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Abstract

While there exists a substantial literature on di¤erent business cycle mechanisms,
there is little literature on economies with more than one business cycle mechanism
operating and the relation of stability of these subsystems with the stability of the
aggregate system. We construct a model where a multiplier-accelerator subsystem
in output-investment space (a real cycle) and a Minskyian subsystem in investment-
debt space (a �nancial cycle) can generate stable/unstable cycles in 2D in isolation.
We then derive a theorem showing that if two independent cycle mechanisms that
generate stable closed orbits in 2D share a self-destabilizing common variable and the
true representation of the system is a fully-coupled 3D system where a weighted average
of the common variable is in e¤ect, then the 3D system will generate locally stable
closed orbits in 3D if and only if the subsystems have the same frequencies and/or
the self-destabilizing e¤ects of the common variable evaluated at the �xed point are
equal in both subsystems. Our results indicate that in the presence of multiple cycle
mechanisms which share common variables in an economy, the stability of the aggregate
economy crucially depends on the frequencies of these sub-cycle mechanisms.

JEL Classi�cation Numbers: C32, E32, E44

1 Introduction

The modelling of cycle mechanisms has long been a topic of interest in economics, par-
ticularly following the Lotka-Volterra formulation of thepopulation dynamics in biological
species. While earlier attempts focused on real cycles such as multiplier-accelerator cycles,
Metzlerian inventory cycles, Kaldor trade cycle, Rose employment cycles, and Goodwin cy-
cles, since the global �nancial crisis in 2008, there has been a growing interest in �nancial
cycle mechanisms such as Minskyian debt cycles. However, while there are several papers
which have attempted to construct large-scale models where multiple cycle-generating mech-
anisms operate at the same time, there is a lack of systematic analysis of how their stability
properties e¤ect the overall stability of the system.

�Agence Française de Développement, CEPN Paris 13, yilmazsd@afd.fr ��King�s College London, en-
gelbert.stockhammer@kcl.ac.uk
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& Chiarella (2000, 2006, 2010) have constructed models with Metzlerian inventory cy-
cles, Goodwin cycles and accelerator cycles while Chiarella and Flaschel (2011) presents a
demand-driven Goodwin model with inventory cycles and debt dynamics. Similarly, Gras-
selli and Huu (2018) incorporate Metzlerian inventory sub-cycles developed by Franke (1996)
into a model with debt and e¤ective demand. Fazzari et al (2008) present simulation re-
sults on a model with a Minsky debt cycle operating via interest rates and an accelerator
mechanism for what they consider realistic parameter values but they do not o¤er a formal
analysis of their model. In fact, all these analyses are more interested in generating several
cycle mechanisms within a single economy rather than analysing how the behaviour of the
aggregate system depends on the characteristics of the sub-cycle mechanisms. This is the
precise question which this paper investigates: If there are two business cycle mechanisms
with di¤erent frequencies operating at the same time in the economy, where these mecha-
nisms share one common variable, how does the aggregate behaviour of the economy depend
on the stability properties of these sub-cycle mechanisms? 1

The issue of di¤erent frequencies of cycle mechanisms has been analyzed empirically in
Drehmann et al (2012), Borio (2012) and Aikman et al (2013) in the context of real and
�nancial cycles. They show that the cycle in real output displays a smaller frequency (and
magnitude) than the �nancial cycle measured in terms of credit growth and property prices.
Thus, the real cycle seem to be shorter and smaller than the �nancial cycle. Among the few
theoretical contributions to modelling multiple cycle mechanisms with di¤erent frequencies
is Ryoo & Skott (2010) which presents a long �nancial wave and a short real cycle along
Kaldorian lines with Harrodian instability. However, the �nancial cycle is decoupled from
the real cycle in their model and the properties of the emerging long and short cycles in
the full system and their relationship with the stability properties of the short and long
waves is not analysed in detail. Methodologically, the closest to what we do is Flaschel
et al (2005) which constructs a Goodwinian wage share-unemployment cycle in 2D and a
Friedmanian in�ation-unemployment cycle in 2D and investigates the behaviour of these
systems in comparison to a fully-coupled 3D system with in�ation, unemployment and
wage share. Their analysis however focuses on showing that these two cycle mechanisms
are compatible with each other as they reproduce the original cycle properties of the 2D
systems also in the fully coupled 3D model rather than giving rise to complex oscillations
as may be expected in the case of such coupled-oscillators.

We propose a speci�c model with two distinct cycle mechanisms, namely a two-dimensional
multiplier-accelerator model in investment-output space to represent the real cycle and a
two dimensional Minsky model in investment-debt space to represent the �nancial cycle.
There is an established literature on multiplier-accelerator models, dating back to the orig-
inal paper by Samuelson (1939). While the principle of the multiplier was put forward by
Kahn (1931) and Keynes (1936), and stated a positive relationship between investment and
equilibrium income, the accelerator principle, as argued by Clark (1917), implied that in-
creases in output will also lead to an increase in investment. The feedback between these two
principles was analysed by Samuelson (1939) with periodic changes in consumption driving

1Although papers by Chiarella & Flaschel discuss the interaction of various e¤ects they name as Rose
e¤ect, Keynes e¤ect, Mundell e¤ect etc. and the implications of simultaneous operation of these e¤ects on
stability of the aggregate economy, their analysis is not on the characteristics of the sub-cycle mechanisms.
Therefore, issues such as the e¤ect of di¤erent frequencies and magnitudes of sub-cycles on the aggregate
system are not investigated systematically.

2



investment, followed by Harrod (1939) and later by Hicks (1950) in the context of coupled
di¤erence equations. Goodwin (1951) on the other hand introduced a nonlinear accelerator
in continuous time that could generate cycles. Recent contributions in continuous time in-
clude Sordi et al (2004), where a multiplier-accelerator cycle around a trend is constructed
via a second order di¤erential equation. The literature on Minksy models is more recent,
with various attempts since the 1980s to formalise Minsky�s rich analysis. Although most
models focus on the interrelation between debt accumulation due to investment �nance or
asset prices as a �nancial fragility indicator and real variables, so far no canonical Minsky
model has emerged. Nikolaidi and Stockhammer (2017) o¤er a survey of the literature and
distinguish between debt cycle models vs asset price models. Within debt-cycle models,
they also distinguish between Kaldor (overshooting goods market), Kalecki (stable goods
market) or Goodwin (supply-determined) type models. The Minsky model we propose gen-
erates cycles in debt and investment with an unstable goods market. It is thus close to what
Nikolaidi and Stockhammer (2017) classify as a Kaldor-Minsky model.

We construct our model such that in isolation, these two mechanisms can generate
independent stable/unstable oscillations and closed orbits in 2D around their common �xed
point and analyse what happens if investment is instead driven by a weighted average of the
accelerator e¤ect in the real cycle and pro�t rate e¤ect in the �nancial cycle, and the true
representation of the economy is a fully-coupled 3D system instead of the 2D subsystems.
We then generalise our �ndings and derive a theorem proving that if two independent cycle
mechanisms that generate closed orbits in 2D share a self-destabilizing common variable and
the true representation of the system is a fully-coupled 3D system where a weighted average
on the common variable is in e¤ect, then the 3D system will generate locally stable closed
orbits if and only if the subsystems have the same frequencies and/or the self-destabilizing
e¤ects of the common variable evaluated at the �xed point are equal in both subsystems.
In the context of our multiplier-accelerator and Minskyian sub-systems, the theorem also
implies that if the subsystem with a stronger (weaker) e¤ect on investment also has a lower
frequency, the operation of both cycle mechanisms has a stabilizing (destabilizing) e¤ect on
the economy and the combination of two closed orbit systems lead to a fully-coupled 3D
system that produces dampening oscillations.

As a numerical example, we parameterise the model such that the two dimensional
sub-systems generate locally asymptotically stable closed orbits. In line with stylized facts
the accelerator e¤ect on investment is larger than the Minskyian pro�t rate e¤ect and the
multiplier-accelerator cycle has a higher frequency. Through numerical simulations, we show
that in line with our analytical results, there is an inherent stabilizing e¤ect in this case and
the economy displays dampening cycles around the �xed point if the multiplier-accelerator
and Minsky mechanisms operate with a weighted e¤ect as described above. We note that
our analytical results also imply that with longer �nancial cycles than real cycles and a
stronger pro�t rate e¤ect on investment than the accelerator e¤ect, the aggregate economy
may also be unstable and display explosive cycles although individual real and �nancial
sub-cycles display stable oscillations.

