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While there exists a substantial literature on different business cycle mechanisms, there is little literature on economies with more than one business cycle mechanism operating and the relation of stability of these subsystems with the stability of the aggregate system. We construct a model where a multiplier-accelerator subsystem in output-investment space (a real cycle) and a Minskyian subsystem in investment-debt space (a financial cycle) can generate stable/unstable cycles in 2D in isolation. We then derive a theorem showing that if two independent cycle mechanisms that generate stable closed orbits in 2D share a self-destabilizing common variable and the true representation of the system is a fully-coupled 3D system where a weighted average of the common variable is in effect, then the 3D system will generate locally stable closed orbits in 3D if and only if the subsystems have the same frequencies and/or the self-destabilizing effects of the common variable evaluated at the fixed point are equal in both subsystems. Our results indicate that in the presence of multiple cycle mechanisms which share common variables in an economy, the stability of the aggregate economy crucially depends on the frequencies of these sub-cycle mechanisms.

Introduction

The modelling of cycle mechanisms has long been a topic of interest in economics, particularly following the Lotka-Volterra formulation of thepopulation dynamics in biological species. While earlier attempts focused on real cycles such as multiplier-accelerator cycles, Metzlerian inventory cycles, Kaldor trade cycle, Rose employment cycles, and Goodwin cycles, since the global …nancial crisis in 2008, there has been a growing interest in …nancial cycle mechanisms such as Minskyian debt cycles. However, while there are several papers which have attempted to construct large-scale models where multiple cycle-generating mechanisms operate at the same time, there is a lack of systematic analysis of how their stability properties e¤ect the overall stability of the system. & Chiarella (2000,2006,2010) have constructed models with Metzlerian inventory cycles, Goodwin cycles and accelerator cycles while Chiarella and Flaschel (2011) presents a demand-driven Goodwin model with inventory cycles and debt dynamics. Similarly, Grasselli and Huu (2018) incorporate Metzlerian inventory sub-cycles developed by [START_REF] Franke | A Metzlerian model of inventory growth cycles[END_REF] into a model with debt and e¤ective demand. [START_REF] Fazzari | Cash- ‡ow, investment and Keynes-Minsky cycles[END_REF] present simulation results on a model with a Minsky debt cycle operating via interest rates and an accelerator mechanism for what they consider realistic parameter values but they do not o¤er a formal analysis of their model. In fact, all these analyses are more interested in generating several cycle mechanisms within a single economy rather than analysing how the behaviour of the aggregate system depends on the characteristics of the sub-cycle mechanisms. This is the precise question which this paper investigates: If there are two business cycle mechanisms with di¤erent frequencies operating at the same time in the economy, where these mechanisms share one common variable, how does the aggregate behaviour of the economy depend on the stability properties of these sub-cycle mechanisms? 1The issue of di¤erent frequencies of cycle mechanisms has been analyzed empirically in Drehmann et al (2012), [START_REF] Borio | The …nancial cycle and macroeconomics: What have we learnt?[END_REF] and [START_REF] Aikman | Curbing the Credit Cycle[END_REF] in the context of real and …nancial cycles. They show that the cycle in real output displays a smaller frequency (and magnitude) than the …nancial cycle measured in terms of credit growth and property prices. Thus, the real cycle seem to be shorter and smaller than the …nancial cycle. Among the few theoretical contributions to modelling multiple cycle mechanisms with di¤erent frequencies is Ryoo & Skott (2010) which presents a long …nancial wave and a short real cycle along Kaldorian lines with Harrodian instability. However, the …nancial cycle is decoupled from the real cycle in their model and the properties of the emerging long and short cycles in the full system and their relationship with the stability properties of the short and long waves is not analysed in detail. Methodologically, the closest to what we do is [START_REF] Flaschel | Long Cycles in Employment, In ‡ation and Real Unit Wage Costs, Qualitative Analysis and Quantitative Assessment[END_REF] which constructs a Goodwinian wage share-unemployment cycle in 2D and a Friedmanian in ‡ation-unemployment cycle in 2D and investigates the behaviour of these systems in comparison to a fully-coupled 3D system with in ‡ation, unemployment and wage share. Their analysis however focuses on showing that these two cycle mechanisms are compatible with each other as they reproduce the original cycle properties of the 2D systems also in the fully coupled 3D model rather than giving rise to complex oscillations as may be expected in the case of such coupled-oscillators.

We propose a speci…c model with two distinct cycle mechanisms, namely a two-dimensional multiplier-accelerator model in investment-output space to represent the real cycle and a two dimensional Minsky model in investment-debt space to represent the …nancial cycle.

There is an established literature on multiplier-accelerator models, dating back to the original paper by [START_REF] Samuelson | Interactions between the multiplier analysis and the principle of acceleration[END_REF]. While the principle of the multiplier was put forward by [START_REF] Kahn | The Relation of Home Investment to Unemployment[END_REF] and Keynes (1936), and stated a positive relationship between investment and equilibrium income, the accelerator principle, as argued by [START_REF] Clark | Business Acceleration and the Law of Demand[END_REF], implied that increases in output will also lead to an increase in investment. The feedback between these two principles was analysed by [START_REF] Samuelson | Interactions between the multiplier analysis and the principle of acceleration[END_REF] with periodic changes in consumption driving investment, followed by Harrod (1939) and later by [START_REF] Hicks | A Contribution to the Theory of the Trade Cycle[END_REF] in the context of coupled di¤erence equations. [START_REF] Goodwin | The nonlinear accelerator and the persistence of business cycles[END_REF] on the other hand introduced a nonlinear accelerator in continuous time that could generate cycles. Recent contributions in continuous time include Sordi et al (2004), where a multiplier-accelerator cycle around a trend is constructed via a second order di¤erential equation. The literature on Minksy models is more recent, with various attempts since the 1980s to formalise Minsky's rich analysis. Although most models focus on the interrelation between debt accumulation due to investment …nance or asset prices as a …nancial fragility indicator and real variables, so far no canonical Minsky model has emerged. Nikolaidi and Stockhammer (2017) o¤er a survey of the literature and distinguish between debt cycle models vs asset price models. Within debt-cycle models, they also distinguish between Kaldor (overshooting goods market), Kalecki (stable goods market) or Goodwin (supply-determined) We construct our model such that in isolation, these two mechanisms can generate independent stable/unstable oscillations and closed orbits in 2D around their common …xed point and analyse what happens if investment is instead driven by a weighted average of the accelerator e¤ect in the real cycle and pro…t rate e¤ect in the …nancial cycle, and the true representation of the economy is a fully-coupled 3D system instead of the 2D subsystems. We then generalise our …ndings and derive a theorem proving that if two independent cycle mechanisms that generate closed orbits in 2D share a self-destabilizing common variable and the true representation of the system is a fully-coupled 3D system where a weighted average on the common variable is in e¤ect, then the 3D system will generate locally stable closed orbits if and only if the subsystems have the same frequencies and/or the self-destabilizing e¤ects of the common variable evaluated at the …xed point are equal in both subsystems. In the context of our multiplier-accelerator and Minskyian sub-systems, the theorem also implies that if the subsystem with a stronger (weaker) e¤ect on investment also has a lower frequency, the operation of both cycle mechanisms has a stabilizing (destabilizing) e¤ect on the economy and the combination of two closed orbit systems lead to a fully-coupled 3D system that produces dampening oscillations.

As a numerical example, we parameterise the model such that the two dimensional sub-systems generate locally asymptotically stable closed orbits. In line with stylized facts the accelerator e¤ect on investment is larger than the Minskyian pro…t rate e¤ect and the multiplier-accelerator cycle has a higher frequency. Through numerical simulations, we show that in line with our analytical results, there is an inherent stabilizing e¤ect in this case and the economy displays dampening cycles around the …xed point if the multiplier-accelerator and Minsky mechanisms operate with a weighted e¤ect as described above. We note that our analytical results also imply that with longer …nancial cycles than real cycles and a stronger pro…t rate e¤ect on investment than the accelerator e¤ect, the aggregate economy may also be unstable and display explosive cycles although individual real and …nancial sub-cycles display stable oscillations.

