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A genuinely two-dimensional discretization of general drift-diffusion (including incompressible Navier-Stokes) equations is proposed. Its numerical fluxes are derived by computing the radial derivatives of "bubbles" which are deduced from available discrete data by exploiting the stationary Dirichlet-Green function of the convection-diffusion operator. These fluxes are reminiscent of Scharfetter-Gummel's in the sense that they contain modified Bessel functions which allow to pass smoothly from diffusive to drift-dominating regimes. For certain flows, monotonicity properties are established in the vanishing viscosity limit ("asymptotic monotony") along with second-order accuracy when the grid is refined. Practical benchmarks are displayed to assess the feasibility of the scheme, including the "western currents" with a Navier-Stokes-Coriolis model of ocean circulation.

1. Introduction. The general scope of the present article is to address a "genuinely two-dimensional" numerical analysis, involving mostly finite-differences, of general (possibly weakly-nonlinear, i.e. mean-field), drift-diffusion equation,

∂ t ρ(t, x, y) -∇ • (ε ∇ρ -ρ∇Φ) = 0 in Ω ⊂ R 2 , ε > 0, (1.1) 
where Ω is, most often, the square domain (0, 1) 2 and ∂Ω its boundary. Convenient boundary conditions supplement (1.1), like e.g., Dirichlet or Neumann. The potential Φ can be prescribed or self-consistently related to ρ(t, x, y) through a strictly elliptic, attractive or repulsive (Coulomb or gravitational interactions), equation,

-∆Φ + λΦ = ±ρ, λ ≥ 0, in Ω ⊂ R 2 , (1.2) 
to which are added boundary conditions as well. An elementary calculation shows that (1.1)-(1.2) encompasses the 2D incompressible Navier-Stokes equations, too,

∂ t ω(t, x, y) -∇ • ∇ω Re -ω ∇ ⊥ ψ = 0, -∆ψ = ω. (1.3) 
The stream function ψ is related to the vorticity ω = ∇ ⊥ • U , where U = (u, v) stands for the fluid's velocity and 0 < Re, for the Reynolds number.

1.1. Numerical fluxes as radial derivatives of "Green bubbles". Many numerical schemes for either (1.1) or (1.3) proceed by discretizing the continuity equations in both horizontal and vertical directions (dimensional splitting) in such a manner that discrete drift and diffusion terms don't see each other. This is a different situation from the simpler, one-dimensional, case where the "uniformly accurate" (or "asymptotic-preserving", AP) Il'in/Scharfetter-Gummel algorithm [START_REF] Ilin | A difference scheme for a differential equation with a small parameter affecting the highest derivative[END_REF][START_REF] Roos | Ten ways to generate the Il'in and related schemes[END_REF][START_REF] Scharfetter | Large signal analysis of a silicon Read diode oscillator[END_REF] allows to treat the 1D drift-diffusion operator as a whole. Consider, for ǫ > 0, ∂ t ρ(t, x) + ∂ x J(t, x) = 0, J := -ǫ ∂ x ρ + ρ.

Denote ρ n j = ρ(t n , x j = j∆x), a reliable (constant) numerical flux J n j- 1 2 can be derived at each interface of the grid so that, one gets a forward time-marching scheme,

ρ n+1 j -ρ n j ∆t + J n j+ 1 2 -J n j-1 2 ∆x = 0. (1.4)
Clearly, J n j- 1 2 is the flux related to the L-spline interpolation [START_REF] Schumaker | Spline functions: basic theory[END_REF] at time t n , that is, the piecewise steady-state curve linking each (x j-1 , ρ n j-1 ) to its neighbor (x j , ρ n j ),

-ǫ exp(x/ǫ) d dx exp(-x/ǫ)ρ(x) = J n j-1 2
, x ∈ (x j-1 , x j ). (1.5) and it allows (1.4) to be reliable whatever the "Peclet number" ∆x/2ǫ. Hence, a chal-
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• Denoting x i , y j a generic grid point in the computational domain, Delaunaytype disks are drawn around each of the 4 neighboring nodes x i± 1 2 , y j± 1 2 . Inside each disk, a (local) steady-state solution is derived by means of the Dirichlet-Green function (2.18) of the convection-diffusion operator (2.1).

• Radial derivatives at the center of each disk (at each node) are computed by means of an exact formula (2.19) involving modified Bessel functions I n . Our 2D fluxes are defined as their approximation resulting from the trigonometric interpolation of the 4 values available on each circle: see (3.5) and (3.7).

• Time-marching schemes can be deduced, see e.g. (4.2) and (4.4), for which various monotony and accuracy properties are established. In practice, they were set up mostly on Navier-Stokes equations (1.3), possibly in presence of a Coriolis force modeled by means of a "β-plane approximation". Our piecewise-steady interpolation is somewhat reminiscent of "bubbles" [START_REF] Babuska | Generalized finite element methods: their performance and their relation to mixed methods[END_REF][START_REF] Brezzi | Choosing bubbles for advection-diffusion problems[END_REF]; here, neither differential operators nor spatial directions are split in our calculations so that the exponential functions, typical of 1D problems endowed with sharp layers, leave the stage to a sequence of modified Bessel functions, I n , in 2D. It traces back to "discrete weighted mean" agorithms [START_REF] Gartland | Discrete weighted mean approximation of a model convection-diffusion equation[END_REF], nowadays rephrased as "tailored methods" [START_REF] Han | A Tailored Finite Point Method for a Singular Perturbation Problem on an Unbounded Domain[END_REF].

1.2. Plan of the paper. Fig. 1.1 appears to be similar to Fig. 2 in [18, page 176]; however, the fluxes we intend to derive here are evaluated at each disk's center, thus are different from these former ones, which are computed on each disk's boundary. Section 2 contains most of the analytical calculations which are necessary to derive the Dirichlet-Green (sometimes called "companion") function for convectiondiffusion (2.1). We perform a symmetrization of the skew-adjoint transport operator thanks to an exponential modulation (2.3) in order to retrieve an Helmholtz-type equation (2.2). Then, in Section 2.3, the corresponding Green function with homogeneous boundary condition is found, along with its radial derivative in Section 2.4: consistency with the well-known Poisson potential is checked. Section 3 contains the practical computation of numerical fluxes: after the trigonometric interpolation in Section 3.1, radial derivatives are displayed in Section 3.2. Specific properties of the resulting scheme are studied in Section 4, where a notion of "asymptotic monotony" (see Def. 1) is defined in the limit of vanishing viscosity: our main results are stated in Theorem 1. Numerical tests are presented in Section 5, mostly on incompressible Navier-Stokes equations, possibly in presence of a Coriolis term and an external forcing rendering the wind in ocean circulation models, see [START_REF] Bryan | A numerical investigation of a nonlinear model of a wind-driven ocean[END_REF] and Fig. 5.5. Some tests were also performed on the classical lid-driven cavity problem, see Fig. 5.3 and [16].

2.

A formalism based on Green-Dirichlet functions. Let R > 0 and D stands for the (open) disk with radius R > 0, centered in 0 . Here C is the circle of identical radius, so that C = ∂ D. As mentioned before, here we solve an homogeneous boundary-value problem endowed with inhomogeneous boundary data,

L ε [u] = -ε∆u + V • ∇u = 0 in D, u(x, y) = h(x, y) on C, (2.1) 
where V = (V 1 , V 2 ) ∈ R 2 is a constant vector and "•" stands for the R 2 scalar product. It is customary to symmetrize L ε by means of an associated Klein-Gordon (or modified Helmholtz) operator, hereafter denoted by H ε :

H ε [v] = -∆v + V 2ε 2 v(x, y) = 0, ω ε := V 2ε , (2.2) with | • | standing for the Euclidean norm in R 2 . It is well-known that, if u(x, y) solves L ε [u] in R 2 , then its "exponential modulation", v(x, y) = exp - V 2ε • (x, y) u(x, y), solves H ε [v] = 0. (2.3)
So, G 0 ε , the Green-Dirichlet function of L ε vanishing on C, comes from the one of H ε .