The paper is organized as follows. Section 2 presents the description and solution of the
model. Section 3 derives a general theorem for coupling two cycle mechanisms while Section
4 presents a numerical demonstration of the analytical results derived in the theorem via
simulations. In Section 5 we provide sensitivity analysis of the numerical simulations. The
last section concludes with some remarks and blueprints for future research.
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2 The Model

We assume a closed economy which produces a single good. Output is produced using
labour and capital in �xed proportions and it is given by Y . Per capita output is de�ned
as output capital ratio and denoted as y = Y=K:
We assume that output follows an excess demand adjustment process in per capita terms

as in Asada (2001)2

_y = �(c+ g � y); � > 0 (1)

where g = I=K is the growth rate of investment and c = C=K = per capita consumption.

Aggregate consumption can be written as:

C = Cw + Cc (2)

where as in the Kaleckian literature, workers consume all wages:

Cw =Wage Bill (3)

With pricing taking the form of a constant mark-up over average wage costs and constant
labour productivity, consumption out of wage income becomes

Cw = (1� �)Y (4)

where (1 � �) is the constant wage share. It must however be noted that the � in this
case includes interest payments i:d as well as �rm pro�ts and therefore assuming a uniform
average propensity to consume out of pro�ts and interest income, we can write equation (5)
below as a consumption function for all non-wage income.

Cc = mc�
e (5)

where mc is the uniform average propensity to consume3 .
Dividing (2) and (3) by K , we get

c = (1� �)y +mcr
e (6)

where expected pro�t rate is given by

re = �ye (7)

2 In essence, one other possible way is to assume that output adjustment takes place according to excess
demand in gross quantities as _Y = �(C + I �G) and derive the dynamics of per capita output adjustment
using _y = _Y =K � (Y=K)( _K=K): However in this case, setting _y = 0 in the steady state will imply that
output and capital must be growing at the same rate and goods market can be in disequilibrium in the long
run.
The current formulation on the other hand implies that setting _y = 0 ensures goods market equilibrium

where C + I = Y .
3Here, we implicitly assume that pro�t-earners have stocks of wealth out of which they can consume

should the actual distributed pro�ts fall below the level they decide to consume.
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As in Gandolfo (1978) and in Sordi et al (2014), we assume extrapolative expectations4 :

ye = y + � _y (8)

which implies

re = �(y + � _y)

Plugging this equation into (6)

c = (1� �)y +mc�(y + � _y) (9)

We can now derive the dynamics of per capita output. From (1) and (9),

_y = � [(1� �)y +mc�(y + � _y) + g � y]

Simplifying and de�ning � = ��mc�; we get

_y(1� �) = � [(mc � 1)�y + g]

Assuming that goods market does not adjust too rapidly and expectations are not very
strongly extrapolative (� and � not very high), � < 1 will always hold.

Denoting
�

(1� �) = 
 > 0 and mc � 1 = �sc where sc is the marginal propensity to
save out of expected pro�ts, the dynamics of output-capital ratio boils down to:

_y = 
 [g � sc�y] (10)

We assume investment dynamics are determined by an adjustment process depending
on the deviation of desired growth rate of investment from the actual rate, as in Jarsulic
(1990, 1996), Charles (2008).

_g = �
�
gd � g

�
; � > 0 (11)

The desired investment function consists of two parts: A multiplier-accelerator mecha-
nism which links growth rate of investment to output growth and a Minskyian part that
takes into account the e¤ect of debt on investment.

gd = g0 + � [v _y] + (1� �) [
r � �d] (12)

MA MINSKY (13)

where d = D=K = per capita stock of debt, r is the aggregate pro�t rate on capital and �

4Since y = Y=K = (Y=Yfc)(Yfc=K) where Yfc is full-capacity output, assuming constant capital pro-
ductivity and therefore constant Yfc=K implies that output-capital ratio, y, can be considered as a measure
of capacity utilization. Therefore, our speci�cation is identical to assuming extrapolative expectations on
capacity utilization rather than gross output (Y ):
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is a parameter that measures the impact of higher debt on the willingness of �rms to borrow
more, as in Charles (2015)5 . A higher debt level implies that �rms are less enthusisatic to
increase the stock of their debt (or banks are less enthusiastic to lend to �rms).

In line with the pecking order of �nance, �rms borrow to �nance investment in excess
of retained pro�ts net of interest payments. As argued by Passarella (2012: 574) as well,
from a macroeconomic perspective, leverage can increase during a boom only if interest
rates increase or retention rate falls. We assume constant interest rates but an endogenous
retention rate that depends on the actual pro�t rate negatively. As also documented by
Charles (2008), Benartzi, Michaely and Thaler (1997) �nd that �rms cut dividends as their
pro�ts fall and our speci�cation captures this observation in a simple way. The dynamics
of debt accumulation is therefore given by

_D = I � (1� �r)(�� iD) (14)

where sf = (1� �r):

2.1 A Pure Multiplier-Accelerator System (� = 1)

When � = 1 in (12), investment is driven purely by the multiplier-accelerator term and
takes the form:

_g = � [g0 + v _y � g] (15)

Substituting (10) gives

_g = �g0 + �(
v � 1)g � �
sc�vy (16)

Using _d = _D=K � (D=K)( _K=K) and assuming zero depreciation so that I = _K, and
therefore _K=K = g, we �nd the dynamic equation for debt-capital ratio as

_d = g � (1� �r)(r � id)� dg (17)

In order to be able to derive the dynamics of the debt-capital ratio, we need to derive
the actual pro�t rate in the economy. Gross pro�ts are given by6

� = Sales� Costs

Assuming that as well as wages, �rms also have other costs of production proportionate
to production level, such as imported energy costs, given by �Y; pro�ts can be written as

5Charles (2008) uses gd = g0 + 
sF (r� id) while Charles (2015) has an investment function of the form
I = I0 + �sF (�� iD)� �D:

6Note that with a goods market disequilibrium as in (1), �rms must be holding inventories so that no
rationing occurs in the case of excess demand and the pro�t share � as de�ned in this model therefore
includes the accumulation of inventories in the case of excess supply in the goods market. Therefore, gross
pro�t rate r, which is the valid variable for debt accumulation, is not given by r = �y; as that would mean
unsold goods piling up in inventories are being used to pay back debt. On the other hand, expected pro�t
rate can be de�ned as re = �ye as in (7) unless �rms expect excess supply in the goods market or produce
in order to attain a target inventory level.
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� = C + I �Wage Bill � �Y

Using (3) and (5),

� = mc�
e + I � �Y

Dividing by K,

r =
�

K
= mc�(y + � _y) + g � �y

Substituting (10) and simplifying, we get

r = �g + �y (18)

where 1 +mc�
� = � > 1 and mc�(1� 
�sc�)� � = �

Assumption 1: � = mc�(1� 
�sc�)� � = 07 :

Using (18), equation (17) can be written as:

_d = g(1� d)� (1� ��g)(�g � id) (19)

Together with the equations of motion for y and g derived above and repeated below,
we have a three-dimensional non-linear system.

_y = 
 [g � sc�y] (20)

_g = �g0 + �(
v � 1)g � �
sc�vy (21)

2.1.1 Steady State

Setting the equations above to zero simultenously and solving, we can derive the �xed points
of the system.

Proposition 1 The system (19) - (21) has the �xed point (yA; gA; dA) = (g0=sc�; g0;
�1g0[g0��2]

g0��3 )

where �1 =
��2

1+��i ; �2 =
��1
��2 and �3 =

i
1+��i :

Proof. See Appendix A1.

Assumption 2: g0 > �3 & g0 > �2

Under this assumption, the system has a unique non-trivial �xed point with a positive
value for the debt-capital stock ratio.

7As we will discuss again, this assumption is only to ensure that in the pure Minsky system we will analyze
in the next part, investment dynamics do not depend directly on y so that we can have an independent
system in g and d.
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2.1.2 Stability

In order to analyze the local stability properties of the multiplier-accelerator model, let us
derive its Jacobian matrix.

