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UNIFORM ASYMPTOTIC AND CONVERGENCE ESTIMATES FOR
THE JIN-XIN MODEL UNDER THE DIFFUSION SCALING*

ROBERTA BIANCHINI f

Abstract. We obtain sharp decay estimates in time in the context of Sobolev spaces, for smooth
solutions to the one dimensional Jin-Xin model under the diffusion scaling, which are uniform with
respect to the singular parameter of the scaling. This provides convergence to the limit nonlinear
parabolic equation both for large time, and for the vanishing singular parameter. The analysis is
performed by means of two main ingredients. First, a crucial change of variables highlights the
dissipative property of the Jin-Xin system, and allows to observe a faster decay of the dissipative
variable with respect to the conservative one, which is essential in order to close the estimates. Next,
the analysis relies on a deep investigation on the Green function of the linearized Jin-Xin model,
depending on the singular parameter, combined with the Duhamel formula in order to handle the
nonlinear terms.

Key words. Relaxation, Green analysis, asymptotic behavior, dissipation, global existence,
decay estimates, diffusive scaling, conservative-dissipative form, BGK models.

AMS subject classifications. 35140, 35145, 35K55.

1. Introduction. We consider the following scaled version of the Jin-Xin ap-
proximation for systems of conservation laws in [10]:

atu + (%v = 0,

1
M 20,0 + N20,u = f(u) — v,

where A > 0 is a positive constant, u,v depend on (¢,x) € R* x R and take values in
R, while f(u) : R — R is a Lipschitz function such that f(0) = 0, and f/(0) = a, with
a a constant value independent of €, \. The diffusion limit of this system for ¢ — 0
has been studied in [9, 4], where the convergence to the following equations is proved:

ﬁtu+3¢£v =0

@) v = f(u) — \20,u.

From [17, 4], it is well-known that system (1) can be written in BGK formulation, [3],
by means of the linear change of variables:

A
3) u=fi+f5 v=20-5).

Precisely, the BGK form of (1) reads:

A
O f + 20, ff =
@ ST+ s Ji E
Oifs — Eaxfze = — (Ma(u) - f3),
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2 ROBERTA BIANCHINI

where the so-called Maxwellians are:

u , ef(u) u  ef(u)
5 M = M. = _ .
(5) ) =g+ T =2 R
According to the theory on diffusive limits of the Boltzmann equation and related
BGK models, see [7, 23], we consider fluctuations of the Maxwellian functions as
initial data for the Cauchy problem associated with system (1). Namely, given a
function @g(x), depending on the spatial variable, we assume

(6) (u(0,2),v(0,2)) = (uo,vo) = (6o, f(to) — >\28zﬂ0)~

By using the change of variables (3), the BGK initial data read:

M O £50.2) = <M1 (7o) — S 0sito, Ma(io) + ;au)

eA
where the fluctuations are given by i5axa0.

System (1) is the parabolic scaled version of the hyperbolic relaxation approxima-
tion for systems of conservation laws, the Jin-Xin system, introduced in [10] in 1995.
This model has been studied in [18, 6, 10], and the hyperbolic relaxation limit has been
investigated. A complete review on hyperbolic conservation laws with relaxation, and
a focus on the Jin-Xin system is presented in [16]. By means of the Chapman-Enskog
expansion, local attractivity of diffusion waves for the Jin-Xin model was established
in [6]. In [13], the authors showed that, under some assumptions on the initial data
and the function f(u), the first component of system (1) with e = 1 decays asymp-
totically towards the fundamental solution to the Burgers equation, for the case of
f(u) = au?/2. Besides, [20] is a complete study of the long time behavior of this
model for a more general class of functions f(u) = |u|?"tu, with ¢ > 2. The method
developed in [20] can be also extended to the multidimensional case in space, and
provides sharp decay rates. Here we study the parabolic scaled version of the system
studied in [20], i.e. (1), and we consider a more general function f(u) = au + h(u),
where a is a constant, and h(u) is a polynomial function whose terms are at least
quadratic. We point out that only the case a = 0 has been handled in [20], and
in many previous works as well. In accordance with the theory presented in [1] on
partially dissipative hyperbolic systems, we are able to cover also the case a # 0.
Furthermore, besides the aymptotic behavior of the solutions, here we are interested
in studying the diffusion limit, for vanishing ¢, of the Jin-Xin system, which is the
main improvement of the present paper with respect to the results achieved in [1].
Indeed, because of the presence of the singular parameter, we cannot approximate the
analysis of the Green function of the linearized problems, as the authors did in [1],
and explicit calculations in that context are needed.

The diffusive Jin-Xin system has been already investigated in the following works
below. In [9], initial data around a traveling wave were considered, while in [4] the
authors write system (1) in terms of a BGK model, and the diffusion limit is studied
by using monotonicity properties of the solution. In all these cases, u,v are scalar
functions. For simplicity, here we also take scalar unknowns u,v. However, our ap-
proach, which takes its roots in [1], can be generalized to the case of vectorial functions
u,v € RY. As mentioned before, the novelty of the present paper consists in dealing
with the singular approximation and, in the meantime, with the the large time asymp-
totic of system (1), which behaves like the limit parabolic equation (2), without using
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ASYMPTOTIC ESTIMATES FOR THE DIFFUSIVE JIN-XIN MODEL 3

monotonicity arguments. We obtain, indeed, sharp decay estimates in time to the
solution to system (1) in the Sobolev spaces, which are uniform with respect to the
singular parameter. This provides the convergence to the limit nonlinear parabolic
equation (2) both asymptotically in time, and in the vanishing e-limit. To this end,
we perform a crucial change of variables that highlights the dissipative property of the
Jin-Xin system, and provides a faster decay of the dissipative variable with respect to
the conservative one, which allows to close the estimates. Next, a deep investigation
on the Green function of the linearized system (1) and the related spectral analysis
is provided, since explicit expressions are needed in order to deal with the singular
parameter €. The dissipative property of the diffusive Jin-Xin system, together with
the uniform decay estimates discussed above, and the Green function analysis com-
bined with the Duhamel formula provide our main results, stated in the following. We
should mention that we intend to adapt the present argument to the BGK approxi-
mation to the Navier-Stokes equations considered in [2], in order to extend the local
in time convergence of the approximating system to the solutions to the Navier-Stokes
equations on the two dimensional torus, proved in [2], to the global in time result.
Define
By = max{||uol| 1 + €lvo — auol L1, [uollm + €llvo — auollm},

where || - ||, stands for the H™(R) Sobolev norm and H°(R) = L?*(R). Precise as-
sumptions on f(u) in (1) are stated here.

