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A TRULY TWO-DIMENSIONAL DISCRETIZATION OF
DRIFT-DIFFUSION EQUATIONS ON CARTESIAN GRIDS

ROBERTA BIANCHINI∗ AND LAURENT GOSSE†

Abstract. A genuinely two-dimensional discretization of general drift-diffusion (including in-
compressible Navier-Stokes) equations is proposed. Its numerical fluxes are derived by computing
the radial derivatives of “bubbles” which are deduced from available discrete data by exploiting the
stationary Dirichlet-Green function of the convection-diffusion operator. These fluxes are reminis-
cent of Scharfetter-Gummel’s in the sense that they contain modified Bessel functions which allow to
pass smoothly from diffusive to drift-dominating regimes. For certain flows, monotonicity properties
are established in the vanishing viscosity limit (“asymptotic monotony”) along with second-order
accuracy when the grid is refined. Practical benchmarks are displayed to assess the feasibility of the
scheme, including the “western currents” with a Navier-Stokes-Coriolis model of ocean circulation.

Key words. Bubbles; Drift-Diffusion; Green-Dirichlet function; Navier-Stokes-Coriolis.

AMS subject classifications. 65M06, 65N80, 76D05, 76U05, 86A05.

1. Introduction. The general scope of the present article is to address a “gen-
uinely two-dimensional” numerical analysis, involving mostly finite-differences, of gen-
eral (possibly weakly-nonlinear, i.e. mean-field), drift-diffusion equation,

∂tρ(t, x, y)−∇ · (ε∇ρ− ρ∇Φ) = 0 in Ω ⊂ R
2, ε > 0, (1.1)

where Ω is, most often, the square domain (0, 1)2 and ∂Ω its boundary. Convenient
boundary conditions supplement (1.1), like e.g., Dirichlet or Neumann. The potential
Φ can be prescribed or self-consistently related to ρ(t, x, y) through a strictly elliptic,
attractive or repulsive (Coulomb or gravitational interactions), equation,

−∆Φ+ λΦ = ±ρ, λ ≥ 0, in Ω ⊂ R
2, (1.2)

to which are added boundary conditions as well. An elementary calculation shows
that (1.1)–(1.2) encompasses the 2D incompressible Navier-Stokes equations, too,

∂tω(t, x, y)−∇ ·
(∇ω
Re

− ω∇⊥ψ

)

= 0, −∆ψ = ω. (1.3)

The stream function ψ is related to the vorticity ω = ∇⊥ · ~U , where ~U = (u, v) stands
for the fluid’s velocity and 0 < Re, for the Reynolds number.

1.1. Numerical fluxes as radial derivatives of “Green bubbles”. Many
numerical schemes for either (1.1) or (1.3) proceed by discretizing the continuity
equations in both horizontal and vertical directions (dimensional splitting) in such a
manner that discrete drift and diffusion terms don’t see each other. This is a different
situation from the simpler, one-dimensional, case where the “uniformly accurate” (or
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2 Roberta Bianchini and Laurent Gosse

“asymptotic-preserving”, AP) Il’in/Scharfetter-Gummel algorithm [21, 25, 31] allows
to treat the 1D drift-diffusion operator as a whole. Consider, for ǫ > 0,

∂tρ(t, x) + ∂xJ(t, x) = 0, J := −ǫ ∂xρ+ ρ.

Denote ρnj = ρ(tn, xj = j∆x), a reliable (constant) numerical flux Jn
j− 1

2

can be derived

at each interface of the grid so that, one gets a forward time-marching scheme,

ρn+1
j − ρnj

∆t
+
Jn
j+ 1

2

− Jn
j− 1

2

∆x
= 0. (1.4)

Clearly, Jn
j− 1

2

is the flux related to the L-spline interpolation [32] at time tn, that is,

the piecewise steady-state curve linking each (xj−1, ρ
n
j−1) to its neighbor (xj , ρ

n
j ),

−ǫ exp(x/ǫ) d
dx

(

exp(−x/ǫ)ρ̄(x)
)

= Jn
j− 1

2
, x ∈ (xj−1, xj). (1.5)

and it allows (1.4) to be reliable whatever the “Peclet number” ∆x/2ǫ. Hence, a chal-
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Figure 1.1. Radial derivative “⇒” with Delaunay circles on a uniform Cartesian grid.

lenging question [2] is to extend such a construction to multi-dimensional problems,
for which the simplest continuity equation reads ∂tρ + ∇ · J = 0, J = ǫ∇ρ − ρ. Its
steady-state, ∇ · J = 0, doesn’t allow to easily deduce a distinguished flux function,
even on a uniform Cartesian computational grid. Hereafter, a complete resolution of
that question is given, in the form of a 2D finite-difference scheme for (1.1), build
again by considering a piecewise-steady “bubble interpolation” of discrete data.

• Denoting xi, yj a generic grid point in the computational domain, Delaunay-
type disks are drawn around each of the 4 neighboring nodes xi± 1

2
, yj± 1

2
.

Inside each disk, a (local) steady-state solution is derived by means of the
Dirichlet-Green function (2.18) of the convection-diffusion operator (2.1).

• Radial derivatives at the center of each disk (at each node) are computed by
means of an exact formula (2.19) involving modified Bessel functions In. Our
2D fluxes are defined as their approximation resulting from the trigonometric
interpolation of the 4 values available on each circle: see (3.5) and (3.7).
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• Time-marching schemes can be deduced, see e.g. (4.2) and (4.4), for which
various monotony and accuracy properties are established. In practice, they
were set up mostly on Navier-Stokes equations (1.3), possibly in presence of
a Coriolis force modeled by means of a “β-plane approximation”.

Our piecewise-steady interpolation is somewhat reminiscent of “bubbles” [5, 7]; here,
neither differential operators nor spatial directions are split in our calculations so that
the exponential functions, typical of 1D problems endowed with sharp layers, leave the
stage to a sequence of modified Bessel functions, In, in 2D. It traces back to “discrete
weighted mean” agorithms [15], nowadays rephrased as “tailored methods” [19].

1.2. Plan of the paper. Fig. 1.1 appears to be similar to Fig. 2 in [18, page
176]; however, the fluxes we intend to derive here are evaluated at each disk’s center,
thus are different from these former ones, which are computed on each disk’s bound-
ary. Section 2 contains most of the analytical calculations which are necessary to
derive the Dirichlet-Green (sometimes called “companion”) function for convection-
diffusion (2.1). We perform a symmetrization of the skew-adjoint transport operator
thanks to an exponential modulation (2.3) in order to retrieve an Helmholtz-type
equation (2.2). Then, in Section 2.3, the corresponding Green function with homo-
geneous boundary condition is found, along with its radial derivative in Section 2.4:
consistency with the well-known Poisson potential is checked. Section 3 contains the
practical computation of numerical fluxes: after the trigonometric interpolation in
Section 3.1, radial derivatives are displayed in Section 3.2. Specific properties of the
resulting scheme are studied in Section 4, where a notion of “asymptotic monotony”
(see Def. 1) is defined in the limit of vanishing viscosity: our main results are stated
in Theorem 1. Numerical tests are presented in Section 5, mostly on incompressible
Navier-Stokes equations, possibly in presence of a Coriolis term and an external forc-
ing rendering the wind in ocean circulation models, see [9] and Fig. 5.5. Some tests
were also performed on the classical lid-driven cavity problem, see Fig. 5.3 and [16].