JA =

24 �
sc� 
 0
��
sc�v �(
v � 1) 0

0 1 + 2��2 � d�A � �� ��id�A �(1 + ��i)g0 + i

35
where d�A and g0 are the �xed points of the multiplier-accelerator system. The eigenvalues of

this system can be found by �nding the eigenvalues of the multiplier-accelerator subsystem
given by (3; 3) minor of JA :

JAS =

�
�
sc� 

��
sc�v �(
v � 1)

�

and the third eigenvalue is equal to �(1 + ��i)g0 + i: Using the Routh-Hurwitz conditions,
we can establish the following proposition .

Proposition 2 The system (19) - (21) is stable when v < v� =
�+
sc�

�

; it unstable for

v > v�. At v = v�; the system goes through a Hopf bifurcation and locally asymptotically
stable closed orbits emerge.

Proof. See Appendix B1.

As shown in Appendix B1 , the bifurcation parameter v (sensitivity of investment to the
change in output) does not a¤ect the �xed point of the system.

2.2 A Pure Minsky System (� = 0)

When � = 0; the multiplier-accelerator part of the investment function vanishes and invest-
ment is given by only Minskyian dynamics. Using (11) (12) and (18) with Assumption 1,
we have a pure Minskyian system which is de�ned by

_y = 
 [g � sc�y] (22)

_g = � [g0 + (
�� 1)g � �d] (23)

_d = g(1� d)� (1� ��g)(�g � id) (24)

This time, the growth rate of investment and debt-capital ratio can be solved together
as a dynamic system, which we will call Minskyian subsystem.
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2.2.1 Steady State

Unlike the multiplier-accelerator model, the �xed points of the system (22) - (24) cannot
easily be solved for analytically but a graphical representation is fairly straightforward.
Setting _g = 0 and _d = 0, we get respectively

d = g0=�+ (
�� 1)=�g = h(g) (25)

d =
�1g [g � �2]
g � �3

= f(g) (26)

As shown in Appendix A2, the number of the �xed points and their stability properties
depend on the relative sizes of �1, �2, �3 and the sign of (
�� 1). We can summarize some
of the results as below:

Proposition 3 If � < ��1
�i holds, then �2 > �3 and nullcline for the debt-capital ratio takes

the shape in Figure 1 and 2 below. In this case, �1 > (
�� 1)=� > 0 implies that there are
two equilibria as shown in Fig 1. If 0 < �1 < (
�� 1)=� on the other hand, the system has
a single �xed point (Fig. 2).

Proof. See Appendix A.1 and A.2 for a complete characterization of the phase diagrams
under certain parameter con�gurations

2.2.2 Stability

The Jacobian of the Minsky system is given by:

JM =

24�
sc� 
 0
0 �(
�� 1) ���
0 1 + 2��2g�M � d�M � �� ��id�M �(1 + ��i)g�M + i

35 (27)

where d�M and g�M are the �xed points.

As above, the eigenvalues of the system can be calculated by �nding the eigenvalues
of the Minskyian subsystem given by (1; 1) minor of JM ; which we call JMS and the third
eigenvalue is equal to �
sc� < 0:

JMS =

�
�(
�� 1) ���

1 + 2��2g � d�M � �� ��id�M �(1 + ��i)g�M + i

�
(28)

The trace of this matrix is given by

Tr(JMS ) = �(
�� 1)� (1 + ��i)g�M + i (29)
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Since we assumed g0 > �3 above; �(1 + ��i)g0 + i < 0 holds by assumption. This
implies that if we want to have a common �xed point g� = g0 = gM for both models; we
will also have �(1 + ��i)g�M + i < 0: Therefore the sign and magnitude of �(
� � 1) will
determine the sign of Tr(JMS ) and in order to be able to generate unstable behaviour and
closed orbits for the Minsky model, we will assume 
� > 1. This gives a Minskyian model
where d( _g)=dg > 0 and d( _d)=dd < 0: In the jargon of Nikoliadi & Stockhammer (2017), we
thus have a Kaldorian Minsky model.

The stability of the �xed points can be analyzed graphically by deriving the following
proposition:

Proposition 4 Assume that � < ��1
�i holds so �2 > �3. If h(g) line cuts the f(g) curve

from above at a point below the asymptote at �3, the determinant of JMS above is negative and
the �xed point is a saddle. If h(g) line cuts the f(g) curve from above at a point above �3,
Det(JMS ) > 0 holds, if it cuts the f(g) curve from below at a point above �3, Det(JMS ) < 0
holds and the �xed point is a saddle again.

Proof. See Appendix B2.

Therefore, in Figure 1 above, the �rst �xed point is always a saddle while the stability
of the second �xed point will depend on the sign of Tr(JMS ): Setting Tr(J

M
S ) = 0 in (29)

under the assumption 
� > 1; we can establish the following proposition:

Proposition 5 For every high growth �xed point of the Minsky system g�M > �3; there exists
an �� = (1+��i)g�M�i

(
��1) > 0 at which the Minksyian subsystem undergoes a Hopf bifurcation
and locally asymptotically stable closed orbits emerge.

Proof. See Appendix B2.

2.3 Combined System (0 < � < 1 )

Next, we can consider a system where both investment dynamics operate at the same time
and are weighted by �. In such a case, the di¤erential equation system becomes

_y = 
 [g � sc�y]

_g = � fg0 + �v
(g � sc�y) + (1� �)(
�g � �d)� gg (30)

_d = g(1� d)� (1� ��g)(�g � id)

11



2.3.1 Steady State

Since we will combine the two models in this section, we need to ensure that the two separete
systems yield (at least one) common �xed point. To do so, ensuring g�M = g0 will su¢ ce
as output-capital ratio and debt-capital ratio dynamics are identical in both models. From
(23), a su¢ cient condition for this is 
�g = �d; which implies that d = (
�=�)g: Denoting

�=� = �, substituting this result in (24) and setting it to zero, we get

g(1� �g)� (1� ��g)(�g � i�g) = 0

Simplifying yields

g2(��2 � �� ��i�)� g(�� 1� i�) = 0:

The roots of this equation are g = 0 and

g =
�� 1� i�

��2 � �� ��i�
Setting g0 equal to this value ensures that both multiplier-accelerator and Minsky sys-

tems have one common �xed point.

Assumption 3: g0 =
�� 1� i�

��2 � �� ��i� : = g
�
M = g�A

Intuitively, g0 gives the trend rate of growth around which �uctuations occur in both
models and it is set by the parameters of the model. In order to clarify this assumption
mathematically, note that as shown above, setting the growth of investment to zero in the
Minskyian subsystem gives d = g0=� + [(
�� 1)=�] g = h(g). This is the straight line in
Figure 1 and Figure 2 above. The intercept of this line is g0=� and its slope is (
�� 1)=�.
The point where this line intersects the curve to the right of the asymptote gives the non-
saddle �xed point of the Minsky system, as derived in Proposition 4. Since the asymptotes
in Figures 1 and 2 occur at g = �38 and we have assumed in Assumption 2 that g0 > �3;the
non-saddle �xed point of the Minsky system and the �xed point of the multiplier-accelerator
system will be equal to g0 as long as Assumption 3 holds.

Note that since g = g0 is a solution to both (15) and (23), it will also be a solution to
(30), which is a linear combination of these two equations. Therefore, Assumption 2 and
Assumption 3 also ensure that the combined system will have g0 as one of its �xed points.

2.3.2 Stability

The stability of the system will now depend on the eigenvalues of the new Jacobian:

J =

24 �
sc� 
 0
���
vsc� ��
v + (1� �)�
�� � ���

0 1 + 2��2g� � d� � �� ��id� �(1 + ��i)g� + i

35
8See Appendix A.1
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where g� = g0 and d� = �g0 are the common �xed points of both subsystems. The Routh-
Hurwitz conditions require that

a1 = Tr(J) < 0; a2 = Det(J) < 0; a3 = jJ1j+ jJ2j+ jJ3j > 0;
and

�a1a3 + a2 > 0;
where

Tr(J) = �
sc� + ��
v + (1� �)�
�� �� (1 + ��i)g�c + sF i 7 0 (31)

jJ1j = Det
�

��
v + (1� �)�
�� � ���
1 + 2��2g� � d� � �� ��id� �(1 + ��i)g� + i

�
7 0

jJ2j = Det
�
�
sc� 0
0 �(1 + ��i)g� + i

�
> 0

and

jJ3j = Det
�
�
sc� 


��
�vsc� ��
v + (1� �)�
�� �

�
7 0

3 A Generalization

The stability properties of the 3D system can be generalized by the theorem below9 .