AssuMPTION 1.1. f(u) : R — R is a Lipschitz function such that:
* f(0)=0;
e f'(0) = a, which is a constant value independent of €, \;
o f(u) = ah+ h(u), where h(u) is a polynomial functions of order higher than
or equal to 2.

THEOREM 1.1. Under Assumptions 1.1, consider the Cauchy problem associated
with system (1) and initial data (6). If Eo is sufficiently small, then the unique
solution

(u,v) € C([0,00), H*(R)) N C*([0, 00), H'(R)).

Moreover, the following decay estimate holds:

lu()ll2 + ello(t) — au(®)]l2 < Cmin{1,t~/*}E,.
Now, consider the equation below,
(8) Oywy + adzwy + Igh(wy) — )\Qamwp =0.

We state the following result.

THEOREM 1.2. Under Assumptions 1.1, let w, be the solution to the nonlinear
equation (8) with initial data

w,(0) = u(0) = ug € L*(R) N HAT(R),

where B > 0, and ug in (6) is the initial datum for the Jin-Xin system (1). For any
w € [0,1/2), if Eq is sufficiently small with respect to (1/2 — ), then we have the
following decay estimate:

9) 1D? (u(t) = wp(t) o < Cemin{1,t= /402y By

with C = C(EWH“O‘

This manuscript is for review purposes only.
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ROBERTA BIANCHINI

Once the right scaled variables, i.e. (u,2v), expressed at the beginning of Section

2, have been identified, and the so-called conservative-dissipative (C-D) form in [1] for
system (1) has been found, our approach essentially relies on the method developed
in [1], with substantial differences listed here.

(10)

e We need an explicit Green function analysis of the linearized system rather

than expansions and approximations, in order to deal with the singular pa-
rameter €. The analysis performed in first part of Section 4 is as precise as it
is possible.

Some estimates in [1] rely on the use of the Shizuta-Kawashima (SK) con-
dition, explained in the following. Consider a linear first order system in
compact form: dyu + Ad,u = Gu. Passing to the Fourier transform, define
E(i§) = G —iAE. The (SK) condition states that, if A(z) is an eigenvalue
of E(z), then Re(\(if)) < —0%7 for some constant ¢ > 0 and for every
&€ € R—{0}. As it can be seen in (57), the eigenvalues associated with the
compact linearized system in (C-D) form (22) of system (1) present different
weights in e. Thus, we cannot simply apply the (SK) condition to estimate
the remainders in paragraph Remainders in between disregarding e, as the
authors did in [1], since the weights in € play a key role to deal with the sin-
gular nonlinear term in the Duhamel formula (66). Again, a further analysis
is needed. We are not using the entropy dissipation and the (SK) condition
in order to start the study of the asymptotic behavior on a given global in
time solution, as the authors did in [1], Theorem 2.5. The semilinear nature
of the Jin-Xin system allows us to use the estimates coming from the Green
function analysis, not only to study the asymptotic behavior of the system for
small € and long times, but also, and first of all, to prove the global existence
of smooth solutions, uniformly in e, to our singular system. Such a result is
stated in Theorem 1.1.

The coupling between the convergence to the limit equation (2) for vanishing
e and for large time in the last section is the main novelty of the present
paper, and new ideas are needed to get this result.

2. General setting. First of all, we write system (1) in the following form:

Oy
(9tu1 + 532 = 0,
U
(9tU2 + /\28331“ = f(ul) — ?s

The unknown variable is u = (u,u2) = (u,£?v), in the spirit of the scaled variables
introduced in [2], which are the right scaling to get the conservative-dissipative form
discussed below. Here we write f(u1) = auy + h(uy), where a = f’(0), and system
(10) reads

(11)

(12)

Oz
8t’LL1 —+ 222 = 0,
U
Oyuz + N20,u1 = auy + h(uy) — E—;

Equations (11) can be written in compact form:

opu+ Adyu = —Bu+ N(uy),

This manuscript is for review purposes only.
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ASYMPTOTIC ESTIMATES FOR THE DIFFUSIVE JIN-XIN MODEL 5

where
1 0 0
(o B o[ 0
(13) A—<)\2 502>a B_<a 512>7 N() (h(u))

In particular, —Bu is the linear part of the source term, while N(u) is the remaining
nonlinear one, which only depends on the first component of u = (u,%v). Now, we
look for a right constant symmetrizer ¥ for system (12), which also highlights the
dissipative properties of the linear source term. Thus, we find

1 ae?
(14) = (e 35m )-

Taking w such that

(15) A2 — ag?v

A2 _ a2e2

where w=<w1>= )
w2
v —au

A2 _ 222
system (12) reads
(16) Yow 4+ A10,w = —Byw + N((2w)1),
where

a A2 0 0
Al:A{_AE:()\z a)\252)’ _BIZ_BZ:(O a2€2>\2>’

By using the Cauchy inequality we get the following lemma.

LEMMA 2.1. The symmetrizer ¥ is definite positive. Precisely
1
(18) Sllwrllg+ews[§(A\* —20%%) < (Sw, w)o < [[wi[[§(1+as®)+ [wallg(a+A%)e®.

