degenerate (in Kolmogorov sense) completely integrable Hamiltonian in T d × D. Hereafter, T d := R d /2πZ d . The corresponding Hamiltonian flow

  .150) where • C is the corresponding Hölder norm (see Sect. A.1) and σ κ : T n × R n → T n × R n is the partial dilation σ κ (θ, r) := (θ, κr). If ∈ N then u ,T n ×D;κ = sup |α|+|β|≤ sup (θ,r)∈T n ×D |∂ α θ (κ∂ r ) β u(θ, r)|, where | • | is the Euclidean norm. In the same way we introduce the norm u ,D;κ for u ∈ C (D, R k ). We set as well |||u||| ,D;κ = sup 0≤m≤ u -m,D;κ , where m ∈ N. (9.151) If D is convex, then |||u||| ,D;κ = u ,D;κ . Given ≥ 1 and a family of functions

  and the function → S (u) becomes increasing in [1, +∞). Fix ϑ 0 > 1 and set 0 := 2τ + 2 + 2ϑ 0 and (m) := 2m(τ + 1) + 0 , m ≥ 0. (9.153) Given 0 < , κ ≤ 1 and m ≥ 0, we denote by A 0 m the expression A 0 m := sup 0≤t≤δ 2 |||∂ 2 H 0 t ||| (m),Dt;κ + |||H t -H 0 t ||| (m),At;κ (9.154) and set A m = S (m)+1 (∇H 0 * ) A 0 m . (9.155)

  0 on the complement of U + ε, and ψ U ε ;ε ≤ C for any ≥ 0, where the positive constants C = C( , n) depend only on and n. The proof of the Lemma is given in the Appendix, Sect. A.4.1. Denote by ψ κ ∈ C ∞ 0 (R n , [0, 1]) the function given by Lemma 9.3 with U = Ω -κ/2 and ε = κ/4. Then ψ κ = 1 on Ω -3κ/4, ψ κ = 0 on the complement of Ω -κ/4, and ψ κ ;κ ≤ C (9.160) for any ≥ 0, where the constants C = C( , n) depend only on and n. Let ψ be the cut-off function given by Lemma 9.3 with U = B n (0, 3 /4) and ε = /4. Then the support of ψ is contained in B n (0, ), ψ = 1 on B n (0, /2), and ψ ; ≤ C (9.161) for any ≥ 0, where the constants C = C( , n) depend only on and n. It follows from (9.158) that the function

t 9 . 4 .

 94 we use (ii), Theorem 10.1 and the following Lemma For any m ∈ {0} ∪ [1, +∞) the following estimate holds

  κξ), and |||u||| ,D;κ = sup 0≤m≤ u -m,D;κ .

  180) introduced in (9.152). This in an increasing sequence with respect to ∈ [1, +∞) since Ω is convex. For any m ≥ 0 we set B m := B 0 m S (m)+2 (∇K * ). (9.181) Theorem 9.8. There exists = (n, τ, ϑ 0 ) > 0 depending only on n, τ and ϑ 0 such that the following holds.

Fix 1 ≤

 1 ϑ 1 < ϑ 0 < τ + 1 and set 0 := 2τ + 2 + ϑ 0 and (m) := 2m(τ + 1) + 0 , m ∈ N. (10.205) Denote the Hamiltonian vector field associated to the Hamiltonian (θ, I) → N (I; ω) = ω, I by

11. 1 . 1

 11 The KAM Lemma Given two domains D j ⊂ C n j , j = 1, 2, we denote by A(D 1 , D 2 ) the space of analytic maps f : D 1 → D 2 equipped by the inductive topology generated by sup-norms on compact sets of D 1 , and by C k ([0, a], A(D 1 , D 2 )), k ∈ N, the corresponding space of the C k functions. If D 2 = C we write A(D 1 ) := A(D 1 , C). Recall that an analytic function f ∈ A(D 1

Proposition 11 . 1 (

 111 KAM Step Lemma).There is a positive c 0 = c 0 (n, τ ) < 1 depending only on n and τ such that, for any σ, s, h, r, η, K, a > 0 and ε > 0 satisfying (11.210) and (a)-(c) and for every real valued Hamiltonian H = N + P , whereN (I; ω, t) = e(ω, t) + ω, I and P ∈ C k ([0, a], A(D s,r × O h ))satisfies the estimate sup 0≤p≤k sup t∈[0,a] |∂ p t P t | s,r,h ≤ ε, (11.211) the following holds.

Remark 11 . 3 .Remark 11 . 4 .

 113114 If P is analytic with respect to t in the disc B(0, a) ⊂ C and (11.211) holds in B(0, a) for k = 0, then Ψ is analytic with respect to t in B(0, a) and items (1) and (2) hold for t ∈ B(0, a) with p = 0. Hereafter we use the Cauchy estimates for analytic functions in C n (see for example Theorem 2.2.7,[START_REF] Hörmander | The analysis of linear partial differential operators I-IV[END_REF] and Appendix A in[START_REF] Pöschel | Integrability of Hamiltonian systems on Cantor sets[END_REF] ). More precisely, let D be a domain in C n and D r := {z ∈ C n : |z -D| < r} the corresponding polydisc. Then for any analytic function f in D r with a bounded sup-norm |f | r := sup z∈Dr |f (z)| and any 0 ≤ ρ < r and α ∈ N n one has |∂ α f | ρ ≤ α!(r -ρ) -|α|-1 |f | r . (11.213)

(11. 218 )F

 218 We are looking for a trigonometric polynomial F of degree K and for a function N depending only on (I, ω, t) solving the homological equation{N, F } + R = N . (11.219) Recall that N (I; ω, t) = e(ω, t) + ω, I . Then (11.219) becomes L ω F = N -R, where L ω = ω, ∂/∂θ . Take N (I; ω, t) := R 0 (I; ω, t) = T n R(θ, I; ω, t)dθ , which is affine linear in I. Then the zero order term of the trigonometric polynomial N -R is zero which is a necessary condition for solving the above equation. On the other hand, the Diophantine condition (9.148) with κ = 1 and (c) imply| ω, k | ≥ 1 2|k| τ for all ω ∈ O h and 0 = |k| ≤ K,(11.220)where |k| = n j=1 |k j |. Denote by H K the space of trigonometric polynomials in θ ∈ T n of degree ≤ K with zero order terms equal to 0. This space is generated by the functions exp(i k, θ ), where k ∈ Z n and 0< |k| = |k 1 | + • • • + |k n | ≤ K. It follows from(11.220) that the map L ω : H K → H K is an automorphism. Denote by L -1 ω : H K → H K the inverse map and setF := L -1 ω (R -N ). (11.221) The Fourier coefficients of F are F 0 = 0, F k = (i ω, k ) -1 R k for 0 < |k| ≤ K and F k = 0 for |k| > K. Hence, F is well defined, it solves (11.219) and is affine linear in I. Moreover, it is uniquely defined by T n (θ, I; ω, t) dθ = F 0 (I; ω, t) = 0. (11.222) Now (11.218) reads

  1] × D s-4σ,r/4 × O h × [0, a]. For p = 0 it follows directly from (11.217) and (11.225). Let p = 1. Set u(θ, I; ω, t) := 1 σ sup 0≤x≤1 |∂ t u(x, θ, I; ω, t)| and v(θ, I; ω, t) := 1 r sup 0≤x≤1 |∂ t v(x, θ, I; ω, t)|.

.240) Lemma 11 . 6 .

 116 There exists E 0 = E 0 (n, τ ) > 0 depending only on n and τ such that the hypothesis (a)-(d) of Proposition 11.1 are satisfied for 0 < σ < 1/5 and 0< E ≤ E 0 (n, τ ) provided that 2 ln 2τ +2 (σ)E ≤ c 0 . (11.241) Proof. Firstly, a) follows from the definition of ε choosing E ≤ E 0 ≤ c 0 (n, τ ) 2 and c) follows from the definition h, while (d) follows from the inequality Kσ = ln 2 (σ) > ln 2 (5) > 1. The hypothesis (b) follows from the inequality ε hr ≤ rσ τ +1 E hr = 2 ln 2τ +2 (σ)E ≤ c 0 (11.242) in view of (11.239) and (A.64), which yields (b) in Proposition 11.1. 2

  As usually we denote by ∂l , 1 ≤ l ≤ n, ∂ = ( ∂1 , . . . , ∂n ). A R-smooth function f : C n → C n is called almost-analytic if the vector-function (x, y) → ∂f (x + iy) is flat at R × {0}, in the sense that ∂ β y ∂f (x, y)| y=0 = 0 for any β ∈ N n .

Proposition 11 . 11 .