The paper is organized as follows. Section 2 presents the description and solution of the model. Section 3 derives a general theorem for coupling two cycle mechanisms while Section 4 presents a numerical demonstration of the analytical results derived in the theorem via simulations. In Section 5 we provide sensitivity analysis of the numerical simulations. The last section concludes with some remarks and blueprints for future research.

The Model

We assume a closed economy which produces a single good. Output is produced using labour and capital in …xed proportions and it is given by Y . Per capita output is de…ned as output capital ratio and denoted as y = Y =K:

We assume that output follows an excess demand adjustment process in per capita terms as in [START_REF] Asada | Nonlinear dynamics of debt and capital: A post-Keynesian analysis[END_REF] 2

_ y = (c + g y); > 0 (1)
where g = I=K is the growth rate of investment and c = C=K = per capita consumption.

Aggregate consumption can be written as:

C = C w + C c (2)
where as in the Kaleckian literature, workers consume all wages:

C w = W age Bill (3)
With pricing taking the form of a constant mark-up over average wage costs and constant labour productivity, consumption out of wage income becomes

C w = (1 )Y (4) 
where ( 1) is the constant wage share. It must however be noted that the in this case includes interest payments i:d as well as …rm pro…ts and therefore assuming a uniform average propensity to consume out of pro…ts and interest income, we can write equation ( 5) below as a consumption function for all non-wage income.

C c = m c e (5)
where m c is the uniform average propensity to consume 3 . Dividing (2) and (3) by K , we get

c = (1 )y + m c r e (6)
where expected pro…t rate is given by

r e = y e (7) 
2 In essence, one other possible way is to assume that output adjustment takes place according to excess demand in gross quantities as _ Y = (C + I G) and derive the dynamics of per capita output adjustment using _ y = _ Y =K (Y =K)( _ K=K): However in this case, setting _ y = 0 in the steady state will imply that output and capital must be growing at the same rate and goods market can be in disequilibrium in the long run.

The current formulation on the other hand implies that setting _ y = 0 ensures goods market equilibrium where C + I = Y .

3 Here, we implicitly assume that pro…t-earners have stocks of wealth out of which they can consume should the actual distributed pro…ts fall below the level they decide to consume.

As in Gandolfo (1978) and in [START_REF] Sordi | Unemployment, income distribution and debt-…nanced investment in a growth cycle model[END_REF], we assume extrapolative expectations4 :

y e = y + _ y (8)
which implies

r e = (y + _ y)
Plugging this equation into (6)

c = (1 )y + m c (y + _ y) (9) 
We can now derive the dynamics of per capita output. From (1) and ( 9),

_ y = [(1 )y + m c (y + _ y) + g y]
Simplifying and de…ning = m c ; we get

_ y(1 ) = [(m c 1) y + g]
Assuming that goods market does not adjust too rapidly and expectations are not very strongly extrapolative ( and not very high), < 1 will always hold.

Denoting (1 ) = > 0 and m c 1 = s c where s c is the marginal propensity to save out of expected pro…ts, the dynamics of output-capital ratio boils down to:

_ y = [g s c y] (10) 
We assume investment dynamics are determined by an adjustment process depending on the deviation of desired growth rate of investment from the actual rate, as in [START_REF] Jarsulic | Debt and macro stability[END_REF][START_REF] Jarsulic | Aggregate determinants of …nancial instability[END_REF], [START_REF] Charles | Corporate debt, variable retention rate and the appearance of …nancial fragility[END_REF].

_ g = g d g ; > 0 (11) 
The desired investment function consists of two parts: A multiplier-accelerator mechanism which links growth rate of investment to output growth and a Minskyian part that takes into account the e¤ect of debt on investment.

g d = g 0 + [v _ y] + (1 ) [ r d] (12) M A M IN SKY (13) 
where d = D=K = per capita stock of debt, r is the aggregate pro…t rate on capital and is a parameter that measures the impact of higher debt on the willingness of …rms to borrow more, as in Charles (2015) 5 . A higher debt level implies that …rms are less enthusisatic to increase the stock of their debt (or banks are less enthusiastic to lend to …rms).

In line with the pecking order of …nance, …rms borrow to …nance investment in excess of retained pro…ts net of interest payments. As argued by Passarella (2012: 574) as well, from a macroeconomic perspective, leverage can increase during a boom only if interest rates increase or retention rate falls. We assume constant interest rates but an endogenous retention rate that depends on the actual pro…t rate negatively. As also documented by [START_REF] Charles | Corporate debt, variable retention rate and the appearance of …nancial fragility[END_REF], [START_REF] Benartzi | Do changes in dividends signal the past or the future[END_REF] …nd that …rms cut dividends as their pro…ts fall and our speci…cation captures this observation in a simple way. The dynamics of debt accumulation is therefore given by

_ D = I (1 r)( iD) (14) 
where

s f = (1 r):
2.1 A Pure Multiplier-Accelerator System ( = 1)

When = 1 in (12), investment is driven purely by the multiplier-accelerator term and takes the form:

_ g = [g 0 + v _ y g] (15) 
Substituting (10) gives

_ g = g 0 + ( v 1)g s c vy (16) 
Using _ d = _ D=K (D=K)( _ K=K) and assuming zero depreciation so that I = _ K, and therefore _ K=K = g, we …nd the dynamic equation for debt-capital ratio as

_ d = g (1 r)(r id) dg (17) 
In order to be able to derive the dynamics of the debt-capital ratio, we need to derive the actual pro…t rate in the economy. Gross pro…ts are given by6 

= Sales Costs

Assuming that as well as wages, …rms also have other costs of production proportionate to production level, such as imported energy costs, given by Y; pro…ts can be written as where

1 + m c = > 1 and m c (1 s c ) = Assumption 1: = m c (1 s c ) = 0 7 :
Using (18), equation ( 17) can be written as:

_ d = g(1 d) (1 g)( g id) (19) 
Together with the equations of motion for y and g derived above and repeated below, we have a three-dimensional non-linear system.

_ y = [g s c y] (20) 
_ g = g 0 + ( v 1)g s c vy (21)

Steady State

Setting the equations above to zero simultenously and solving, we can derive the …xed points of the system.

Proposition 1

The system ( 19) -( 21) has the …xed point (y A ; g A ; d A ) = (g 0 =s c ; g 0 ; 1g0[g0 2] g0 3

)

where 1 = 2 1+ i ; 2 = 1 2 and 3 = i 1+ i :
Proof. See Appendix A1.

Assumption 2:

g 0 > 3 & g 0 > 2
Under this assumption, the system has a unique non-trivial …xed point with a positive value for the debt-capital stock ratio.

Stability

In order to analyze the local stability properties of the multiplier-accelerator model, let us derive its Jacobian matrix.

J A = 2 4 s c 0 s c v ( v 1) 0 0 1 + 2 2 d A id A (1 + i)g 0 + i 3 5
where d A and g 0 are the …xed points of the multiplier-accelerator system. The eigenvalues of this system can be found by …nding the eigenvalues of the multiplier-accelerator subsystem given by (3; 3) minor of J A :

J A S = s c s c v ( v 1)
and the third eigenvalue is equal to (1 + i)g 0 + i: Using the Routh-Hurwitz conditions, we can establish the following proposition .

Proposition 2

The system ( 19) -( 21) is stable when

v < v = + s c ; it unstable for v > v . At v = v ;
the system goes through a Hopf bifurcation and locally asymptotically stable closed orbits emerge.

Proof. See Appendix B1.