2. A formalism based on Green-Dirichlet functions. Let R > 0 and D
stands for the (open) disk with radius R > 0, centered in ~0 . Here C is the circle of
identical radius, so that C = ∂D̄. As mentioned before, here we solve an homogeneous
boundary-value problem endowed with inhomogeneous boundary data,

Lε[u] = −ε∆u+V · ∇u = 0 in D, u(x, y) = h(x, y) on C, (2.1)

where V = (V1, V2) ∈ R
2 is a constant vector and “·” stands for the R2 scalar product.

It is customary to symmetrize Lε by means of an associated Klein-Gordon (or modified
Helmholtz) operator, hereafter denoted by Hε:

Hε[v] = −∆v +

∣

∣

∣

∣

V

2ε

∣

∣

∣

∣

2

v(x, y) = 0, ωε :=

∣

∣

∣

∣

∣

V

2ε

∣

∣

∣

∣

∣

, (2.2)

with | · | standing for the Euclidean norm in R
2. It is well-known that, if u(x, y) solves

Lε[u] in R
2, then its “exponential modulation”,

v(x, y) = exp

(

−V

2ε
· (x, y)

)

u(x, y), solves Hε[v] = 0. (2.3)

So, G0
ε, the Green-Dirichlet function of Lε vanishing on C, comes from the one of Hε.
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2.1. Green’s formalism for Lε. Let L∗
ε stand for the adjoint of Lε and u be a

solution to (2.1), namely Lε[u] = 0. Green’s identity (see [11]) yields:

∫

D

u∗ Lε[u]− uL∗
ε[u

∗] dx dy =

∫

C

u(q∗ · ~n)− u∗(q · ~n) dσ(x, y), (2.4)

where

q = ε∇u− V

2
u, q∗ = ε∇u∗ + V

2
u∗

are fluxes associated to u, u∗. Let u∗P (Q) = g0ε(Q,P ) be the Dirichlet-Green function
of the adjoint operator acting on the Q = (x, y) variable, with P = (ξ, ζ) fixed, then

L∗
ε [u

∗
P ] = L∗

ε [g
0
ε(Q,P )] = δ(Q− P ), u∗P (Q) = 0 for Q ∈ C,

where, in standard notation, P,Q are source/receiver points in D. Substituting u∗P
and u, i.e. the solution to the original problem (2.1), in (2.4),

−
∫

D

u(Q)δ(Q− P ) dQ = −u(P ) = ε

∫

C

h(Q)
∂u∗P (Q)

∂~nQ
dQ. (2.5)

Considering again the Green identity in (2.4) and setting u = G0
ε(Q,S) be the Green-

Dirichlet function of Lε acting on Q, where S is a fixed point, we symbolically write

Lε[G
0
ε(Q,S)] = δ(Q− S), G0

ε(Q,S) = 0 for Q ∈ C,

Inserting u and u∗ = u∗P so defined in (2.4), this gives

∫

D

g0ε(Q,P )δ(Q− S)−G0
ε(Q,S)δ(Q− P ) dQ = 0,

which yields, for any choice of P,R ∈ D,

g0ε(S, P ) = G0
ε(P, S), (2.6)

where

g0ε(S, P ) = u∗P (S). (2.7)

Identity (2.6) means that the Green-Dirichlet function g0ε(P,Q) of the adjoint operator
L∗
ε, with Dirac mass centered in P , is obtained just by switching the points coordinates

of the corresponding Green-Dirichlet function G0
ε(P,Q) associated to Lε. Because

of the skew-symmetry of the convection part, Lε is not self-adjoint, so the Green-
Dirichlet function G0

ε is not symmetric, depending on the sing of the vector P − Q.
Now, let us go back to the expression for u(P ) in (2.5), namely

u(P ) = −ε
∫

C

h(Q)
∂u∗P (Q)

∂~nQ
dQ = −ε

∫

C

h(Q)(∇u∗P (Q) · ~n) dQ.

Since u∗P (Q) = g0ε(Q,P ), equality (2.7) yields

u(P ) = −ε
∫

C

h(Q)(∇g0ε(Q,P ) · ~n) dQ.
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By using the previous identity in (2.6), this amounts to,

u(P ) = −ε
∫

C

h(Q)(∇G0
ε(P,Q) · ~n) dQ.

Introducing the radial coordinates as follows:

P = (r, θ), Q = (ρ, ψ),

we get the “double-layer potential” expression of u,

u(r, θ) = −ε
∫ 2π

0

h(ψ)
∂G0

ε

∂ρ
(r, θ; ρ = R,ψ)R dψ. (2.8)

The radial derivative of the solution u will be of crucial importance: it reads,

∂u

∂r
(r = 0, θ) = −ε

∫ 2π

0

h(ψ)
∂2G0

ε

∂r∂ρ
(r = 0, θ; ρ = R,ψ)R dψ. (2.9)

A suitable assemblage of the radial derivative in (2.9), with respect to the four disks
of the stencil, provides the numerical flux at each node of the computational grid.

2.2. Fundamental solution of Lε in full space. Here we consider the full
space Green function Gε – or fundamental solution – associated to the operator Lε.
According with the Green formalism,

Lε[Gε] = δ(P −Q), P,Q ∈ R
2.

Taking a constant vector V ∈ R
2, according to (2.3), following [11] we can write

Gε(P,Q) = exp

(

V · (P −Q)

2ε

)

Hε(P,Q), (2.10)

such that Hε is the fundamental solution of Hε defined in (2.2).

−∆Hε +

∣

∣

∣

∣

V

2ε

∣

∣

∣

∣

2

Hε =
1

ε
exp

(

−V · (P −Q)

2ε

)

δ(P −Q).

Thus, it is straightforward to see that

δ(P −Q) = Lε(Gε) = exp

(

V · (P −Q)

2ε

)

(

−ε∆Hε +

∣

∣

∣

∣

V

2
√
ε

∣

∣

∣

∣

2

Hε

)

,

so that (2.10) is the desired full-space Green function of Lε.

2.3. Green-Dirichlet function for Hε in a disk. Taking advantage of (2.10),
we are now interested in deriving the Dirichlet-Green function in a disk, G0

ε(P,Q).
for Lε, acting on the variable Q and centered in P :











Lε[G
0
ε] = δ(P −Q),

G0
ε(P,Q) = 0 for Q ∈ C,

G0
ε(P,Q) = exp

(

V·(P−Q)
2ε

)

H0
ε (P,Q),

(2.11)
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being H0
ε (P,Q) the Dirichlet-Green function associated with Hε in (2.2) and

ωε =

∣

∣

∣

∣

V

2ε

∣

∣

∣

∣

,
V

2ε
= ωε(cosµ, sinµ) for any µ ∈ (−π, π), (2.12)

along with,

V · (P −Q)

2ε
= ωε

(

(r cos θ − ρ cosψ) cosµ+ (r sin θ − ρ sinψ) sinµ
)

= ωε

(

r cos(θ − µ)− ρ cos(ψ − µ)
)

.

Proposition 1. Let D be the disk centered at the origin with radius R > 0, then
the Green function associated with the “modified Helmholtz” operator Hε in (2.2) with
Dirichlet boundary condition is,

H0
ε (r, θ; ρ, ψ) =

1

2π

∑

n∈Z

I|n|(ωεr<)

I|n|(ωεR)

(

I|n|(ωεR)K|n|(ωεr>)− I|n|(ωεr>)K|n|(ωεR)

)

.

(2.13)
where r< := min{r, ρ}, r< := max{r, ρ}, and In,Kn are modified Bessel functions.