2.1. Green's formalism for L ε . Let L * ε stand for the adjoint of L ε and u be a solution to (2.1), namely L ε [u] = 0. Green's identity (see [START_REF] Duffy | Green functions and applications[END_REF]) yields:

D u * L ε [u] -u L * ε [u * ] dx dy = C u(q * • n) -u * (q • n) dσ(x, y), (2.4) 
where

q = ε∇u - V 2 u, q * = ε∇u * + V 2 u *
are fluxes associated to u, u * . Let u * P (Q) = g 0 ε (Q, P ) be the Dirichlet-Green function of the adjoint operator acting on the Q = (x, y) variable, with P = (ξ, ζ) fixed, then

L * ε [u * P ] = L * ε [g 0 ε (Q, P )] = δ(Q -P ), u * P (Q) = 0 for Q ∈ C,
where, in standard notation, P, Q are source/receiver points in D. Substituting u * P and u, i.e. the solution to the original problem (2.1), in (2.4),

- D u(Q)δ(Q -P ) dQ = -u(P ) = ε C h(Q) ∂u * P (Q) ∂ n Q dQ. (2.5)
Considering again the Green identity in (2.4) and setting u = G 0 ε (Q, S) be the Green-Dirichlet function of L ε acting on Q, where S is a fixed point, we symbolically write

L ε [G 0 ε (Q, S)] = δ(Q -S), G 0 ε (Q, S) = 0 for Q ∈ C,
Inserting u and u * = u * P so defined in (2.4), this gives

D g 0 ε (Q, P )δ(Q -S) -G 0 ε (Q, S)δ(Q -P ) dQ = 0,
which yields, for any choice of P, R ∈ D,

g 0 ε (S, P ) = G 0 ε (P, S), (2.6) 
where g 0 ε (S, P ) = u * P (S).

(2.7) Identity (2.6) means that the Green-Dirichlet function g 0 ε (P, Q) of the adjoint operator L * ε , with Dirac mass centered in P , is obtained just by switching the points coordinates of the corresponding Green-Dirichlet function G 0 ε (P, Q) associated to L ε . Because of the skew-symmetry of the convection part, L ε is not self-adjoint, so the Green-Dirichlet function G 0 ε is not symmetric, depending on the sing of the vector P -Q. Now, let us go back to the expression for u(P ) in (2.5), namely

u(P ) = -ε C h(Q) ∂u * P (Q) ∂ n Q dQ = -ε C h(Q)(∇u * P (Q) • n) dQ. Since u * P (Q) = g 0 ε (Q, P ), equality (2.7) yields u(P ) = -ε C h(Q)(∇g 0 ε (Q, P ) • n) dQ.
By using the previous identity in (2.6), this amounts to,

u(P ) = -ε C h(Q)(∇G 0 ε (P, Q) • n) dQ.
Introducing the radial coordinates as follows:

P = (r, θ), Q = (ρ, ψ),
we get the "double-layer potential" expression of u,

u(r, θ) = -ε 2π 0 h(ψ) ∂G 0 ε ∂ρ (r, θ; ρ = R, ψ) R dψ. (2.8)
The radial derivative of the solution u will be of crucial importance: it reads,

∂u ∂r (r = 0, θ) = -ε 2π 0 h(ψ) ∂ 2 G 0 ε ∂r∂ρ (r = 0, θ; ρ = R, ψ) R dψ.
(2.9)

A suitable assemblage of the radial derivative in (2.9), with respect to the four disks of the stencil, provides the numerical flux at each node of the computational grid.

2.2. Fundamental solution of L ε in full space. Here we consider the full space Green function G ε -or fundamental solution -associated to the operator L ε . According with the Green formalism,

L ε [G ε ] = δ(P -Q), P, Q ∈ R 2 .
Taking a constant vector V ∈ R 2 , according to (2.3), following [START_REF] Duffy | Green functions and applications[END_REF] we can write

G ε (P, Q) = exp V • (P -Q) 2ε H ε (P, Q), (2.10) 
such that H ε is the fundamental solution of H ε defined in (2.2).

-∆H ε + V 2ε 2 H ε = 1 ε exp - V • (P -Q) 2ε δ(P -Q).
Thus, it is straightforward to see that

δ(P -Q) = L ε (G ε ) = exp V • (P -Q) 2ε -ε∆H ε + V 2 √ ε 2 H ε ,
so that (2.10) is the desired full-space Green function of L ε .

2.3. Green-Dirichlet function for H ε in a disk. Taking advantage of (2.10), we are now interested in deriving the Dirichlet-Green function in a disk, G 0 ε (P, Q). for L ε , acting on the variable Q and centered in P :

     L ε [G 0 ε ] = δ(P -Q), G 0 ε (P, Q) = 0 for Q ∈ C, G 0 ε (P, Q) = exp V•(P -Q) 2ε H 0 ε (P, Q), (2.11) 
being H 0 ε (P, Q) the Dirichlet-Green function associated with H ε in (2.2) and

ω ε = V 2ε , V 2ε = ω ε (cos µ, sin µ) for any µ ∈ (-π, π), (2.12) 
along with,

V • (P -Q) 2ε = ω ε (r cos θ -ρ cos ψ) cos µ + (r sin θ -ρ sin ψ) sin µ = ω ε r cos(θ -µ) -ρ cos(ψ -µ) .
Proposition 1. Let D be the disk centered at the origin with radius R > 0, then the Green function associated with the "modified Helmholtz" operator H ε in (2.2) with Dirichlet boundary condition is,

H 0 ε (r, θ; ρ, ψ) = 1 2π n∈Z I |n| (ω ε r < ) I |n| (ω ε R) I |n| (ω ε R)K |n| (ω ε r > ) -I |n| (ω ε r > )K |n| (ω ε R) .
(2.13) where r < := min{r, ρ}, r < := max{r, ρ}, and I n , K n are modified Bessel functions.

Proof. It is convenient to switch to radial coordinates: the Green function for the "modified Helmholtz equation" (2.2) solves,

1 r ∂ ∂r r ∂H 0 ε ∂r + 1 r 2 ∂ 2 H 0 ε ∂θ 2 -ω 2 ε H 0 ε = - δ(r -ρ)δ(θ -ψ) r , (2.14) 
where 0 < r, ρ < R, 0 ≤ θ, ψ ≤ 2π, with boundary condition H 0 ε (R, θ; ρ, ψ) = 0. Clearly, (2.14) rewrites as an Helmholtz equation where

ω ε is replaced by iω ε , 1 r ∂ ∂r r ∂H 0 ε ∂r + 1 r 2 ∂ 2 H 0 ε ∂θ 2 + (iω ε ) 2 H 0 ε = - δ(r -ρ)δ(θ -ψ) r .
(2.15)

Yet, we provide an expression of the Dirichlet-Green function for Helmholtz equation with frequency λ = iω ε . First of all, by using the Fourier basis, it comes

δ(θ -ψ) = 1 2π + 1 π ∞ n=1 cos(n(θ -ψ)) = 1 2π ∞ n=-∞ cos(n(θ -ψ)),
which implies that the solution to (2.15) presents the following form:

H 0 ε (r, θ; ρ, ψ) = ∞ n=-∞ h 0 n (r, ρ) cos(n(θ -ψ)).
It is well-known that a particular solution to equation (2.15) is given by

- 1 4 Y 0 (iω ε r 2 + ρ 2 -2rρ cos(θ -ψ)),
where Y 0 is the zero order Bessel function of the second kind. The general solution to (2.14) can be expressed by means of J n , the Bessel functions of the first kind,

H 0 ε (r, θ; ρ, ψ) = - 1 4 Y 0 (iω ε r 2 + ρ 2 -2rρ cos(θ -ψ))+ ∞ n=-∞ A n J n (iω ε r) cos(n(θ-ψ)).