 1111 For any n ≥ 2 and ρ > 1 there exist positive constants C = C(n, ρ), L = L(n, ρ) and c = c(n, ρ), and a family of almost-analytic functions χ j ∈ G ρ L/h j+1 (C n ), j ∈ N, with the following properties (i) supp (χ j ) ⊂ O 3 j+1 and χ j = 1 on O 2 j+1 ;

(

  iv) We are going to use Cauchy formula for almost analytic functions. Let f : C → C be a R-smooth almost analytic function. Denote by D r (x) the open disc {z ∈ C : |z -x| < r} of radius r > 0 and by ∂D r (x) its boundary oriented counter clockwise. For any x ∈ R and β ∈ N, the following Cauchy integral formula is valid

Lemma 11 . 15 .

 1115 For any γ ∈ N n of length N = |γ| ≥ 2 there exist (N + 1) n-1 vectors v m and constants c m such that ∂ γ ω = c m L N vm where L vm stands for the directional derivative L vm f (ω) = d ds | s=0 f (ω + s v m ). Proof.

( i )

 i If k = 0 then for each m ∈ N the sequence ( ε j (m),j,0 ) j∈N defined in (11.269) satisfies (11.295) and the Iteration Lemma as well as the Modified Iteration Lemma hold for any m ∈ N; (ii) If k = 1, then Pt , t ∈ [0, ã(m)], satisfies (11.295) and the Iteration Lemma as well as the Modified Iteration Lemma hold for any m ∈ N.

P

  t 0 ;r,κ ≤ κr ,(11.309) 

  for each m ∈ [0, M ] and t ∈ [0, a]. These estimates hold for each m ∈ [0, +∞) if P ∈ C k [0, a]; C ∞ 0 (A × Ω) . If µ < 1, then C m,µ = C . Set ν := ( -s)/( -r).Then there is a constant c = c r, > 0 depending only on and r such that for any compactly supportedf ∈ C m,µ 0 (R n ) the following estimate holds f C s ≤ c r, f ν C r f 1-ν C m,µ . (A.8) Moreover, given f, g ∈ C m,µ 0 (T n × R n ) one can estimate the C -norm of the product f g C m,µ ≤ f C 0 g C m,µ + f C m,µ g C 0 . (A.9) Remark A.2. Let D ⊂ R m be an open bounded convex set. Then f C s ≤ c r, ,m f ν C r f 1-ν C for each f ∈ C ∞ (D) or f ∈ C ∞ (T n × D).Moreover, there exists C depending only on and on the dimensions n and m such that if f, g ∈ C ∞ (D) or f, g ∈ C ∞ (T n × D) then f g ≤ C ( f 0 g + f g 0 ).

  , . . . , a p x (p) ) (by convention T 0 = {0}) and define the "a-weighted" Hölder norm off ∈ C (T d × R n ) by f ;a := f • σ a C .(A.10)A.2 Almost analytic Gevrey extensionsProof of Proposition 11.11 . Fix ρ > 1. Let ϕ be a real valued compactly supported Gevrey function belonging to the class G ρ λ (R n ) for some λ > 0, which means thatϕ λ := sup α∈N n sup x∈R n |∂ α x ϕ(x)| λ -|α| α! -ρ < ∞ , (A.11)where|α| = α 1 + • • • + α n and α! = α 1 ! • • • α n ! for α = (α 1 , . . . , α n ) ∈ N n .We suppose as well that the support of ϕ is contained in the unit ball B n 1 (0) = {x ∈ R n : |x| < 1} in R n and that R n ϕ(x) dx = 1.

FF

  (z) := |β|≤N f β (u)(z -u) β /β! , z ∈ R d .Given α ∈ N d we denote by F (α) the jet f α+β β∈N d . Then for |α| ≤ N , the partial derivative ∂ α of the Taylor polynomial is given by∂ α z T N u F (z) = T N -|α| u (α) (z) = |β|≤N -|α| f α+β (u)(z -u) β /β! .

  [START_REF] Frerick | Whitney extension operators without loss of derivatives[END_REF] for any N ∈ N, |α| ≤ N , u, v ∈ K and z ∈ R d .Let L > 0. The jet F = (f β ) β∈N d is said to belong to the Whitney space W G ρ L (K) of Gevrey jets if there exists A > 0 such that(1) |f β (u)| ≤ AL |β| (β!) ρ for β ∈ N d , u ∈ K; (2) |R N u F (γ) (z)| ≤ AL N +1 ((N + 1)!) ρ |z -u| N -|γ|+1 /(N -|γ| + 1)! for |γ| ≤ N , u, z ∈ K. (A.16) 

  |β| |v -u| N -|β|-|γ|+1 (N -|β| -|γ| + 1)!β! . Remark A.3 implies that |x -x| ≥ h j /16 on the support of the function u → R N u F (γ) and |v -u| ≤ |x -x| + |y| ≤ 35 3 |z -u|.Setting L j = 385n 2 > 35 λ j /3 we obtain as above|R N u F (γ) (z) < AL N +1 j ((N + 1)!) ρ |z -u| N -|γ|+1 /(N -|γ| + 1)!.

1 ρ- 1 ,

 11 |∂ α x ∂ β y χ j (x, y)| ≤ A (L/h j+1 ) |α|+|β| ((L/h j+1 )) m α! ρ β! ρ m! ρ-1 |y| m , (x, y) ∈ R n × R n .Using Stirling's formula we minimize the right-hand side with respect to m ∈ N. An optimal choice for m is given by m ∼ (L|y|/h j+1 )which leads to|∂ α x ∂ β y χ j (x, y)| ≤ C 0 A (L/h j+1 ) |α|+|β| α! ρ β! ρ expα, β ∈ N n and (x, y) ∈ R n × R n , 0 < |y| ≤ 1, with C 0 ≥ 1.2

A. 4 . 1

 41 Estimates of the composition and the inverse function. The aim of this section is to obtain estimates of the composition and the inverse function in certain Hölder norms with constants depending only on the dimension of the spaces and the Hölder exponent. We start by introducing certain semi-norms as follows. Hereafter we denote the Euclidean norm of x ∈ R n by |x|. Recall that for any ∈ R, [ ] ∈ R stands for the entire part of and { } := -[ ] ∈ [0, 1) for the residual one. Given f ∈ C (U ), where U ⊂ R n is an open set, we introduce a -semi-norm of f by |f | ,U := sup |α|= ,x∈U |∂ α f (x)| , if ∈ N; H [ ],{ } (f ) , if / ∈ N, (A.20) where the semi-norm H k,µ (f ) is defined by (A.3). To simplify the notations we often write |f | := |f | ,U . This notation should not be confused with the sup-norm in Sect. A.1. The µ-semi-norm of the product of two functions f, g ∈ C µ (U ) with 0 < µ < 1 can be estimated by |f g| µ ≤ |f | µ |g| 0 + |f | 0 |g| µ . (A.21) More generally, for any m ∈ N, 0 ≤ µ < 1, and f, g ∈ C m+µ (U ), the Leibniz formula implies |f g| m+µ ≤ C m m k=0 |f | k+µ |g| m-k + |f | k |g| m-k+µ , (A.22)

|f | k 1 •

 1 • • |f | k j-1 |f | k j +{ } |f | k j+1 • • • |f | km (A.23)where the |f | α := |f | α,U and the index set ∆( , m) consists of all (k 1 , . . . , k m ) ∈ N m such thatk 1 + • • • + k m = [ ] , min 1≤j≤m k j ≥ 1.For any ≥ 1 we set P U (f ) :=

1 m= N n 1 m such that 1 ≤

 11 the summation is over all the indicesm ∈ N * , β ∈ N n 2 , (α 1 , . . . , α m ) ∈ N n 1 × • • • × N n |β| = m ≤ |α|, α 1 + . . . + α m = α, min 1≤j≤m |α j | ≥ 1.Here|β| = β 1 + • • • + β n 2 stands for the length of β ∈ N n 2 .

1 .

 1 If ∈ N * then dg ,V ≤ C 1 + (df ) -1 3C 0 (U ) P U (df ) where C > 0 depends only on and on the dimension n;2. Let 0 < < 1 and let V = f (U ) be convex. Then dg C (V ) ≤ (df ) -1 C 0 (U ) (df ) -1 C (U ) ≤ (df ) -1 +2 C 0 (U ) df C (U ) ; 3. Let = m + µ, where m ∈ N * and 0 < µ < 1. Let V = f (U ) be convex. Then dg C (V ) ≤ C 1 + (df ) -1 3 +2 C 0 (U ) P U (df ) + df C µ (U ) P m U (df ) ,where C > 0 depends only on and on the dimension n.

x

  x) -1 ) • (L p • Df (x) -1 • C q )I n as x = g(y).Denote by A the set of automorphisms of M n (R) generated under composition by the identity map and the automorphisms of the formA → (L p • A • C q )I n , A ∈ M n (R). Using (A.24) we obtain by induction with respect to m ∈ N the following relation (x) -1 )) as x = g(y) , (A.25) for any α ∈ N n with |α| = m. The index set ∆ α consists of all γ = (γ 1 , . . . , γ m+1 ) ∈ (N n ) m+1 such that |γ 1 | + • • • + |γ m+1 | = m = |α|, c γ ∈ R are universal constants, and L j ∈ A. Consider the derivatives of the inverse matrix Df (x) -1 of Df (x). One can easily show that∂ ∂x p (Df (x) -1 ) = -Df (x) -1 • ∂ ∂x p Df (x) • Df (x) -1 . (A.26)This equality implies by induction that for any 0= α ∈ N n , Df (x) • Df (x) -1 , (A.27)where c β ∈ R are universal constants and the index set ∆ 1 α consists of allβ = (β 1 , . . . , β |α| ) ∈ N n × • • • × N n = (N n ) |α|such that |β 1 | + • • • + |β |α| | = |α|. Now statement 1. follows easily from (A.25) and (A.27).