Proof. It is convenient to switch to radial coordinates: the Green function for the
“modified Helmholtz equation” (2.2) solves,

1

r

∂

∂r

(

r
∂H0

ε

∂r

)

+
1

r2
∂2H0

ε

∂θ2
− ω2

εH
0
ε = −δ(r − ρ)δ(θ − ψ)

r
, (2.14)

where 0 < r, ρ < R, 0 ≤ θ, ψ ≤ 2π, with boundary condition H0
ε (R, θ; ρ, ψ) = 0.

Clearly, (2.14) rewrites as an Helmholtz equation where ωε is replaced by iωε,

1

r

∂

∂r

(

r
∂H0

ε

∂r

)

+
1

r2
∂2H0

ε

∂θ2
+ (iωε)

2H0
ε = −δ(r − ρ)δ(θ − ψ)

r
. (2.15)

Yet, we provide an expression of the Dirichlet-Green function for Helmholtz equation
with frequency λ = iωε. First of all, by using the Fourier basis, it comes

δ(θ − ψ) =
1

2π
+

1

π

∞
∑

n=1

cos(n(θ − ψ)) =
1

2π

∞
∑

n=−∞
cos(n(θ − ψ)),

which implies that the solution to (2.15) presents the following form:

H0
ε (r, θ; ρ, ψ) =

∞
∑

n=−∞
h0n(r, ρ) cos(n(θ − ψ)).

It is well-known that a particular solution to equation (2.15) is given by

−1

4
Y0(iωε

√

r2 + ρ2 − 2rρ cos(θ − ψ)),

where Y0 is the zero order Bessel function of the second kind. The general solution
to (2.14) can be expressed by means of Jn, the Bessel functions of the first kind,

H0
ε (r, θ; ρ, ψ) = −1

4
Y0(iωε

√

r2 + ρ2 − 2rρ cos(θ − ψ))+
∞
∑

n=−∞
AnJn(iωεr) cos(n(θ−ψ)).
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Homogeneous boundary conditions for H0
ε read H0

ε (R, θ; ρ, ψ) = 0 bring

1

4
Y0(iωε

√

R2 + ρ2 − 2Rρ cos(θ − ψ)) =
∞
∑

n=−∞
AnJn(iωεR) cos(n(θ − ψ)),

and, from the addition theorem for Bessel function, see [11],

Y0(iωε

√

r2 + ρ2 − 2rρ cos(θ − ψ)) =

∞
∑

n=−∞
Jn(iωερ)Jn(iωεr) cos(n(θ − ψ)).

Accordingly,

1

4

∞
∑

n=−∞
Jn(iωερ)Yn(iωεR) cos(n(θ − ψ)) =

∞
∑

n=−∞
AnJn(iωεR) cos(n(θ − ψ)),

so that,

∀n ∈ Z, An =
Jn(iωερ)Yn(iωεR)

4Jn(iωεR)
.

This gives the following expression:

H0
ε (r, θ; ρ, ψ) =− 1

4
Y0(iωε

√

r2 + ρ2 − 2rρ cos(θ − ψ))

+

∞
∑

n=−∞

Yn(iωεR)

4Jn(iωεR)
Jn(iωερ)Jn(iωεr) cos(n(θ − ψ)).

(2.16)

By using again the addition theorem in (2.16) and following [11], one gets the Dirichlet-
Green function for the Helmholtz equation in (2.15),

H0
ε (r, θ; ρ, ψ) = −1

4

∑

n∈Z

Jn(iωεr<)

Jn(iωεR)

(

Jn(iωεR)Yn(iωεr>)−Yn(iωεR)Jn(iωεr>)
)

cos(n(θ−ψ)),

(2.17)
First and second kind Bessel functions with imaginary arguments reduce to,

Jn(ix) = enπi/2In(x), Yn(ix) = e(n+1)πi/2In(x)−
2

π
e−nπi/2Kn(x),

so that (2.17) rewrites in terms of the modified Bessel functions of the first and second
kind, bringing the expression (2.13), as stated in the Proposition.

Following [11], the expression of G0
ε is immediately deduced from the one of H0

ε .

Corollary 1. With the notation of Proposition 1, and H0
ε (r, θ; ρ, ψ) being given

in (2.13), the Dirichlet-Green function for convection-diffusion (2.1) in D is,

G0
ε(r, θ; ρ, ψ) = exp

(

V · (P −Q)

2ε

)

H0
ε (r, θ; ρ, ψ). (2.18)
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2.4. Radial derivatives of G0
ε(r, θ; ρ, ψ). Following Proposition 1, it holds:

Proposition 2. Let θ ∈ (−π, π) be a direction, and denote

E(ψ) = exp(−ωεR cos(ψ − µ)),

then, the radial derivative (2.9) reads,

∂u

∂r
(r = 0, θ) =

εωε

2π

(

cos(θ − µ)

I0(ωεR)

∫ 2π

0

h(ψ)E(ψ) dψ

+
1

I1(ωεR)

∫ 2π

0

h(ψ)E(ψ) cos(θ − ψ) dψ

)

.

(2.19)

Proof. Denoting by χE the indicator function of a set E, let

r< := min{r, ρ} = rχ{r−ρ<0} + ρχ{r−ρ>0},
∂min{r, ρ}

∂ρ
= χ{r−ρ>0},

r> := max{r, ρ} = ρχ{r−ρ<0} + rχ{r−ρ>0},
∂max{r, ρ}

∂ρ
= χ{r−ρ<0}.

This provides the following expression for the partial derivative in ρ of H0
ε (r, θ; ρ, ψ),

∂H0
ε (r, θ; ρ, ψ)

∂ρ
=
ωε

2π

∑

n∈Z

{

I ′|n|(ωεr<)χ{r−ρ>0}

I|n|(ωεR)

(

I|n|(ωεR)K|n|(ωεr>)− I|n|(ωεr>)K|n|(ωεR)

)

+
I|n|(ωεr<)

I|n|(ωεR)
χ{ρ−r>0}

(

I|n|(ωεR)K
′
|n|(ωεr>)− I ′|n|(ωεr>)K|n|(ωεR)

)}

cos(n(θ − ψ)).

(2.20)
In (2.8), it is meant to be ρ = R: hence, using the Wronskian relation [1, 15],

K|n|(ωεR)I
′
|n|(ωεR)−K ′

|n|(ωεR)I|n|(ωεR) =
1

ωεR
, (2.21)

one gets

∂H0
ε

∂ρ
(r, θ;R,ψ) =

1

2πR

∑

n∈Z

I|n|(ωεr)

I|n|(ωεR)
cosn(ψ − θ),

and so

∂H0
ε

∂ρ
(0, θ;R,ψ) = − 1

2πRI0(ωεR)
.