Homogeneous boundary conditions for H

0 ε read H 0 ε (R, θ; ρ, ψ) = 0 bring 1 4 Y 0 (iω ε R 2 + ρ 2 -2Rρ cos(θ -ψ)) = ∞ n=-∞ A n J n (iω ε R) cos(n(θ -ψ)),
and, from the addition theorem for Bessel function, see [START_REF] Duffy | Green functions and applications[END_REF],

Y 0 (iω ε r 2 + ρ 2 -2rρ cos(θ -ψ)) = ∞ n=-∞ J n (iω ε ρ)J n (iω ε r) cos(n(θ -ψ)).
Accordingly,

1 4 ∞ n=-∞ J n (iω ε ρ)Y n (iω ε R) cos(n(θ -ψ)) = ∞ n=-∞ A n J n (iω ε R) cos(n(θ -ψ)), so that, ∀n ∈ Z, A n = J n (iω ε ρ)Y n (iω ε R) 4J n (iω ε R) .
This gives the following expression:

H 0 ε (r, θ; ρ, ψ) = - 1 4 Y 0 (iω ε r 2 + ρ 2 -2rρ cos(θ -ψ)) + ∞ n=-∞ Y n (iω ε R) 4J n (iω ε R) J n (iω ε ρ)J n (iω ε r) cos(n(θ -ψ)).
(2.16)

By using again the addition theorem in (2.16) and following [START_REF] Duffy | Green functions and applications[END_REF], one gets the Dirichlet-Green function for the Helmholtz equation in (2.15),

H 0 ε (r, θ; ρ, ψ) = - 1 4 n∈Z J n (iω ε r < ) J n (iω ε R) J n (iω ε R)Y n (iω ε r > )-Y n (iω ε R)J n (iω ε r > ) cos(n(θ-ψ)),
(2.17) First and second kind Bessel functions with imaginary arguments reduce to,

J n (ix) = e nπi/2 I n (x), Y n (ix) = e (n+1)πi/2 I n (x) - 2 π e -nπi/2 K n (x),
so that (2.17) rewrites in terms of the modified Bessel functions of the first and second kind, bringing the expression (2.13), as stated in the Proposition. Following [START_REF] Duffy | Green functions and applications[END_REF], the expression of G 0 ε is immediately deduced from the one of H 0 ε . Corollary 1. With the notation of Proposition 1, and H 0 ε (r, θ; ρ, ψ) being given in (2.13), the Dirichlet-Green function for convection-diffusion (2.1) in D is,

G 0 ε (r, θ; ρ, ψ) = exp V • (P -Q) 2ε H 0 ε (r, θ; ρ, ψ). (2.18)
2.4. Radial derivatives of G 0 ε (r, θ; ρ, ψ). Following Proposition 1, it holds: Proposition 2. Let θ ∈ (-π, π) be a direction, and denote

E(ψ) = exp(-ω ε R cos(ψ -µ)),
then, the radial derivative (2.9) reads, This provides the following expression for the partial derivative in ρ of H 0 ε (r, θ; ρ, ψ),

∂u ∂r (r = 0, θ) = εω ε 2π cos(θ -µ) I 0 (ω ε R) 2π 0 h(ψ)E(ψ) dψ + 1 I 1 (ω ε R) 2π 0 h(ψ)E(ψ) cos(θ -ψ) dψ .
∂H 0 ε (r, θ; ρ, ψ) ∂ρ = ω ε 2π n∈Z I ′ |n| (ω ε r < )χ {r-ρ>0} I |n| (ω ε R) I |n| (ω ε R)K |n| (ω ε r > ) -I |n| (ω ε r > )K |n| (ω ε R) + I |n| (ω ε r < ) I |n| (ω ε R) χ {ρ-r>0} I |n| (ω ε R)K ′ |n| (ω ε r > ) -I ′ |n| (ω ε r > )K |n| (ω ε R) cos(n(θ -ψ)).
(2.20) In (2.8), it is meant to be ρ = R: hence, using the Wronskian relation [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF][START_REF] Gartland | Discrete weighted mean approximation of a model convection-diffusion equation[END_REF],

K |n| (ω ε R)I ′ |n| (ω ε R) -K ′ |n| (ω ε R)I |n| (ω ε R) = 1 ω ε R , (2.21) 
one gets

∂H 0 ε ∂ρ (r, θ; R, ψ) = 1 2πR n∈Z I |n| (ω ε r) I |n| (ω ε R) cos n(ψ -θ),
and so

∂H 0 ε ∂ρ (0, θ; R, ψ) = - 1 2πRI 0 (ω ε R) .
The radial derivative (2.9) also needs the expression of a "mixed derivative" of H 0 ε at r = 0, ρ = R. From (2.20), and since χ {ρ-r>0} χ {ρ-r<0} = 0,

∂ 2 H 0 ε (r, θ; ρ, ψ) ∂r∂ρ = ω ε 2π n∈Z I ′ |n| (ω ε r < )δ(r -ρ) I |n| (ω ε R) I |n| (ω ε R)K |n| (ω ε r > ) -I |n| (ω ε r > )K |n| (ω ε R) +ω ε I ′ |n| (ω ε r < ) I |n| (ω ε R) I |n| (ω ε R)K ′ |n| (ω ε r > ) -I ′ |n| (ω ε r > )K |n| (ω ε R) χ {ρ-r>0} + I |n| (ω ε r < ) I |n| (ω ε R) I |n| (ω ε R)K ′ |n| (ω ε r > ) -I ′ |n| (ω ε r > )K |n| (ω ε R) δ(r -ρ) cos(n(θ -ψ))
which, thanks again to the Wronskian relation (2.21), yields,

∂ 2 H 0 ε ∂ρ∂r (0, θ; R, ψ) = - ω ε cos(ψ -θ) 2πR I 1 (ω ε R) . (2.22)
Now, we are ready to compute the mixed derivative for G 0 ε in (2.9), evaluated at r = 0, ρ = R. Thanks to the Dirichlet boundary conditions imposed on G ε in (2.11),

- ∂ 2 G 0 ε ∂ρ∂r (r = 0, θ; ρ = R, ψ) = ω ε exp(-ω ε R cos(ψ -µ)) 2πR cos(θ -µ) I 0 (ω ε R) + cos(θ -ψ) I 1 (ω ε R) ,
which ends the proof using (2.9). Remark 1 (special case of Poisson's potential). Since I 1 (z) → z/2 as z → 0, it comes that the "mixed derivative" evaluated at r = 0, ρ = R satisfies,

∂ 2 H 0 ε ∂ρ∂r (0, θ; R, ψ) = ω ε cos(ψ -θ) 2πR I 1 (ω ε R) → cos(ψ -θ) πR 2 when ω ε → 0.
This result is coherent with the Poisson kernel, [START_REF] Duffy | Green functions and applications[END_REF]: indeed, if V ≡ 0 and ε = 1,

u(r, θ) = 1 2π 2π 0 h(ψ)P(r, θ, R, ψ) dψ, P = R 2 -r 2 R 2 -2Rr cos(θ -ψ) + r 2 .
By computing the corresponding r-derivative, one gets

∂P ∂r r=0 = 2 cos(θ -ψ) R , ∂u ∂r (r = 0, θ) = 1 πR 2π 0 h(ψ) cos(θ -ψ) dψ, (2.23) 
which agrees with (2.9) as soon as the limit ω ε → 0 of (2.22) is taken. Moreover, we can take advantage of the "double-layer potential" value of u in (2.8) at r = 0. Thanks again to the Dirichlet boundary conditions,