Theorem 1 Consider any two subsytems S1 and S2 given by

S1 =
_x = f(x; y)
_y = h(x; y)

and

S2 =
_y = p(y; z)
_z = q(y; z)

where f , h, p and q are C1 and have a common �xed point y�; with hy > 0; py > 0 so the
common variable y has a destabilizing e¤ect on itself in both subsystems: If these mechanisms
are in fact operating together with a weighted e¤ect on y such that the true representation
of the dynamics is given by the 3D system

_x = f(x; y)

_y = �h(x; y) + (1� �)p(y; z)
_z = q(y; z)

9For proof, see Appendix B.3
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then,
a) If the common �xed point is a saddle point in both subsystems, it is also a saddle

point in the fully-coupled system.

b) If S1 and S2 generate locally asymptotically stable closed orbits in x � y and y � z
spaces around y�, then the 3D system will generate locally asymptotically stable closed orbits
around y� if and only if hy = py or the subsystems have the same frequency. If none
of these conditions hold, then the 3D system will be stable if the subsystem with a larger
destabilizing e¤ect of the common variable on itself also has a higher frequency, i.e repeats
itself more often; it will be unstable if the subsystem with a larger destabilizing e¤ect the
common variable on itself has a lower frequency.

c) There is an in-built stabilizing/destabilizing e¤ect if S1 and S2 operate in a fully-
coupled system as de�ned above, which depends on the sign of (hy � py)(jJS1 j � jJS2 j): If
(hy � py)(jJS1 j � jJS2 j) > 0, coupling the subsystems has a stabilizing e¤ect and the fully-
coupled system is more stable than individual subsystems. If (hy � py)(jJS1 j � jJS2 j) < 0 on
the other hand, the fully-coupled 3D system is more unstable than the individual systems.

d) Any parameter change which destabilizes S1 or S2 subsystems also destabilizes the
fully-coupled system.

e) If on the other hand, hy < 0; and py < 0 hold so the common variable has a stabilizing
e¤ect on itself, then the combination of two closed orbit subsystems will always yield a saddle
point for the 3D system. Or in other words, the weighted average of a self-destabilizing
process should be o¤set by two self-stabilizing processes for the stability of the 3D system to
be a possibility.

Therefore, if the �xed point is a saddle point in both multiplier-accelerator and Minksy
subsystems, it is also a saddle point in the combined system. As a corollary of (c) above, the
combination of two stable subsystems may yield an unstable combined system, especially
if their stability is only marginal, while two marginally unstable subsystems may yield a
stable fully-coupled system and possible bifurcations depending on the relative weights of
the two mechanisms (i.e the size of �). Similarly, the combination of stable and unstable
subsystems will always lead to ambigous results and the dynamic behaviour/stability of the
combined system depends on parameter con�gurations as well as the size of �: Further, as
the self-destabilizing e¤ects of the common variable in each subsystem or the determinants
of the subsystems get closer to each other, the inherent stabilising or destabilizing e¤ect of
full-coupling, given by (hy � py)(jJS1 j � jJS2 j); falls.

Corollary 1 If a multiplier-accelerator and a Minsky subsystem, which generate locally
asymptotically stable closed orbits around a common �xed point, are allowed to operate at
the same time in the economy as de�ned in Theorem 1, the combined system will also
generate locally asymptotically stable closed orbits around this common �xed point if and
only if �v = 
 and/or

��JAS �� = ��JMS �� holds (i.e the accelerator e¤ect on investment is equal
to the pro�t rate e¤ect on investment and/or both subsystems have the same periodicity).
If �v > 
 so that the accelerator e¤ect on investment is larger than pro�t rate e¤ect on
investment, then the combined model will be stable if the accelerator subsystem also has a
higher frequency (

��JAS �� > ��JMS ��); it will be unstable if the accelerator system has a lower
frequency (

��JAS �� < ��JMS ��):
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4 Numerical Simulations

We now calibrate our model in order to match some of the stylized facts documented by
Borio (2012) and and Aikman et al (2013). As both studies �nd, the real cycle has a higher
frequency than the �nancial cycle. Interpreting our multiplier-accelerator model as the real
cycle and our Minsky model as the �nancial cycle, we generate these two cycle mechanisms
with this characteristic.10

The table below shows the initial values of the parameters. The values for the interest
rate, pro�t share and marginal propensity to save out of pro�ts are standard in calibration
of small-scale Minskyian models. We assume a strong dependence of the retention rate on
the pro�t rate (�) and strongly extrapolative expectations (�) to incorporate the large e¤ect
of consumption on pro�ts during a �nancial-Minksy cycle. We provide sensitivity analysis
with respect to the other parameters in Section 4.

Parameter De�nition Value
i Interest rate 0:025
� Sensitivity of Investment to debt 0:5
� Sensitivity of retention rate to pro�t rate 4:5
� Pro�t Share 0:4
sc Marginal propensity to save out of pro�ts 0:75

 Sensitivity of investment to pro�t rate 0:85
� Speed of goods market adjustment 0:6
� Extrapolativeness of expectations 3:2

Using these, we get the following values for the composite parameters:

Parameter Value
�1 6:05
�2 0:034
�3 0:022

 0:74
� 1:237

Inserting these composite parameters into Assumption 3 gives g0 = 0:041 as the trend
rate of growth and the common �xed point for both subsystems becomes g� = 0:041;
y� = 0:137; d� = 0:0865: Therefore, g� > �2 > �3 holds. Since 
� > 1 and �1 > (
�� 1)=�
with these parameters, the phase diagram of the Minsky subsystem in g and d (i.e when
� = 0); has the shape in Figure 1 and as we conjectured in Proposition 3, (y�; g�; d�) is the
non-saddle �xed point. The Minsky system has also a saddle �xed point at g�� = 0:007,
y�� = 0:024 and d�� = 0:083:

10 In essence, both studies show that the real cycle is also smaller in magnitude. In models of di¤erential
equation systems with closed orbits, the magnitude of these orbits depend on the initial values. We do not
therefore focus on this issue explicitly. The codes for all simulations are available upon request.
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Setting � = 1 and using Proposition 2, we �nd that at the critical value v� = 2:059,
the multiplier-accelerator model generates locally asymptotically stable closed orbits around
(y�; g�,d�). Similarly, setting � = 1 and making use of Proposition 5 with v = v� reveals
that the Minsky system also generates asymptotically stable closed orbits around (y�; g�,d�)
when �� = 0:421: Below, we depict these locally asymptotically stable closed orbits for both
systems. As the sign structure of the Jacobians of the subsystems show, growth rate of
investment is prey to output-capital ratio in the multiplier-accelerator subsystem while it is
prey to debt-capital ratio in the Minsky subsystem. As a result, the subsystem dynamics
in the simulations reproduce this relationship where investment exhibits counter-clockwise
cycles with output-capital ratio in Figure 4 and counter-clockwise cycles with debt-capital
ratio in Figure 611 .

Next we move on to allowing two cycle generating mechanisms operate at the same
time (0 < � < 1). As we noted in the theorem above, this has an in-built stabilising or
destabilising e¤ect, depending on the sign of (�v�
)(

��JAS �����JMS ��):With � = 0:6; v� = 2:059
and 
 = 0:85; (�v � 
) > 0 holds. The Jacobians of the subsystems and their determinants
on the other hand become

JAS =

�
�0:223 0:743
�0:193 0:223

�
; Det(JAS ) = 0:0938

JMS =

�
0:0219 �0:211
0:231 �0:0219

�
; Det(JMS ) = 0:0482

The values indicate that all the stability conditions should remain satis�ed regardless of
the value of �, as �v > 
 and

��JAS �� > ��JMS �� so that accelerator e¤ect on investment is larger
than the pro�t rate e¤ect and the multiplier-accelerator subsystem has a higher frequency.
Note that this is only because of the chosen parameter values that satisfy �v > 
 and if
this condition is reversed while the Minsky cycle has a lower frequency (i.e

��JAS �� > ��JMS ��),
the combination of two cycling mechanisms will be inherently destabilizing and the results
we report below will also be reversed.