The radial derivative (2.9) also needs the expression of a “mixed derivative” of H0
ε at

r = 0, ρ = R. From (2.20), and since χ{ρ−r>0}χ{ρ−r<0} = 0,

∂2H0
ε (r, θ; ρ, ψ)

∂r∂ρ
=
ωε

2π

∑

n∈Z

{

I ′|n|(ωεr<)δ(r − ρ)

I|n|(ωεR)

(

I|n|(ωεR)K|n|(ωεr>)− I|n|(ωεr>)K|n|(ωεR)

)

+ωε

I ′|n|(ωεr<)

I|n|(ωεR)

(

I|n|(ωεR)K
′
|n|(ωεr>)− I ′|n|(ωεr>)K|n|(ωεR)

)

χ{ρ−r>0}

+
I|n|(ωεr<)

I|n|(ωεR)

(

I|n|(ωεR)K
′
|n|(ωεr>)− I ′|n|(ωεr>)K|n|(ωεR)

)

δ(r − ρ)

}

cos(n(θ − ψ))
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which, thanks again to the Wronskian relation (2.21), yields,

∂2H0
ε

∂ρ∂r
(0, θ;R,ψ) = −ωε cos(ψ − θ)

2πR I1(ωεR)
. (2.22)

Now, we are ready to compute the mixed derivative for G0
ε in (2.9), evaluated at

r = 0, ρ = R. Thanks to the Dirichlet boundary conditions imposed on Gε in (2.11),

−∂
2G0

ε

∂ρ∂r
(r = 0, θ; ρ = R,ψ) =

ωε exp(−ωεR cos(ψ − µ))

2πR

(

cos(θ − µ)

I0(ωεR)
+

cos(θ − ψ)

I1(ωεR)

)

,

which ends the proof using (2.9).
Remark 1 (special case of Poisson’s potential). Since I1(z) → z/2 as z → 0, it

comes that the “mixed derivative” evaluated at r = 0, ρ = R satisfies,

∂2H0
ε

∂ρ∂r
(0, θ;R,ψ) =

ωε cos(ψ − θ)

2πR I1(ωεR)
→ cos(ψ − θ)

πR2
when ωε → 0.

This result is coherent with the Poisson kernel, [11]: indeed, if V ≡ ~0 and ε = 1,

u(r, θ) =
1

2π

∫ 2π

0

h(ψ)P(r, θ, R, ψ) dψ, P =
R2 − r2

R2 − 2Rr cos(θ − ψ) + r2
.

By computing the corresponding r-derivative, one gets

∂P

∂r

∣

∣

∣

∣

r=0

=
2 cos(θ − ψ)

R
,

∂u

∂r
(r = 0, θ) =

1

πR

∫ 2π

0

h(ψ) cos(θ − ψ) dψ, (2.23)

which agrees with (2.9) as soon as the limit ωε → 0 of (2.22) is taken.
Moreover, we can take advantage of the “double-layer potential” value of u in

(2.8) at r = 0. Thanks again to the Dirichlet boundary conditions,

∂G0
ε

∂ρ
(0, θ;R,ψ) = −exp(−ωε cos(ψ − µ)R)

2πR I0(ωR)
,

which yields a formula used in [15, eqn. (3.2)],

u(r = 0, θ) =
ε

I0(ωεR)

∫ 2π

0

h(ψ) exp(−ωε cos(ψ − µ)R)
dψ

2π
. (2.24)

Accordingly,

∂u

∂r
(0, θ) = ε

(

ωε cos(θ − µ)u(0, θ) +
ωε

I1(ωεR)

∫ 2π

0

h(ψ)E(ψ) cos(θ − ψ)
dψ

2π

)

,

which splits naturally between a “transport part” and a “diffusive part”, as we will
see later in details. More precisely, here we define the “transport term” as follows,

Tµ(θ) =
ωε cos(θ − µ)

2π I0(ωεR)

∫ 2π

0

h(ψ) exp(−ωεR cos(ψ − µ)) dψ, (2.25)

while the “diffusive term” reads,

Dµ(θ) =
ωε

2πI1(ωεR)

∫ 2π

0

h(ψ) exp(−ωεR cos(ψ − µ)) cos(θ − ψ) dψ. (2.26)

Numerical fluxes will be retrieved from both (2.25) and (2.26) by approximating h(ψ).
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3. Practical derivation of 2D fluxes. Beside the Poisson kernel, recovered
for ε = 1, V = ~0, the general behavior of these radial derivatives is now studied;

∀n ∈ N, x ∈ R, In(x) =
1

π

∫ π

0

exp(x cosψ) cosnψ dψ. (3.1)

This is called the “integral representation of modified Bessel functions”, [1]. Another
integral representation of modified Bessel functions is as follows,

∀n ∈ N, x ∈ R, In(x) =
(x/2)n√
π Γ(n+ 1

2 )

∫ π

0

exp(x cosψ)| sinψ|2n dψ. (3.2)

This formula is easy for n = 0, 1 because Γ( 12 ) =
√
π , Γ( 32 ) =

√
π
2 , so that,

∀x 6= 0,
I1(x)

x
=

∫ π

0

exp(x cosψ)| sinψ|2 dψ

π
.

3.1. Trigonometric polynomial approximation of h(ψ). Denote xi = i∆x, yj =
j∆x, for i, j ∈ Z

2: at any time-step tn = n∆t, we only have a set of discrete values
at hand; in particular, instead of knowing the boundary data on each circle C, we
are just aware of 4 discrete points, so we must deduce boundary data h(ψ) from a
“trigonometric polynomial interpolation” of discrete ones uni,j ≃ u(tn, xi, yj) available
on the uniform Cartesian grid. Accordingly, the most natural manner of deducing a
trigonometric polynomial out of 4 values uni,j , u

n
i−1,j , u

n
i−1,j−1, u

n
i,j−1,

h4(ψ) = a0 + a1 cosψ + b1 sinψ + a2 cos 2ψ + b2 sin 2ψ, ψ ∈ (0, 2π), (3.3)

so that

h4(0) = uni,j , h4(
π

2
) = uni−1,j , h4(π) = uni−1,j−1, h4(

3π

2
) = uni,j−1.

Fourier coefficients follow from inverting the linear system,

a0 =
1

4
(uni,j + uni−1,j + uni−1,j−1 + uni,j−1),

a1 =
1

2
(uni,j − uni−1,j−1), b1 =

1

2
(uni−1,j − uni,j−1), (3.4)

a2 =
1

4
(uni,j + uni−1,j−1)−

1

4
(uni−1,j + uni,j−1).

For a disk of radius R = ∆x√
2
, numerical fluxes are given by (2.23),

∂u

∂r
(r = 0, θ = 0) =

√
2

π∆x

∫ 2π

0

h4(ψ) cosψ dψ.

The reason why we compute the radial derivative in the direction θ = 0 is because
we fixed the origin of the angles ψ = 0 in xi, yj and the Laplacian is invariant by
rotation. Otherwise, there would be a shift of π

4 everywhere. By orthogonality, only
a1 contributes to the overall flux value at the center of the disk:

∂u

∂r
(r = 0, θ = 0) =

a1
πR

∫ 2π

0

cos2 ψ dψ =
a1
πR

[

ψ

2
+

sinψ cosψ

2

]2π

0

.
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In order to get the final expression of the time-marching scheme,

un+1
i,j − uni,j

∆t
=

1

2R

[

(a1
R

)

i+ 1
2 ,j+

1
2

−
(a1
R

)

i− 1
2 ,j− 1

2

+

(

b1

R

)

i− 1
2 ,j+

1
2

−
(

b1

R

)

i+ 1
2 ,j− 1

2

]

=
1

4R2

(

−4uni,j + uni−1,j−1 + uni+1,j+1 + uni−1,j+1 + uni+1,j−1

)

,

and the resulting “diagonal nodal scheme” is both monotone (under standard parabolic
CFL restriction) and consistent (because 4R2 = 2∆x2).

3.2. Transport and diffusion terms in the radial derivative. Given an
angle µ ∈ (−π, π) as in (2.12), we can write a 4-points approximation Tµ

4 of Tµ

by inserting (3.3) into (2.25) and computing exactly the resulting integral thanks
to (3.1). Yet, by expanding the trigonometric terms, using the orthogonality of the
Fourier basis and the properties of the Bessel functions, one finds:

Lemma 3.1.