Notice that from the theory on hyperbolic systems, [14], the Cauchy problem
for (16) with initial data wq in H™(R), m > 2, has a unique local smooth solution
we for each fixed ¢ > 0. We denote by T° the maximum time of existence of this
local solution and, hereafter, we consider the time interval [0,T*], with T* € [0,7%)
for every €. In the following, we study the Green function of system (16), and we
establish some uniform energy estimates and decay rates of the smooth solution to
system (16).
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6 ROBERTA BIANCHINI

2.1. The conservative-dissipative form. In this section, we introduce a linear
change of variable, so providing a particular structure for our system, the so-called
conservative-dissipative form (C-D), defined in [1]. The (C-D) form allows to identify
a conservative and a dissipative variable for system (1), such that a faster decay of the
dissipative variable, playing a key role in the following, is observed. Thanks to this
change of variables, we are able indeed to handle the case a # 0 in (11). Hereafter,
(-,-) denotes the standard scalar product in L?(R), and || - ||, is the H™(R)-norm, for
m € N, where H*(R) = L?(R).

PROPOSITION 2.2. Given the right symmetrizer ¥ in (14) for system (12), denot-
ing by

1 0 U
(19) w=Mu= —ae 1 = e(v — au) ’
VAZ — a2 ey/)\2 — a2e2 A2 — a2e?
system (12) can be written in (C-D) form defined in [1], i.e.
(20) Oy + Ad,w = —Biw + N (i),
where
2 _ 4222
a VA2 —a?e? 0 0
~ £ .
A= B B = 1 )
VA2 —a?e? 0 =
— —a €
(21)
0
N(1) = h(i1)
eVA? — a?e?

3. The Green function of the linear partially dissipative system. We
consider the linear part of the (C-D) system (20)-(21) without the tilde for simplicity,

(22) ow + A0,w = —Bw.

We want to apply the approach developed in [1], to study the singular approximation
system above. The main difficulty here is to deal with the singular perturbation
parameter . We consider the Green kernel T'(¢,z) of (22), which satisfies

oI + A9, = — BT,
23) {I‘(O,x) =d(x)l.

Taking the Fourier transform I, we get

4P = (-B —i¢A)T,
o Er

Consider the entire function

—az —

(25) E(z)=—B—-zA=

This manuscript is for review purposes only.
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Formally, the solution to (24) is given by

o0

(26) D(t,6) = P00 =Y (B —igA)".

n=0

Since E(z) in (25) is symmetric, if z is not exceptional we can write
E(z) = M(2)P1(z) + A2(2) P2(2),

where \1(2), A2(2) are the eigenvalues of E(z), and P;(2), Py(2) the related eigenpro-
jections, given by
1
Pi(z) = —5— (BE(z) —€D)~hdg,  j=12
2mi €= (2)|<<1
Following [1], we study the low frequencies (case z = 0) and the high frequencies one
(case z = 00) separately.
Case z = 0. The total projector for the eigenvalues near to 0 is
1

(27) PE) =g f,__ (BE)—eD T de

Besides, the following expansion holds true, see [11],

(28) P(z)=Qo+ Y _ 2"P"(2),

n>1
where Qg is the eigenprojection for F(0) — &I = —B — &1, i.e.

1 _ 1 0
Q=5 f _B-entae= (o),
211 l¢]<<1 0 0

(29)

1

P"(2) = —=— ¢ RM(€) de, > 1,
()= 5= P RVEQdE,  n>

R being the n-th term in the expansion of the resolvent (30). Here Qg is the
projection onto the null space of the source term, while we denote by Q_ = I — Qg
the complementing projection, and by L_, Ly and R_, Ry the related left and right
eigenprojectors, see [11, 1], i.e.

L_.=RT=(0 1), Ly=Ri=(10),

O =R.L.. Qo=RoLo
On the other hand, from [11],
R(E,2) = ()~ €1) " = (-B—2A—€I) ' = (-B—eD) 'S (A=(~B— &))"
- (pen) e YD € (A-B — 1)1y
= Ro(§)+ ) R“”(EL

n>1

This manuscript is for review purposes only.
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8 ROBERTA BIANCHINI
i.e.
(30) RM = 2"(—B— &) (A(-B - &)™

Since we are in a neighborhood of z = 0, at this point the authors in [1] consider
only the first two terms of the asymptotic expansion of the total projector (28), so
obtaining an expression with a remainder O(z?). The same approximation cannot be
performed here, since we need to handle the singular terms in €. Thus, we develop an
explicit spectral analysis for the Green function of our problem. First of all,

a € A2 — g2¢2
¢ 1+¢e%¢
(31) A-B—¢D)t = ;
B A2 — q2g? ae?
e€ 14 e2¢

which is diagonalizable, i.e.
A(-B—-¢N) "t =VvDV

where D is the diagonal matrix with entries given by the eigenvalues, and V is the
matrix with the eigenvectors on the columns. Explicitly, setting

(32) ¢ = a® + 4N2E + 42 N2€2,

we have

D= diag{_ai\/a},

26(1 4 €2%¢)
(33) e(a + /¢ + 2ag%¢) ela — /¢ + 2as2%¢)
V= | 204+e2)VA?—a%e?  2(1+e25)VA? - a%e?
1 1
(14+e2)VA2 —a2e2  —a+ /¢ — 2ae¢
evo Vo
(34) vl=
(A +2HVI —a?e? a+ Vo + 2ae%¢
Vo 2Vo
This way, denoting by
_ 2 _ 2 _ a+Vé _ a—o
01 = a—/o+2ae%¢, 0y = a+ /¢ +2ae%¢, 1 = T+ Yo = T+ %)

with ¢ in (32), from (30) we have

R™ = 2"(—B — ¢I) "N (A(=B — &I)™ )" = 2"(—=B — €)1 (VD"V 1)

This manuscript is for review purposes only.