∂G 0 ε ∂ρ (0, θ; R, ψ) = - exp(-ω ε cos(ψ -µ)R) 2πR I 0 (ωR) ,
which yields a formula used in [15, eqn. (3.2)],

u(r = 0, θ) = ε I 0 (ω ε R) 2π 0 h(ψ) exp(-ω ε cos(ψ -µ)R) dψ 2π . (2.24)
Accordingly,

∂u ∂r (0, θ) = ε ω ε cos(θ -µ)u(0, θ) + ω ε I 1 (ω ε R) 2π 0 h(ψ)E(ψ) cos(θ -ψ) dψ 2π ,
which splits naturally between a "transport part" and a "diffusive part", as we will see later in details. More precisely, here we define the "transport term" as follows,

T µ (θ) = ω ε cos(θ -µ) 2π I 0 (ω ε R) 2π 0 h(ψ) exp(-ω ε R cos(ψ -µ)) dψ, (2.25) 
while the "diffusive term" reads,

D µ (θ) = ω ε 2πI 1 (ω ε R) 2π 0 h(ψ) exp(-ω ε R cos(ψ -µ)) cos(θ -ψ) dψ.
(2.26) Numerical fluxes will be retrieved from both (2.25) and (2.26) by approximating h(ψ).

3. Practical derivation of 2D fluxes. Beside the Poisson kernel, recovered for ε = 1, V = 0, the general behavior of these radial derivatives is now studied;

∀n ∈ N, x ∈ R, I n (x) = 1 π π 0 exp(x cos ψ) cos nψ dψ. (3.1)
This is called the "integral representation of modified Bessel functions", [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF]. Another integral representation of modified Bessel functions is as follows,

∀n ∈ N, x ∈ R, I n (x) = (x/2) n √ π Γ(n + 1 2 ) π 0 exp(x cos ψ)| sin ψ| 2n dψ. (3.2)
This formula is easy for n = 0, 1 because Γ(

1 2 ) = √ π , Γ( 3 2 ) = √ π 2 , so that, ∀x = 0, I 1 (x) x = π 0 exp(x cos ψ)| sin ψ| 2 dψ π .
3.1. Trigonometric polynomial approximation of h(ψ). Denote x i = i∆x, y j = j∆x, for i, j ∈ Z 2 : at any time-step t n = n∆t, we only have a set of discrete values at hand; in particular, instead of knowing the boundary data on each circle C, we are just aware of 4 discrete points, so we must deduce boundary data h(ψ) from a "trigonometric polynomial interpolation" of discrete ones u n i,j ≃ u(t n , x i , y j ) available on the uniform Cartesian grid. Accordingly, the most natural manner of deducing a trigonometric polynomial out of 4 values

u n i,j , u n i-1,j , u n i-1,j-1 , u n i,j-1 , h 4 (ψ) = a 0 + a 1 cos ψ + b 1 sin ψ + a 2 cos 2ψ + b 2 sin 2ψ, ψ ∈ (0, 2π), (3.3) 
so that

h 4 (0) = u n i,j , h 4 ( π 2 ) = u n i-1,j , h 4 (π) = u n i-1,j-1 , h 4 ( 3π 2 ) = u n i,j-1 .
Fourier coefficients follow from inverting the linear system,

a 0 = 1 4 (u n i,j + u n i-1,j + u n i-1,j-1 + u n i,j-1 )
,

a 1 = 1 2 (u n i,j -u n i-1,j-1 ), b 1 = 1 2 (u n i-1,j -u n i,j-1 ), (3.4) 
a 2 = 1 4 (u n i,j + u n i-1,j-1 ) - 1 4 (u n i-1,j + u n i,j-1 ).
For a disk of radius R = ∆x √ 2 , numerical fluxes are given by (2.23),

∂u ∂r (r = 0, θ = 0) = √ 2 π∆x 2π 0 h 4 (ψ) cos ψ dψ.
The reason why we compute the radial derivative in the direction θ = 0 is because we fixed the origin of the angles ψ = 0 in x i , y j and the Laplacian is invariant by rotation. Otherwise, there would be a shift of π 4 everywhere. By orthogonality, only a 1 contributes to the overall flux value at the center of the disk:

∂u ∂r (r = 0, θ = 0) = a 1 πR 2π 0 cos 2 ψ dψ = a 1 πR ψ 2 + sin ψ cos ψ 2 2π 0 .
In order to get the final expression of the time-marching scheme,

u n+1 i,j -u n i,j ∆t = 1 2R a 1 R i+ 1 2 ,j+ 1 2 - a 1 R i-1 2 ,j-1 2 + b 1 R i-1 2 ,j+ 1 2 - b 1 R i+ 1 2 ,j-1 2 = 1 4R 2 -4u n i,j + u n i-1,j-1 + u n i+1,j+1 + u n i-1,j+1 + u n i+1,j-1 ,
and the resulting "diagonal nodal scheme" is both monotone (under standard parabolic CFL restriction) and consistent (because 4R 2 = 2∆x 2 ).

3.2.

Transport and diffusion terms in the radial derivative. Given an angle µ ∈ (-π, π) as in (2.12), we can write a 4-points approximation T µ 4 of T µ by inserting (3.3) into (2.25) and computing exactly the resulting integral thanks to (3.1). Yet, by expanding the trigonometric terms, using the orthogonality of the Fourier basis and the properties of the Bessel functions, one finds: Lemma 3.1.

T µ 4 (θ) = ω ε cos(θ -µ) a 0 -a 1 cos µ + b 1 sin µ I 1 (ω ε R) I 0 (ω ε R) + a 2 cos 2µ I 2 (ω ε R) I 0 (ω ε R) (3.5)
Proof. Assume first that boundary data is a simpler trigonometric polynomial, ∀ψ ∈ (0, 2π),

h 3 (ψ) = a 0 + a 1 cos ψ + b 1 sin ψ,
then, given an angle µ ∈ (0, 2π), and denoting

T µ 3 (θ) = ω ε cos(θ -µ) 2π I 0 (ω ε R) 2π 0 h 3 (ψ) exp(-ω ε R cos(ψ -µ)) dψ = ω ε cos(θ -µ) 2π I 0 (ω ε R) 2π 0 h 3 (ψ + µ) exp(-ω ε R cos ψ) dψ = ω ε cos(θ -µ) 2π I 0 (ω ε R) 2π 0 a 0 + a 1 cos(ψ + µ) + b 1 sin(ψ + µ) exp(-ω ε R cos ψ) dψ.
Yet, by expanding the trigonometric terms, cos(ψ + µ) = cos ψ cos µ -sin ψ sin µ, sin(ψ + µ) = sin ψ cos µ + cos ψ sin µ, one gets cancellations because, by periodicity,

2π 0 exp(-ω ε R cos ψ) sin ψ dψ = - exp(-ω ε R cos ψ) ω ε R 2π 0 = 0.
Accordingly, remaining terms read:

a 0 2π 0 exp(-ω ε R cos ψ) dψ 2π = a 0 I 0 (ω ε R),
and since I 1 (-x) = -I 1 (x), (because for any n ∈ N, I n (-x) = (-1) n I n (x))

a 1 2π 0 cos(ψ + µ) exp(-ω ε R cos ψ) dψ 2π = -a 1 I 1 (ω ε R) cos µ. by (3.1), T µ 3 (θ) = ω ε cos(θ -µ) a 0 -(a 1 cos µ + b 1 sin µ) I 1 (ω ε R) I 0 (ω ε R) .
Then, with the "4-points trigonometric polynomial" (3. 

ω ε cos(θ -µ) cos(2µ)a 2 I 0 (ω ε R) 2π 0 cos(2ψ) exp(-ω ε R cos ψ) dψ 2π = ω ε cos(θ -µ) cos(2µ)a 2 I 0 (ω ε R) I 0 (ω ε R) - 2I 1 (ω ε R) ω ε R = ω ε cos(µ -θ) cos(2µ)a 2 1 - 2I 1 (ω e R) ω ε RI 0 (ω ε R)
.