2 Proof of Lemma 9 . 3 .

 293 Statement 3 follows from (A.[START_REF] Guillemin | Semi-classical analysis[END_REF]) and (A.27) as in the proof of Proposition A.7. One can take the convolutionψ U ε = 1 1 U * χ ε , where 1 1 U is the characteristic function of U , χ ε (x) = ε -n χ(x/ε) and χ ∈ C ∞ 0 (R n ) is a test-function such that χ(x) > 0 if |x| < 1, χ(x) = 0 if |x| ≥ 1 and R n χ(x)dx = 1.More preciselly, we first define a smooth function χ by χ(x) = exp(-(1 -|x| 2 ) -1 ) for |x| < 1 and by χ(x) = 0 for |x| ≥ 1 and then we set χ(x) = χ(x)/ χ L 1 . For any ≥ 0 we haveχ ε ;ε = ε -n χ . Set φ := ψ B 1 and φ ε (x) = ε -n φ(x/ε), where B = B n (0, 2). Then φ(x) = 1 for |x| ≤ 1, hence, φ(x/ε) = 1 for x in the support of χ ε and we easily obtain the inequality|∂ α x χ ε (x -y) -∂ α z χ ε (z -y)| ≤ φ((x -y)/ε) + φ((z -y)/ε) |∂ α x χ ε (x -y) -∂ α z χ ε (z -y))|

2 A. 4 . 2

 242 Higher order Hölder estimates and Interpolation inequalities. The above estimates can be simplified considerably if the domain of definition of the functions is the whole space or an open convex bounded set. We set A := T n × D, where D is an open set in R d . We shall use the convention A := T n if d = 0 and A := D if n = 0.Using the interpolation inequalities as in[START_REF] Kuksin | Analysis of Hamiltonian PDEs[END_REF], Proposition 5.5, one obtainsProposition A.9. Let f ∈ C ∞ (A 1 , A 2 ) and g ∈ C ∞ (A 2 , R), where A 1 = T n 1 × R d 1 , A 2 = T n 2 × D 2 and D 2 ⊂ R d 2 is an open set. Then the following holds 1. For any ≥ 1, g • f ,A 1 ≤ C (1 + df 0,A 1 ) A 2 df -m,A 1 + |g| m+{ },A 2 df [ ]-m,A 1

where k 1 +

 1 • • • + k m = [ ] and k p ≥ 1, for any p. Set r = 0, s = s p = k p + δ p -1 and t = -m, where δ p = 0 if p = j and δ j = { }. By means of the interpolation inequalities we get |f | kp+δp ≤ df s ≤ c df

2 . 2 3 Weighted 1 .

 2231 In the same way we obtain A.[START_REF] Bruna | An extension theorem of Whitney type for non quasi-analytic classes of functions[END_REF].Hölder norms and interpolation inequalities.Given 0 < κ ≤ 1, ≥ 0, and f ∈ C (T n × D), where D ⊂ R d is an open set we define the corresponding weighted C norm byf ,T n ×D;κ := f • σ κ ,σ -1 κ (T n ×D) ,where σ κ (θ, r) = (θ, κr). We set as well|f | ,T n ×D;κ := |f • σ κ | ,σ -1 κ (T n ×D) . In particulat, if ∈ N, then f m,T n ×D;κ = sup 0≤m≤ |f | m,T n ×D;κ , where |f | m,T n ×D;κ := sup |α|+|β|=m ∂ α θ (κ∂ r ) β f C 0 (T n ×D) .Applying (A.8) to f = u • σ κ with 0 < κ ≤ 1 one gets the interpolating inequalities for u t;κ := u t,A;κ , where A = T n × R d . We list below several estimates which follow directly from Proposition A.9. Set|||u||| ,D;κ = sup 0≤m≤ u -m,D;κ ,where m are integers.Proposition A.12. Fix 0< κ ≤ 1. Let u ∈ C ∞ (A 1 , A 2 ) and v ∈ C ∞ (A 2 , R), where A 1 = T n 1 × R d 1 , A 2 = T n 2 × D2 and D 2 ⊂ R d 2 is an open set. Then for any ≥ 1,

1 0d

 1 θ V t (ϕ + sφ t (ϕ, r), r) φ t (ϕ, r) ds , Lemma A.[START_REF] Gomes | KAM Hamiltonians are not Quantum Ergodic[END_REF]. Let supp G ⊂ T n-1 × F , where F ⊂ D is a compact and let G satisfy (A.37).

Theorem 7 .

 7 and(W • Q)(θ -∇ r K(r) -∇ r G(θ, r), r) = W (θ -∇ r G(θ, r), r) = (θ, r -∇ θ G(θ, r))we obtain the relationP = W • Q. 2 B Appendix.B.1 Invariant characterization of Liouville billiards Here we prove the following invariant characterization of Liouville billiard tables defined in [60, Sec. 2]. Let (X, g) be a smooth oriented compact and connected Riemannian manifold of dimension two with connected boundary Γ ≡ ∂X. Assume that (a) There exists a smooth quadratic in velocities integral of the geodesic flow I : T X → R that is invariant with respect to the reflection at the boundary T M | Γ → T M | Γ , ξ → ξ -2g(ν, ξ),

  y)(dx 2 + dy 2 ) and V is a closed domain in C diffeomorphic to the annulus (R/Z) × [-, 0]. By construction, g is extended to a smooth Riemannian metric dg 2 = λ(x,y) 2 (dx 2 + dy 2 ) on the whole of C. Let It follows directly from (A.60), (A.66), and (A.67) that

1 √ -α 1 . 71 ) 3 (x - 1 / 4 ) 4 +α 0 = c 2 , α 1 = -4π 2 c 2 , α 2 = 16π 4 3 c 2 ,

 117131442122 (α 0 ) = 0, dI dh (α 0 ) = -π/ √ -α 1 , d 2 I dh 2 (α 0 ) = 3πα 2 /4α2 (A.69) It follows from (A.64) and the fact that α 0 > 0 that K is a C ∞ -smooth function of h in an open neighborhood of h = α 0 . By combining this with (A.69) we obtain Proof of Corollary B.6. The Corollary follows directly from Theorem B.5 and (A.61). In fact, it follows from (A.61) thatf (x) = 4 2 π 2 1 -4π 2 (x -1/4) 2 + 16π 4 O (x -1/4) 6 .Hence, (A.72)where we set for simplicity c := 2π . Then, in view of Theorem B.5 we obtain that

  [START_REF] Duistermaat | Oscillatory integrals, lagrange immersions and unfolding of singularities[END_REF], which involves Gevrey almost analytic extensions of certain cut-off Gevrey functions. The ∂ derivatives of such functions are exponentially small near the reals and one can use Cauchy (Green's) formula. This allows one to obtain a convergent iteration schema on the the whole space of frequencies and to obtain the desired global (in Ω) Hölder estimates of any order.Using Theorem 10.1 we obtain a KAM theorem for C 1 families of Hamiltonians H t which are perturbations of a given C 1 family of completely integrable nondegenerate in Kolmogorov sense Hamiltonians H 0

t . The family H 0 t is given as follows. We consider a C 1 family of nondegenerate real valued functions

  6. Suppose now that t → g t is a C 1 family of Riemannian metrics on X. For any t we denote the corresponding cosphere bundle by S * t X := {h t = 1} and the corresponding open coball bundle of Γ by B * t Γ := {h 0 t < 1}. Let π t : Σ t → B * t Γ be the natural projection and π ± t : B * t Γ → Σ ± t , π ± Σt (x, ξ) = (x, ξ ± t ) its inverses. Denote by J t the corresponding involution in Σ t and consider the billiard ball map B t : B * t Γ → B * t Γ. If (x, ξ) ∈ B * t 0 Γ, then (x, ξ) ∈ B * t Γ for any t in a neighborhood of t 0 because of the transversality and one can show that the map t

1 .

 1 Each elliptical billiard table with boundary in E is spectrally rigid in the class B an under the weak isospectral condition (H

1 ) -(H 2 ); 2. Each billiard table X in B an with boundary sufficiently close to an ellipse Γ ∈ E in the C 5 topology is spectrally rigid in the class B an under the weak isospectral condition (H 1 )-(H 2 ).