ASYMPTOTIC ESTIMATES FOR THE DIFFUSIVE JIN-XIN MODEL 9

0195 — a0} N —a%?
T ojeE —€ T(% —3)
= "
)\2 o a2€2 N . 52 N .
—€ T(% —3) *mwz% — 6197)

175 The above matrix is bounded in €, and so now we can approximate the expression
176 of the total projector (28) up to the second order. To this end, we consider R™ for
177 n =0,1,2, we apply the integral formula (29), and we obtain

1+0(2?) —e2V A2 — a2e? + £0(2?)

—e2V A2 —a2e2 +e0(2%)  222(\? — a?e?) + £20(2?)

178 (35) P(z) =

179 Now, let L(z), R(z) be the left and the right eigenprojector of P(z), i.e.

180 P(z) = R(2)L(z), L(2)R(z)=1
183 L(2)P(z) = L(z), P(z)R(z) = R(z).

183 According to (35), we consider the second order approximation, given by

1 —ezV A2 — a2e2

184 (36) P(z) = ,
—e2vV/A2 — a2e2 5222()\2 . a252)
185 with
~ ~ 1
- _ 2 2.2 =
188  where
. P(2) = R(2)L(2), L(2)R(z) = 1+ £20(2?),
189 (37) _ E(Z) _|_ 520(22),

P(z) = P(2) + O(2%), R(z)= R(z) +0(2%), L(z) = E(z) +0(2%).

Let us point out that further expansions of L(z), R(z) are not singular in £ too, since
the weights in e of these vectors come from (35). Precisely, one can see that L°(z)
depends on ¢ as follows:

Le()=(1 O(e) ) = [R(-)]".
190  Now, by using the left and the right operators, we decompose E(z), see [1],
191 (38) E(z) = R(2)F(2)L(z) + R_(2)F_(2)L_(z),
where L_(z), R_(z) are left and right eigenprojectors associated with

P_(z)=1-P(2),
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while
F(z)=L(2)E(2)R(z), F_(z2)=L_(2)E(z)R_(2).

We use the previous approximations of L(z), R(z), so obtaining
(39) F(z2) = (L(2)+0(2%))(—B—Az)(R(2)+ 0(z?)) = —az+ (A2 —a?e®)22+0(z%).

Now, consider F_(z). Matrix (35) and the above definition imply that

0(z?) zeV/ A2 — a2e? + £0(2?)
(40)  P_(z) = ,
2eV/ A2 — a2e? + c0(2?) 14 £20(2?)

and, approximating again,

R.(2)= R_(2) + O(=?) ( VN e ) 0(=2)
Thus,
41)  F(s)=L_(2)(—-B— A2)R_(2) + O(2) = —Eiz +az+0(2).

This yields the proposition below.

ProOPOSITION 3.1. We have the following decomposition near z = 0:
2)P(z) + E_(2),

( E
with F(2) in (39), P(z) in (35), E_(2) = R_(2)F_(2)L_(z), and F_(z) in (41).

Case z = co. We consider F(z) = —B — Az = z(—B/z — A) = zFE1(1/z) and,
setting z = i and ( = 1/z = —in, with £,n € R, we have

(42) E(z)=F

Ei(()=-A-(B

A2 — q2g2 A2 — q2g?
—a _ YA T —a _yA T
5 €
A2 — g2e? ¢ A2 — q2e2 m
5 5 € €

Since F1(() is symmetric, we determine the eigenvalues and the right eigenprojectors,
—A—(B=X"(OR(OR] () + A (RSB (<),

such that, for j = 1,2, Rf(( )R;(¢) = I. The following expression for the eigenvalues
of Fj(in) is provided

AB (2) = an. n V/4e2)2 + danei — n?
1,2 22 22 ’

and it is simple to prove that both the corresponding eigenvalues of E(z), which can
be obtained multiplying AY* (z) and A2 (2) by z = i€ = i/n, have a strictly negative
real part in the high frequencies regime (|¢] = |n| << 1) and in the vanishing e

This manuscript is for review purposes only.
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ASYMPTOTIC ESTIMATES FOR THE DIFFUSIVE JIN-XIN MODEL 11

limit. Moreover, setting 19 = /862X + 22 — 8ae?( £ (—2( /1t + 4ae? /1), where
p=4e?X? + (% — 4ae?(, the normalized right eigenprojectors are given by:

1 (20’62 - C) + \//j 1 (20'52 - C) - \/ﬁ
= — , R = —
01 2ev/ N2 — a2e2 ) 02 26/ A2 — 22

The eigenprojectors are bounded in ¢, even for ¢ near zero. Thus, we can ap-
proximate the total projector of F1({) = —A — (B in a more convenient way, i.e. we
decompose

R1(¢)

A= MR R] + \2RoRY,

where \; = A\/e, A\oa = —\/e, and the corresponding eigenprojectors read

1 VA4 as 1 —V A —ae

Ry = —— . Ry =
R N — TVa VAt ae

ac

Now, by considering the total projector for the family of eigenvalues going to A; =
+A/e as ¢ & 0, we obtain the following approximations:

(43) F1;(Q) = =M1+ CRj (=B)R; + O(¢?).
Explicitly,
A (A—ag)( 9 A (A Hag)d 9
(44) Fu(C)——g—Teg‘i‘O(C ), F12(C)—E—T€2+O(§ ).
Since E(z) = zE1(1/z), we multiply F1(¢) = F1(1/z) by z and, for |z| — +o0,
A A—ae A A+ ae
while the projectors are

(46) Pj(z) = R;R] +O(1/z), j=1,2.