As shown in Appendix B1 , the bifurcation parameter v (sensitivity of investment to the change in output) does not a¤ect the …xed point of the system.

A Pure Minsky System ( = 0)

When = 0; the multiplier-accelerator part of the investment function vanishes and investment is given by only Minskyian dynamics. Using (11) ( 12) and ( 18) with Assumption 1, we have a pure Minskyian system which is de…ned by

_ y = [g s c y] (22) _ g = [g 0 + ( 1)g d] (23) 
_ d = g(1 d) (1 g)( g id) (24) 
This time, the growth rate of investment and debt-capital ratio can be solved together as a dynamic system, which we will call Minskyian subsystem.

Steady State

Unlike the multiplier-accelerator model, the …xed points of the system ( 22) -( 24) cannot easily be solved for analytically but a graphical representation is fairly straightforward. Setting _ g = 0 and _ d = 0, we get respectively

d = g 0 = + ( 1)= g = h(g) (25) d = 1 g [g 2 ] g 3 = f (g) (26) 
As shown in Appendix A2, the number of the …xed points and their stability properties depend on the relative sizes of 1 , 2 , 3 and the sign of ( 1). We can summarize some of the results as below: Proposition 3 If < 1 i holds, then 2 > 3 and nullcline for the debt-capital ratio takes the shape in Figure 1 and 2 below. In this case, 1 > ( 1)= > 0 implies that there are two equilibria as shown in Fig

1. If 0 < 1 < ( 1)
= on the other hand, the system has a single …xed point (Fig. 2).

Proof. See Appendix A.1 and A.2 for a complete characterization of the phase diagrams under certain parameter con…gurations

Stability

The Jacobian of the Minsky system is given by:

J M = 2 4 s c 0 0 ( 1) 0 1 + 2 2 g M d M id M (1 + i)g M + i 3 5 ( 27 
)
where d M and g M are the …xed points.

As above, the eigenvalues of the system can be calculated by …nding the eigenvalues of the Minskyian subsystem given by (1; 1) minor of J M ; which we call J M S and the third eigenvalue is equal to s c < 0:

J M S = ( 1) 1 + 2 2 g d M id M (1 + i)g M + i (28)
The trace of this matrix is given by

T r(J M S ) = ( 1) (1 + i)g M + i (29)
Since we assumed g 0 > 3 above; (1 + i)g 0 + i < 0 holds by assumption. This implies that if we want to have a common …xed point g = g 0 = g M for both models; we will also have (1 + i)g M + i < 0: Therefore the sign and magnitude of ( 1) will determine the sign of T r(J M S ) and in order to be able to generate unstable behaviour and closed orbits for the Minsky model, we will assume > 1. This gives a Minskyian model where d( _ g)=dg > 0 and d( _ d)=dd < 0: In the jargon of [START_REF] Nikoliadi | Minsky models: A structured survey[END_REF], we thus have a Kaldorian Minsky model.

The stability of the …xed points can be analyzed graphically by deriving the following proposition:

Proposition 4 Assume that < 1 i holds so 2 > 3 . If h(g) line cuts the f (g) curve from above at a point below the asymptote at 3 , the determinant of J M S above is negative and the …xed point is a saddle. If h(g) line cuts the f (g) curve from above at a point above 3 , Det(J M S ) > 0 holds, if it cuts the f (g) curve from below at a point above 3 , Det(J M S ) < 0 holds and the …xed point is a saddle again.

Proof. See Appendix B2. Therefore, in Figure 1 above, the …rst …xed point is always a saddle while the stability of the second …xed point will depend on the sign of T r(J M S ): Setting T r(J M S ) = 0 in (29) under the assumption > 1; we can establish the following proposition:

Proposition 5 For every high growth …xed point of the Minsky system g M > 3 ; there exists an =

(1+ i)g M i ( 1)
> 0 at which the Minksyian subsystem undergoes a Hopf bifurcation and locally asymptotically stable closed orbits emerge.

Proof. See Appendix B2.

Combined System (0 < < 1 )

Next, we can consider a system where both investment dynamics operate at the same time and are weighted by . In such a case, the di¤erential equation system becomes

_ y = [g s c y] _ g = fg 0 + v (g s c y) + (1 )( g d) gg (30) _ d = g(1 d) (1 g)( g id)

Steady State

Since we will combine the two models in this section, we need to ensure that the two separete systems yield (at least one) common …xed point. To do so, ensuring g M = g 0 will su¢ ce as output-capital ratio and debt-capital ratio dynamics are identical in both models. From (23), a su¢ cient condition for this is g = d; which implies that d = ( = )g: Denoting = = , substituting this result in (24) and setting it to zero, we get

g(1 g) (1 g)( g i g) = 0
Simplifying yields

g 2 ( 2 i ) g( 1 i ) = 0:
The roots of this equation are g = 0 and

g = 1 i 2 i
Setting g 0 equal to this value ensures that both multiplier-accelerator and Minsky systems have one common …xed point.

Assumption 3: g 0 = 1 i 2 i : = g M = g A
Intuitively, g 0 gives the trend rate of growth around which ‡uctuations occur in both models and it is set by the parameters of the model. In order to clarify this assumption mathematically, note that as shown above, setting the growth of investment to zero in the Minskyian subsystem gives d = g 0 = + [( 1)= ] g = h(g). This is the straight line in Figure 1 and Figure 2 above. The intercept of this line is g 0 = and its slope is ( 1)= . The point where this line intersects the curve to the right of the asymptote gives the nonsaddle …xed point of the Minsky system, as derived in Proposition 4. Since the asymptotes in Figures 1 and2 occur at g = 3 8 and we have assumed in Assumption 2 that g 0 > 3 ;the non-saddle …xed point of the Minsky system and the …xed point of the multiplier-accelerator system will be equal to g 0 as long as Assumption 3 holds.

Note that since g = g 0 is a solution to both ( 15) and ( 23), it will also be a solution to (30), which is a linear combination of these two equations. Therefore, Assumption 2 and Assumption 3 also ensure that the combined system will have g 0 as one of its …xed points.

Stability

The stability of the system will now depend on the eigenvalues of the new Jacobian:

J = 2 4 s c 0 vs c v + (1 ) 0 1 + 2 2 g d id (1 + i)g + i 3 5 8 See Appendix A.1
where g = g 0 and d = g 0 are the common …xed points of both subsystems. The Routh-Hurwitz conditions require that

a 1 = T r(J) < 0; a 2 = Det(J) < 0; a 3 = jJ 1 j + jJ 2 j + jJ 3 j > 0;
and

a 1 a 3 + a 2 > 0;
where

T r(J) = s c + v + (1 ) (1 + i)g c + s F i 7 0 (31) jJ 1 j = Det v + (1 ) 1 + 2 2 g d id (1 + i)g + i 7 0 jJ 2 j = Det s c 0 0 (1 + i)g + i > 0
and

jJ 3 j = Det s c vs c v + (1 ) 7 0

A Generalization

The stability properties of the 3D system can be generalized by the theorem below9 .