  Table is Kolmogorov nondegenerate if B satisfies the Kolmogorov nondegeneracy condition in U 1 and U 2 . It is shown in [62], Theorem 5.1, that any analytic 3dimensional Liouville billiard table of classical type having at least one non-periodic geodesic on the boundary is Kolmogorov nondegenerate. An example of such billiard tables is the ellipsoid.It is proved in[START_REF] Popov | Discrete analog of the projective equivalence and integrable billiard tables[END_REF], Theorem 4.4, that the Radon transform is one-to-one for Liouville billiard tables of classical type of dimension 3. More precisely, we have Theorem 4.4.[START_REF] Popov | Discrete analog of the projective equivalence and integrable billiard tables[END_REF] Let (X, g), dim X = 3, be a Liouville billiard table of classical type. If K ∈ C(Γ) is invariant under the group of symmetries G of Γ and the Radon transform R K (Λ) = 0 for any Λ ∈ F b , then K ≡ 0.

	We point out that Liouville billiard tables of classical type are smooth by construction but
	they are not supposed to be analytic.
	Using Corollary 2 and Theorem 4.4, we obtain as above the following
	Theorem 4.5. Any nondegenerate Liouville billiard table of dimension 3 of classical type (X, g)
	is infinitesimally spectrally rigid in Symm (M, g) under the weak-isospectral condition (H 1 ) -
	(H 2 ).

2

  Proof of Theorem 5. Corollary B.6 implies that the Poincaré map associated with the elliptic bouncing ball geodesic γ 1 is always non-degenerate (twisted) for elliptical billiard tables. Fix the foci F 1 = F 2 . Except of five confocal families of ellipses given explicitly by (A.73), the geodesic γ 1 is 4-elementary. The two conditions are open in the C 5 topology and the Theorem follows from Theorem 4. 2 Proof of Theorem 5.2.It follows from Theorem 5.4 that for any 0 < a ≤ a 0 1 and ω ∈ Ω t,κ with κ = ηa there is a C 1 family of Kronecker invariant tori I t,a s → Λ s (ω) of P s . Moreover, Corollary 2 implies that I s

  3, V = {(δz , δξ ) : δz = 0} is the vertical space (the tangent space to the fiber) and H t is the horizontal space {(δz , δξ ) : δξ = 0} for the local coordinates x t in O used in the construction of Φ t . Repeating this procedure in O for the phase function Φ t obtained by Lemma 7.3 corresponding to the coordinates x

t : O → R n , we obtain sgn (Φ t ) ηη (x, y, η) -sgn ( Φ t ) η η ( x, y, η)

  Γ H t (λ). We summarize this construction in the following Proposition 7.6. The C 1 family of λ-FIOs operators t → H t (λ) gives for any half density in f in L 2 (Γ) a family of solution u t = H t (λ)f of

	2	(7.101)
	in a compact neighborhood of U in B * t Γ. Then using Egorov's theorem, (7.99) and (7.101) we obtain ı *

  1 2 -density bundle of C χt by π * 2 |dv|

	1
	2

  2N + n + 2 of the functions φ 0 t , p t and S j t in ζ = ξ + iη, where ξ ∈ D and |η| ≤ C. The almost analytic extension of φ 0 t is given by

1 

families of solutions t → (λ(t), v(t)) of the equation (7.108) of the form

v(t) = E t (λ) -1 T t (λ)A t (λ)e(t)

for t ∈ J. In view of Proposition 7.12, e(t) should satisfy the equation

e iπϑ/

2 W 0 t (λ)e(t) + e iπϑ/2 S t (λ)e(t) = e(t) + O N (|λ| -N )e(t). (7.118) Natural candidates for e(t) are the sections e k , k ∈ Z n-1 . Since λ ∈ D may be complex, we consider almost analytic extensions of order M ≥

  ≤ C 2 |||∂ 2 H 0 ||| ,Dt;κ S (∇H 0 * ). ≤ C |||H t -H 0 t ||| ,At;κ S (∇H 0 * ).

		,Dt;κ
	as |I| ≤ for (I, r) ∈ Γ t . This inequality implies
	|||Q 0 t ||| ,Γt; ,κ ≤ C 2 |||∂ 2 H 0 t ||| ,Dt;κ
	and we obtain	
	P 0 t ; ,κ On the other hand P 1 t ; ,κ ≤ P 1 t	;κ,κ since 0 < ≤ κ ≤ 1 and by the same argument we get
	P 1 t ; ,κ Finally we obtain	
	P	

t ; ,κ ≤ C 2 |||∂ 2 H 0 t ||| ,Dt;κ + |||H t -H 0 t ||| ,At;κ S (∇H 0 * ). (9.163) Step 3. Application of Theorem 10.1 . The estimate (9.156) gives

  The iteration procedure is convergent in a Whitney sense only on the Cantor set Ω κ and one can not hope to get the global (in Ω) estimates (10.208) using Whitney's extension theorem for C ∞ jets. For this reason we propose a new method in Sect. 11.2.4. Using suitable almost analytic extensions in Gevrey classes, we prove a Modified Iterative Lemma which provides a convergent scheme over the whole domain Ω and yields the desired estimates. The almost analytic extensions is obtained in Sect. A.2.

	11 Proof of Theorem 10.1
	11.1 The KAM Step

  , uniformly on D s-5σ,ηr ×O h ×[0, a] and O h/4 ×[0, a], respectively, where W = diag σ -1 Id , r -1 Id , C α,β > 0 depends only on n, τ , α, β, and C > 0 depends only on n and τ .Remark 11.2. Set W = diag σ -1 Id , r -1 Id , h -1 Id and suppose that (d) holds, i.e. 2h ≤ σ τ +1 . O h/4 × [0, a],where DF(•, t) stands for the Jacobian of F(•, t). Moreover, (2) and the Cauchy estimate of the derivatives of F with respect to ω yield for 0 ≤ p ≤ 1 and any α, β, γ ∈ N n the estimate|W ∂ p t (σ∂ θ ) α (r∂ I ) β (h∂ ω ) γ (F(θ, I; ω, t) -(θ, I; ω))| ≤ C α,β,γ ε rh on D s-5σ,ηr × O h/6 × [0, a],where C α,β,γ > 0 depends only on n, τ , α, β and γ.

	Then	|W ∂ p t (DF(•, t) -Id)W	-1 | ≤ C 0	ε rh
	on D s-5σ,ηr ×			

  1. Truncation. Consider the linear part of P with respect to I Q(θ, I; ω, t) := P (θ, 0; ω, t) + ∇ I P (θ, 0; ω, t), I .

	Given a positive integer K we denote by	
	R(θ, I; ω, t) :=	R k (I; ω, t)e i k,θ
	|k|≤K	
	the trigonometric polynomial of degree K in the Fourier series expansion of Q with respect to
	θ. By (11.211) and the Cauchy inequalities (11.213) one obtains the following estimates
	|∂ p t Q| s,r < C 0 ε , |∂ p t (P -Q)| s,2ηr < C 0 η 2 ε
	for 0 ≤ p ≤ 1 uniformly with respect to (ω, t) ∈ O h × [0, a] (recall that 0 < η < 1/8). Moreover, estimating the Fourier coefficients of ∂ p t Q by (11.214) one obtains

  × O h × [0, a] and for any 0 ≤ p ≤ 1 and α, β ∈ N n , |β| ≤ 1. By(11.214),(11.215) and Cauchy one has as well|∂ p t N | r = |∂ p t R 0 | r ≤ |∂ p t R| s-σ,r ≤ C 0 ε and |∂ p t (r∂ I ) N | r/2 ≤ C 0 ε (11.226) for 0 ≤ p ≤ 1 uniformly with respect to (ω, t) ∈ O h × [0, a].The derivatives of F and N with respect I of order bigger than one are all zeros since the functions are affine linear in I.Step 3. Canonical transformation. The solution (u, v) of the Cauchy problem (11.217) are real analytic in (x, θ, I, ω) and C 1 in t. Consider the canonical transformation Φ = (U, V ), where U (•) = u(1, •) and V (•) = v(1, •) are defined in Step 2. Since F is affine linear in v one observes that u is independent of I and v is affine linear in I. In particular, U is independent of I and V is affine linear as a function of I. Moreover, (11.225) and condition (a) imply for p ∈ {0; 1} the inequality |∂ p t ∇ θ F | ≤ ηr ≤ r/8 and |∂ p t ∇ I F | ≤ σ (11.227) in D s-3σ,r/2 × O h × [0, a] choosing the constant c 0 = c 0 (n, τ ) < 1 in (a) sufficiently small. Then for every (ω, t) ∈ O h × [0, a] and we get Φ ∈ C 1 ([0, a], A(D s-4σ,r/4 × O h , D s-3σ,r/2 )).