REMARK 3.1. Notice that the term O(1/z) in (45) could be singular in . How-
ever, from the previous discussion, the eigenvalues of E(z) have a strictly negative
real part. This implies that the coefficients of the even powers of z in (45) have a
negative sign, while the others are imaginary terms. Thus, e*2?) are bounded in ¢.

PROPOSITION 3.2. We have the following decomposition near z = oo:
(47) E(z) = M(2)P1(2) + A2(2)P2(2),
with A1(2), A2(2) in (45), and P1(2), P2(z) in (46).

4. Green function estimates.
Green function estimates near z = 0. We associate to (39) the parabolic equation

Ow + adyw = (A\? — a?e*)0ppw.

We can write the explicit solution

B 1 (x — at)?
(48) g(t,x) = N exp{ - 4()\2—a252)t}
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This means that, for some ¢y, co > 0,

(49) lg(t,z)| < %e—@—aﬂ?/d, (t,z) eR* xR, Ve > 0.

Now, recalling Proposition 3.1 and considering the approximation ]5(2) in (36) of the
total projector P(z) in (35),

P = §(2)P(2) + Ro(2)e DL () + Rt 2),

where §(z) = —az — (A2 — €%2a?)22, and R;(t,z) is a remainder term, we take the
inverse of the Fourier transform of

(50) K(z) = 9(2)P(2),
which yields the expression of the first part of the Green function near z = 0, i.e.

dg(t,x)
2 _ 2.2

g(t, ) EVA? —a’e .
(51) K(t,x) =

2
EVAZ — a2527d9(t’x) e2(\2 - a252)m

dx d?z

Here, K (t,€) is the approximation of I'(¢,£) in (26) for |¢| & 0. Thus, for ¢ € [—4, 4]
with § > 0 sufficiently small, we consider the following remainder term

1 /[ _ . _
Ri(t,z) = > /6(6E(z£)t _ eK(t,g)t)elgx de

1 [ .
(52) = g | ST Pl - Plig)) d
1/ . ,
+o- R_(i€)e™UOtL_(i€)e' ™ de.
T J-s

We need an estimate for the remainder above. First of all, from (41) and (40),

1 0 . i . ifx 1 o . —1/e%+ai 2 €x
27/ R_(z{)eF*(g)tL_(Zf)eg de¢| < 27/ P_(zf)e( 1/e*+aig+0(£%))t 1§ d¢
m™J)_§ m™J)_5
< Cveft/a2
for some constant C. Following [1],
OE%) pricy _ Plicy| — 1.3.2u=2t [ O) O(e)l|
o€ p(ig) - Prig)| = 1#e ( 0) G ).

for a constant p > 0. This way,

_ o——a?eny ( O)A+1)7 Oe)(1+1)~%/2
Rl(t,l')—e ( )/ )( O(E)(1+t)73/2 0(62)(14‘15)72 )
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Green function estimates near z = oco. We associate to (45) the following equa-
tions:

A\ —ae A A+ ae
T W Gwm S0 =i

We can write explicitly the solutions

orw + éaww =
€

g1(t, ) = 6(z — Mt/e)e” Ao/ (A)  oo (1 ) = §(z + Mtfe)e” M et/ (A7),
Thus,
lg;(t,z)] < Coé(x £ )\t/a)e_c’t/az7 ji=12.
We determine the Fourier transform of the Green function for |z| going to infinity,

(53) ’6(75,5) = exp{ - Z% - ()\2_/\525)15}731(00) + exp {Z)\ig — ()\;/_\525)25}732(00)

This way, from Proposition 3.2, the remainder term here is

(54) Ro(t,x) = 1 (ePUOT _ K (t,€))e ™ de, and
21 Jig>n

1
|Ro| < o=

< / (€M)= (A=a)t/(2Ae?) _ ((LOMH/GO+OML/E P, (i€) — Py (00)) de
21| Jigi>n

1
2T

/WN (A2 ~(ha)t/ (2X%) | (O () HOMHE D, (i) — Py (o0)) de

Following [1] and thanks to Remark 3.1,

/ eig(z:l:)\t/s) dé / 1 dg
- _|_ N
[E]>N 3 |€|>N £2

Remainders in between. Until now, we studied the Green function of the linearized
diffusive Jin-Xin system for z &~ 0, which yields the parabolic kernel K in (50), and
for z & 0o, so obtaining K in (53). In these two cases, we also provided estimates for
the remainder terms:

e R; in (52) for the parabolic kernel K for || < 4, with § sufficiently small;
e Ry in (54) for the transport kernel K for |{| > N, with N big enough.
It remains to estimate the last remainder terms, namely the parabolic kernel K for
|€] > 4, t > 1, the transport kernel K for |£| < N, and the kernel E(z) for 6 < |£] < N.
Parabolic kernel K (t,x) for |£] > d, 6 << 1 . Let us define

| Ba(t, )| < Cemt/<" l < Qe

(55) Rylt,z) = — Rt €)e de.

21 Jjg|>s

Thus, from (50), for ¢ > 1,

[Rs(t, )| < C

/ ei&(wfat)67()\2711252)5%?(,&5) df
€126

Ce—t/C
<

Y (g(s) 0(52)>'
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268 Transport kernel for |£] < N. Set
1 . )
269 (56) Ry(t,z) = — K(t,€)ei® de,
21 Jigl<n
270 and, from (53),
N
271 |R4(t,x)| < (]e*(kﬂa\s)t/(z)\s?) Z / eig(miAt/s)d§
a -N

1
<C —Ct/62 s Ni .
= Y N e

Kernel E(z) for 6 < |£| < N. Finally, we set

Rs(t,z) = i/ B8t eist ge
2T Js<|gl<N

74 Unlike [1], here we cannot simply apply the (SK) condition, as mentioned in the
5 Introduction, and a further analysis is needed. The eigenvalues of E(i) = —i£A — B
6 are expressed here:

N o . B —2(ai€ + N2€2)
217 (B7)  Ayp = 222 ( —1£41 —452(w§+>\2§2)> 14 /1 — 4e2(aif + 22€2)

By using the Taylor expansion for € ~ 0,
aif + \2¢? Ny — 1
1—e2(aif + N2¢2)" 2T

AL = .
2

Explicitly, denoting by
A =1 —4e26(N\2€ +ia), ¢ =—1+ D+ 2iafe?,  ¢o =1+ A — 2iae?,

278 one can find that

€A2t¢ N €A1t¢ i&m(e)‘lt _ e)\Qt)
_ 2A T R A
279 POt — ’
Z'é'g )\2 _ a2€2(€/\1t _ e>\2t) e)\1t¢ + e/\2t¢
B A DY

where ¢y = —1+ A = —2e2¢6(\%¢ +ia) + O(e?) = O(%), ¢ =1+ A =0(1),
280 and, in terms of the singular parameter ¢, this yields
‘ O(l)(eklt + e)\gt) O(E)(eklt _ e)\gf)
281 Pt —
O(e)(eMt — er2t)  eMtO(e2) + O(1)ere?

282 Putting the above calculations all together and integrating in space with respect to
283 the Fourier variable for § < || < N, we get

O(1)e /¢ O(e)e V¢
284 (58) |Rs(t,z)| < C
O(e)e V¢ O(e2)e /€ + O(1)e /<
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From (52), (54), (55), (56), (58), we denote the remainder by
(59) R(t) = R1(t) + Ra(t) + Rs3(t) + Ry(t) + Rs5(2).

The previous estimates provide the following lemma.

LEMMA 4.1. Let T'(t, ) be the Green function of the linear system (22). We have
the following decomposition:

[(t,z) = K(t,z) + K(t,z) + R(t, z),

with K(t,z), K(t,x), R(t,x) in (51), (53) and (59) respectively. Moreover, for some
constants ¢, C,

(r—at)? O()(1+1t)~1 O(e)(1 +t)=3/2
< (z—at)*/(ct) .
R (o0nanon  o@arns )
o [K(t,2)| < Cemt/<;
-1 -3/2
< (z—at)?/(ct) O(l)(l + t) O(E)(l + t)
RO < e O(e)(1 +t)=3/2 O(E?)(1+t)2
( ) 0(5) —ct —ct/e?
—|—< 0(s) O(=) e+ 1de .
Decay estimates. Let us consider the solution to the Cauchy problem associated
with the linear system (22) and initial data wy,

W(t, &) =T(t, )W (&) = eP W (8).

By using the decomposition provided by Lemma 4.1, we get the following theorem.

THEOREM 4.2. Consider the linear system in (22), i.e.
Orw+ Ad, w = —Bw,

and let Qo = RoLg and Q— = R_L_ as before, i.e. the eigenprojectors onto the
null space and the negative definite part of —B respectively. Then, for any function
wy € L* N L?(R, R), the solution w(t) = T'(t)wy to the related Cauchy problem can be
decomposed as

w(t) =T () wy = K(t)w + K(t)wo + R(t)wo

Moreover, for any index (3, the following estimates hold:

|LoDP K (t)wp||o < C'min{1, ¢4~ 181/2}|| Lowy | 1

60

(©0) + Cemin{1,t=3/4=181/2}|| L _wpl| 11,

(61) |IL_DPK (t)wo|lo < Cemin{1, ¢34 1A1/2}|| Lowy|| 11
+ Ce?min{1, t=>/4=181/2}| L _ ]| 11,

(62) IDPK(8)wollo < Ce™/=" | D o,

| Lo D? R(t)wollo < Cmin{1,t= /41812 || Loawy|| 1
(63) + Cemin{1,t=3/4=1B/2Y | L__awp]| 11
+ Ce || Lowo|| 1 4+ Cee || L w1 + Ce™< w1,
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|L_DPR(t)wo|lo < Cemin{1,t=3/4=18/2}|| Loawo]| 11
(64) + Ce2min{1,t=>/4=1P/2}|| L _awg|| 11
+ Cee™!|| Lowp || 11 + Ce2e™ || L_wol| 1 + Ce™=" [|wo]| 1.
Proof. From Lemma 4.1, for some constants ¢, C' > 0, and for an index (3, it holds
(65) IDPK(tywollo < Ce™/=" || DPwo| .

On the other hand, the hyperbolic kernel (50) can be estimated as

|LoK (t)wo| < Ce™It(| Lovwo| + e[¢]|L o),
\L_K(t)ywo| < Ce It (e|¢|| Lowo| + £2[€[|L_Wol).

This yields

Lok wald <C [ [ e (Lawo(@)F + e L swo(e) ) dod
< C'min{1,t~ Y2} Lowo||%, + Ce? min{1, ¢t 3/2}||L_vw|%
< Cmin{1,t Y2}||Lowol|2: + Ce® min{1,t*/?}||L_wo||2:,
and
L Kwolp <€ [ [ e IR Ly + <P Low(e) ) dede
< Ce2min{1,t*/2}||Lowol|2, + Ce* min{1,t 52| L_wol%:.

Besides, for every 3 we multiply by 27 the integrand and we get

1o DP K (tywollo < Cminf1, /41172 | Lywo |
+ Cemin{1, t =3/ 112 | L _w | 11,

IL-DPK (t)wollo < Cemin{1, =%+~ 112} || Lowy | 11
+ Ce?min{1, ¢34~ 1812} || L _w|| 1.