Theorem 1 Consider any two subsytems S 1 and S 2 given by

S 1 = _ x = f (x; y) _ y = h(x; y)
and

S 2 = _ y = p(y; z) _ z = q(y; z)
where f , h, p and q are C 1 and have a common …xed point y ; with h y > 0; p y > 0 so the common variable y has a destabilizing e¤ ect on itself in both subsystems: If these mechanisms are in fact operating together with a weighted e¤ ect on y such that the true representation of the dynamics is given by the 3D system

_ x = f (x; y) _ y = h(x; y) + (1 )p(y; z) _ z = q(y; z)
then, a) If the common …xed point is a saddle point in both subsystems, it is also a saddle point in the fully-coupled system. b) If S 1 and S 2 generate locally asymptotically stable closed orbits in x y and y z spaces around y , then the 3D system will generate locally asymptotically stable closed orbits around y if and only if h y = p y or the subsystems have the same frequency. If none of these conditions hold, then the 3D system will be stable if the subsystem with a larger destabilizing e¤ ect of the common variable on itself also has a higher frequency, i.e repeats itself more often; it will be unstable if the subsystem with a larger destabilizing e¤ ect the common variable on itself has a lower frequency. c) There is an in-built stabilizing/destabilizing e¤ ect if S 1 and S 2 operate in a fullycoupled system as de…ned above, which depends on the sign of (h y p y )(jJ S1 j jJ S2 j): If (h y p y )(jJ S1 j jJ S2 j) > 0, coupling the subsystems has a stabilizing e¤ ect and the fullycoupled system is more stable than individual subsystems. If (h y p y )(jJ S1 j jJ S2 j) < 0 on the other hand, the fully-coupled 3D system is more unstable than the individual systems. d) Any parameter change which destabilizes S 1 or S 2 subsystems also destabilizes the fully-coupled system. e) If on the other hand, h y < 0; and p y < 0 hold so the common variable has a stabilizing e¤ ect on itself, then the combination of two closed orbit subsystems will always yield a saddle point for the 3D system. Or in other words, the weighted average of a self-destabilizing process should be o¤ set by two self-stabilizing processes for the stability of the 3D system to be a possibility.

Therefore, if the …xed point is a saddle point in both multiplier-accelerator and Minksy subsystems, it is also a saddle point in the combined system. As a corollary of (c) above, the combination of two stable subsystems may yield an unstable combined system, especially if their stability is only marginal, while two marginally unstable subsystems may yield a stable fully-coupled system and possible bifurcations depending on the relative weights of the two mechanisms (i.e the size of ). Similarly, the combination of stable and unstable subsystems will always lead to ambigous results and the dynamic behaviour/stability of the combined system depends on parameter con…gurations as well as the size of : Further, as the self-destabilizing e¤ects of the common variable in each subsystem or the determinants of the subsystems get closer to each other, the inherent stabilising or destabilizing e¤ect of full-coupling, given by (h y p y )(jJ S1 j jJ S2 j); falls.

Corollary 1 If a multiplier-accelerator and a Minsky subsystem, which generate locally asymptotically stable closed orbits around a common …xed point, are allowed to operate at the same time in the economy as de…ned in Theorem 1, the combined system will also generate locally asymptotically stable closed orbits around this common …xed point if and only if v = and/or J A S = J M S holds (i.e the accelerator e¤ ect on investment is equal to the pro…t rate e¤ ect on investment and/or both subsystems have the same periodicity). If v > so that the accelerator e¤ ect on investment is larger than pro…t rate e¤ ect on investment, then the combined model will be stable if the accelerator subsystem also has a higher frequency ( J A S > J M S ); it will be unstable if the accelerator system has a lower frequency ( J A S < J M S ):

Numerical Simulations

We now calibrate our model in order to match some of the stylized facts documented by [START_REF] Borio | The …nancial cycle and macroeconomics: What have we learnt?[END_REF] and and [START_REF] Aikman | Curbing the Credit Cycle[END_REF]. As both studies …nd, the real cycle has a higher frequency than the …nancial cycle. Interpreting our multiplier-accelerator model as the real cycle and our Minsky model as the …nancial cycle, we generate these two cycle mechanisms with this characteristic. 10

The table below shows the initial values of the parameters. The values for the interest rate, pro…t share and marginal propensity to save out of pro…ts are standard in calibration of small-scale Minskyian models. We assume a strong dependence of the retention rate on the pro…t rate ( ) and strongly extrapolative expectations ( ) to incorporate the large e¤ect of consumption on pro…ts during a …nancial-Minksy cycle. We provide sensitivity analysis with respect to the other parameters in Section 4. Inserting these composite parameters into Assumption 3 gives g 0 = 0:041 as the trend rate of growth and the common …xed point for both subsystems becomes g = 0:041; y = 0:137; d = 0:0865: Therefore, g > 2 > 3 holds. Since > 1 and 1 > ( 1)= with these parameters, the phase diagram of the Minsky subsystem in g and d (i.e when = 0); has the shape in Figure 1 and as we conjectured in Proposition 3, (y ; g ; d ) is the non-saddle …xed point. The Minsky system has also a saddle …xed point at g = 0:007, y = 0:024 and d = 0:083: Setting = 1 and using Proposition 2, we …nd that at the critical value v = 2:059, the multiplier-accelerator model generates locally asymptotically stable closed orbits around (y ; g ,d ). Similarly, setting = 1 and making use of Proposition 5 with v = v reveals that the Minsky system also generates asymptotically stable closed orbits around (y ; g ,d ) when = 0:421: Below, we depict these locally asymptotically stable closed orbits for both systems. As the sign structure of the Jacobians of the subsystems show, growth rate of investment is prey to output-capital ratio in the multiplier-accelerator subsystem while it is prey to debt-capital ratio in the Minsky subsystem. As a result, the subsystem dynamics in the simulations reproduce this relationship where investment exhibits counter-clockwise cycles with output-capital ratio in Figure 4 and counter-clockwise cycles with debt-capital ratio in Figure 6 11 .

Parameter

Next we move on to allowing two cycle generating mechanisms operate at the same time (0 < < 1). As we noted in the theorem above, this has an in-built stabilising or destabilising e¤ect, depending on the sign of ( v The values indicate that all the stability conditions should remain satis…ed regardless of the value of , as v > and J A S > J M S so that accelerator e¤ect on investment is larger than the pro…t rate e¤ect and the multiplier-accelerator subsystem has a higher frequency. Note that this is only because of the chosen parameter values that satisfy v > and if this condition is reversed while the Minsky cycle has a lower frequency (i.e J A S > J M S ), the combination of two cycling mechanisms will be inherently destabilizing and the results we report below will also be reversed.

)( J A S J M 
Figures 7-10 above present the values of T r(J); Det(J); jJ 1 j + jJ 2 j + jJ 3 j and Det(J) T r(J)(jJ 1 j + jJ 2 j + jJ 3 j) and con…rm our conjecture in the theorem above that the combination of these subsystems will be inherently stabilizing for any 2 [0; 1]. Further, as di¤erentiating (B28) in the Appendix with respect to would suggest, the value of the stability condition T r(J)(jJ 1 j + jJ 2 j + jJ 3 j) + Det(J) peaks at = 0:5. In other words, the stabilizing e¤ect is at its peak when both systems have equal weight in the investment function, as intuition would also suggest. This is con…rmed by Figure 11 where we depict the real parts of the eigenvalues for 2 [0; 1] and by Figure 12B where we plot the solutions to the combined system for = 0:2 and = 0:5 and = 0:8. The …gures indicate that as the negative real part of the imaginary eigenvalues gets its largest absolute value at = 0:5 with both systems having the same weight in the investment function, the combined system stabilises fastest towards the …xed point.

On the other hand, the dynamics of y, g and d in the combined system also show that the subsystem dynamics between y g and d g outlined above still operate when both cycle mechanisms are present. As Figure 14 and Figure 15 display, y and g converge to the …xed point with a dampening counter-clockwise cycle where g peaks …rst, as in the multiplier-accelerator subsystem. 12 Similarly, d and g also exhibit a counter-clockwise cyclical convergence to the …xed point with g peaking …rst, as in the Minsky subsystem. Therefore, the combined system preserves subsystem dynamics but the di¤erent e¤ects of change in output and pro…t rate on investment and distinct periodicities of the subsystems always stabilise the combined model regardless of the weight of multiplier-accelerator and Minsky dynamics in investment.