	uniformly in D s-3σ,r/2 exp(xX H ) : D s-4σ,r/4 → D s-3σ,r/2	(11.228)
	for every (ω, t) ∈ O h × [0, a] and 0 ≤ x ≤ 1. In particular, Φ(•; ω, t) = (U (•; ω, t), V (•; ω, t)) is a
	well defined real analytic map				
		Φ(•; ω, t) : D s-4σ,r/4 → D s-3σ,r/2
						We are
	going to show that				
	  	1 σ	|∂ p t (u(x, θ, I; ω, t) -θ)| ≤ C 0	ε rσ τ +1
	 	1 r	|∂ p t (v(x, θ, I; ω, t) -I)| ≤ C 0	ε rσ τ +1
						.223)
	Moreover, (11.214), (11.215) and (11.220) imply	
	|∂ p t F | s-2σ,r ≤ C 0	|∂ p t R| s-σ,r σ τ	< C 0	ε σ τ .	(11.224)
	Using the Cauchy estimates one gets		
			|∂ p t (σ∂ θ ) α (r∂ I ) β F | ≤ C α,β	ε σ τ	(11.225)

  this proves the estimates of Φ in statement (2) of the KAM step. By (11.227) we get|U (θ, I; ω, t) -I| ≤ sup 0≤x≤1 |∇ I F (•; ω, t| s-3σ,r/2 ≤ σ, |V (θ, I; ω, t) -I| ≤ sup 0≤x≤1 |∇ θ F (•; ω, t| s-3σ,r/2 ≤ ηr on D s-5σ,ηr × O h × [0, a]. This implies that Φ(•; ω, t) maps D s-5σ,ηr to D s-4σ,2ηr , and that Φ ∈ C 1 ([0, a], A(D s-5σ,ηr × O h , D s-4σ,2ηr )).

	(11.231)

  on O h/4 . We set φ(•, t) = φ t and N + = (N + N ) • φ.We are going to estimate ∂ t φ on O h/4 . Using(11.226) and Cauchy we obtain the estimate

			t ∈ [0, a].	(11.234)
	Moreover, the following estimate is true		
	|φ t -id| + h|Dφ t -Id| ≤ C	ε r	,

  .236) for c 0 small enough. Differentiating (11.234) we get∂ t φ t (ω) + (D∇ I R 0 )(φ t (ω), t) .∂ t φ t (ω) + (∇ I ∂ t R 0 )(φ t (ω),

	t) = 0	(11.237)
	Using (11.235) and (11.236) we get the estimate	

  Choice of the small parameters.

						.248)
	and (11.244) implies					
	|∂ p t P + | s + ,r + ,h + ≤	1 2	ε + =	1 2	εr + σ τ +1 + E +	(11.249)
	for 0 ≤ p ≤ k. We have prepared the next iteration.			
	11.2 Iteration					
	11.2.1					

  of all (θ, I; ω) such that |Im θ| , |Im I| , |Im ω| < u j , (11.265) and by A(U j ) the set of all real-analytic bounded functions in U j equipped with the sup-norm | • | u j . Define P j t := S u j P t , j ∈ N, (11.266)

  τ, ϑ 0 ) depends only on , n, τ and ϑ 0 . Hence,

	∂ p t P 0 t u 0 ≤ ε ,0,p and ∂ p t P j t -∂ p t P j-1 t	u j	≤ ε ,j,p for j ≥ 1	(11.268)
	for any finite , 0 ≤ ≤ L ≤ ∞, where				
		k			
	ε ,j,k := C u j	p=0	sup 0≤t≤a	∂ p t P t	(11.269)

  .279) Moreover,(11.277) and (11.262) imply that |W j ∂ t F j (•, t)| j ≤ 1 for E 0 = E 0 (n, τ, ϑ 0 , ϑ) > 0 small enough. Finally, we obtain

	|∂ p t R j + ∂ p t R 0 j |

j < ε j , p ∈ {0; 1}.

We apply the KAM Step Lemma -Proposition 11.1 -to the C k family of Hamiltonians H j . Using

Remark 11.4, (11.249

) and (11.262) as well, we find a C k family of real-analytic maps

  θ, I; ω, t) ξ l η m , where |α| + |β| + |γ| = 2 and 1 ≤ l, m ≤ n. The estimate follows from(11.278) and the Cauchy inequalities .2

	For each z ∈ supp (H j+1 t	-H j t ) ⊂ D j+1 × O j+1 we have H j t (z) ∈ D 2 j × O 2 j in view of Lemma
	11.12. Then the estimate (11.287) follows from (11.290), Lemma 11.14, and (11.277) as in the
	case p = 0. This proves (iii).

  and (11.269), it suffices to prove for each j ∈ N that

	C u j	k p=0	sup 0≤t≤a	∂ p t P t ≤	ε j+1 4	=	1 4	εr j+1 (m)σ τ +1 j+1 E j+1 (m) with = j (m).	(11.295)
	Here r k						
			p=0	sup 0≤t≤a	∂ p t P				

j (m) and E j (m) are given by (11.253) and (11.254), respectively, ε ∈ (0, 1]. In view of (11.263) and (11.253)-(11.258), the relation (11.295) becomes t ≤ εr 0

  [0, a] at each iteration (recall that the constants in Proposition 11.1 do not depend on a).

	T (m) :=	1 ε sup p∈{0;1}	sup 0≤t≤a	∂ p t P t m =	sup p∈{0;1} sup sup 0≤t≤a 0≤t≤a P t 0 ∂ p t P t m	≥ 1.	(11.305)
	Then P t defined by P (•, t) := P (•, t/T (m) satisfies (11.298) for p = 0. Moreover,
		∂ t P t m ≤	1 T (m)	sup	

0≤t≤a

∂ t P t m ≤ sup 0≤t≤a P t 0 and we obtain (11.298) for p = 1. Replacing P t with P t, we can apply Proposition 11.1 to P j t for t ∈ We summarize the above construction by the following Lemma 11.18. Fix the positive constants and ε ≤ 1 by (11.302). Then

  ϑ 0 we complete the proof of the Lemma. in(10.206). If p = 1 we scale back with respect to t by T (m). Combining(11.287) and Lemma 11.20 and using Lemma 11.19, (ii), in the case when p = 1, we obtain the estimate ∂

	We are ready to prove Theorem 10.1. Fix the parameter m and set	
	P	(p) (m) := P	(p) (m);1,1 , 0 ≤ p ≤ k,	(11.306)
	using the notations			
				2
			136	

  3.2). Using Remark 11.3 and Cauchy one obtainsRemark 11.21. If P j are analytic with respect to t in B(0, a) and satisfy (11.270) for t ∈ B(0, a), then F j are analytic with respect to t in B(0, a) and the estimates (11.277) and (11.278) hold for p = 0 and t ∈ B(0, a). Moreover, Ψ and φ are analytic in t in B(0, a).

	11.3 KAM theorem with parameters in Hölder classes.

Better Hölder estimates of the transformations Ψ t and φ t then those in (ii) Theorem 10.1 can be obtained by means of the anisotropic Hölder spaces C ρ(m) (T n × Ω) introduced by Pöschel

[START_REF] Parernain | Spectral rigidity and invariant distributions on Anosov surfaces[END_REF]

, where

  , Theorem 4.15 and [45], Proposition 2.3.2). To simplify the notations set z = (x, ξ) ∈ T * R d . Consider the increasing sequence (η j ) j∈N where Choose χ ∈ C ∞ (R) such that χ = 1 on (-∞, 1/2], 0 < χ < 1 on (1/2, 1), and χ = 0 on the interval[1, +∞) and set a t (z, λ) = Notice the the sum is finite for any λ ∈ D fixed. Moreover, 1} and α ∈ N 2d with |α| ≤ j we have Using (A.19) we estimate the first sum by C N,α |λ| -N . If N ≥ |α| taking into account (A.18) we estimate the second sum by η N |λ| -N + j≥N +1 |λ| -j+1 ≤ C N,α |λ| -N for |λ| ≥ 2. Finally, if N < |α| we estimate the first |α| -N terms of the second sum by C N,α |λ| -N and for the other terms we apply the preceding argument. This proves (7.65). The proof shows as well that for any k ∈ {0, 1} and α ∈ N 2d the function (t, z) → ∂ k t ∂ α x a t (z, λ) is a sum of a normally convergent series of functions, hence, it is a continuous for any λ fixed. Thus the map J t → a t is a C 1 family of symbols of order zero. 2A.4 Higher order Hölder estimates of a composition and of the inverse function.