The integral equality (3.1) gives

ω ε cos(θ -µ) cos(2µ)a 2 I 0 (ω ε R) 2π 0 cos(2ψ) exp(-ω ε R cos ψ) dψ 2π = ω ε cos(θ -µ) cos(2µ)I 2 (ω ε R)a 2 I 0 (ω ε R) .
Former calculations yield, in a very similar manner, the expression (3.5). Analogously, the following lemma holds. Lemma 3.2. The 4-points approximation D µ 4 of D µ in (2.26) is given by:

D µ 4 (θ) =ω ε cos(θ -µ) -a 0 + (a 1 cos µ + b 1 sin µ) I 0 (ω ε R) I 1 (ω ε R) -a 2 cos 2µ + -a 1 cos(θ -2µ) + b 1 sin(θ -2µ) ω ε R . (3.7) 
Proof. Again, consider first the simpler case where h(ψ) = h 3 (ψ),

D µ 3 (θ) = ω ε I 1 (ω ε R) 2π 0 h 3 (ψ + µ) exp(-ω ε R cos ψ) cos(ψ + (µ -θ)) dψ 2π = ω ε I 1 (ω ε R) 2π 0 a 0 + a 1 cos(ψ + µ) + b 1 sin(ψ + µ) × exp(-ω ε R cos ψ) cos ψ + (µ -θ) dψ 2π .
The integral associated to the constant term a 0 is easy:

a 0 ω ε I 1 (ω ε R) 2π 0 exp(-ω ε R cos ψ) cos ψ + (µ -θ) dψ 2π = -a 0 cos(µ -θ)ω ε .
Yet, both terms multiplied by a 1 and b 1 can be handled the same way:

• the product cos(ψ + µ) cos(ψ + µ -θ) yields, cos 2 ψ cos µ cos(µ -θ) + sin 2 ψ sin µ sin(µ -θ) -sin ψ cos(ψ)(...),

where the "mixed" terms sin ψ cos ψ(...) = sin 2ψ(...) vanish, since they are orthogonal in the scalar product induced by exp(-

ω ε R cos ψ) in L 2 ([0, 2π]).
It is interesting to rewrite the first product as, cos µ cos(µ -θ) -cos µ cos(µ -θ) -sin µ sin(µ -θ) sin 2 ψ, so that, using (3.2), the integral becomes:

a 1 ω ε I 1 (ω ε R) 2π 0 cos(ψ + µ) exp(-ω ε R cos ψ) cos ψ + (µ -θ) dψ 2π = a 1 ω ε I 1 (ω ε R) cos µ cos(µ -θ) 2π 0 exp(-ω ε R cos ψ) dψ 2π -cos(2µ -θ) 2π 0 exp(-ω ε R cos ψ) sin 2 ψ dψ 2π = a 1 ω ε I 1 (ω ε R) cos µ cos(µ -θ)I 0 (ω ε R) -cos(2µ -θ) I 1 (-ω ε R) -ω ε R ;
• similarly, explicitly solving the product sin(ψ + µ) cos(ψ + µ -θ) and, using (3.2), the integral reads,

b 1 ω ε I 1 (ω ε R) 2π 0 sin(ψ + µ) exp(-ω ε R cos ψ) cos ψ + (µ -θ) dψ 2π = b 1 ω ε I 1 (ω ε R) sin µ cos(µ -θ) 2π 0 exp(-ω ε R cos ψ) dψ 2π -sin(2µ -θ) 2π 0 exp(-ω ε R cos ψ) sin 2 ψ dψ 2π = b 1 ω ε I 1 (ω ε R) sin µ cos(µ -θ)I 0 (ω ε R) -sin(2µ -θ) I 1 (-ω ε R) -ω ε R .
Accordingly, using I 1 (-x) = -I 1 (x), diffusive 3-points fluxes read:

D µ 3 (θ) = ω ε cos(θ -µ) -a 0 + (a 1 cos µ + b 1 sin µ) I 0 (ω ε R) I 1 (ω ε R) - a 1 cos(θ -2µ) + b 1 sin(θ -2µ) ω ε R .
To treat the "4-points trigonometric polynomial" h 4 (ψ), it remains to consider cos(2ψ + 2µ) cos(ψ + µ -θ) = cos 2ψ cos ψ cos 2µ cos(µ -θ) + sin 2ψ sin ψ sin 2µ sin(µ -θ) -cos 2ψ sin ψ cos 2µ sin(µ -θ) -sin 2ψ cos ψ sin 2µ cos(µ -θ).

As before, in the integrals corresponding to mixed terms, e.g., cos 2ψ sin ψ,

D µ 4 (θ) = ω ε I 1 (ω ε R) 2π 0 a 0 + a 1 cos(ψ + µ) + b 1 sin(ψ + µ) + a 2 cos(2ψ + 2µ) exp(-ω ε R cos ψ) cos ψ + (µ -θ) dψ 2π ,
it suffices to deal only with supplementary non-zero coefficients related to a 2 ,

ω ε a 2 cos 2µ cos(µ -θ) I 1 (ω ε R) 2π 0 cos 2ψ cos ψ exp(-ω ε R cos ψ) dψ 2π + 2π 0 sin 2ψ sin ψ exp(-ω ε R cos ψ) dψ 2π = ω ε a 2 cos 2µ cos(µ -θ) I 1 (ω ε R) 2π 0 cos ψ exp(-ω ε R cos ψ) dψ 2π = -ω ε cos(µ -θ) a 2 cos 2µ.
4. Some properties of the resulting "fully 2D" scheme. 

I 1 I 0 (ω ε R) + I 0 I 1 (ω ε R) - 1 ω ε R +a 2 cos(2µ) 1 + I 2 I 0 (ω ε R) ω ε cos(θ -µ) + (a 1 sin µ -b 1 cos µ) sin(θ -µ) R ,
where ω ε := |V|/2ε, see (2.12). Yet. inserting generic Fourier coefficients,

a 0 = a + b + c + d 4 , a 1 = c -d 2 , b 1 = a -b 2 , a 2 = c + d 4 - a + b 4 ,
yields the following expression:

T µ 4 (θ) -D µ 4 (θ) = (c -d) sin µ 2 - (a -b) cos µ 2 sin(θ -µ) R + a + b + c + d 2 - (c -d) cos µ 2 + (a -b) sin µ 2 
I 1 I 0 (ω ε R) + I 0 I 1 (ω ε R) - 1 ω ε R + c + d 4 - a + b 4 cos(2µ) 1 + I 2 I 0 (ω ε R) ω ε cos(θ -µ).
We now intend to make incremental (Harten) coefficients explicit:

T µ 4 (θ) -D µ 4 (θ) =a C µ a (θ) + b C µ b (θ) + c C µ c (θ) + d C µ d (θ) := ω ε cos(θ -µ) 2 × a 1 -sin µ B 1 (ω ε R) - cos(2µ) 2 B 2 (ω ε R) - cos µ tan(θ -µ) ω ε R + b 1 + sin µ B 1 (ω ε R) - cos(2µ) 2 B 2 (ω ε R) + cos µ tan(θ -µ) ω ε R + c 1 -cos µ B 1 (ω ε R) + cos(2µ) 2 B 2 (ω ε R) + sin µ tan(θ -µ) ω ε R + d 1 + cos µ B 1 (ω ε R) + cos(2µ) 2 B 2 (ω ε R) - sin µ tan(θ -µ) ω ε R ,
where

B 1 (ω ε R) = I 1 I 0 + I 0 I 1 (ω ε R) - 1 ω ε R ∈ (1.6, +∞), B 2 (ω ε R) = 1 + I 2 I 0 (ω ε R) ≥ 1.
A few (obvious) observations are:

• let a = b = c = d, so that incremental coefficients add each other, it comes ∀θ, µ, T µ 4 (θ) -D µ 4 (θ) = 2ω ε a cos(θ -µ) = a |V| ε cos(θ -µ).
• let ε = 1 and (ωR, µ) → 0 (purely diffusive limit): when 0

≤ x ≪ 1, ∀n ∈ N, I n (x) = 1 n! x 2 n + O(x 2 ), so I 1 I 0 + I 0 I 1 (ωR) - 1 ωR ≃ 1 ωR .
Numerical fluxes reduce to,

T 0 4 (θ) -D 0 4 (θ) ≃ - (a -b) sin θ + (c -d) cos θ 2R ,
so that a diagonal, centered (2nd order), 5-points scheme is recovered. • more generally, let µ = 0, ε = 1 and the (fine-grid) regime be 0 ≤ ωR ≪ 1:

T 0 4 (θ) -D 0 4 (θ) ≃ a ω cos θ 4 - sin θ 2R + b ω cos θ 4 + sin θ 2R (4.1) +c 3ω cos θ 4 - cos θ 2R + d 3ω cos θ 4 + cos θ 2R .
The (centered) average is biased along the flow's direction.

4.2. Asymptotic properties and directional monotony as ε → 0. On the contrary, one may consider "transport-dominant" (or "vanishing viscosity") asymptotic regimes for which ω ε R ≫ 1, and study the behavior of rescaled 2D fluxes:

∀θ, µ, F µ (θ) := ε T µ 4 (θ) -D µ 4 (θ) .
A crucial property of modified Bessel functions

I n (x) is, ∀(n, m) ∈ N 2 , lim x→+∞ I n (x) I m (x) = 1,
so that, asymptotically as ε → 0, our rescaled 2D fluxes boil down to:

F µ (θ) :=ε T µ 4 (θ) -D µ 4 (θ) = ω cos(θ -µ) 2 a 1 -2 sin µ -cos(2µ) -O(ε) + b 1 + 2 sin µ -cos(2µ) + O(ε) + c 1 -2 cos µ + cos(2µ) + O(ε) + d 1 + 2 cos µ + cos(2µ) -O(ε) .
At this point, it is convenient to state: Definition 1. Given a grid parameter ∆x > 0, a numerical scheme is called "asymptotically monotone" (under a certain CFL restriction) as ε → 0 when the limiting values of all its incremental coefficients are nonnegative.

Assume 0 < ω, µ are constants given in the whole computational domain, so that the drift-diffusion equation becomes an advection-diffusion one (like in [START_REF] Gartland | Discrete weighted mean approximation of a model convection-diffusion equation[END_REF][START_REF] Han | A Tailored Finite Point Method for a Singular Perturbation Problem on an Unbounded Domain[END_REF][START_REF] O'riordan | A globally uniformly convergent finite element method for a singularly perturbed elliptic problem in two dimensions[END_REF]). The most direct way to discretize the resulting problem is, in standard notation,

u n+1 i,j = u n i,j + ∆t 2R F µ i-1 2 ,j-1 2 (0) + F µ i+ 1 2 ,j+ 1 2 (π) + F µ i+ 1 2 ,j-1 2 ( π 2 ) + F µ i-1 2 ,j+ 1 2 (- π 2 ) . (4.2) A basic result is: Lemma 1. Let µ = k π 2 , k ∈ N,
so that the flow is diagonal, then (4.2) preserves the total mass and is asymptotically monotone as ε → 0 under the CFL restriction,

ε R + ωB 1 (ω ε R) ∆t = ε R + ω I 1 I 0 + I 0 I 1 (ω ε R) - ε ωR ∆t ≤ 2R. (4.3) 
Proof. Only the case µ = 0 is studied as the other ones are similar. Total mass preservation is ensured by the incremental coefficients adding to unity, which is clear from the definition of each F µ (θ). Beside, the restriction (4.3) is obtained by ensuring positivity of the coefficient acting on u n i,j . Finally, consider the limit ε → 0, µ = 0 in

F 0 (θ) = ω 2 cos θ O(ε)(a + b + c + d) + 4d = 2ω cos θ d,
which is the expression of a (diagonal) upwind scheme, obviously monotone. We aim at getting asymptotic monotony for both horizontal and vertical flows, too, but it is quite easy to see that it doesn't hold unless a viscous correction is added. Accordingly, define

u n+1 i,j = u n i,j + ∆t 2R F µ i-1 2 ,j-1 2 (0) + F µ i+ 1 2 ,j+ 1 2 (π) + F µ i+ 1 2 ,j-1 2 ( π 2 ) + F µ i-1 2 ,j+ 1 2 (- π 2 ) 
+ ω∆t 4R max 0,

I 1 I 0 (ω ε R) sin 2µ (u n i+1,j -u n i,j ) -(u n i,j -u n i-1,j ) (4.4) 
+ ω∆t 4R max 0, - I 1 I 0 (ω ε R) sin 2µ (u n i,j+1 -u n i,j ) -(u n i,j -u n i,j-1 ) . Lemma 2. Let µ = k π 4 , k ∈ N, then (4.4
) preserves the total mass and is asymptotically monotone as ε → 0 under the CFL restriction,

ε R √ 2 + ω B 1 (ω ε R) + | sin 2µ| 2 
I 1 I 0 (ω ε R) ∆t ≤ 2R. ( 4.5) 
Proof. Since sin 2µ = 0 for µ = kπ/2, Lemma 1 still holds because the viscous correction in (4.4) vanishes. Again, we shall check the claims for µ = π 4 only as other cases are similar. Now, consider that, for µ = π 4 , sin µ = cos µ = 1 √ 2 thus,

F π 4 (θ) = ε(cos θ -sin θ) 4 R (a -b) -(c -d) (4.6) 
+ ω 2 √ 2 (cos θ + sin θ) (a + c) 1 - B 1 (ω ε R) √ 2 + (b + d) 1 + B 1 (ω ε R) √ 2 ,
so that, as ε → 0, one gets

F π 4 (θ) → ω 2 (cos θ + sin θ) cos µ [(a + c)(1 -2 sin µ) + (b + d)(1 + 2 sin µ)] ,
which yields the sum of resulting fluxes,

F µ i-1 2 ,j-1 2 (0) + F µ i+ 1 2 ,j+ 1 2 (π) + F µ i+ 1 2 ,j-1 2 ( π 2 ) + F µ i-1 2 ,j+ 1 2 (- π 2 ) ≃ ω 2 cos µ (u n i,j + u n )(1 -2 sin µ) + (u n i,j-1 + u n i-1,j-1 )(1 + 2 sin µ) -(u n i,j+1 + u n i-1,j+1 )(1 -2 sin µ) -(u n i,j + u n i-1,j )(1 + 2 sin µ) + (u n i+1,j + u n i,j )(1 -2 sin µ) + (u n i+1,j-1 + u n i,j-1 )(1 + 2 sin µ) -(u n i+1,j+1 + u n i,j+1 )(1 -2 sin µ) -(u n i+1,j + u n i,j )(1 + 2 sin µ) ≃ ω 2 cos µ -4u n i,j sin µ -2(u n i-1,j + u n i+1,j ) sin µ + (u n i,j-1 + u n i-1,j-1 )(1 + 2 sin µ) -(u n i,j+1 + u n i-1,j+1 )(1 -2 sin µ) + (u n i+1,j-1 + u n i,j-1 )(1 + 2 sin µ) -(u n i+1,j+1 + u n i,j+1 )(1 -2 sin µ) .
In this last expression, only the incremental coefficients acting on u n i,j and u n i±1,j are negative: in particular the last two ones are -2 cos µ sin µ = -sin 2µ, which can be compensated by adding an amount of artificial viscosity like in (4.4). The CFL restriction (4.5) is checked by imposing positivity of the quantity,

-ε ∆t C µ c (0) + C µ d (π) + C µ a ( π 2 ) + C µ b (- π 2 ) ≤ 2R. Since µ = π 4 , the sum of the coefficients C µ 's is ω ε B 1 (ω ε R) + 1 R √
2 , to which one must add the viscosity contribution, I1 I0 (ω ε R) | sin 2µ| 2 : this yields (4.5).