Tµ
4 (θ) = ωε cos(θ − µ)

(

a0 −
(

a1 cosµ+ b1 sinµ
)I1(ωεR)

I0(ωεR)
+ a2 cos 2µ

I2(ωεR)

I0(ωεR)

)

(3.5)

Proof. Assume first that boundary data is a simpler trigonometric polynomial,

∀ψ ∈ (0, 2π), h3(ψ) = a0 + a1 cosψ + b1 sinψ,

then, given an angle µ ∈ (0, 2π), and denoting

Tµ
3 (θ) =

ωε cos(θ − µ)

2π I0(ωεR)

∫ 2π

0

h3(ψ) exp(−ωεR cos(ψ − µ)) dψ

=
ωε cos(θ − µ)

2π I0(ωεR)

∫ 2π

0

h3(ψ + µ) exp(−ωεR cosψ) dψ

=
ωε cos(θ − µ)

2π I0(ωεR)

∫ 2π

0

(

a0 + a1 cos(ψ + µ) + b1 sin(ψ + µ)
)

exp(−ωεR cosψ) dψ.

Yet, by expanding the trigonometric terms,

cos(ψ + µ) = cosψ cosµ− sinψ sinµ, sin(ψ + µ) = sinψ cosµ+ cosψ sinµ,

one gets cancellations because, by periodicity,

∫ 2π

0

exp(−ωεR cosψ) sinψ dψ =

[

−exp(−ωεR cosψ)

ωεR

]2π

0

= 0.

Accordingly, remaining terms read:

a0

∫ 2π

0

exp(−ωεR cosψ)
dψ

2π
= a0 I0(ωεR),

and since I1(−x) = −I1(x), (because for any n ∈ N, In(−x) = (−1)n In(x))

a1

∫ 2π

0

cos(ψ + µ) exp(−ωεR cosψ)
dψ

2π
= −a1 I1(ωεR) cosµ.
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by (3.1),

Tµ
3 (θ) = ωε cos(θ − µ)

(

a0 − (a1 cosµ+ b1 sinµ)
I1(ωεR)

I0(ωεR)

)

.

Then, with the “4-points trigonometric polynomial” (3.3), a new term will appear,

cos(2(ψ + µ)) = cos 2ψ cos 2µ− 2 sinψ cosψ sin 2µ, (3.6)

where

∀a ∈ R,

∫ 2π

0

exp(a cosψ) sinψ cosψ dψ = 0.

Using (3.6) along with the relation, cos(2ψ) = cos2 ψ − sin2 ψ = 1− 2 sin2 ψ,

ωε cos(θ − µ) cos(2µ)a2
I0(ωεR)

∫ 2π

0

cos(2ψ) exp(−ωεR cosψ)
dψ

2π

=
ωε cos(θ − µ) cos(2µ)a2

I0(ωεR)

[

I0(ωεR)−
2I1(ωεR)

ωεR

]

= ωε cos(µ− θ) cos(2µ)a2

[

1− 2I1(ωeR)

ωεRI0(ωεR)

]

.

The integral equality (3.1) gives

ωε cos(θ − µ) cos(2µ)a2
I0(ωεR)

∫ 2π

0

cos(2ψ) exp(−ωεR cosψ)
dψ

2π

=
ωε cos(θ − µ) cos(2µ)I2(ωεR)a2

I0(ωεR)
.

Former calculations yield, in a very similar manner, the expression (3.5). Analo-
gously, the following lemma holds.

Lemma 3.2. The 4-points approximation Dµ
4 of Dµ in (2.26) is given by:

Dµ
4 (θ) =ωε

(

cos(θ − µ)

{

−a0 + (a1 cosµ+ b1 sinµ)
I0(ωεR)

I1(ωεR)
− a2 cos 2µ

}

+
−a1 cos(θ − 2µ) + b1 sin(θ − 2µ)

ωεR

)

. (3.7)

Proof. Again, consider first the simpler case where h(ψ) = h3(ψ),

Dµ
3 (θ) =

ωε

I1(ωεR)

∫ 2π

0

h3(ψ + µ) exp(−ωεR cosψ) cos(ψ + (µ− θ))
dψ

2π

=
ωε

I1(ωεR)

∫ 2π

0

(

a0 + a1 cos(ψ + µ) + b1 sin(ψ + µ)
)

× exp(−ωεR cosψ) cos
(

ψ + (µ− θ)
) dψ

2π
.
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The integral associated to the constant term a0 is easy:

a0 ωε

I1(ωεR)

∫ 2π

0

exp(−ωεR cosψ) cos
(

ψ + (µ− θ)
) dψ

2π
= −a0 cos(µ− θ)ωε.

Yet, both terms multiplied by a1 and b1 can be handled the same way:
• the product cos(ψ + µ) cos(ψ + µ− θ) yields,

cos2 ψ cosµ cos(µ− θ) + sin2 ψ sinµ sin(µ− θ)− sinψ cos(ψ)(...),

where the “mixed” terms sinψ cosψ(...) = sin 2ψ(...) vanish, since they are
orthogonal in the scalar product induced by exp(−ωεR cosψ) in L2([0, 2π]).
It is interesting to rewrite the first product as,

cosµ cos(µ− θ)−
(

cosµ cos(µ− θ)− sinµ sin(µ− θ)
)

sin2 ψ,

so that, using (3.2), the integral becomes:

a1 ωε

I1(ωεR)

∫ 2π

0

cos(ψ + µ) exp(−ωεR cosψ) cos
(

ψ + (µ− θ)
) dψ

2π

=
a1 ωε

I1(ωεR)

(

cosµ cos(µ− θ)

∫ 2π

0

exp(−ωεR cosψ)
dψ

2π

− cos(2µ− θ)

∫ 2π

0

exp(−ωεR cosψ) sin2 ψ
dψ

2π

)

=
a1 ωε

I1(ωεR)

(

cosµ cos(µ− θ)I0(ωεR)− cos(2µ− θ)
I1(−ωεR)

−ωεR

)

;

• similarly, explicitly solving the product sin(ψ + µ) cos(ψ + µ− θ) and, using
(3.2), the integral reads,

b1 ωε

I1(ωεR)

∫ 2π

0

sin(ψ + µ) exp(−ωεR cosψ) cos
(

ψ + (µ− θ)
) dψ

2π

=
b1 ωε

I1(ωεR)

(

sinµ cos(µ− θ)

∫ 2π

0

exp(−ωεR cosψ)
dψ

2π

− sin(2µ− θ)

∫ 2π

0

exp(−ωεR cosψ) sin2 ψ
dψ

2π

)

=
b1 ωε

I1(ωεR)

(

sinµ cos(µ− θ)I0(ωεR)− sin(2µ− θ)
I1(−ωεR)

−ωεR

)

.

Accordingly, using I1(−x) = −I1(x), diffusive 3-points fluxes read:

Dµ
3 (θ) = ωε

(

cos(θ − µ)

{

−a0 + (a1 cosµ+ b1 sinµ)
I0(ωεR)

I1(ωεR)

}

−a1 cos(θ − 2µ) + b1 sin(θ − 2µ)

ωεR

)

.