Sensitivity Analysis

Since the combination of two models has an inherent stabilizing e¤ect, we next increase v in order to make the multiplier-accelerator subsystem unstable. Figure 16 shows the value of the real parts of the complex eigenvalues as v increases from its critical value v given in Proposition 2. As expected, the more unstable the multiplier-accelerator system becomes, the higher the destabilizing e¤ect of it on the combined system becomes compared to the stabilizing e¤ect inherent in the model when both cycle mechanics are operating. The graph shows that for values of v such that v < v < v max , there is a value F at which a Hopf bifurcation emerges and the combination of an unstable multiplier-accelerator system with an asymptotically stable closed-orbit Minsky subsystem yields locally asymptotically stable closed orbits for the combined system. Emergence of closed orbits requires a lower relative weight of the unstable accelerator part in the investment function (lower F ) as the multiplier-accelerator subsystem becomes more unstable and beyond a value of v > v max ; the combined system becomes unstable regardless of the value of and displays divergence via increasing oscillations.

We next move on to analyzing the stability of the combined system with respect to the speed of adjustment for investment ( ). Note that unlike v, increasing destabilizes both multiplier-accelerator and Minsky systems. In generating Figure 17 below, we keep v = v in order to isolate the e¤ect of alone on the stability of the combined system. As the …gure shows, when = and v = v ; we reproduce the …gure above, as both subsystems have closed orbits and their combination is always stable with negative real parts of the imaginary eigenvalues 13 . Increasing makes the real parts of the eigenvalues of both the Minskyian system positive at = 0 and the eigenvalues of the multiplieraccelerator system positive at = 1: For some values of ;the combined system goes through a Hopf bifurcation twice. However, as increases further and both subsystems become more unstable, their combination also becomes always unstable despite the inherent stabilizing e¤ect in the combined model.

Let us now analyze the case = 0:55 and v = v : Solving for the two bifurcation points on Figure 17 gives = 0:12 and = 0:399: In Figure 18 above, we plot the combined system for these two di¤erent values of in order to analyze these closed orbits.The …gure suggests that the magnitude and the frequency of the cycles di¤er at the two bifurcation points. With these values, the multiplier-accelerator subsystem's angular speed is larger and therefore its frequency is higher too. As a result, when the weight of the multiplieraccelerator is larger in the combined system (i.e = 0:399), its frequency is also higher. Similarly, the multiplier-accelerator system has smaller cycles in magnitude and therefore for a larger share of the accelerator in the investment function, the cycles are also smaller.

Figure 19 on the other hand con…rms that under Assumption 3, the negative relationship between the sensitivity of investment to pro…t rate and the stability of the Minsky model holds. Since does not change the multiplier-accelerator model, increasing this parameter from its initial value of 0:85 leaves the right hand side of the …gure same, When = 1, we have the multiplier-accelerator model, for which the real parts of the complex eigenvalues are zero since v is set at v : Once again, A Hopf bifurcation is possible with an unstable Minsky system and an multiplier-accelerator system with asymptotically stable closed orbits unless is too high and therefore the Minsky model is too unstable. Figure 19 thus displays the possibility of an unstable …nancial cycle destabilizing an asymptotically stable closed orbit real cycle despite the inherent stabilizing e¤ect of simultenous operation of both cycle mechanisms; a case which might be of interest when considered in tandem with the increasing magnitude of the …nancial cycle documented in [START_REF] Borio | The …nancial cycle and macroeconomics: What have we learnt?[END_REF].

Figure 20 shows the same dynamics for the adjustment speed of the goods market ( ). In order to generate Figure 20, we keep at as above so that we can isolate the a¤ect of alone on the stability of the subsystems. As with ; an increase in the goods market adjustment speed destabilises both multiplier-accelerator and Minsky subsystems, therefore destabilizing the combined system too. Beyond a certain value of , both subsystems are too unstable and there is no value of for which their combination will yield asymptotically stable closed orbits any more. Our simulations also con…rm the conjecture of Corollary 1 above that any parameter change that destabilizes one of the subsystems also destabilizes the combined system.

Conclusion

Using a three-dimensional model in continuous time, we have demonstrated that in the presence of two cycle mechanisms operating at the same time in an economy where these mechanisms share a self-destabilizing common variable, the stability of the overall economy depends on the frequencies of these sub-cycle mechanisms and the relative magnitude of the self-destabilizing e¤ect of the common variable in each sub-system. In other words, coupling two stable sub-cycle mechanisms displaying closed orbits in isolation may create an overall unstable economy unless the sub-cycles are of the same frequency. Further, particularly marginally stable/unstable sub-systems may generate varying types of aggregate behaviour for the economic system, from explosive dynamics to closed orbits and stability depending on the frequencies of the sub-cycles. Our …nding that the the frequencies of individual cycle mechanisms play a vital role in determining aggregate stability in the presence of multiple cycle mechanisms is particularly important for models such as [START_REF] Ryoo | Long waves and short cycles in a model of endogenous …nancial fragility[END_REF] where there are short and long cycles operating at the same time in the economy. Our results suggest that the interaction of these cyces and the frequencies of short and long cycles should have an impact on the aggregate stability of the economy in such models.

From a policy perspective, our …ndings highlight the importance of correctly identifying sub-cycle mechanisms and their interactions, particularly if one interprets the accelerator part of our model as the real cycle and its Minskyian part as the …nancial cycle. The lower frequency of the …nancial cycle documented in [START_REF] Borio | The …nancial cycle and macroeconomics: What have we learnt?[END_REF], combined with a large pro…t rate e¤ect on investment for instance may imply a destabilizing tendency in the economy, although individual real and …nancial cycle mechanisms may display stability in observed data. In essence, the …nancialization process may lead to an increase in the e¤ect of pro…t rate on investment, thus destabilizing the aggregate economic system and necessitating prompt action from the government and the central bank during early phases of the cycle in order to mitigate and if possible, prevent the ampli…cation of the cycle using appropriate policy tools. Such strong non-linear responses by policy makers, which are absent in our formulation, might be essential to ensure mild ‡uctuations around desirable levels for various policy variables and to prevent explosive dynamics.

Throughout the paper, we have assumed that the relative weights of two sub-cycle mechanisms on investment behaviour does not change. However, there is no reason why this should be the case. In fact, endogenous changes in the relative strength of these two e¤ects on investment may create chaotic behaviour around a trend, with periods of relative calmness that resemble smooth convergence followed by explosive dynamics. An interesting topic for future research would therefore be to analyse the behaviour of the system when the weight parameter is endogenous and possibly subject to manipulation by policy.
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g i (1 + i) (A3)
we can see that there is an asymptote at g = i (1 + i) : Further, the value of 1 and i (1 + i) determine the shape and behaviour of the function. In order to see this, rewrite the equation above as

d = 1 g [g 2 ] g 3 = f (g) (A4)
where

1 = 2 (1 + i) > 0; 2 = ( 1) 2 > 0;and 3 = i (1 + i) > 0:
Since > 1 and therefore 2 > 0; as well the origin, the function crosses the g axis also at g = 2 :When g is above this value, the numerator is positive; when it is below this value the numerator is negative. Similarly, the denominator changes sign at g = 3 so the shape of the function will be determined by the relative sizes of 2 and 3 :

Case 1: 2 > 3 In this case, the point at which the function crosses the g-axis is above the value at which there is an asmyptote. Therefore, for g < 3 ; both the numerator and the denominator is negative and d is positive while the function is increasing in g as the denominator gets close to 3 . At g = 3 , there's an asymptote to positive in…nity. On the other hand, between 3 < g < 2 ; the numerator is negative but the denominator is positive, so the value of the function is negative and it is increasing in g. At g = 2 , the function passes from the origin and then increases without bounds, as lim g!1 f (g) ! 1 and the slope of the curve converges to 1 as g ! 1 14 : The shape of the curve in this case is depicted in Figure Ap.1 below and in Figures 12in the text.