The estimates for R(t) are obtained in a similar way. |

5. Decay estimates and convergence. Consider the local solution w to the
Cauchy problem associated with (20), where we drop the tilde, and initial data w.
The solution to the nonlinear problem (20) can be expressed by using the Duhamel
formula

This manuscript is for review purposes only.
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320 From (29) and the formulas below, we recall that wy = Low = (1 — L_)w is the
330 conservative variable, while we = L_w is the dissipative one. We remind the Green
331 function decomposition given by Lemma 4.1. For the §-derivative,

332 DPw(t) = DPK(t)w(0) + K(t) D w(0) + R(t) D w(0)
t/2 0
333 + / DPK(t—s)R_L_ f(w(s)) ) ds
0 eV AZ — a2e2
t 0
o[ ke-orpr | _hme)
t/2 EV A2 — a2¢?
t 0
335 + / K(t —s)D? h(w1(s)) ds
0 EV A2 — a2¢?
t/2 0
336 + / DPR(t—s)R_L_ h(wy(s)) ds
0 eV A2 — a2e2
t 0
337 + / R(t—s)R_DL_ h(wi(s)) | ds
338 o2 EVA? —a’e?
339
340 = DP K (t)w(0) 4+ K(t) D w(0) + R(t) D w(0)
(e ) ),
' o DPEKyn(t—s) ) e/X2 — a2e2
t
Klg(t — S) ) B h(wl(s))
342 + DPF —2 ¢
/t/2 ( Kaa(t — ) eV —aZer
t 0
343 b [ =gt [ pon) | as
344 0 EVA? —a?e?
345
t/2 DPRy5(t — s) h(w:(s))
346 ——d
( +/o ( DP Ry (t — s) > EV A2 — a2e? B
347
t
348 +/ < Raa(t —5) )Dﬁh(wl(s)) ds.
349 t/2 Rya(t — s) eV A2 — a2e2

350 Notice that, from (51), K12, Koz are of order e and 2 respectively, and the same holds
351 for

352 R12 = 0(6)(1 + t)ig/Zef(I*at)z/Ct + O(E)B*Ct + 0(1)67615/527
354 Ray = O(e2) (1 + )2~ (0=t L O(e2)e + O(1)e /",

55 From the previous assumptions, f(u) = f(w1) = aw;+h(w;), where h(w;) = w?2h(wy)
56 for some function h(w;). Thus, by using the estimates of Theorem 4.2, and recalling
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357 that || |lm = || - [[ e (w), for m = 0,1,2, (H® = L?), we have, for j = 1,2,
358 [W(t) |l < Cmin{L,t=*}H|wol|r: + Ce /<" |wolm
t
359 + C’/ min{1, (t — ) "3/} (|w?h(w1)| 11 + |w2h(w:)||m) ds
0
t
360 +C / e~ | w?h(wy) || m ds
0
b1 2 ox
361 +c/ L e=et=9)/22 027, (1) o ds.
362 o €

363  For m big enough,

364 W (t)|lrm < Cmin{1,t=Y*}|wol 1 + C’e_Ct/EQHWOHm
t
365 + [ mingL, ¢ = 57wl a3 ds
0
t
366 +/ e~ C(Jwi |oo) lwr |2, ds
0
‘1 —c(t—s)/e? 2
367 + [ Ze 2 ) s,
368 o ¢
i
wi
369  From (19), we recall that w = , and so, for m = 2,
e(v — au)
Wo —_—
N2 _ 22
370 lu(t)||2 + cellv(t) — au(t)|lz < Cmin{l,t~*}(|luo|| 1 + cl|vo — auol| 1)
371 + e_Ct/52(||u0||2 + cellvo — auol|2)
t
a7 + [ ming1, (¢ - 9 C(fullul ds
0
t
- + [ eI ul) ul ds
0
t 1 5
74 + [ Ze 2 el ds.
375 0o ¢
376 Let us denote by
377 (67) E,, = max{]||ug||z1 + €l|lvo — auol| 1, ||uo||lm + €llvo — avo||m},

378 where, according to (6), vg = f(ug) — A2d,ug, and

379 (68) My (t) = sup {max{L,7"/*}(Ju(r)|2 + ello(r) — au(r)||2)}-

0<r<t
380 The first term of the right hand side of the above estimate gives
381 Cmin{1,t=Y*Y(|Juo|| 11 + cellvo — aug|| 1) + Ce_Ct/Ez(Hung + cgllug — augl|2)

383 < Cmin{1,t""/*}E,.

I8¢
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Besides,
C(juloo) w3 < C(|uloo) min{1, s~ /*} MG (s).
384 Thus,
355 Jlu(t)]l2 + ellv(t) — au(t)|]z < Cmin{1, Y4} E,
t
386 + M2(t) / e~ e(Ju| o) min{1, s/2} ds
0
2 ‘1 2 1/2
387 M (t)/ Lo o ful ) min{1, 57/2) ds
0
t
388 +M§(t)/ (|u|oo) min{1, (t — s)73/*Y min{1, s7/2} ds.
389 0

From the Sobolev embedding theorem,
c([u(s)]o) < e(lJuls)ll2) < Cmin{l, s/ *}Mo(s) < CMo(s).

390 This way,

391 w2 + eljo(t) — au(t)||s < Cmin{l,t /4 B,
t
392 + C’Mg(t)/ e =) min{1, s~ Y2} ds
0
‘1 2
393 + CMg’(t)/ ge_c(t_s)/e min{1,s™/%} ds
0
t
394 - CMg(t)/ min{1, (t — s)~%/*} min{1, s7/2} ds.
395 0
396 Notice that
1t ) , [t/<
397 - / et/ min{1, s/} ds = e~ /¢ / e min{1,e\/7} dr
€Jo 0
R t/e?
398 < gect/e / €T dr
0
9 2
399 = 21 — e ct/e
(1 — et/
469 < Ce.
402 By using this inequality in the previous estimate,
403 lu(t)|l2 + eljv(t) — au(t)|s < Cmin{l,t" 4} F,
t
404 + C’Mg(t)/ e =) min{1, s~} ds
0
405 +eCM3(t)
t
406 + CM3(t) / min{1, (t — s)~*/*} min{1, s7/2} ds.
107 0

408  Applying usual lemmas on integration, as Lemma 5.2 in [1], we get the following
109 inequality

419 My(t) < C(Ey + M(t)).
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Then, if Es is small enough,

My(t) < CE,,
ie.
(69) [u(t)|]2 + l|v(t) — au(t)||ls < Cmin{l,t~/*}E,.
By arguing as before and following [1], we have the theorem below.