To treat the “4-points trigonometric polynomial” h4(ψ), it remains to consider

cos(2ψ + 2µ) cos(ψ + µ− θ) = cos 2ψ cosψ cos 2µ cos(µ− θ)

+ sin 2ψ sinψ sin 2µ sin(µ− θ)− cos 2ψ sinψ cos 2µ sin(µ− θ)

− sin 2ψ cosψ sin 2µ cos(µ− θ).
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As before, in the integrals corresponding to mixed terms, e.g., cos 2ψ sinψ,

Dµ
4 (θ) =

ωε

I1(ωεR)

∫ 2π

0

(

a0 + a1 cos(ψ + µ) + b1 sin(ψ + µ)

+ a2 cos(2ψ + 2µ)
)

exp(−ωεR cosψ) cos
(

ψ + (µ− θ)
) dψ

2π
,

it suffices to deal only with supplementary non-zero coefficients related to a2,

ωε a2 cos 2µ cos(µ− θ)

I1(ωεR)

[

∫ 2π

0

cos 2ψ cosψ exp(−ωεR cosψ)
dψ

2π

+

∫ 2π

0

sin 2ψ sinψ exp(−ωεR cosψ)
dψ

2π

]

=
ωε a2 cos 2µ cos(µ− θ)

I1(ωεR)

∫ 2π

0

cosψ exp(−ωεR cosψ)
dψ

2π

= −ωε cos(µ− θ)a2 cos 2µ.

4. Some properties of the resulting “fully 2D” scheme.

4.1. Incremental (Harten) coefficients. From (3.4) and Lemmas 3.1 & 3.2,
the resulting 2D fluxes read: for any θ = kπ/2, with k ∈ N,

Tµ
4 (θ)−Dµ

4 (θ) =

{

2a0 − (a1 cosµ+ b1 sinµ)

(

I1
I0

(ωεR) +
I0
I1

(ωεR)−
1

ωεR

)

+a2 cos(2µ)

(

1 +
I2
I0

(ωεR)

)}

ωε cos(θ − µ) +
(a1 sinµ− b1 cosµ) sin(θ − µ)

R
,

where ωε := |V|/2ε, see (2.12). Yet. inserting generic Fourier coefficients,

a0 =
a+ b+ c+ d

4
, a1 =

c− d

2
, b1 =

a− b

2
, a2 =

c+ d

4
− a+ b

4
,

yields the following expression:

Tµ
4 (θ)−Dµ

4 (θ) =

(

(c− d) sinµ

2
− (a− b) cosµ

2

)

sin(θ − µ)

R
+

{

a+ b+ c+ d

2

−
(

(c− d) cosµ

2
+

(a− b) sinµ

2

)(

I1
I0

(ωεR) +
I0
I1

(ωεR)−
1

ωεR

)

+

(

c+ d

4
− a+ b

4

)

cos(2µ)

(

1 +
I2
I0

(ωεR)

)}

ωε cos(θ − µ).
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We now intend to make incremental (Harten) coefficients explicit:

Tµ
4 (θ)−Dµ

4 (θ) =a Cµ
a (θ) + b Cµ

b (θ) + c Cµ
c (θ) + d Cµ

d (θ) :=
ωε cos(θ − µ)

2
×

[

a
{

1− sinµB1(ωεR)−
cos(2µ)

2
B2(ωεR)−

cosµ tan(θ − µ)

ωεR

}

+

b
{

1 + sinµB1(ωεR)−
cos(2µ)

2
B2(ωεR) +

cosµ tan(θ − µ)

ωεR

}

+

c
{

1− cosµB1(ωεR) +
cos(2µ)

2
B2(ωεR) +

sinµ tan(θ − µ)

ωεR

}

+

d
{

1 + cosµB1(ωεR) +
cos(2µ)

2
B2(ωεR)−

sinµ tan(θ − µ)

ωεR

}]

,

where

B1(ωεR) =

(

I1
I0

+
I0
I1

)

(ωεR)−
1

ωεR
∈ (1.6,+∞), B2(ωεR) = 1 +

I2
I0

(ωεR) ≥ 1.

A few (obvious) observations are:
• let a = b = c = d, so that incremental coefficients add each other, it comes

∀θ, µ, Tµ
4 (θ)−Dµ

4 (θ) = 2ωε a cos(θ − µ) = a
|V|
ε

cos(θ − µ).

• let ε = 1 and (ωR, µ) → 0 (purely diffusive limit): when 0 ≤ x≪ 1,

∀n ∈ N, In(x) =
1

n!

(x

2

)n

+O(x2), so
I1
I0

+
I0
I1

(ωR)− 1

ωR
≃ 1

ωR
.

Numerical fluxes reduce to,

T 0
4 (θ)−D0

4(θ) ≃ − (a− b) sin θ + (c− d) cos θ

2R
,

so that a diagonal, centered (2nd order), 5-points scheme is recovered.
• more generally, let µ = 0, ε = 1 and the (fine-grid) regime be 0 ≤ ωR≪ 1:

T 0
4 (θ)−D0

4(θ) ≃
[

a

(

ω cos θ

4
− sin θ

2R

)

+ b

(

ω cos θ

4
+

sin θ

2R

)

(4.1)

+c

(

3ω cos θ

4
− cos θ

2R

)

+ d

(

3ω cos θ

4
+

cos θ

2R

)]

.

The (centered) average is biased along the flow’s direction.

4.2. Asymptotic properties and directional monotony as ε → 0. On the
contrary, one may consider “transport-dominant” (or “vanishing viscosity”) asymp-
totic regimes for which ωεR≫ 1, and study the behavior of rescaled 2D fluxes:

∀θ, µ, Fµ(θ) := ε
(

Tµ
4 (θ)−Dµ

4 (θ)
)

.

A crucial property of modified Bessel functions In(x) is,

∀(n,m) ∈ N
2, lim

x→+∞
In(x)

Im(x)
= 1,
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so that, asymptotically as ε→ 0, our rescaled 2D fluxes boil down to:

Fµ(θ) :=ε
(

Tµ
4 (θ)−Dµ

4 (θ)
)

=
ω cos(θ − µ)

2

[

a
{

1− 2 sinµ− cos(2µ)−O(ε)
}

+ b
{

1 + 2 sinµ− cos(2µ) +O(ε)
}

+ c
{

1− 2 cosµ+ cos(2µ) +O(ε)
}

+ d
{

1 + 2 cosµ+ cos(2µ)−O(ε)
}]

.

At this point, it is convenient to state:
Definition 1. Given a grid parameter ∆x > 0, a numerical scheme is called

“asymptotically monotone” (under a certain CFL restriction) as ε → 0 when the
limiting values of all its incremental coefficients are nonnegative.

Assume 0 < ω, µ are constants given in the whole computational domain, so that
the drift-diffusion equation becomes an advection-diffusion one (like in [15, 19, 24]).
The most direct way to discretize the resulting problem is, in standard notation,

un+1
i,j = uni,j +

∆t

2R

(

Fµ

i− 1
2 ,j− 1

2

(0) + Fµ

i+ 1
2 ,j+

1
2

(π) + Fµ

i+ 1
2 ,j− 1

2

(
π

2
) + Fµ

i− 1
2 ,j+

1
2

(−π
2
)
)

.