4.3.

Formal second-order accuracy as ωR → 0. As schemes (4.2) and (4.4) are well-suited for stiff (vanishing viscosity) regimes, we now intend to examine their truncation error in the opposite, fine-grid (diffusion-dominant, or laminar), regime.

Theorem 1. Let V ∈ R 2 be constant, and µ = k π 4 , k ∈ N: the scheme (4.4) is • second-order in space when ω ε R → 0 and u(t, •, •) ∈ C 2 , • asymptotically monotone as ω ε R → +∞ under (4.5).

Proof. The second property is a direct consequence of Lemma 2. The first one comes from a study of the scheme's local truncation error; however, for µ = k π 2 , k ∈ N, this is obvious because, according to (4.1), the scheme reduces to a 1D centered discretization along one of the diagonals and the artificial viscosity vanishes:

F 0 (0) = ω ε 4 (a + b) + 3ω ε 4 (c + d) - 1 2R (c -d) = -F 0 (π), F 0 ( π 2 ) = - 1 2R (a -b) = -F 0 (- π 2 ),
which brings the (diagonally biased) centered scheme,

u n+1 i,j = u n i,j + ε∆t 2R u n i+1,j+1 + u n i-1,j-1 + u n i-1,j+1 + u n i+1,j-1 -4u n i,j 2R - ω ε 4 (u n i,j+1 + u n i+1,j ) -(u n i-1,j + u n i,j-1 ) - 3ω ε 4 u n i+1,j+1 -u n i-1,j-1
.

Yet, for µ = π 4 , k ∈ N, the artificial viscosity term is O(R 2 ) because I1 I0 (x) = O(x) and ∆u is bounded. By computing Taylor expansions in (4.6) for ωR → 0,

F π 4 (θ) ≃ ω 4 (a + b + c + d) √ 2 + (d -c) cos θ + (b -a) sin θ 2R .
We recognize the centered flux on the transport term, along with another (diagonal) one on the diffusion. Asymptotic monotony is ensured by the viscous term in (4.4).

Numerical results on 2D

Navier-Stokes equations. Most of our practical benchmarks concern the 2D incompressible Navier-Stokes equations (1.3) in vorticity/stream formulation; in particular, boundary conditions are implemented following the classical Thom's formulas (see e.g. [START_REF] Hou | Second-order convergence of a projection scheme for the incompressible Navier-Stokes with boundaries[END_REF]). Usually, 2D "uniformly accurate" methods are tested on simpler problems, like advection-diffusion, [START_REF] O'riordan | A globally uniformly convergent finite element method for a singularly perturbed elliptic problem in two dimensions[END_REF][START_REF] Sacco | Finite Element Methods for Convection-Diffusion Problems Using Exponential Splines on Triangles[END_REF].

5.1.

A preliminary drift-diffusion test. Let V (x, y) ∈ C 2 (R 2 ) stand for a stationary potential, and consider a continuity equation of the form,

∂ t ρ(t, x, y) -ε ∇ • exp( V ε )∇ exp(- V ε )ρ = 0, x, y ∈ R 2 , (5.1) 
for which ρ(x, y) = exp(V (x, y)/ε) is clearly a steady-state. Then, a simple benchmark consists in picking a random perturbation of ρ restricted to Ω = (0, 1) 2 as an initial data (with unperturbed Dirichlet boundaries) and compare the emerging numerical steady-state with the corresponding restriction of ρ. This is especially appealing for,

V (x, y) = - 3 2 |x ′ | 2 + 5|y ′ | 2 , (x ′ , y ′ ) = R θ x - 1 2 , y - 1 2 ,
being R θ the usual rotation matrix of angle θ = π 6 and ε = 0.65 because it allows to compare with both the "2D Steklov scheme" studied in [18, page 189] and usual finite-differences [START_REF] Brezzi | Choosing bubbles for advection-diffusion problems[END_REF] (involving an upwind discretization). Starting from random perturbations of ρ, pointwise relative errors are scrutinized for the three schemes, e(∆x) := max i,j on several (coarse) computational grids: see Table 5.1. Hence, it is quite clear that, for the benchmark (5.1), the "Green scheme" (4.2) is of second order in ∆x. The order of accuracy of the "Steklov scheme", proposed in [18, §5.2], appears to be 3 2 . 5.2. Incompressible Navier-Stokes models. In R 2 , the incompressible Navier-Stokes-Coriolis system in the so-called "β-plane" approximation reads, (see [START_REF] Al-Jaboori | Navier-Stokes equations on the β-plane[END_REF][START_REF] Dalibard | Mathematical study of degenerate boundary layers: A large scale ocean circulation problem[END_REF][START_REF] St-Raymond | The role of boundary layers in large-scale ocean circulation, in Mathematical Models and Methods for Planet Earth[END_REF])

ρ N i,j -ρ(x i , y j ) ρ(x i , y j ) , N
∂ t ω + ∇ ⊥ ψ • ∇ω -β∂ x ψ = ∆ω/Re, -∆ψ = ω.
However, it is possible to reformulate this problem in a more convenient form:

∂ t ζ -∇ • ( ∇ζ Re -ζ ∇ ⊥ ψ) = f (x, y), -∆ψ = ζ -βy, (5.2) 
being ζ the "potential vorticity", [START_REF] Fix | Finite element models for ocean circulation problems[END_REF]. System (5.2) behaves differently depending on the domain: for periodic ones, a slow-fast decoupling occurs along with a decay onto "zonal jets" [START_REF] Al-Jaboori | Navier-Stokes equations on the β-plane[END_REF], but in bounded ones, currents appear on one side through a layer on the stream function [START_REF] Dalibard | Mathematical study of degenerate boundary layers: A large scale ocean circulation problem[END_REF][START_REF] St-Raymond | The role of boundary layers in large-scale ocean circulation, in Mathematical Models and Methods for Planet Earth[END_REF]. Usual Navier-Stokes equations are recovered with β = 0.

5.3. Classical lid-driven cavity benchmark. The most classical numerical test for any discretization of Navier-Stokes equations (β = 0) is the lid-driven cavity, for which very accurate results are to be found in [START_REF] Ghia | High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[END_REF]. The scheme (4.2) was set up to carry out this problem, the stream function ψ being deduced from the vorticity ω at each time-step by means of a standard 5-points finite-difference solver. On Fig. 5.1, the outcome of (4.2) with random initial data is shown for three cases:

• [START_REF] Ghia | High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[END_REF] indicates a non-negligible deviation; worse, it seems that such a scheme isn't able to stabilize as residues begin to grow again around t ≃ 6. The agreement with reference values is fairly satisfying, especially for Re = 3200; transients are quite complex because the scheme tries, between t = 15 and t = 35, to stabilize the problem with only two secondary vortices, hence a stagnation of residues shown on Fig. 5.1, in sharp contrast with what happens for lower Reynolds numbers. 5.4. Western currents for Navier-Stokes-Coriolis. Now, we proceed with values β = 0 in (5.2), but we restrict ourselves to bounded domains, in which strong lateral currents are expected to materialize, in qualitative agreement with the ones in Northern Atlantic ocean, see [START_REF] Bryan | A numerical investigation of a nonlinear model of a wind-driven ocean[END_REF][START_REF] Dalibard | Mathematical study of degenerate boundary layers: A large scale ocean circulation problem[END_REF][START_REF] Endoh | A numerical experiment on the variations of western boundary currents[END_REF][START_REF] St-Raymond | The role of boundary layers in large-scale ocean circulation, in Mathematical Models and Methods for Planet Earth[END_REF]. Two different situations will be considered: one with a very elementary computational domain (like in [START_REF] Bryan | A numerical investigation of a nonlinear model of a wind-driven ocean[END_REF]), the other in a more realistic geometry (see Fig. 5.5). To cope with such a geometry while sticking to a Cartesian finite-differences framework, one strategy is to set up a "masking technique" for which both islands and continents are rendered through a given set Ξ ∈ R 2 . The Poisson equation in (5.2) for the stream function gets modified as follows,