PRrOPOSITION 5.1. The following estimates hold, with C' a constant independent

of e,

(70) 1D w(t)lo < Cmin{1,t /4= I12Y B g,
(71) D% ws(t)lo < Cmin{1, ¢34 012y B g g0,
(72) IDPdyw(t)]lo < Cmin{1, =¥+ P2y By o,
(73) | DP 0pws ()]0 < Cmin{1, ¢t/ 4= 1V2YE 5 7 0.

The last result and estimate (69) prove Theorem 1.1.

REMARK 5.1. Note that the time derivative estimates of the solution (72), (73)
can be obtained by applying again the Duhamel formula and so, similarly to (69),
| DPO,w(t)||o is bounded by a constant depending on || DPOyw|io||. The latter is not
singular in e, thanks to the particular form of the initial data, as it is shown below.
The initial data satisfy (6), i.e.

vo = f(uo) — N20pug = aug + h(ug) — \20puo.

In terms of the (C-D) variable w,

U = wq,
N2 _ a222
v=aw) + ————w2,
€
this gives the following relation:
2 _ g2e2
(74) VAT T 900 = h(w?) — A28,u.
€
Using (74) in system (20),
e _ 2e2
Ohwi|t—o = —ad,wf — %(’hwg,
A2 — a2e? 0 o A2 0
(75) 8,5U)Q|t:02: —f&dwl + a@wa + m@lwl
a“e

In terms of the original variable,

Opw1 |t—o = —0y f (o) + N2y lio,
%(azf({m) — A20,,10).

Orwalt=o = v
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REMARK 5.2. As shown in the previous remark, the well-prepared initial data (6)
allow to bound the H® norm of the time derivative of the solution to (20), uniformly
in €. The case of general initial data should be explored in future works. However,
in this remark let us consider, at least formally, the case of Mawellian initial data,
meaning that, instead of (6), we take
(76)

(uo,v0) = (T, f(tio)) = (tho, atio+h(uo)), (f1(0,2), f3(0,2)) = (Mi(to), Mz(to)).

In terms of the (C-D) variables w in (19),
- Eh(ﬂo)
(77) (wl(o,x),w2(07x)) = <'LLO7 m) .

Consider the difference w — wM, where w is the solution to (22) with well-prepared

initial data in (6), while w™ is the solution to (22) with Mazwellian initial data (77).
The associated initial conditions are:

(78) w(0,2) — wM(0,2) = (0, _)‘%aﬂﬂh(%))
\2 — 22

We apply again the Duhamel formula as in (66), in order to estimate the behavior of
the difference between the two solutions. Taking into account the decomposition of the
Green function in Lemma 4.1, it follows that, for t > 0,

I(w — w™)(t,2)llo < £*C||0stuo.

Thus, after the initial layer, for t > 0, the difference between the solution w, with
well-prepared initial data, and w™ , with Mazwellian initial data, is of order 2.

Convergence in the diffusion limit and asymptotic behavior. We perform the one
dimensional Chapman-FEnskog expansion. Recalling that

w; = U, W2 = Ud,

where u is the conservative variable and u, is the dissipative one, system (20) is

() e () = (ot )

h
with A in (21) and ¢(u) = e . & We consider the following nonlinear
€2 ey/A\2 — a2
parabolic equation

Opt + adpu + Oph(u) — (N — a?e?)Oppu = 0,5,

where
(79) S =eV 2 —a2e2{0ug — adruq}.

The homogeneous equation is

(80) Opwy, + adypwy, + Aph(wy) — (A2 — a?e?)0ppw, = 0,
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and associated Green function is provided here
p(t) = Kui(t) + K(t) + R(t),

with K77 in (51). We take the difference between the conservative variable v = w;
and wy,

(81)
t/2 3
DP(u(t) = wy(t)) = /0 DPD(Kn(t = s) + R(t = 5))(h(wp(s)) — h(u(s))) ds

% )
+/ DPD(K11(t — s) + R(t — 5))S(s) ds
0

+ o D(K11(t = ) + R(t — 5)) D" (h(wy(s)) — h(u(s)) + S(s)) ds

¢
+ / K(t — s)DP D(h(w,(s)) — h(u(s)) + S(s)) ds.
0
By using (70), (71), (73), we have
[DPS|lo < Cemin{1,t /42 By, .
Let us define, for p € [0,1/2),

(82) mo(t) = s max{1, 7444} u(r) —wy (7)o}

For g =0,

u(t) = w,(8)lo < CErmo(t) /Ot min{1, (£ — $)~*4} min{1, s~1/2-"} ds
+ CeEs /Ot min{1, (t — s)~%/*} min{1, s~} ds
+ C(Eymo(t) + Ey) /Ot et~ min{1,s7%/*} ds

< Cmin{l, s Y4 Y (Eymg(t) + e By 4+ eBy + (1/2 — p) " Eymo(t)),

i.e., if E; is small enough,

(83) mo(t) < CeEy.

Similarly, it can be proved by induction that, for v < 3, defining

(84) mg(t) = sup {max{1,7"/*#+0/2Y||DP (u(r) — wy(7))llo},
T€[0,¢]

and assuming m- (t) < C(p)eEy 44, then
1D (h(u(s)) = h(wy(s)llo < Cmin{L,t= /2 #=52H(C () B 1 By + Exmp(t)).
Using the last inequality, (79) and (83) in (81), finally we get
mg(t) < C(p)eEpta,

which ends the proof of Theorem 1.2.
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