			η j := 1 + sup 0≤k≤1	sup |α|≤j	sup m≤j	sup (t,z)∈I×T * R d	∂ k t ∂ α z a t,m (z) .
								j≥0	χ	η j |λ|	a t,j (z)λ -j
	where λ ∈ D. η j |λ|	χ	η j |λ|	≤ 1, hence,
	for any k ∈ {0, χ	η j |λ|	∂ k t ∂ α z a t,j (z) < χ	η j |λ|	η j ≤ |λ|.	(A.18)
	On the other hand |λ| ≤ 2η j whenever χ	η j |λ|	< 1, hence,
				1 -χ	η j |λ|		∂ k t ∂ α
				N -1				
					a t,j (z)λ -j	
				j=0				
	≤	N -1 j=0	1 -χ	η j |λ|	|∂ k t ∂ α x a t,j (z)||λ| -j +	j≥N	χ	η j |λ|	|∂ k t ∂ α x a t,j (z)||λ| -j .

z a t,j (z) ≤ C p,j,α |λ| -p (A.

[START_REF] Guillemin | Wave trace invariants[END_REF] 

for any p ∈ N. For any N ∈ N we have

∂ k t ∂ α x a t (z, λ) -

  1,A 1 ≤ 1 + |df | 0 . Using Proposition A.7 one obtains 1.To prove 2 one uses the interpolation inequalities with respect to both functions f and g. Namely, given 0 < s < t and u, v ∈ C t one obtains u s v t-s ≤ c t u

	t-s		s	s	t-s
	0	t	u	t t v	t 0 v	t

t < c t u t v 0 + v t u 0 (A.

30) by means of (A.8) and Young's inequality xy ≤ 1 p

  ;κ u 1;κ + v 1;κ u ;κ .for t ∈ [0, δ], where C = C (ε 0 , d) > 0 depends only on , ε 0 and d. Moreover, the relationsupp (W t -id) ⊂ T d × K implies supp (sgrad G t ) ⊂ T d × K as well. 2. Conversely, let G t be a C 1 family of functions such that 2d σ -1 κ sgrad G t 1,A;κ ≤ ε 0 < 1 (A.37)for t ∈ [0, δ]. Then G t given by (A.33) is a C 1 family of generating functions of symplectic maps W t : A → A and for any ≥ 0 we havewhere t ∈ [0, δ] and C = C (ε 0 , d) > 0 depends only on , ε 0 and d. Moreover, if supp (sgrad G t ) ⊂ T d × K then supp (W t -id) ⊂ T d × K as well. Proof. 1. Set W t = (U t , V t ) : A → A.It follows from (A.35) that the map θ → U t (θ, r) -θ can be identified with a 2π-periodic vector function on R d . Consider the mapf t = id + g t : A → A, where g t (θ, r) = (U t (θ, r) -θ, 0). By (A.35) one obtains 2d g t 1,A;κ < 2d σ -1 κ (W t -id) 1,A;κ ≤ ε 0 < 1 for any t ∈ [0, δ].The inverse function theorem (Proposition A.11) implies that f t : A → A is a diffeomorphism homotope to the identity. In particular, the equation ϕ = U t (θ, r) has a unique smooth solution θ = ϕ + φ t (ϕ, r), where φ t can be identified with a 2π-periodic with respect to ϕ ∈ R d function and the map [0, δ] t → φ t ∈ C ∞ (A, A) is C 1 . Then

	σ -1 κ (W t -id) ,A;κ + σ -1 κ (W -1 t	-id) ,A;κ
		(A.38)
	≤ C σ -1 κ sgrad G t ,A;κ	
	f -1	
	1	
	1;κ	

v t = id + h t , where h t = (φ t , 0). Proposition A.11 applied to σ -1 κ • f t • σ κ = id + g t • σ κ and σ -1 κ • f -1 t • σ κ = id + h t • σ κ yields φ t ;κ ≤ C g t ;κ ≤ C σ -1 κ (W t -id) ,A;κ (A

.39) 

for any m ∈ N, where C m and C m are positive constants.2

) which means that the composition ı * Γ • A(λ) belongs to that class for any classical λ-PDO A(λ) of order 0. Moreover, its principal symbol can be identified with (λ/2π) 1/4 modulo the corresponding[START_REF] Alexandrova | Semi-Classical Wavefront Set and Fourier Integral Operators[END_REF] 2 -density (see[START_REF] Popov | On the integral geometry of Liouville billiard tables[END_REF], Sect. A.1.4). In what follows, we shall investigate the composition ı * Γ H t (λ) of λ-FIOs. Firstly, notice that the composition R • C t of the corresponding canonical relations is transversal (see[START_REF] Popov | On the integral geometry of Liouville billiard tables[END_REF], Sect. A.1.4). Recall that π 1 : C t → T * X

In particular, X is diffeomorphic to the unit disk D

in R 2 .
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For m > 0 we obtain in the same way

-j(2m(τ + 1) + ϑ) -ϑ , j = J(m), M J(m) (m) -(j -J(m))ϑ , j ≥ J(m).

(11.300)

Our aim now is to satisfy (11.298) for each m ∈ N, j ∈ N, and 0 ≤ p ≤ k ≤ 1, choosing appropriately ε ∈ (0, 1] and J(m).

(1) The case when p = 0.

Suppose firstly that m = 0. Then (11.298) becomes sup 0≤t≤a P t 0 ≤ ε 0 δ -ϑj , ∀j ∈ N.

(11.301)

(11.302)

Then (11.301) holds for any j ∈ N. Moreover, (10.207) just means that 0 < ε0 ≤ 1.

Notice that depends only on n, τ , ϑ 0 and ϑ since c 0 , σ 0 , s 0 and E 0 depend only on n, τ , ϑ 0 and ϑ by Lemma 11.7,(11.260) and (11.261). Hence, one can apply the Iterative Lemma. Suppose now that m > 0. If j < J(m), then j (m) = 0 and M j (m) = -(j + 1)ϑ, and (11.298) for p = 0 reduces to (11.301) with and ε given by (11.302).

On the other hand, for j = J(m) and any k ∈ {0; 1}, the inequality (11.298) becomes A k j (m) := C 0 (m)δ j(2m(τ +1)+ϑ) k p=0 sup 0≤t≤a ∂ p t P t (m) ≤ ε, (11.303) where C 0 (m) = δ ϑ -1 m . The sequence (A 0 j (m)) j∈N is decreasing and it tends to zero. Let J(m) be the smallest integer

such that A 0 j (m) ≤ ε. Then (11.298) holds for j = J(m) and p = 0. Moreover, J(m) satisfies (11.252) by definition. For j ≥ J(m) we have

in view of (11.300), hence, (11.298) is satisfied for each j ∈ N when p = 0.

If P is analytic with respect to t in an open disc B(0, a) ⊂ C of radius a and (11.309) holds for any t ∈ B(0, a) , then φ and Ψ are analytic in t ∈ B(0, a), and the inequalities (11.311) hold uniformly in t ∈ B(0, a ), 0 < a < a, where q = k = 0, the interval [0, a] is replaced by the disc B(0, a) in the right hand side of (11.311), and the constant C m depends on a as well.

The estimates follow from (11.307), the properties of the norms • ρ;κ for anisotropic Hölder spaces obtained in [START_REF] Parernain | Spectral rigidity and invariant distributions on Anosov surfaces[END_REF] and the Inverse Approximation Lemma obtained by Pöschel in [START_REF] Parernain | Spectral rigidity and invariant distributions on Anosov surfaces[END_REF].

Remark 11. [START_REF] Guillemin | Bottom of the wel"semi-classical wave trace invariants[END_REF]. Can (m) = 2m(τ + 1) + 0 be replaced by m(τ + 1) + 0 ? The loss of m(τ + 1) derivatives in the estimates (ii) is due to the fact that we take only the affine linear approximation Q of P with respect to I in the KAM Step Lemma below. Using the approximation proposed by Rüssmann in Theorem 7.2 [START_REF] Popov | Invariants of isospectral deformations and spectral rigidity[END_REF] as Bounemora [START_REF] Bounemoura | Positive measure of KAM tori for finitely differentiable Hamiltonians[END_REF], one could prove (ii) with (m) replaced by m(τ + 1) + 0 . This needs additional efforts and will be done elsewhere.

A Appendix.

A.1 Approximation Lemma

The Hamiltonian P t is not analytic and one can not apply directly the KAM step to it. We are going to approximate it by real analytic functions. To this end we recall some facts about the analytic smoothing technique invented by Moser [START_REF] Melrose | Equivalence of glancing hypersurfaces[END_REF], [START_REF] Moser | A rapidly convergent iteration method and non-linear partial differential equations I, II[END_REF], and developed in different situations by Zehnder [START_REF] Tabachnikov | Billiards, Panoramas et Syntheses[END_REF], Pöschel [START_REF] Parernain | Spectral rigidity and invariant distributions on Anosov surfaces[END_REF], Salamon [START_REF] Sjöstrand | Quantum monodromy and semi-classical trace formulae[END_REF] and Salamon and Zehnder [START_REF] Salamon: Salamon | The Kolmogorov-Arnold-Moser theorem[END_REF]. The Approximation Lemma and the Inverse Approximation Lemma characterize Hölder classes of differentiable functions in terms of quantitative estimates of approximating sequences of analytic functions.