Figures 7-10 above present the values of Tr(J); Det(J); jJ1j+ jJ2j+ jJ3j and Det(J)�
Tr(J)(jJ1j + jJ2j + jJ3j) and con�rm our conjecture in the theorem above that the com-
bination of these subsystems will be inherently stabilizing for any � 2 [0; 1]. Further, as
di¤erentiating (B28) in the Appendix with respect to � would suggest, the value of the
stability condition Tr(J)(jJ1j + jJ2j + jJ3j) + Det(J) peaks at � = 0:5. In other words,
the stabilizing e¤ect is at its peak when both systems have equal weight in the investment
function, as intuition would also suggest. This is con�rmed by Figure 11 where we depict
the real parts of the eigenvalues for � 2 [0; 1] and by Figure 12B where we plot the solutions
to the combined system for � = 0:2 and � = 0:5 and � = 0:8. The �gures indicate that as
the negative real part of the imaginary eigenvalues gets its largest absolute value at � = 0:5
with both systems having the same weight in the investment function, the combined system
stabilises fastest towards the �xed point.

11This implies that g peaks before y in the multiplier-accelerator subsystem and before d in the Minsky
subsystem.
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On the other hand, the dynamics of y, g and d in the combined system also show
that the subsystem dynamics between y � g and d � g outlined above still operate when
both cycle mechanisms are present. As Figure 14 and Figure 15 display, y and g converge
to the �xed point with a dampening counter-clockwise cycle where g peaks �rst, as in
the multiplier-accelerator subsystem.12 Similarly, d and g also exhibit a counter-clockwise
cyclical convergence to the �xed point with g peaking �rst, as in the Minsky subsystem.
Therefore, the combined system preserves subsystem dynamics but the di¤erent e¤ects of
change in output and pro�t rate on investment and distinct periodicities of the subsystems
always stabilise the combined model regardless of the weight of multiplier-accelerator and
Minsky dynamics in investment.

5 Sensitivity Analysis

Since the combination of two models has an inherent stabilizing e¤ect, we next increase
v in order to make the multiplier-accelerator subsystem unstable. Figure 16 shows the
value of the real parts of the complex eigenvalues as v increases from its critical value v�

given in Proposition 2. As expected, the more unstable the multiplier-accelerator system
becomes, the higher the destabilizing e¤ect of it on the combined system becomes compared
to the stabilizing e¤ect inherent in the model when both cycle mechanics are operating. The
graph shows that for values of v such that v� < v < vmax , there is a value �F at which a
Hopf bifurcation emerges and the combination of an unstable multiplier-accelerator system
with an asymptotically stable closed-orbit Minsky subsystem yields locally asymptotically
stable closed orbits for the combined system. Emergence of closed orbits requires a lower
relative weight of the unstable accelerator part in the investment function (lower �F ) as the
multiplier-accelerator subsystem becomes more unstable and beyond a value of v > vmax;
the combined system becomes unstable regardless of the value of � and displays divergence
via increasing oscillations.

We next move on to analyzing the stability of the combined system with respect to
the speed of adjustment for investment (�). Note that unlike v, increasing � destabilizes
both multiplier-accelerator and Minsky systems. In generating Figure 17 below, we keep
v = v� in order to isolate the e¤ect of � alone on the stability of the combined system.
As the �gure shows, when � = �� and v = v�; we reproduce the �gure above, as both
subsystems have closed orbits and their combination is always stable with negative real
parts of the imaginary eigenvalues13 . Increasing � makes the real parts of the eigenvalues
of both the Minskyian system positive at � = 0 and the eigenvalues of the multiplier-
accelerator system positive at � = 1: For some values of �;the combined system goes through
a Hopf bifurcation twice. However, as � increases further and both subsystems become more
unstable, their combination also becomes always unstable despite the inherent stabilizing
e¤ect in the combined model.

12 In Figures 13-15, � = 0:5 so that the stabilizing e¤ect is at its maximum.
13Note that in all the simulations, the �rst two eigenvalues are complex and the third eigenvalue remains

negative. Therefore, stability of the combined system depends on the real parts of the imaginary eigenvalues
we report. Although we do not report the other stability conditions to save space, it is important to stress
that Det(J) 6= 0 when the real part of the eigenvalues are zero in the graphs. In other words, the real
eigenvalue does not become zero throughout our simulations.
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Let us now analyze the case � = 0:55 and v = v�: Solving for the two bifurcation points
on Figure 17 gives � = 0:12 and � = 0:399: In Figure 18 above, we plot the combined
system for these two di¤erent values of � in order to analyze these closed orbits.The �gure
suggests that the magnitude and the frequency of the cycles di¤er at the two bifurcation
points. With these values, the multiplier-accelerator subsystem�s angular speed is larger
and therefore its frequency is higher too. As a result, when the weight of the multiplier-
accelerator is larger in the combined system (i.e � = 0:399), its frequency is also higher.
Similarly, the multiplier-accelerator system has smaller cycles in magnitude and therefore
for a larger share of the accelerator in the investment function, the cycles are also smaller.

Figure 19 on the other hand con�rms that under Assumption 3, the negative relationship
between the sensitivity of investment to pro�t rate and the stability of the Minsky model
holds. Since 
 does not change the multiplier-accelerator model, increasing this parameter
from its initial value of 0:85 leaves the right hand side of the �gure same, When � = 1, we
have the multiplier-accelerator model, for which the real parts of the complex eigenvalues
are zero since v is set at v�: Once again, A Hopf bifurcation is possible with an unstable
Minsky system and an multiplier-accelerator system with asymptotically stable closed orbits
unless 
 is too high and therefore the Minsky model is too unstable. Figure 19 thus displays
the possibility of an unstable �nancial cycle destabilizing an asymptotically stable closed
orbit real cycle despite the inherent stabilizing e¤ect of simultenous operation of both cycle
mechanisms; a case which might be of interest when considered in tandem with the increasing
magnitude of the �nancial cycle documented in Borio (2012).

Figure 20 shows the same dynamics for the adjustment speed of the goods market (�).
In order to generate Figure 20, we keep � at �� as above so that we can isolate the a¤ect
of � alone on the stability of the subsystems. As with �; an increase in the goods market
adjustment speed destabilises both multiplier-accelerator and Minsky subsystems, therefore
destabilizing the combined system too. Beyond a certain value of �, both subsystems are
too unstable and there is no value of � for which their combination will yield asymptotically
stable closed orbits any more. Our simulations also con�rm the conjecture of Corollary 1
above that any parameter change that destabilizes one of the subsystems also destabilizes
the combined system.

6 Conclusion

Using a three-dimensional model in continuous time, we have demonstrated that in the
presence of two cycle mechanisms operating at the same time in an economy where these
mechanisms share a self-destabilizing common variable, the stability of the overall economy
depends on the frequencies of these sub-cycle mechanisms and the relative magnitude of the
self-destabilizing e¤ect of the common variable in each sub-system. In other words, coupling
two stable sub-cycle mechanisms displaying closed orbits in isolation may create an overall
unstable economy unless the sub-cycles are of the same frequency. Further, particularly
marginally stable/unstable sub-systems may generate varying types of aggregate behaviour
for the economic system, from explosive dynamics to closed orbits and stability depending
on the frequencies of the sub-cycles. Our �nding that the the frequencies of individual cycle
mechanisms play a vital role in determining aggregate stability in the presence of multiple
cycle mechanisms is particularly important for models such as Ryoo et al (2010) where there
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are short and long cycles operating at the same time in the economy. Our results suggest
that the interaction of these cyces and the frequencies of short and long cycles should have
an impact on the aggregate stability of the economy in such models.

From a policy perspective, our �ndings highlight the importance of correctly identifying
sub-cycle mechanisms and their interactions, particularly if one interprets the accelerator
part of our model as the real cycle and its Minskyian part as the �nancial cycle. The lower
frequency of the �nancial cycle documented in Borio (2012), combined with a large pro�t
rate e¤ect on investment for instance may imply a destabilizing tendency in the economy,
although individual real and �nancial cycle mechanisms may display stability in observed
data. In essence, the �nancialization process may lead to an increase in the e¤ect of pro�t
rate on investment, thus destabilizing the aggregate economic system and necessitating
prompt action from the government and the central bank during early phases of the cycle
in order to mitigate and if possible, prevent the ampli�cation of the cycle using appropriate
policy tools. Such strong non-linear responses by policy makers, which are absent in our
formulation, might be essential to ensure mild �uctuations around desirable levels for various
policy variables and to prevent explosive dynamics.

Throughout the paper, we have assumed that the relative weights of two sub-cycle
mechanisms on investment behaviour does not change. However, there is no reason why
this should be the case. In fact, endogenous changes in the relative strength of these two
e¤ects on investment may create chaotic behaviour around a trend, with periods of relative
calmness that resemble smooth convergence followed by explosive dynamics. An interesting
topic for future research would therefore be to analyse the behaviour of the system when
the weight parameter is endogenous and possibly subject to manipulation by policy.