(4.2)
A basic result is:

Lemma 1. Let µ = k π
2 , k ∈ N, so that the flow is diagonal, then (4.2) preserves

the total mass and is asymptotically monotone as ε→ 0 under the CFL restriction,

[ ε

R
+ ωB1(ωεR)

]

∆t =

[

ε

R
+ ω

(

I1
I0

+
I0
I1

(ωεR)−
ε

ωR

)]

∆t ≤ 2R. (4.3)

Proof. Only the case µ = 0 is studied as the other ones are similar. Total mass
preservation is ensured by the incremental coefficients adding to unity, which is clear
from the definition of each Fµ(θ). Beside, the restriction (4.3) is obtained by ensuring
positivity of the coefficient acting on uni,j . Finally, consider the limit ε→ 0, µ = 0 in

F 0(θ) =
ω

2
cos θ

(

O(ε)(a+ b+ c+ d) + 4d
)

= 2ω cos θ d,

which is the expression of a (diagonal) upwind scheme, obviously monotone.
We aim at getting asymptotic monotony for both horizontal and vertical flows,

too, but it is quite easy to see that it doesn’t hold unless a viscous correction is added.
Accordingly, define

un+1
i,j = uni,j +

∆t

2R

(

Fµ

i− 1
2 ,j− 1

2

(0) + Fµ

i+ 1
2 ,j+

1
2

(π) + Fµ

i+ 1
2 ,j− 1

2

(
π

2
) + Fµ

i− 1
2 ,j+

1
2

(−π
2
)
)

+
ω∆t

4R
max

(

0,
I1
I0

(ωεR) sin 2µ

)

(

(uni+1,j − uni,j)− (uni,j − uni−1,j)
)

(4.4)

+
ω∆t

4R
max

(

0,−I1
I0

(ωεR) sin 2µ

)

(

(uni,j+1 − uni,j)− (uni,j − uni,j−1)
)

.

Lemma 2. Let µ = k π
4 , k ∈ N, then (4.4) preserves the total mass and is

asymptotically monotone as ε→ 0 under the CFL restriction,
[

ε

R
√
2
+ ω

(

B1(ωεR) +
| sin 2µ|

2

I1
I0

(ωεR)

)]

∆t ≤ 2R. (4.5)
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Proof. Since sin 2µ = 0 for µ = kπ/2, Lemma 1 still holds because the viscous
correction in (4.4) vanishes. Again, we shall check the claims for µ = π

4 only as other
cases are similar. Now, consider that, for µ = π

4 , sinµ = cosµ = 1√
2
thus,

F
π
4 (θ) =

ε(cos θ − sin θ)

4R

[

(a− b)− (c− d)
]

(4.6)

+
ω

2
√
2
(cos θ + sin θ)

[

(a+ c)
{

1− B1(ωεR)√
2

}

+ (b+ d)
{

1 +
B1(ωεR)√

2

}]

,

so that, as ε→ 0, one gets

F
π
4 (θ) → ω

2
(cos θ + sin θ) cosµ [(a+ c)(1− 2 sinµ) + (b+ d)(1 + 2 sinµ)] ,

which yields the sum of resulting fluxes,

Fµ

i− 1
2 ,j− 1

2

(0) + Fµ

i+ 1
2 ,j+

1
2

(π) + Fµ

i+ 1
2 ,j− 1

2

(
π

2
) + Fµ

i− 1
2 ,j+

1
2

(−π
2
) ≃

ω

2
cosµ

[

(uni,j + uni−1,j)(1− 2 sinµ) + (uni,j−1 + uni−1,j−1)(1 + 2 sinµ)

− (uni,j+1 + uni−1,j+1)(1− 2 sinµ)− (uni,j + uni−1,j)(1 + 2 sinµ)

+ (uni+1,j + uni,j)(1− 2 sinµ) + (uni+1,j−1 + uni,j−1)(1 + 2 sinµ)

− (uni+1,j+1 + uni,j+1)(1− 2 sinµ)− (uni+1,j + uni,j)(1 + 2 sinµ)
]

≃ ω

2
cosµ

[

− 4uni,j sinµ− 2(uni−1,j + uni+1,j) sinµ

+ (uni,j−1 + uni−1,j−1)(1 + 2 sinµ)− (uni,j+1 + uni−1,j+1)(1− 2 sinµ)

+ (uni+1,j−1 + uni,j−1)(1 + 2 sinµ)− (uni+1,j+1 + uni,j+1)(1− 2 sinµ)
]

.

In this last expression, only the incremental coefficients acting on uni,j and uni±1,j are
negative: in particular the last two ones are

−2 cosµ sinµ = − sin 2µ,

which can be compensated by adding an amount of artificial viscosity like in (4.4).
The CFL restriction (4.5) is checked by imposing positivity of the quantity,

−ε∆t
[

Cµ
c (0) + Cµ

d (π) + Cµ
a (
π

2
) + Cµ

b (−
π

2
)
]

≤ 2R.

Since µ = π
4 , the sum of the coefficients Cµ’s is ωεB1(ωεR) +

1
R
√
2
, to which one must

add the viscosity contribution, I1
I0
(ωεR)

| sin 2µ|
2 : this yields (4.5).

4.3. Formal second-order accuracy as ωR → 0. As schemes (4.2) and (4.4)
are well-suited for stiff (vanishing viscosity) regimes, we now intend to examine their
truncation error in the opposite, fine-grid (diffusion-dominant, or laminar), regime.

Theorem 1. Let V ∈ R
2 be constant, and µ = k π

4 , k ∈ N: the scheme (4.4) is

• second-order in space when ωεR→ 0 and u(t, ·, ·) ∈ C2,
• asymptotically monotone as ωεR→ +∞ under (4.5).
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Proof. The second property is a direct consequence of Lemma 2. The first one
comes from a study of the scheme’s local truncation error; however, for µ = k π

2 , k ∈ N,
this is obvious because, according to (4.1), the scheme reduces to a 1D centered
discretization along one of the diagonals and the artificial viscosity vanishes:

F 0(0) =
ωε

4
(a+ b) +

3ωε

4
(c+ d)− 1

2R
(c− d) = −F 0(π),

F 0(
π

2
) =− 1

2R
(a− b) = −F 0(−π

2
),

which brings the (diagonally biased) centered scheme,

un+1
i,j = uni,j +

ε∆t

2R

{

uni+1,j+1 + uni−1,j−1 + uni−1,j+1 + uni+1,j−1 − 4uni,j
2R

− ωε

4

(

(uni,j+1 + uni+1,j)− (uni−1,j + uni,j−1)
)

− 3ωε

4

(

uni+1,j+1 − uni−1,j−1

)

}

.

Yet, for µ = π
4 , k ∈ N, the artificial viscosity term is O(R2) because I1

I0
(x) = O(x)

and ∆u is bounded. By computing Taylor expansions in (4.6) for ωR→ 0,

F
π
4 (θ) ≃ ω

4
(a+ b+ c+ d)

√
2 +

(d− c) cos θ + (b− a) sin θ

2R
.

We recognize the centered flux on the transport term, along with another (diagonal)
one on the diffusion. Asymptotic monotony is ensured by the viscous term in (4.4).

5. Numerical results on 2D Navier-Stokes equations. Most of our practi-
cal benchmarks concern the 2D incompressible Navier-Stokes equations (1.3) in vortic-
ity/stream formulation; in particular, boundary conditions are implemented following
the classical Thom’s formulas (see e.g. [20]). Usually, 2D “uniformly accurate” meth-
ods are tested on simpler problems, like advection-diffusion, [24, 29].