Let m ∈ N, 0 < µ ≤ 1, and let

where

is the C m norm of f and

where the supremum is taken over all x, y ∈ U such that x = y and all α = (α 1 , . . . ,

To simplify the notations we set

the Taylor polynomial of f up to order m. Given 0 < ρ ≤ ∞ and an open set U ⊂ R n we denote by U ρ the strip of all x + iy ∈ C n such that x, y ∈ R n , x ∈ U and |y| < ρ. Recall that A(U ρ ) is 139 the space of analytic functions on U ρ . We denote by | • | ρ the sup-norm on U ρ . The function f is said to be real analytic in U ρ if f is analytic on U ρ and real valued on U . In this Section we take U = R n . The space of entire functions A(C n ) is endowed by the inductive topology generated by the sup-norms on compact sets of C n .

Lemma A.1. (Approximation Lemma) ( [START_REF] Sjöstrand | Quantum monodromy and semi-classical trace formulae[END_REF], [START_REF] Tabachnikov | Billiards, Panoramas et Syntheses[END_REF]). There exists an entire function K ∈ A(C n ) generating a family of convolution operators

with the following properties.

1. For any = m + µ ≥ 0, where m ∈ N and 0

and in particular for any 0 < ρ < ρ ≤ 1, and

3. K(R n ) ⊂ R and in particular the function S ρ f is real analytic whenever f is real valued. Moreover, if f is periodic in some variables then so is S ρ f in the same variables.

If

) is a C k family, then for any ρ > 0 fixed, the family

in a complex neighborhood V of t = 0 for each x ∈ R n , then so is S ρ f t (x), and (A.5)-(A.7) are satisfied for t ∈ V .

A complete proof of the claims 1.-3. is given for example in [START_REF] Sjöstrand | Quantum monodromy and semi-classical trace formulae[END_REF], Lemma 3, and in [START_REF] Tabachnikov | Billiards, Panoramas et Syntheses[END_REF]. In the case of anysotrop Hölder spaces the lemma has been obtained by Pöschel in [START_REF] Parernain | Spectral rigidity and invariant distributions on Anosov surfaces[END_REF]. The claim 4. follows easily from the properties of K. In order to obtain item 1, one uses Taylor's formula with integral remainder, which yields the estimate

for |α| ≤ m (see (3.4) in [START_REF] Sjöstrand | Quantum monodromy and semi-classical trace formulae[END_REF]).

2

Using item 3. one obtains as in [START_REF] Sjöstrand | Quantum monodromy and semi-classical trace formulae[END_REF], Lemma 5, the interpolation and product estimates. More precisely, let r, s, be positive numbers such that 0 ≤ r < s < , and = m + µ, 0 ≤ µ ≤ 1.

Set U 0 j := O 2 j ∩ R n and U q j := {x ∈ R n : dist (x, U 0 j ) < q/16}, q ∈ {0; 1; 2; 3; 4}, in particular, U 4 j = O 3 j ∩ R n . Denote by 1 1 j the characteristic function of the set U 2 j in R n and consider for any j ∈ N the function f j defined by the convolution

These functions have the following properties [START_REF] Alexandrova | Semi-Classical Wavefront Set and Fourier Integral Operators[END_REF] 

where the positive constant λ is given in (A.11). We are going to obtain a Gevrey-G ρ almost analytic extension of f j in C n which is equal to one on O 2 j and has a support in O 3 j . To this end we introduce a family of the compact sets in R n × R n given by

where the set

It is easy to see that a formal almost analytic extension of fj is given by the power series

which means that the operators ∂k , k = 1, . . . , n, annihilate it. The corresponding Taylor series centered at (x, y) ∈ K j is

The family of jets

Remark A.3. If (x, y) ∈ K j and y = 0, then either x ∈ U 0 j or x / ∈ U 4 j . On the other hand,

We are going to prove that F j are Whitney jets. Using (A.12) we obtain Lemma A.5. For each j ∈ N the jet F j belongs to the Whitney space

Using item (1) of (A.12) we obtain for each j ∈ N the estimate |f

We are going to prove (ii). For any u = (x, y) ∈ K j the formal Taylor polynomial of F j of order N which is centered at u and evaluated at z = (x , y ), is given by

We consider separately the following two cases.

1. Let z = (x , 0). Suppose at first that u = (x, 0). Then, setting M = N + 1 -|α| -|α |, we obtain by Taylor's formula

Now item (1) of (A.12) yields

On the other hand

(A.17)

Let u = (x, y) ∈ K j and y = 0. By Remark A.3 we have

. Then using (A.17) we obtain the same estimate since |z -(x, 0)| < |z -u|. Hence (A.17) is true for any z = (x , 0) and u = (x, y) in K j .

are open sets. Then the following holds.

1. Let D 1 be convex. Then for any positive integer ∈ N * ,

where C depends only on and on the dimensions n and d. 

Then u is a diffeomorphism homotope to the identity with inverse u -1 = id + ψ, where ψ ∈ C ∞ (A, A) and for any ≥ 0 we have

where C = C (ε 0 , n, d) > 0 depends only on , ε 0 , and on the dimensions n and d.

Proof. Notice that dφ 0 < (n + d) φ 1 ≤ ε 0 < 1. The inverse function theorem implies that u is a diffeomorphism with inverse u -1 = id + ψ, where ψ ∈ C ∞ (A, A). Moreover,

The estimate of ψ in the C norms with ≥ 1 follows from (A.32) using Proposition A.9 and Proposition A.10. To prove the assertion about the support notice that u -1 = id on

1 + du C (D 1 ) |||v||| ,A 2 ;κ for any ≥ 1, where the constant C [ ] > 0 depends only on [ ] and on the dimensions d j and n 2 .

Proof. To prove

The statement 2 follows from Proposition A.9, 3. To prove 3 we use Proposition A.7, 3, and apply Remark A.2 to u ∈ C ∞ (D 1 ) using the interpolation inequalities for the extension of u as in the proof of Proposition A.9. To prove the second inequality in 3 notice that du µ,D 1 ;κ ≤ du ,D 1 ;κ for µ ≤ since D 1 is convex.

2

Remark A.13. The estimates in Proposition A.12 hold when κ = (κ , κ ) with 0 < κ , κ ≤ 1,

A.4.4 Symplectic transformations and generating functions.

Consider a C 1 family of exact symplectic maps

Suppose that W t -id is compactly supported for any t. We are looking for a C 1 family of generating functions

) is compactly supported with respect to r and 

Then there exists a C 1 family of generating functions G t of W t given by (A.33) such that for any ≥ 0 the following estimate hold true

where d θ is the partial differential with respect to the first variables θ. Notice that φ t 1;κ ≤ C 1 ε 0 in view of (A.35) and (A.39). Then using (A.9), Proposition A.12, 2, and (A.35) we complete the proof of (A.36). Suppose now that supp

Hence, φ t (ϕ, r) = 0 for ϕ ∈ T n and r / ∈ K and supp (sgrad G t ) ⊂ T d × K.

2. In the same way we prove the second part of the Lemma. Suppose that (A.37) holds. Using the inverse function theorem given by Proposition A.11 one solves as above the equation

with respect to ϕ ∈ T d . The corresponding solution has the form ϕ = θ + ψ t (θ, r) and

Moreover, Proposition A.11 yields as above the estimate

for any t ∈ [0, δ], where ≥ 0 and C > 0 depends only on , ε 0 and n. Then using (A.34) and Proposition A.12 we estimate of W t -id. We get the same estimates for (W t ) -1 -id, where

To this end we first solve the equation r -∇ ϕ G t (ϕ, r) = I with respect to r and then we proceed as above. 2

The estimates (A.36) and (A.38) are still valid if we add additional parameters s ∈ T p and ω ∈ R q . Set A

, where σ µ (θ, r; s, ω) = (θ, r; s, κω). We consider the symplectic gradient of the function (θ, r) → G t (θ, r; s, ω) for (s, ω) fixed. Following the proof of Lemma A.14 we obtain Lemma A.15. Suppose that the map

for t ∈ [0, δ] and (s, ω) ∈ A 2 , where id A 1 is the identity map on A 1 . Then for any (s, ω) ∈ A 2 fixed, the function (θ, r) → G t (θ, r; s, ω) = θ, r -G t (θ, r; s, ω) is a generating function of an exact symplectic map

where W -1 t (•; s, ω) is the inverse of W t (•; s, ω) in A 1 with (s, ω) ∈ A 2 fixed and C > 0 depends only on , ε 0 and on the dimensions d,p and q.

Recall that the map Q defined by Q(θ, r) = (θ + ∇K(r), r) is a symplectic map with generating function (θ, r) → θ, r -K(r).