.
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Appendix A

A1. Existence of �xed points of the multiplier-accelerator system

From (15), the single �xed point for the growth rate of investment g� is given by g0.

Plugging this into (21), we �nd that y� = g0=sc�:

The analysis of the third �xed point is more complicated due to the non-linerities in

the dynamics of debt-capital ratio in (19). Since this equation is common in both the

Multiplier and Minsky models, we will analyze its properties in detail. Setting (19) to zero

and simplifying gives

d =
��2g2 + (1� �)g
(1 + ��i)g � i (A1)

Rewriting this equation �rst as

d =

��2

(1 + ��i)
g2 +

(1� �)
(1 + ��i)

g

g � i

(1 + ��i)

(A2)

and then as

d =

��2

(1 + ��i)
g

�
g � (�� 1)

��2

�
g � i

(1 + ��i)

(A3)

we can see that there is an asymptote at g =
i

(1 + ��i)
: Further, the value of ��1 and

i

(1 + ��i)
determine the shape and behaviour of the function. In order to see this, rewrite

the equation above as

d =
�1g [g � �2]
g � �3

= f(g) (A4)

where �1 =
��2

(1 + ��i)
> 0; �2 =

(�� 1)
��2

> 0;and �3 =
i

(1 + ��i)
> 0:

Since � > 1 and therefore �2 > 0; as well the origin, the function crosses the g axis also

at g = �2:When g is above this value, the numerator is positive; when it is below this value

the numerator is negative. Similarly, the denominator changes sign at g = �3 so the shape

of the function will be determined by the relative sizes of �2 and �3:
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Case 1: �2 > �3

In this case, the point at which the function crosses the g-axis is above the value at which

there is an asmyptote. Therefore, for g < �3; both the numerator and the denominator is

negative and d is positive while the function is increasing in g as the denominator gets close

to �3. At g = �3, there�s an asymptote to positive in�nity. On the other hand, between

�3 < g < �2; the numerator is negative but the denominator is positive, so the value of

the function is negative and it is increasing in g. At g = �2, the function passes from the

origin and then increases without bounds, as limg!1f(g)!1 and the slope of the curve

converges to �1 as g !114 : The shape of the curve in this case is depicted in Figure Ap.1

below and in Figures 1-2 in the text.

Case 2: �3 > �2

In this case, the value at which the function becomes zero is lower than the value of g

at which there is an asymptote. Therefore, for g < �2, the numerator and the denominator

14f(g) =
�1g[g��2]
g��3

can be written as f(g) = �1g��1�2
1��3=g

. As g goes to in�nity, the slope of this function
converges to �1:
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are both negative and the function is positive and �rst increasing then decreasing in g since

at g = �2, the function crosses the g-axis as d becomes zero. In order to determine the

behaviour of the function to the right of �2, let us take the derivative of f(g).

f 0(g) =
(2�1g � �1�2)(g � �3)� �1g2 + �2g

(g � �3)2
(A5)

Simplifying, we get

f 0(g) =
g2 � 2�3g + �2�3

(g � �3)2
(A6)

Therefore, the sign of the derivative depends on the sign of the numerator, which can

be written as

(g � �3)2 + �2�3 � �32 (A7)

If �2�3 > �32; which requires �2 > �3; the derivative is always positive and the function

is always increasing. This is Case 1(a). If �2 < �3 on the other hand, (A7) can be written

as

(g � �3)2 � a (A8)

where a = �32 � �2�3 > 0. Therefore, for g > �3, the sign of the derivative will change
at the point

gmin = �3 +
p
a > �3 (A9)

This means that to the right of the asymptote at g = �3, the function is �rst decreasing

and after the minimum it reaches at gmin, it increases without bounds, as limg!1f(g)!.1.
This is depicted in the Figure Ap.2 below.

In both cases, given the value of g0, there is a unique value for d� which corresponds to

it. Whether or not this value will be positive depends on the assumptions and parameter

choices.

A2. Existence of �xed points of the Minsky System

The dynamic of motion for debt-capital ratio is common in the multiplier-accelerator

and Minsky models, shape of the phase diagram depends on the values of �2 and �3: In

both Case 1 and Case 2 outlined above, Minskyian system may have one more set of �xed

points. In order to see this, note that as in the multiplier-accelerator model, the two-

dimensional sub-system in g and d can be solved seperately with (23) and (24), and y can

subsequently be found using (20). Setting (23) to zero gives us the nullcline for _g as d =

g0=� + (
� � 1)=�g = h(g): This is a positively sloped line with the intercept g0=� 6= 0:
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If �2 > �3 as in Case 1A above and the slope of f(g)g!1 is larger than the slope of this

line, (i.e �1 =
��2

(1 + ��i)
> (
� � 1)=�); the h(g) line and the f(g) curve will intersect

twice in the �rst quadrant, and there will be two sets of �xed points, as shown in Figure

1. If on the other hand, the slope of h(g) line is higher than the slope of f(g)g!1 (i.e
��2

(1 + ��i)
< (
��1)=�), the Minsky system will have one �xed point in the �rst quadrant,

as the h(g) line will intersect the f(g) curve once before the asymptote at g = �3:
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Appendix B

B.1 Stability of the Multiplier-accelerator system

The �rst two eigenvalues can be calculated by �nding the eigenvalues of the (3; 3) minor

of the Jacobian matrix. The third eigenvalue is equal to �(1 + ��i)g0 + i.

JAS =

�
�
sc� 

��
sc�v �(
v � 1)

�
(B1)

Tr(JAS ) = �
sc� + �(
v � 1) (B2)

In order to �nd the determinant of this matrix, let us �rst multiply coloumn 2 with sc�

and add it to coloumn 1. The determinant of JAS is equal to the determinant of the new

matrix

E =

�
0 


��sc� �(
v � 1)

�
which can easily be found as

��JAS �� = 
sc�� > 0 (B3)

Since the determinant is always positive, the stability of the system depends on the

trace. Setting Tr(JAS ) = 0; we �nd the critical value of v as

v� =
�+
sc�

�

> 0 (B4)

For v > v� the system is unstable as Tr(JAS ) becomes positive, and vice versa. The

behavior of debt-capital ratio, however depends on the third eigenvalue, which is given by

�(1+��i)g0+ i: Assumption 2 therefore ensures the third eigenvalue is negative so stability
is ensured for v < v�.

At v = v�; the system will go through a Hopf bifurcation and closed orbits will emerge.

In order to prove this, we need to con�rm that the assumptions of Hopf Bifurcation theorem

is satis�ed at this value. Since we have shown that
��JAS �� > 0 and Tr(JAS ) = 0 at v =

v�, this only requires proving that the Tr(JAS ) is not stationary with respect to v at v
�.

Di¤erentiating Tr(JAS ) with respect to v, we get

dTr(JAS )=dvjv=v� = �
 6= 0 (B5)
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unless � = 0 and/or 
 = 0:

B.2 Stability of the Minsky System

To analyze the stability of the Minskyian subsystem, let us �rst restate the Jacobian

matrix evaluated at the steady state:

JMS =

�
�(
�� 1) ���

1 + 2��2gM � d�M � �� ��idM �(1 + ��i)g�M + i

�
While the Trace of this matrix is given by �(
� � 1) � (1 + ��i)g�M + i and its sign

depends on the assumption on the value of �(
� � 1); the high level of non-linearity in
the debt dynamics makes an algebraic calculation of the determinant of the subsystem

cumbersome so we will instead present a graphical analysis of the stability of the �xed

points.

Recall that the Minskyian subsystem is given by

_g = � [g0 + (
�� 1)g � �d] = H(g; d)
_d = g(1� d)� (1� ��g)(�g � id) = F (g; d)

Denoting the partial derivative of any variable x with respect to F as Fx, the Jacobian

above can be written as

JMS =

�
HgjH(g;d)=0 HdjH(g;d)=0
FgjF (g;d)=0 FdjF (g;d)=0

�
(B6)

While we were analysing the existence of �xed points in the Minsky subsystem above,

we had de�ned the nullcline for nullcline for _g as d = g0=� + (
� � 1)=�g = h(g) and the
nullcline for _d as d = �1g[g��2]

g��3 = f(g): Therefore, for H(g; d) = 0; we have d = h(g), and

for F (g; d) = 0 we have d = f(g). This implies that there is a relationship between H(g; d)

and h(g) such that

hg = �
HgjH(g;d)=0

HdjH(g;d)=0
(B7)

Therefore, the slope of the h(g) line is given by the negative of the ratio of a11 to a12
element of the Jacobian of the Minskyian subsystem. Similarly,

fg = �
FgjF (g;d)=0

FdjF (g;d)=0
(B8)

also holds and the ratio of a21 to a22 element of the subsystem�s Jacobian gives the

slope of the f(g) curve.