-∆ψ + M χ Ξ (x, y)ψ = ζ -βy, M ≫ 1,
with Dirichlet boundary conditions. The function χ Ξ is the indicator of the set Ξ and acts as a strong penalization term; such a damped Poisson equation can be efficiently handled by means of the "discrete weighted mean" schemes proposed in [START_REF] Gartland | Discrete weighted mean approximation of a model convection-diffusion equation[END_REF][START_REF] Val | On mean value solutions for the Helmholtz equation on square grids[END_REF] (or the stationary ones in [START_REF] Gosse | Viscous equations treated with L-splines and Steklov-Poincaré operator in two dimensions[END_REF]). No-slip (Thom) boundary values are prescribed on ζ on ∂Ξ, whereas slip conditions are imposed when ∂Ω corresponds to the ocean. Transients for both the cases are comparable, with a quick formation of currents on the left side of the domain, and an oscillating decay of energy which allows to reach a numerical steady-state. The oscillations are clearly visible on the time-residues (Fig. 5.4, right) obtained with the simple geometry, a 50 × 50 grid, f ≡ 0, β = 60 and Re = 200. In the more intricate case, α = 0.3, Re = 400, and the wind-forcing term is (see [START_REF] Bryan | A numerical investigation of a nonlinear model of a wind-driven ocean[END_REF]), f (x, y) = -π sin(π(2 -x)(y + 0.15)),

x, y ∈ Ω := (0, 1) × (-0.3, 0.7).

Conclusion

. The construction of reliable numerical fluxes for multi-dimensional problems is a difficult task, see for instance [START_REF] Bouchut | Second-order entropy satisfying BGK-FVS schemes for incompressible Navier-Stokes equations[END_REF][START_REF] Gosse | A two-dimensional version of the Godunov scheme for convex, scalar balance laws[END_REF][START_REF] Roe | Optimum positive linear schemes for advection in 2 and 3 dimensions[END_REF] and references within. Accordingly, a "genuinely two-dimensional" finite-difference scheme was built for equation of the type (1.1) by taking advantage of explicit calculations which can be achieved on local Dirichlet-Green function for the convection-diffusion operator in a disk. Numerical fluxes are thus defined as its radial derivative, so that a 4-points trigonometric interpolation on each Delaunay circle allows to derive a feasible scheme on a uniform Cartesian grid. Comparable procedures based on local Green's functions were previously considered, see e.g. [START_REF] Axelson | The local Green's function method in sinfularly perturbed convection-diffusion problem[END_REF][START_REF] Franz | Green's function estimates for a singularly perturbed convection-diffusion problem[END_REF][START_REF] Gartland | Discrete weighted mean approximation of a model convection-diffusion equation[END_REF][START_REF] Roos | Robust numerical methods for singularly perturbed differential equations. Convection-diffusion-reaction and flow problems[END_REF][START_REF] Samarskii | The Theory of Difference Schemes[END_REF]; however, to the best of our knowledge, a full 2D computation (as done here) doesn't seem to have been achieved before. Beside, concerning incompressible fluid motion, divergence-free constraints were taken into account in [START_REF] Maas | A closed form Green function describing diffusion in a strained flow field[END_REF]. Two-dimensional extensions of 1D Il'in/Scharfetter-Gummel's famous scheme were more quickly studied in the realm of Finite-Element methods (FEMs), with mixed elements [START_REF] Brezzi | Two-dimensional exponential fitting and applications to driftdiffusion models[END_REF]. Later, Galerkin and Petrov-Galerkin formulations based on tensorial products of 1D solutions were given in [START_REF] O'riordan | A uniformly accurate finite element method for a singularly perturbation problem in conservative form[END_REF][START_REF] O'riordan | A globally uniformly convergent finite element method for a singularly perturbed elliptic problem in two dimensions[END_REF][START_REF] Sacco | Finite Element Methods for Convection-Diffusion Problems Using Exponential Splines on Triangles[END_REF][START_REF] Roos | Robust numerical methods for singularly perturbed differential equations. Convection-diffusion-reaction and flow problems[END_REF][START_REF] Shih | An exponential-fitting finite element method for convection-diffusion problems[END_REF], too. Kare Olaussen for his precious help in deriving Dirichlet-Green's functions.

Figure 1 . 1 .

 11 Figure 1.1. Radial derivative "⇒" with Delaunay circles on a uniform Cartesian grid.
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 219 Proof. Denoting by χ E the indicator function of a set E, let r < := min{r, ρ} = rχ {r-ρ<0} + ρχ {r-ρ>0} , ∂ min{r, ρ} ∂ρ = χ {r-ρ>0} , r > := max{r, ρ} = ρχ {r-ρ<0} + rχ {r-ρ>0} , ∂ max{r, ρ} ∂ρ = χ {r-ρ<0} .

  3), a new term will appear, cos(2(ψ + µ)) = cos 2ψ cos 2µ -2 sin ψ cos ψ sin 2µ, cos ψ) sin ψ cos ψ dψ = 0. Using (3.6) along with the relation, cos(2ψ) = cos 2 ψ -sin 2 ψ = 1 -2 sin 2 ψ,

4. 1 .

 1 Incremental (Harten) coefficients. From (3.4) and Lemmas 3.1 & 3.2, the resulting 2D fluxes read: for any θ = kπ/2, with k ∈ N, T µ 4 (θ)-D µ 4 (θ) = 2a 0 -(a 1 cos µ + b 1 sin µ)

  Re = 100, grid 35 × 35, no secondary vortex; • Re = 1000, grid 65 × 65, two secondary vortices (see Fig. 5.3, left); • Re = 3200, grid 95 × 95, three secondary vortices (see Fig. 5.3, right). To compare with, results of a simpler dimensional-splitting Il'in/Scharfetter-Gummel (1.4)-(1.5) discretization (on a 45 × 45 grid) are indicated on Fig. 5.2. Comparison with reference values from

Figure 5 . 1 .

 51 Figure 5.1. Comparison with reference values [16] (left) and time-decay of residues (right).

Figure 5 . 2 .

 52 Figure 5.2. Dimensional-split Il'in/Scharfetter-Gummel results with Re=100 and 45 × 45 points.

Figure 5 . 3 .

 53 Figure 5.3. Stream function: Re=1000, 65 × 65 points (left); Re=3200, 95 × 95 points (right).

Figure 5 . 4 .

 54 Figure 5.4. Velocity field (left) and time-decay of residues (right) for β = 60 and Re=200.

Figure 5 . 5 .

 55 Figure 5.5. Stream function in a more realistic domain, for β = 60 and Re=400.

Table 5 . 1

 51 ∆t ≃ 1 the numerical steady-state , Relative pointwise errors at steady-state for (4.2), the scheme in [18, §5.2] and usual FD.

	Grid points "2D Green" error "2D Steklov" error FD error
	8 × 8 12 × 12 16 × 16 24 × 24 32 × 32 48 × 48	0.0036815 0.0018102 0.0010253 0.0004318 0.0002163 0.0000851	0.0096818 0.0050208 0.0030357 0.0015190 0.0009252 0.0005099	0.1401012 0.1149618 0.0942922 0.0706629 0.0562096 0.0402375

Truly-2D finite-differencing for drift-diffusion
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