{(p 1 , p 2 , x, y)} be the standard coordinates on T * R 2 where R 2 is identified with C. Applying the Legendre transform, then passing to complex notations and introducing the complex impulses p := 1 2 (p 1 -ip 2 ), p := 1 2 (p 1 + ip 2 ), and In the coordinates {(z, p)} on T * R 2 the canonical symplectic structure ω takes the form ω = dp ∧ dz + dp ∧ dz. Hence,

As I is a first integral of the geodesic flow of g, we have

Using (A.47) one sees that equation (A.48) is equivalent to the following system of equations

In particular, we see that the coefficient A(z, z) in front of p 3 in the formula for the integral (A. where Ã(w) is the coefficient in front of (p) 3 in the expression for the integral I in the chart corresponding to w. Here p is the complex impulse in the chart corresponding to w. 3 Remark B.3. In fact, (A.50) implies that the bivector field,

when written in an isothermal atlas, will correspond to a globally defined holomorphic section of the boundle T 2,0 C X ⊆ T C X . As the integral I is non-trivial (condition (b)), the holomorphic bivector Ω vanishes only at finitely many points in the interior of X. If X were a closed surface, then by Hopf theorem, deg(Ω) = 2χ(X), where χ(X) = 2 -2g is the Euler characteristic of X and deg(Ω) is the number of zeros (counted with multiplicities) of Ω. This would imply that g = 0, 1, and therefore X would be diffeomorphic to the 2-sphere or the 2-torus ( [START_REF] Kobayashi | Differential geometry of complex vector bundles[END_REF][START_REF] Kolokoltsov | Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial with respect to velocities[END_REF]).

2 Ī = I as I is real-valued. 3 Note that p = p dw dz .

159 Next, we want to simplify (A.49) by passing to a new complex variable w = w(z), with w(z) holomorphic in the interior of V , so that Ã(w) ≡ 1. In view of (A.50), this amounts to solving the differential equation 1 = A(z)( dw dz ) 2 . In the case when A(z 0 ) = 0 and z 0 lies in the interior of V , the later equation can we solved explicitly in a sufficiently small open disk centered at z 0 ,

,

where the path of integration connecting z 0 with z is C 1 -smooth and lies in the small disk centered at z 0 . The square root A(λ) is holomorphic in the considered disk and is defined up to the choice of the sign. As it was mentioned above, condition (b) of the theorem implies (A.46). Hence, by shrinking the strip V if necessary, we can ensure that Γ ⊆ V and A(z) = 0 for any z ∈ V . Now, take z 0 ∈ Γ and consider the map,

where the path of integration connecting z 0 with z is C 1 -smooth and is contained in V . Clearly, the map Φ above is well-defined on V and holomorphic in the interior of V . Moreover, it follows from (A.51) that the directional derivatives of Φ of all orders exist and are continuous up to the boundary of V . This allows us to extend Φ to a smooth map defined in some open set V ⊇ V .

Next, let us consider the image Φ(Γ) of the boundary Γ. Take z 1 ∈ Γ. By the inverse function theorem, there exist an open neighborhood U (z 1 ) of z 1 in C and an open neighborhood W (w 1 ) of

Then, as Ã(w) = 1 for all w ∈ Φ(V ) we conclude from (A.44) and (A.45) that g := Φ * (g) and Ĩ := Φ * (I) are diagonal in the coordinates {(u, v)} on W (w 1 ) ∩ Φ(V ) and non-proportional at all points of Φ(V ). In other words, the coordinate vector fields ∂ v and ∂ u on W (w 1 ) ∩ Φ(V ) coincide with the principle directions of the quadratic forms g and Ĩ. As by assumption the integral Ĩ is invariant with respect to the reflections at the boundary Φ(Γ) we conclude that Φ(Γ) ∩ W (w 1 ) is a coordinate line. As z 1 ∈ Γ was chosen arbitrarily, we see that Φ(Γ) is a straight line. By shrinking the strip V so that Γ ⊆ V onece more if necessary and by rotating the target copy of C we get that for some δ > 0,

and Φ : V → Φ(V ) is a smooth covering map. The boundary Φ(Γ) coincides with the real line. This proves that there exist a tubular neighborhood V of Γ in X and δ, l > 0 such that V is diffeomorphic to the cylinder This implies that

where f ∈ C ∞ (R) is 1-periodic and q ∈ C ∞ ([-δ, 0]). By subtracting these two equations we see that, λ(x, y) = q(y) -f (x) > 0.

This, together with (A.52) and p = (p 1 -ip 2 )/2 implies that This Remark allows us to extend the metric g and its first integral I to a larger cylinder,

that contains the boundary Γ = (R/lZ) × {0} in its interior. In order to do this we extend the function q to a function q ∈ C ∞ [-δ, δ] so that q(y) -f (x) > 0 on Z and ∀k ≥ 1, q (k) (δ) = 0 . (A.56)

Then we use (A.54) and (A.65) to extend the metric g and I to smooth quadratic forms on Z. By Remark B.4, I continues to be a quadratic integral of the Riemannian metric g on Z. In this way we extend the Riemannian manifold (X, g) to a smooth Riemannian manifold ( X, g) with connected boundary Γ, so that X ⊆ X, Γ is in the interior of X, g| X = g, Ĩ| X = I, and Ĩ is a quadratic first integral of g. In addition, a collar neighborhood of Γ in X can be coordinatized by the cylinder Z so that the Legendre transforms of the metric and the integral are given by (A.54) and (A.65). Our final step is to take two copies of ( X, g) and glue them along their boundaries by a diffeomorphism that, in the coordinates {(x, y)}, corresponds to the identity, (x, δ) → (x, δ), (R/lZ) × {δ} → (R/lZ) × {δ} .
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In this way we obtain a closed Riemannian manifold ( X, ĝ). In view of the flatness condition (A.56) on q, the metric ĝ and the corresponding quadratic form Î are smooth, the Riemannian manifold (X, g) is isometrically embedded into ( X, ĝ), and Î| X = I. Moreover, by construction, Î is a quadratic integral of the geodesic flow of ĝ. Finally, Theorem 7 follows from the classification theorem for Liouville surfaces (see e.g. [START_REF] Kobayashi | Differential geometry of complex vector bundles[END_REF]). 2

B.2 Kolmogorov Nondegeneracy of the bouncing ball map for Liouville billiards

In this Appendix we show that the Poincaré map of the Liouville billiard tables on the surfaces of constant curvature is non-degenerate at the elliptic fixed point.

Let (X, g) be a Liouville billiard table of classical type. Then there exists a double covering with two branched points τ : C → X (A. [START_REF] Popov | On the contribution of degenerate periodic trajectories to the wave-trace[END_REF] where C denotes the cylinder R/Z × [-N, N ], N > 0, coordinatized by the variables x and y respectively, so that the pull-back of the Riemannian metric on X and the corresponding quadratic in velocities first integral take the form

and the hypotheses (i)÷(v) in the definition of Liouville billiard tables of classical type hold. In addition, we will assume that f has a Morse singularity at x = 1/4 which amounts to f (1/4) < 0. Note that the line (taken twice) on the cylinder C corresponding to x = 1/4 is an elliptic closed broken geodesic of (X, g) with two vertices. Let

where α 0 > 0 and α 1 < 0 be the Taylor's expansion of f at x 0 = 1/4. Let {(I, θ)} be action-angle variables in an open neighborhood in B * Γ of the elliptic fixed point of the billiard ball map of (X, g) normalized so that I = 0 at the elliptic point. We have the following Theorem B.5. Denote by K the Hamiltonian that generates the billiard ball map in the actionangle coordinates {(I, θ)}. Then

Integrable billiard tables on surfaces of constant curvature are examples of Liouville billiard tables of classical type -see [60, §3]. In the case of elliptic billiard tables we have that f (x) = 4 2 π 2 sin 2 2πx and q(y) = -4 2 π 2 sinh 2 2πx (A.61)

where > 0 is the distance between the center of the ellipse and one of the focuses (see [60, §3.1]). As a consequence we obtain Corollary B.6. For any > 0 and for any N > 0 we have that -1 < dK dI (0) < 0 and d 2 K dI 2 (0) < 0. In particular, the Poincaré map of the elliptic billiard ball map is non-degenerate (twisted) at the elliptic fixed point. Moreover, it is 4-elementary except for five different values of the parameter N > 0.

Remark B.7. Similar results can be proved for the Liouville billiard tables on the surfaces of constant curvature.

Proof of Theorem B.5. Let {(x, y, p 1 , p 2 )} be the standard coordinates on the cotangent bundle T * C. By the Legendre transform

f (x) -q(y) , F = q(y)p 2 1 + f (x)p 2 2 f (x) -q(y)

where p 1 = f (x) -q(y) ẋ, p 2 = f (x) -q(y) ẏ (A.62) and ẋ and ẏ denote the components of the velocity vectors in T C. For 0 < h ≤ max f = α 0 consider the invariant with respect to the geodesic flow on T * C surface

Since the variables separate one easily sees that Q h is characterized by the set of equations

One concludes from (A.63) and the hypothesis (i)÷(v) on the functions f and q that for 0 < h < α 0 the surface Q h consists of two copies of (R