Assume now (without loss of generality) that �2 > �3 and �1 =
��2

(1 + ��i)
> (
��1)=�

so that the phase diagram of the Minsky system looks like in Figure 1. The system has two
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sets of �xed points. There is a �xed point with a low growth g�M < �3 and another one with

high growth g�M > �2.

Let us �rst consider the low growth �xed point with g�M < �3. As Figure 1 shows,

both h(g) and f(g) are positively sloped at the intersection point. Further, note that

the a22 element of the subsystem�s Jacobian, �(1 + ��i)g�M + i; becomes negative only if

g�M > i
(1+��i) = �3: Therefore, at this low growth �xed point, the subsystem�s Jacobian�s

elements take the following sign structure:

JMS =

�
Hg(+) Hd(�)
Fg(�) Fd(+)

�
(B9)

The sign of the determinant cannot be determined from this sign structure. However,

since from Figure 1 we can see that h(g) line cuts the f(g) curve from above, its slope must

be lower than the slope of f(g). This implies

�Fg
Fd

> �Hg
Hd

(B10)

With Fd > 0 and Hd < 0; this implies

FgHd > FdHg > 0)
��JMS �� < 0 (B11)

which ensures that the �xed point is a saddle. If on the other hand h(g) line is negatively

sloped, then the sign structure of JMS becomes

JMS =

�
Hg(�) Hd(�)
Fg(�) Fd(+)

�
(B12)

which ensures that
��JMS �� < 0 always holds.

For the high growth �xed point with g�M > �2 > �3; a22 of the Jacobian of the Min-

skyian subsystem is negative, and therefore with a positively sloped h(g) and f(g), Jacobian

elements�signs become

JMS =

�
Hg(+) Hd(�)
Fg(+) Fd(�)

�
(B13)

Once again, the sign structure of this matrix does not determine the sign of
��JMS �� on its

own. However, as the h(g) line cuts the f(g) curve from above to the right of the asymptote

at �3 in Figure 1; it is �atter than f(g):We again have

�Fg
Fd

> �Hg
Hd

(B14)

With Fd < 0 and Hd < 0; this implies

Fg
Fd

<
Hg
Hd

) FgHd < FdHg < 0; (B15)
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which ensures
��JMS �� > 0 holds. Therefore, as conjectured in Proposition 4, if the h(g)

line cuts the f(g) curve from above at a point below the asymptote at g = �3,
��JMS �� < 0

and the �xed point is a saddle. If on the other hand the h(g) line cuts the f(g) curve from

above at a point above the asymptote at g = �3,
��JMS �� > 0 and the stability properties of

the Minskyian subsystem depends on Tr(JMS ).
15 Setting Tr(JMS ) = 0;we get the condition

on � for a Hopf bifurcation as stated in proposition 5. As above, it is straigtforward to show

that Tr(JMS )=d��=�� 6= 0 so the bifurcation is not degenerate.

B.3 Proof of Theorem 1 and Corollary (Stability of the Fully-coupled System)

In order to prove the theorem, let us �rst assume that

S1 =
_x = f(x; y)
_y = h(x; y)

and

S2 =
_y = p(y; z)
_z = q(y; z)

have a common �xed point (x�; y�; z�) such that f(x�; y�) = h(x�; y�) = p(y�; z�) =

q(y�; z�) = 0: Then, (x�; y�; z�) is also a �xed point for the system

_x = f(x; y)

_y = �h(x; y) + (1� �)p(y; z)
_z = q(y; z)

since we can write

_y = �h(x; y) + (1� �)p(y; z)

as

_y = �[h(x; y)� p(y; z)] + p(y; z)

for which

_y = �[h(x�; y�)� p(y�; z�)] + p(y�; z�) = 0

always holds.

15A similar stability analysis can be carried out for the case �2 < �3 shown in Figure A.2 above for
downward/upward sloping h(g) lines. However, since our parameter calcibration satis�es �2 > �3 with
upward-sloping h(g) line for reasons mentioned in the text, we will not explicitly present stability conditions
in these cases.
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De�ne the Jacobians of the independent 2D subsystems S1 and S2 as

JS1 =

�
e1 e2
e3 e4

�
(B16)

JS2 =

�
e5 e6
e7 e8

�
(B17)

while the Jacobian of the fully-coupled 3D system is given by

J =

24 e1 e2 0
�e3 �e4 + (1� �)e5 (1� �)e6
0 e7 e8

35 =
24 � e2 0
�e3 + (1� �)e6
0 e7 �

35 (B18)

We do not need to assume a speci�c sign structure for e2; e3; e6 or e7:Stability of this

three-dimensional system requires

Tr(J) < 0; jJj < 0; jJ1j+ jJ2j+ jJ3j > 0 (B19)

and � Tr(J)(jJ1j+ jJ2j+ jJ3j) + jJj > 0; (B20)

where

J1 =

�
�e4 + (1� �)e5 (1� �)e6

e7 e8

�
; (B21)

J2 =

�
e1 0
0 e8

�
; (B22)

J3 =

�
e1 e2
�e3 �e4 + (1� �)e5

�
(B23)

are the principal minor matrices.

The trace of the fully-coupled system can be written as

Tr(J) = e1 + �e4 + (1� �)e5 + e8 (B24)

Tr(J) = Tr(JS1) + Tr(JS2)� [�e5 + (1� �)e4] (B25)

If both subsystems are stable, Tr(JS1) < 0 and Tr(JS2) < 0 hold. Since � < 1 and

e1 < 0, e1+�e4 < 0 regardless of the sign of e4; and (1��)e5+e8 < 0. Therefore, Tr(J) < 0
holds if the subsystems are stable.
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On the other hand, if both systems are unstable, e4 > e1 and e8 > e5; and � < 1 implies

that e1 + �e4 7 0 and (1� �)e5 + e8 7 0: Therefore, the sign of the Tr(J) is ambigous.

In order to �nd an expression for jJj, let us write

jJj = e1
���� �e4 + (1� �)e5 (1� �)e6

e7 e8

����� e2 ���� �e3 (1� �)e6
0 e8

����
jJj = e1 [�e8e4 + (1� �)e5e8 � (1� �)e6e7]� e2�e3e8

jJj = e1 [�e8e4 + (1� �) jJS2 j]� e2�e3e8

jJj = e1(1� �) jJS2 j+ e8�(e1e4 � e2e3)

jJj = e1(1� �) jJS2 j+ e8� jJS1 j (B26)

So the determinant of the combined system is a weigthed average of the determinants

of the subsystems scaled by two diagonal elements, e1 and e8: If both subsystems are stable,

jJS2 j > 0 and jJS1 j > 0. Since e1 < 0 and e8 < 0; jJj < 0 holds and the stability condition
is satis�ed. Similarly, the combination of two systems with saddle points will lead to jJj > 0
and result in an combined system with a saddle point, as stated in the theorem.

The determinants of the principal minors of the Jacobian of the combined system can

be found as follows.