5.1. A preliminary drift-diffusion test. Let V (x, y) ∈ C2(R2) stand for a
stationary potential, and consider a continuity equation of the form,

∂tρ(t, x, y)− ε∇ ·
[

exp(
V

ε
)∇
(

exp(−V
ε
)ρ

)]

= 0, x, y ∈ R
2, (5.1)

for which ρ̄(x, y) = exp(V (x, y)/ε) is clearly a steady-state. Then, a simple benchmark
consists in picking a random perturbation of ρ̄ restricted to Ω = (0, 1)2 as an initial
data (with unperturbed Dirichlet boundaries) and compare the emerging numerical
steady-state with the corresponding restriction of ρ̄. This is especially appealing for,

V (x, y) = −
(

3

2
|x′|2 + 5|y′|2

)

, (x′, y′) = Rθ

(

x− 1

2
, y − 1

2

)

,

being Rθ the usual rotation matrix of angle θ = π
6 and ε = 0.65 because it allows

to compare with both the “2D Steklov scheme” studied in [18, page 189] and usual
finite-differences [7] (involving an upwind discretization). Starting from random per-
turbations of ρ̄, pointwise relative errors are scrutinized for the three schemes,

e(∆x) := max
i,j

{
∣

∣

∣

∣

∣

ρNi,j − ρ̄(xi, yj)

ρ̄(xi, yj)

∣

∣

∣

∣

∣

, N∆t ≃ 1 the numerical steady-state

}

,
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Grid points “2D Green” error “2D Steklov” error FD error

8× 8 0.0036815 0.0096818 0.1401012
12× 12 0.0018102 0.0050208 0.1149618
16× 16 0.0010253 0.0030357 0.0942922
24× 24 0.0004318 0.0015190 0.0706629
32× 32 0.0002163 0.0009252 0.0562096
48× 48 0.0000851 0.0005099 0.0402375

Table 5.1
Relative pointwise errors at steady-state for (4.2), the scheme in [18, §5.2] and usual FD.

on several (coarse) computational grids: see Table 5.1. Hence, it is quite clear that,
for the benchmark (5.1), the “Green scheme” (4.2) is of second order in ∆x. The
order of accuracy of the “Steklov scheme”, proposed in [18, §5.2], appears to be 3

2 .

5.2. Incompressible Navier-Stokes models. In R
2, the incompressible Navier-

Stokes-Coriolis system in the so-called “β-plane” approximation reads, (see [3, 10, 28])

∂tω +∇⊥ψ · ∇ω − β∂xψ = ∆ω/Re, −∆ψ = ω.

However, it is possible to reformulate this problem in a more convenient form:

∂tζ −∇ · (∇ζ
Re

− ζ∇⊥ψ) = f(x, y), −∆ψ = ζ − βy, (5.2)

being ζ the “potential vorticity”, [13]. System (5.2) behaves differently depending on
the domain: for periodic ones, a slow-fast decoupling occurs along with a decay onto
“zonal jets” [3], but in bounded ones, currents appear on one side through a layer on
the stream function [10, 28]. Usual Navier-Stokes equations are recovered with β = 0.

5.3. Classical lid-driven cavity benchmark. The most classical numerical
test for any discretization of Navier-Stokes equations (β = 0) is the lid-driven cavity,
for which very accurate results are to be found in [16]. The scheme (4.2) was set up
to carry out this problem, the stream function ψ being deduced from the vorticity ω
at each time-step by means of a standard 5-points finite-difference solver. On Fig.
5.1, the outcome of (4.2) with random initial data is shown for three cases:

• Re = 100, grid 35× 35, no secondary vortex;
• Re = 1000, grid 65× 65, two secondary vortices (see Fig. 5.3, left);
• Re = 3200, grid 95× 95, three secondary vortices (see Fig. 5.3, right).

To compare with, results of a simpler dimensional-splitting Il’in/Scharfetter-Gummel
(1.4)–(1.5) discretization (on a 45 × 45 grid) are indicated on Fig. 5.2. Comparison
with reference values from [16] indicates a non-negligible deviation; worse, it seems
that such a scheme isn’t able to stabilize as residues begin to grow again around t ≃ 6.
The agreement with reference values is fairly satisfying, especially for Re = 3200;
transients are quite complex because the scheme tries, between t = 15 and t = 35, to
stabilize the problem with only two secondary vortices, hence a stagnation of residues
shown on Fig. 5.1, in sharp contrast with what happens for lower Reynolds numbers.

5.4. Western currents for Navier-Stokes-Coriolis. Now, we proceed with
values β 6= 0 in (5.2), but we restrict ourselves to bounded domains, in which strong
lateral currents are expected to materialize, in qualitative agreement with the ones in
Northern Atlantic ocean, see [9, 10, 12, 28]. Two different situations will be considered:
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Figure 5.1. Comparison with reference values [16] (left) and time-decay of residues (right).

one with a very elementary computational domain (like in [9]), the other in a more
realistic geometry (see Fig. 5.5). To cope with such a geometry while sticking to a
Cartesian finite-differences framework, one strategy is to set up a “masking technique”
for which both islands and continents are rendered through a given set Ξ ∈ R

2. The
Poisson equation in (5.2) for the stream function gets modified as follows,

−∆ψ +MχΞ(x, y)ψ = ζ − βy, M ≫ 1,

with Dirichlet boundary conditions. The function χΞ is the indicator of the set Ξ and
acts as a strong penalization term; such a damped Poisson equation can be efficiently
handled by means of the “discrete weighted mean” schemes proposed in [15, 34] (or the
stationary ones in [18]). No-slip (Thom) boundary values are prescribed on ζ on ∂Ξ,
whereas slip conditions are imposed when ∂Ω corresponds to the ocean. Transients
for both the cases are comparable, with a quick formation of currents on the left side
of the domain, and an oscillating decay of energy which allows to reach a numerical
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Figure 5.2. Dimensional-split Il’in/Scharfetter-Gummel results with Re=100 and 45× 45 points.

Figure 5.3. Stream function: Re=1000, 65× 65 points (left); Re=3200, 95× 95 points (right).

steady-state. The oscillations are clearly visible on the time-residues (Fig. 5.4, right)
obtained with the simple geometry, a 50 × 50 grid, f ≡ 0, β = 60 and Re = 200. In
the more intricate case, α = 0.3, Re = 400, and the wind-forcing term is (see [9]),

f(x, y) = −π sin(π(2− x)(y + 0.15)), x, y ∈ Ω := (0, 1)× (−0.3, 0.7).

6. Conclusion. The construction of reliable numerical fluxes for multi-dimensional
problems is a difficult task, see for instance [6, 17, 26] and references within. Accord-
ingly, a “genuinely two-dimensional” finite-difference scheme was built for equation of
the type (1.1) by taking advantage of explicit calculations which can be achieved on
local Dirichlet-Green function for the convection-diffusion operator in a disk. Numer-
ical fluxes are thus defined as its radial derivative, so that a 4-points trigonometric
interpolation on each Delaunay circle allows to derive a feasible scheme on a uniform
Cartesian grid. Comparable procedures based on local Green’s functions were previ-
ously considered, see e.g. [4, 14, 15, 27, 30]; however, to the best of our knowledge, a
full 2D computation (as done here) doesn’t seem to have been achieved before. Be-
side, concerning incompressible fluid motion, divergence-free constraints were taken
into account in [22]. Two-dimensional extensions of 1D Il’in/Scharfetter-Gummel’s
famous scheme were more quickly studied in the realm of Finite-Element methods
(FEMs), with mixed elements [8]. Later, Galerkin and Petrov-Galerkin formulations
based on tensorial products of 1D solutions were given in [23, 24, 29, 27, 33], too.

Acknowledgment. Thanks are due to both Prof. Laure Saint-Raymond, for
her assistance in devising benchmarks for the β-plane Navier-Stokes model, and Prof.
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Figure 5.4. Velocity field (left) and time-decay of residues (right) for β = 60 and Re=200.

Figure 5.5. Stream function in a more realistic domain, for β = 60 and Re=400.

Kare Olaussen for his precious help in deriving Dirichlet-Green’s functions.
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