Case 2: 3 > 2

In this case, the value at which the function becomes zero is lower than the value of g at which there is an asymptote. Therefore, for g < 2 , the numerator and the denominator 1 4 f (g) = 1 g[g 2 ] g 3 can be written as f (g) = 1 g 1 2 1 are both negative and the function is positive and …rst increasing then decreasing in g since at g = 2 , the function crosses the g-axis as d becomes zero. In order to determine the behaviour of the function to the right of 2 , let us take the derivative of f (g).

f 0 (g) = (2 1 g 1 2 )(g 3 ) 1 g 2 + 2 g (g 3 ) 2 (A5)
Simplifying, we get

f 0 (g) = g 2 2 3 g + 2 3 (g 3 ) 2 (A6)
Therefore, the sign of the derivative depends on the sign of the numerator, which can be written as

(g 3 ) 2 + 2 3 3 2 (A7)
If 2 3 > 3 2 ; which requires 2 > 3 ; the derivative is always positive and the function is always increasing. This is Case 1(a). If 2 < 3 on the other hand, (A7) can be written as

(g 3 ) 2 a (A8)
where a = 3 2 2 3 > 0. Therefore, for g > 3 , the sign of the derivative will change at the point

g min = 3 + p a > 3 (A9)
This means that to the right of the asymptote at g = 3 , the function is …rst decreasing and after the minimum it reaches at g min , it increases without bounds, as lim g!1 f (g) !.1. This is depicted in the Figure Ap.2 below.

In both cases, given the value of g 0 , there is a unique value for d which corresponds to it. Whether or not this value will be positive depends on the assumptions and parameter choices.

A2. Existence of …xed points of the Minsky System

The dynamic of motion for debt-capital ratio is common in the multiplier-accelerator and Minsky models, shape of the phase diagram depends on the values of 2 and 3 : In both Case 1 and Case 2 outlined above, Minskyian system may have one more set of …xed points. In order to see this, note that as in the multiplier-accelerator model, the twodimensional sub-system in g and d can be solved seperately with ( 23) and ( 24), and y can subsequently be found using (20). Setting (23) to zero gives us the nullcline for _ g as d = g 0 = + ( 1)= g = h(g): This is a positively sloped line with the intercept g 0 = 6 = 0:

If 2 > 3 as in Case 1A above and the slope of f (g) g!1 is larger than the slope of this line, (i.e 1 =

2

(1 + i) > ( 1)= ); the h(g) line and the f (g) curve will intersect twice in the …rst quadrant, and there will be two sets of …xed points, as shown in Figure 1. If on the other hand, the slope of h(g) line is higher than the slope of f (g) g!1 (i.e

2

(1 + i) < ( 1)= ), the Minsky system will have one …xed point in the …rst quadrant, as the h(g) line will intersect the f (g) curve once before the asymptote at g = 3 :

unless = 0 and/or = 0:

B.2 Stability of the Minsky System

To analyze the stability of the Minskyian subsystem, let us …rst restate the Jacobian matrix evaluated at the steady state:

J M S = ( 1) 1 + 2 2 g M d M id M (1 + i)g M + i
While the Trace of this matrix is given by ( 1) (1 + i)g M + i and its sign depends on the assumption on the value of ( 1); the high level of non-linearity in the debt dynamics makes an algebraic calculation of the determinant of the subsystem cumbersome so we will instead present a graphical analysis of the stability of the …xed points.

Recall that the Minskyian subsystem is given by

_ g = [g 0 + ( 1)g d] = H(g; d) _ d = g(1 d) (1 g)( g id) = F (g; d)
Denoting the partial derivative of any variable x with respect to F as F x , the Jacobian above can be written as

J M S = H gjH(g;d)=0 H djH(g;d)=0 F gjF (g;d)=0 F djF (g;d)=0 (B6)
While we were analysing the existence of …xed points in the Minsky subsystem above, we had de…ned the nullcline for nullcline for _ g as d = g 0 = + ( 1)= g = h(g) and the nullcline for _ d as d = 1g[g 2] g 3 = f (g): Therefore, for H(g; d) = 0; we have d = h(g), and for F (g; d) = 0 we have d = f (g). This implies that there is a relationship between H(g; d) and h(g) such that

h g = H gjH(g;d)=0 H djH(g;d)=0 (B7)
Therefore, the slope of the h(g) line is given by the negative of the ratio of a 11 to a 12 element of the Jacobian of the Minskyian subsystem. Similarly,

f g = F gjF (g;d)=0 F djF (g;d)=0 (B8)
also holds and the ratio of a 21 to a 22 element of the subsystem's Jacobian gives the slope of the f (g) curve.

Assume now (without loss of generality) that 2 > 3 and

1 = 2 (1 + i) > ( 1)=
so that the phase diagram of the Minsky system looks like in Figure 1. The system has two sets of …xed points. There is a …xed point with a low growth g M < 3 and another one with high growth g M > 2 .

Let us …rst consider the low growth …xed point with g M < 3 . As Figure 1 shows, both h(g) and f (g) are positively sloped at the intersection point. Further, note that the a 22 element of the subsystem's Jacobian, (1 + i)g M + i; becomes negative only if g M > i (1+ i) = 3 : Therefore, at this low growth …xed point, the subsystem's Jacobian's elements take the following sign structure:

J M S = H g (+) H d ( ) F g ( ) F d (+) (B9)
The sign of the determinant cannot be determined from this sign structure. However, since from Figure 1 we can see that h(g) line cuts the f (g) curve from above, its slope must be lower than the slope of f (g). This implies

F g F d > H g H d (B10)
With F d > 0 and H d < 0; this implies

F g H d > F d H g > 0 ) J M S < 0 (B11)
which ensures that the …xed point is a saddle. If on the other hand h(g) line is negatively sloped, then the sign structure of J M S becomes

J M S = H g ( ) H d ( ) F g ( ) F d (+) (B12)
which ensures that J M S < 0 always holds. For the high growth …xed point with g M > 2 > 3 ; a 22 of the Jacobian of the Minskyian subsystem is negative, and therefore with a positively sloped h(g) and f (g), Jacobian elements'signs become

J M S = H g (+) H d ( ) F g (+) F d ( ) (B13)
Once again, the sign structure of this matrix does not determine the sign of J M S on its own. However, as the h(g) line cuts the f (g) curve from above to the right of the asymptote at 3 in Figure 1; it is ‡atter than f (g):We again have

F g F d > H g H d (B14)
With F d < 0 and H d < 0; this implies

F g F d < H g H d ) F g H d < F d H g < 0; (B15)
which ensures J M S > 0 holds. Therefore, as conjectured in Proposition 4, if the h(g) line cuts the f (g) curve from above at a point below the asymptote at g = 3 , J M S < 0 and the …xed point is a saddle. If on the other hand the h(g) line cuts the f (g) curve from above at a point above the asymptote at g = 3 , J M S > 0 and the stability properties of the Minskyian subsystem depends on T r(J M S ). 15 Setting T r(J M S ) = 0;we get the condition on for a Hopf bifurcation as stated in proposition 5. As above, it is straigtforward to show that T r(J M S )=d = 6 = 0 so the bifurcation is not degenerate.

B.3 Proof of Theorem 1 and Corollary (Stability of the Fully-coupled System)

In order to prove the theorem, let us …rst assume that

S 1 = _ x = f (x; y) _ y = h(x; y)
and

S 2 = _ y = p(y; z) _ z = q(y; z)
have a common …xed point (x ; y ; z ) such that f (x ; y ) = h(x ; y ) = p(y ; z ) = q(y ; z ) = 0: Then, (x ; y ; z ) is also a …xed point for the system 1 5 A similar stability analysis can be carried out for the case 2 < 3 shown in Figure A.2 above for downward/upward sloping h(g) lines. However, since our parameter calcibration satis…es 2 > 3 with upward-sloping h(g) line for reasons mentioned in the text, we will not explicitly present stability conditions in these cases.