J1 =

�
�e4 + (1� �)e5 (1� �)e6

e7 e8

�

jJ1j = e8�e4 + (1� �)e5e8 � (1� �)e6e7

jJ1j = �e8e4 + (1� �) jJS2 j

J2 =

�
e1 0
0 e8

�

jJ2j = e1e8

J3 =

�
e1 e2
�e3 �e4 + (1� �)e5

�
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jJ3j = �e1e4 + (1� �)e1e5 � �e2e3

jJ3j = � jJS1 j+ (1� �)e1e5

jJ1j+ jJ2j+ jJ3j = � jJS1 j+ (1� �) jJS2 j+ e1e8 + �e8e4 + (1� �)e1e5

If both systems are stable, jJS1 j > 0 and jJS2 j > 0: so the �rst two terms are positive
while e1e8 > 0, �e8e4 < 0 when e4 > 0 and (1 � �)e1e5 < 0: Further in this case, je1e8j >
je8e4j because stability of the S1 requires je1j > je4j : Similarly, if S2 is stable, je8j > je5j and
therefore je1e8j > je1e5j : Since je1e8j is greater than both je8e4j and je1e5j, � < 1 implies
je1e8j > j�e8e4 + (1� �)e1e5j. So jJ1j + jJ2j + jJ3j > 0 always holds if both subsystems

are stable. The proof is more straightforward for e4 < 0 since �e8e4 < 0 in this case and

je1e8j > je1e5j once again implies that jJ1j+ jJ2j+ jJ3j > 0:

The last stability condition requires that

�Tr(J)(jJ1j+ jJ2j+ jJ3j) + jJj > 0

�Tr(J) [�jJS1 j+ (1� �)jJS2 j+ e1e8 + �e8e4 + (1� �)e1e5]

+e1(1� �)jJS2 j+ e8�jJS1 j > 0

�Tr(J)�jJS1 j � (1� �)Tr(J)jJS2 j � Tr(J) [e1e8 + �e8e4 + (1� �)e1e5]

+e1(1� �)jJS2 j+ e8�jJS1 j > 0

�jJS1 j(e8�Tr(J)) + (1� �)jJS2 j(e1�Tr(J))� Tr(J) [e1e8 + �e8e4 + (1� �)e1e5]> 0

This equation can further be simpli�ed as

��jJS1 j [e1 + �e4 + (1� �)e5]�(1� �)jJS2 j [e8 + �e4 + (1� �)e5]

�Tr(J) [e1e8 + �e8e4 + (1� �)e1e5]> 0

Denoting the last term as Q = �Tr(J) [e1e8 + �e8e4 + (1� �)e1e5] ;
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��jJS1 j [e1 + e4 � (1� �)e4 + (1� �)e5]�(1� �)jJS2 j [e8 + �e4 + e5 � �e5] +Q > 0

�jJS1 j [(1� �)(e4 � e5)� (e1 + e4)]�(1� �)jJS2 j [�(e4 � e5) + (e5 + e8)]+Q > 0

�(1� �)(e4 � e5) (jJS1 j � jJS2 j)� �jJS1 jTr(JS1)� (1� �)jJS2 jTr(JS2) +Q > 0 (B27)

must hold. If both subsystems are stable,

Q > 0; �jJS1 jTr(JS1) < 0, jJS2 jTr(JS2) < 0

hold. Therefore, the last three terms are positive. However, the sign of the �rst term is

ambigous. So the combination of two stable subsystems may not yield a stable system,

particularly if the stability of the subsystems are marginal. However, a su¢ cient condition

as stated in the theorem for the stability of the combined system can be derived as e4 > e5
[ jJS1 j > jJS2 j or e4 < e5 [ jJS1 j < jJS2 j:

Equation (B27) also shows that as both systems become more stable (i.e Tr(JS1); T r(JS2)

become more negative and Q becomes more positive), the combined system also becomes

more stable.

When two systems with closed orbits are combined with each other, Tr(J) < 0 holds,

jJ j< 0 holds as above.

jJ1j+ jJ2j+ jJ3j = �jJS1 j+ (1� �)jJS2 j+ e1e8 + �e8e4 + (1� �)e1e5

With both subsystems giving closed orbits, je1j = je4j and je5j = je8j : Therefore,

jJ1j+ jJ2j+ jJ3j = �jJS1 j+ (1� �)jJS2 j+ e1e8 � �e8e1 � (1� �)e1e8

jJ1j+ jJ2j+ jJ3j = �jJS1 j+ (1� �)jJS2 j > 0

As above, we can derive the last stability condition as

�(1� �)(e4 � e5) (jJS1 j � jJS2 j)� �jJS1 jTr(JS1)� (1� �)jJS2 jTr(JS2) +Q > 0
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With two subsystems with closed orbits, we have Tr(JS1) = 0; T r(JS2) = 0 and Q = 0:

So the equation boils down to:

�(1� �)(e4 � e5) (jJS1 j � jJS2 j) (B28)

Therefore, when equation (B28) crosses zero, the Routh-Hurwitz conditions for a Hopf

bifurcation are satis�ed and asymptotically locally stable closed orbits emerge.16 From

(B27), we can see that the combination of two subsystems with asymtotically stable closed

orbits will give a stable system if e4 > e5 & jJS1 j > jJS2 j or e4 < e5 & jJS1 j < jJS2 j: Further,
this equation will be equal to zero only if e4 = e5 and/or jJS1 j = jJS2 j: In this case, the last
stability condition is equal to zero regardless of the value of �. In other words, the stability

condition is stationary with respect to � and the necessary condition for Hopf bifurcation

is violated. The combination of two subsystems with the same closed-orbit �xed point will

always yield the same �xed point with closed orbits around it for any � 2 [0; 1] if e4 = e5
and/or jJS1 j = jJS2 j.

The derivative of the stability condition evaluated at any bifurcation value �F becomes:

d [�Tr(J)(jJ1j+ jJ2j+ jJ3j) + jJj)] =d�j�=�F = (1� 2�F )(e4 � e5) (jJS1 j � jJS2 j)

�jJS2 jTr(JS2) + dQ=d�j�=�F 6= 0

unless by chance.

16A mathematical proof of the Routh-Hurwitz conditions using Orlando�s Formula can be found in Gant-
macher (1954:197). For a quick and intuitive way to establish the condition for a Hopf bifurcation, recall
that the third order polynomial for the characteristic equation of a three-dimensional system is given by

�3 � Tr(J)�2 + (jJ1j+ jJ2j+ jJ3j)�� jJ j = 0
In order to have two imaginary roots and a negative root, which is the necessary condition for closed

orbits, a third order polynomial must satisfy

ax3 + bx2 + cx+ d = (x2 +m)(x+ n)

where n > 0 and m > 0.
Multiplying the right-hand side, we get

x3 + nx2 +mx+mn:

Comparing this equation with the characteristic equation shows that Tr(J) < 0 and jJ1j+ jJ2j+ jJ3j > 0
must hold. Since the last term nm > 0; jJ j < 0 must also hold. And �nally, the coe¢ cents in front of x2

and x must multiply to give the last term, implying that

�Tr(J)jJ1j+ jJ2j+ jJ3j = �jJ j;
or rather in its more widely used form

�Tr(J)jJ1j+ jJ2j+ jJ3j+ jJ j = 0:
Therefore, when the value of Tr(J)jJ1j + jJ2j + jJ3j + jJ j crosses zero while Tr(J) < 0; jJ j < 0 ,jJ1j +

jJ2j+ jJ3j > 0 hold, the real part of imaginary roots disappear while the third root is negative and a Hopf
bifurcation emerges. For the bifurcation to be non-degenerate, the derivative of the condition �Tr(J)jJ1j+
jJ2j + jJ3j + jJ j with respect to the bifurcation parameter evaluated at the bifurcation point should be
non-zero. See Asada and Yoshida (2003) for a similar approach to the 4D case.
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Finally, note that in a two dimensional system with pure imaginary eigenvalues, � =

�
p
j�j
2 i where j�j = jJcj where Jc is the Jacobian matrix of the system evaluated at the

�xed point: In such a case, 	 =
p
jJcjgives the angular speed of the closed orbits which will

repeat every T = 2�
	 units of time. Therefore, a higher determinant implies a higher angular

speed and therefore a lower periodicity (higher frequency) with pure imaginary eigenvalues,

as stated in the theorem.

In order to prove the last part of the theorem, let us assume hy < 0 and py < 0 instead.

The Jacobian of the 3D system now takes the form

J =

24 e1 e2 0
�e3 �hy + (1� �)py (1� �)e6
0 e7 e8

35 =
24 + e2 0
�e3 � (1� �)e6
0 e7 +

35 (B29)

Recall that the determinant of the 3D system is given by

jJ j = e1(1� �)Det(S1) + e8�Det(S2) > 0 (B30)

will always hold, implying that the �xed point y� will be a saddle point.

Note that the condition e4 > e5; stated in the corollary to Theorem 1 as �v > 
; requires

�(
v � 1) > �(
�� 1)

Using 
 =
�

(1� ��mc�:)
and � = 1 +mc�
� ; we get

�v

1� ��mc�
> 
(1 +

�mc��

1� ��mc�:
)

Simplifying this inequality gives the condition in the Corollary:

�v > 
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