De…ne the Jacobians of the independent 2D subsystems S 1 and S 2 as

J S1 =
e 1 e 2 e 3 e 4 (B16)

J S2 = e 5 e 6
e 7 e 8 (B17)

while the Jacobian of the fully-coupled 3D system is given by We do not need to assume a speci…c sign structure for e 2 ; e 3 ; e 6 or e 7 :Stability of this three-dimensional system requires T r(J) < 0; jJj < 0; jJ 1 j + jJ 2 j + jJ 3 j > 0 (B19) and T r(J)(jJ 1 j + jJ 2 j + jJ 3 j) + jJj > 0;

J = 2 
(B20)

where If both subsystems are stable, T r(J S1 ) < 0 and T r(J S2 ) < 0 hold. Since < 1 and e 1 < 0, e 1 + e 4 < 0 regardless of the sign of e 4 ; and (1 )e 5 +e 8 < 0. Therefore, T r(J) < 0 holds if the subsystems are stable.

J 1 = e 4 + ( 
On the other hand, if both systems are unstable, e 4 > e 1 and e 8 > e 5 ; and < 1 implies that e 1 + e 4 7 0 and (1 )e 5 + e 8 7 0: Therefore, the sign of the T r(J) is ambigous.

In order to …nd an expression for jJj, let us write So the determinant of the combined system is a weigthed average of the determinants of the subsystems scaled by two diagonal elements, e 1 and e 8 : If both subsystems are stable, jJ S2 j > 0 and jJ S1 j > 0. Since e 1 < 0 and e 8 < 0; jJj < 0 holds and the stability condition is satis…ed. Similarly, the combination of two systems with saddle points will lead to jJj > 0 and result in an combined system with a saddle point, as stated in the theorem.

The determinants of the principal minors of the Jacobian of the combined system can be found as follows. If both systems are stable, jJ S1 j > 0 and jJ S2 j > 0: so the …rst two terms are positive while e 1 e 8 > 0, e 8 e 4 < 0 when e 4 > 0 and ( 1)e 1 e 5 < 0: Further in this case, je 1 e 8 j > je 8 e 4 j because stability of the S 1 requires je 1 j > je 4 j : Similarly, if S 2 is stable, je 8 j > je 5 j and therefore je 1 e 8 j > je 1 e 5 j : Since je 1 e 8 j is greater than both je 8 e 4 j and je 1 e 5 j, < 1 implies je 1 e 8 j > j e 8 e 4 + ( 1)e 1 e 5 j. So jJ 1 j + jJ 2 j + jJ 3 j > 0 always holds if both subsystems are stable. The proof is more straightforward for e 4 < 0 since e 8 e 4 < 0 in this case and je 1 e 8 j > je 1 e 5 j once again implies that jJ 1 j + jJ 2 j + jJ 3 j > 0:

J 1 = e 4 + ( 
The last stability condition requires that T r(J)(jJ 1 j + jJ 2 j + jJ 3 j) + jJj > 0 T r(J) [ jJ S1 j + ( 1)jJ S2 

Q > 0; jJ S1 jT r(J S1 ) < 0, jJ S2 jT r(J S2 ) < 0
hold. Therefore, the last three terms are positive. However, the sign of the …rst term is ambigous. So the combination of two stable subsystems may not yield a stable system, particularly if the stability of the subsystems are marginal. However, a su¢ cient condition as stated in the theorem for the stability of the combined system can be derived as e 4 > e 5

[ jJ S1 j > jJ S2 j or e 4 < e 5 [ jJ S1 j < jJ S2 j:

Equation (B27) also shows that as both systems become more stable (i.e T r(J S1 ); T r(J S2 ) become more negative and Q becomes more positive), the combined system also becomes more stable.

When two systems with closed orbits are combined with each other, T r(J) < 0 holds, jJj< 0 holds as above. jJ 1 j + jJ 2 j + jJ 3 j = jJ S1 j + ( 1)jJ S2 j + e 1 e 8 + e 8 e 4 + (1 )e 1 e 5

With both subsystems giving closed orbits, je 1 j = je 4 j and je 5 j = je 8 j : Therefore, jJ 1 j + jJ 2 j + jJ 3 j = jJ S1 j + (1 )jJ S2 j + e 1 e 8 e 8 e 1 (1 )e 1 e 8 jJ 1 j + jJ 2 j + jJ 3 j = jJ S1 j + (1 )jJ S2 j > 0

As above, we can derive the last stability condition as

(1 )(e 4 e 5 ) (jJ S1 j jJ S2 j) jJ S1 jT r(J S1 ) (1 )jJ S2 jT r(J S2 ) + Q > 0

With two subsystems with closed orbits, we have T r(J S1 ) = 0; T r(J S2 ) = 0 and Q = 0: So the equation boils down to:

(1

)(e 4 e 5 ) (jJ S1 j jJ S2 j) (B28)

Therefore, when equation (B28) crosses zero, the Routh-Hurwitz conditions for a Hopf bifurcation are satis…ed and asymptotically locally stable closed orbits emerge. 16 From (B27), we can see that the combination of two subsystems with asymtotically stable closed orbits will give a stable system if e 4 > e 5 & jJ S1 j > jJ S2 j or e 4 < e 5 & jJ S1 j < jJ S2 j: Further, this equation will be equal to zero only if e 4 = e 5 and/or jJ S1 j = jJ S2 j: In this case, the last stability condition is equal to zero regardless of the value of . In other words, the stability condition is stationary with respect to and the necessary condition for Hopf bifurcation is violated. The combination of two subsystems with the same closed-orbit …xed point will always yield the same …xed point with closed orbits around it for any 2 [0; 1] if e 4 = e 5 and/or jJ S1 j = jJ S2 j.

The derivative of the stability condition evaluated at any bifurcation value F becomes:

d [ T r(J)(jJ 1 j + jJ 2 j + jJ 3 j) + jJj)] =d j = F = (1 2 F )(e 4 e 5 ) (jJ S1 j jJ S2 j) jJ S2 jT r(J S2 ) + dQ=d j = F 6 = 0 unless by chance.

1 6 A mathematical proof of the Routh-Hurwitz conditions using Orlando's Formula can be found in Gantmacher (1954:197). For a quick and intuitive way to establish the condition for a Hopf bifurcation, recall that the third order polynomial for the characteristic equation of a three-dimensional system is given by 3 T r(J) 2 + (jJ 1 j + jJ 2 j + jJ 3 j) jJj = 0

In order to have two imaginary roots and a negative root, which is the necessary condition for closed orbits, a third order polynomial must satisfy

ax 3 + bx 2 + cx + d = (x 2 + m)(x + n)
where n > 0 and m > 0.

Multiplying the right-hand side, we get x 3 + nx 2 + mx + mn:

Comparing this equation with the characteristic equation shows that T r(J) < 0 and jJ 1 j + jJ 2 j + jJ 3 j > 0 must hold. Since the last term nm > 0; jJj < 0 must also hold. And …nally, the coe¢ cents in front of x 2 and x must multiply to give the last term, implying that T r(J)jJ 1 j + jJ 2 j + jJ 3 j = jJj; or rather in its more widely used form T r(J)jJ 1 j + jJ 2 j + jJ 3 j + jJj = 0: Therefore, when the value of T r(J)jJ 1 j + jJ 2 j + jJ 3 j + jJj crosses zero while T r(J) < 0; jJj < 0 ,jJ 1 j + jJ 2 j + jJ 3 j > 0 hold, the real part of imaginary roots disappear while the third root is negative and a Hopf bifurcation emerges. For the bifurcation to be non-degenerate, the derivative of the condition T r(J)jJ 1 j + jJ 2 j + jJ 3 j + jJj with respect to the bifurcation parameter evaluated at the bifurcation point should be non-zero. See [START_REF] Asada | Coe¢ cent criterion for four dimensional Hopf bifurcations: A complete mathematical characterization and economic applications[END_REF] for a similar approach to the 4D case.

Finally, note that in a two dimensional system with pure imaginary eigenvalues, = p j j 2 i where j j = jJcj where Jc is the Jacobian matrix of the system evaluated at the …xed point: In such a case, = p jJcjgives the angular speed of the closed orbits which will repeat every T = 2 units of time. Therefore, a higher determinant implies a higher angular speed and therefore a lower periodicity (higher frequency) with pure imaginary eigenvalues, as stated in the theorem.

In order to prove the last part of the theorem, let us assume h y < 0 and p y < 0 instead. The Jacobian of the 3D system now takes the form Recall that the determinant of the 3D system is given by jJj = e 1 (1 )Det(S 1 ) + e 8 Det(S 2 ) > 0 (B30) will always hold, implying that the …xed point y will be a saddle point.

Note that the condition e 4 > e 5 ; stated in the corollary to Theorem 1 as v > ; requires 

  type models. The Minsky model we propose generates cycles in debt and investment with an unstable goods market. It is thus close to what Nikolaidi and Stockhammer (2017) classify as a Kaldor-Minsky model.

  S ): With = 0:6; v = 2:059 and = 0:85; ( v ) > 0 holds. The Jacobians of the subsystems and their determinants on the other hand become

  h(x; y) p(y; z)] + p(y; z) for which _ y = [h(x ; y ) p(y ; z )] + p(y ; z ) = 0 always holds.

  minor matrices. The trace of the fully-coupled system can be written as T r(J) = e 1 + e 4 + (1)e 5 + e 8 (B24)T r(J) = T r(J S1 ) + T r(J S2 ) [ e 5

  Simplifying this inequality gives the condition in the Corollary: v >

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  ] e 2 e 3 e 8 jJj = e 1 [ e 8 e 4 + (1 ) jJ S2 j] e 2 e 3 e 8 jJj = e 1 (1 ) jJ S2 j + e 8 (e 1 e 4 e 2 e 3 )

	jJj = e 1	e 4 + (1 e 7	)e 5 (1	e 8	)e 6	e 2	e 3 (1 0	e 8	)e 6
	jJj = e 1 [ e 8 e 4 + (1 )e 6 e 7 jJj = e 1 (1 )e 5 e 8 (1 ) jJ S2 j + e 8 jJ S1 j			(B26)

  jJ 1 j + jJ 2 j + jJ 3 j = jJ S1 j + (1) jJ S2 j + e 1 e 8 + e 8 e 4 + (1 )e 1 e 5

	jJ 3 j = e 1 e 4 + (1	)e 1 e 5	e 2 e 3
	jJ 3 j = jJ S1 j + (1	)e 1 e 5
		1	)e 5 (1	)e 6
		e 7			e 8
	jJ 1 j = e 8 e 4 + (1	)e 5 e 8 (1	)e 6 e 7
	jJ 1 j = e 8 e 4 + (1		) jJ S2 j
		J 2 =	e 1 0 0 e 8
		jJ 2 j = e 1 e 8
	J 3 =	e 1 e 3	e 2 e 4 + (1	)e 5

Although papers by Chiarella & Flaschel discuss the interaction of various e¤ects they name as Rose e¤ect, Keynes e¤ect, Mundell e¤ect etc. and the implications of simultaneous operation of these e¤ects on stability of the aggregate economy, their analysis is not on the characteristics of the sub-cycle mechanisms. Therefore, issues such as the e¤ect of di¤erent frequencies and magnitudes of sub-cycles on the aggregate system are not investigated systematically.

Since y = Y =K = (Y =Y f c )(Y f c =K)where Y f c is full-capacity output, assuming constant capital productivity and therefore constant Y f c =K implies that output-capital ratio, y, can be considered as a measure of capacity utilization. Therefore, our speci…cation is identical to assuming extrapolative expectations on capacity utilization rather than gross output (Y ):

[START_REF] Charles | Corporate debt, variable retention rate and the appearance of …nancial fragility[END_REF] uses g d = g 0 + s F (r id) while[START_REF] Charles | Is Minsky's …nancial instability hypothesis still valid[END_REF] has an investment function of the formI = I 0 + s F ( iD) D:

Note that with a goods market disequilibrium as in (1), …rms must be holding inventories so that no rationing occurs in the case of excess demand and the pro…t share as de…ned in this model therefore includes the accumulation of inventories in the case of excess supply in the goods market. Therefore, gross pro…t rate r, which is the valid variable for debt accumulation, is not given by r = y; as that would mean unsold goods piling up in inventories are being used to pay back debt. On the other hand, expected pro…t rate can be de…ned as r e = y e as in (7) unless …rms expect excess supply in the goods market or produce in order to attain a target inventory level.

As we will discuss again, this assumption is only to ensure that in the pure Minsky system we will analyze in the next part, investment dynamics do not depend directly on y so that we can have an independent system in g and d.

For proof, see Appendix B.3

0 In essence, both studies show that the real cycle is also smaller in magnitude. In models of di¤erential equation systems with closed orbits, the magnitude of these orbits depend on the initial values. We do not therefore focus on this issue explicitly. The codes for all simulations are available upon request.

1 This implies that g peaks before y in the multiplier-accelerator subsystem and before d in the Minsky subsystem.

2 In Figures 13-15, = 0:5 so that the stabilizing e¤ect is at its maximum. 1 3 Note that in all the simulations, the …rst two eigenvalues are complex and the third eigenvalue remains negative. Therefore, stability of the combined system depends on the real parts of the imaginary eigenvalues we report. Although we do not report the other stability conditions to save space, it is important to stress that Det(J) 6 = 0 when the real part of the eigenvalues are zero in the graphs. In other words, the real eigenvalue does not become zero throughout our simulations.

=g . As g goes to in…nity, the slope of this function converges to 1 :

Appendix A A1. Existence of …xed points of the multiplier-accelerator system From (15), the single …xed point for the growth rate of investment g is given by g 0 . Plugging this into (21), we …nd that y = g 0 =s c :

The analysis of the third …xed point is more complicated due to the non-linerities in the dynamics of debt-capital ratio in (19). Since this equation is common in both the Multiplier and Minsky models, we will analyze its properties in detail. Setting (19) to zero and simplifying gives

Rewriting this equation …rst as

and then as

Appendix B

B.1 Stability of the Multiplier-accelerator system

The …rst two eigenvalues can be calculated by …nding the eigenvalues of the (3; 3) minor of the Jacobian matrix. The third eigenvalue is equal to (1 + i)g 0 + i.

In order to …nd the determinant of this matrix, let us …rst multiply coloumn 2 with s c and add it to coloumn 1. The determinant of J A S is equal to the determinant of the new matrix

which can easily be found as

Since the determinant is always positive, the stability of the system depends on the trace. Setting T r(J A S ) = 0; we …nd the critical value of v as

For v > v the system is unstable as T r(J A S ) becomes positive, and vice versa. The behavior of debt-capital ratio, however depends on the third eigenvalue, which is given by (1 + i)g 0 + i: Assumption 2 therefore ensures the third eigenvalue is negative so stability is ensured for v < v . At v = v ; the system will go through a Hopf bifurcation and closed orbits will emerge.

In order to prove this, we need to con…rm that the assumptions of Hopf Bifurcation theorem is satis…ed at this value. Since we have shown that J A S > 0 and T r(J A S ) = 0 at v = v , this only requires proving that the T r(J A S ) is not stationary with respect to v at v .

Di¤erentiating T r(J A S ) with respect to v, we get dT r(J A S )=dv jv=v = 6 = 0 (B5)