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UNIFORM ASYMPTOTIC AND CONVERGENCE ESTIMATES FOR1

THE JIN-XIN MODEL UNDER THE DIFFUSION SCALING∗2

ROBERTA BIANCHINI †3

Abstract. We obtain sharp decay estimates in time in the context of Sobolev spaces, for smooth4
solutions to the one dimensional Jin-Xin model under the diffusion scaling, which are uniform with5
respect to the singular parameter of the scaling. This provides convergence to the limit nonlinear6
parabolic equation both for large time, and for the vanishing singular parameter. The analysis is7
performed by means of two main ingredients. First, a crucial change of variables highlights the8
dissipative property of the Jin-Xin system, and allows to observe a faster decay of the dissipative9
variable with respect to the conservative one, which is essential in order to close the estimates. Next,10
the analysis relies on a deep investigation on the Green function of the linearized Jin-Xin model,11
depending on the singular parameter, combined with the Duhamel formula in order to handle the12
nonlinear terms.13

Key words. Relaxation, Green analysis, asymptotic behavior, dissipation, global existence,14
decay estimates, diffusive scaling, conservative-dissipative form, BGK models.15

AMS subject classifications. 35L40, 35L45, 35K55.16

1. Introduction. We consider the following scaled version of the Jin-Xin ap-17

proximation for systems of conservation laws in [10]:18

(1)

{
∂tu+ ∂xv = 0,

ε2∂tv + λ2∂xu = f(u)− v,
19

where λ > 0 is a positive constant, u, v depend on (t, x) ∈ R+ ×R and take values in20

R, while f(u) : R→ R is a Lipschitz function such that f(0) = 0, and f ′(0) = a, with21

a a constant value independent of ε, λ. The diffusion limit of this system for ε → 022

has been studied in [9, 4], where the convergence to the following equations is proved:23

(2)

{
∂tu+ ∂xv = 0

v = f(u)− λ2∂xu.
24

From [17, 4], it is well-known that system (1) can be written in BGK formulation, [3],25

by means of the linear change of variables:26

(3) u = fε1 + fε2 , v =
λ

ε
(fε1 − fε2 ).27

Precisely, the BGK form of (1) reads:28

(4)


∂tf

ε
1 +

λ

ε
∂xf

ε
1 =

1

ε2
(M1(u)− fε1 ),

∂tf
ε
2 −

λ

ε
∂xf

ε
2 =

1

ε2
(M2(u)− fε2 ),

29
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2 ROBERTA BIANCHINI

where the so-called Maxwellians are:30

(5) M1(u) =
u

2
+
εf(u)

2λ
, M2(u) =

u

2
− εf(u)

2λ
.31

According to the theory on diffusive limits of the Boltzmann equation and related32

BGK models, see [7, 23], we consider fluctuations of the Maxwellian functions as33

initial data for the Cauchy problem associated with system (1). Namely, given a34

function ū0(x), depending on the spatial variable, we assume35

(6) (u(0, x), v(0, x)) = (u0, v0) = (ū0, f(ū0)− λ2∂xū0).36

By using the change of variables (3), the BGK initial data read:37

(7) (fε1 (0, x), fε2 (0, x)) =

(
M1(ū0)− ελ

2
∂xū0, M2(ū0) +

ελ

2
∂xū0

)
,38

where the fluctuations are given by ±ελ
2
∂xū0.39

System (1) is the parabolic scaled version of the hyperbolic relaxation approxima-
tion for systems of conservation laws, the Jin-Xin system, introduced in [10] in 1995.
This model has been studied in [18, 6, 10], and the hyperbolic relaxation limit has been
investigated. A complete review on hyperbolic conservation laws with relaxation, and
a focus on the Jin-Xin system is presented in [16]. By means of the Chapman-Enskog
expansion, local attractivity of diffusion waves for the Jin-Xin model was established
in [6]. In [13], the authors showed that, under some assumptions on the initial data
and the function f(u), the first component of system (1) with ε = 1 decays asymp-
totically towards the fundamental solution to the Burgers equation, for the case of
f(u) = αu2/2. Besides, [20] is a complete study of the long time behavior of this
model for a more general class of functions f(u) = |u|q−1u, with q ≥ 2. The method
developed in [20] can be also extended to the multidimensional case in space, and
provides sharp decay rates. Here we study the parabolic scaled version of the system
studied in [20], i.e. (1), and we consider a more general function f(u) = au + h(u),
where a is a constant, and h(u) is a polynomial function whose terms are at least
quadratic. We point out that only the case a = 0 has been handled in [20], and
in many previous works as well. In accordance with the theory presented in [1] on
partially dissipative hyperbolic systems, we are able to cover also the case a 6= 0.
Furthermore, besides the aymptotic behavior of the solutions, here we are interested
in studying the diffusion limit, for vanishing ε, of the Jin-Xin system, which is the
main improvement of the present paper with respect to the results achieved in [1].
Indeed, because of the presence of the singular parameter, we cannot approximate the
analysis of the Green function of the linearized problems, as the authors did in [1],
and explicit calculations in that context are needed.
The diffusive Jin-Xin system has been already investigated in the following works
below. In [9], initial data around a traveling wave were considered, while in [4] the
authors write system (1) in terms of a BGK model, and the diffusion limit is studied
by using monotonicity properties of the solution. In all these cases, u, v are scalar
functions. For simplicity, here we also take scalar unknowns u, v. However, our ap-
proach, which takes its roots in [1], can be generalized to the case of vectorial functions
u, v ∈ RN . As mentioned before, the novelty of the present paper consists in dealing
with the singular approximation and, in the meantime, with the the large time asymp-
totic of system (1), which behaves like the limit parabolic equation (2), without using
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ASYMPTOTIC ESTIMATES FOR THE DIFFUSIVE JIN-XIN MODEL 3

monotonicity arguments. We obtain, indeed, sharp decay estimates in time to the
solution to system (1) in the Sobolev spaces, which are uniform with respect to the
singular parameter. This provides the convergence to the limit nonlinear parabolic
equation (2) both asymptotically in time, and in the vanishing ε-limit. To this end,
we perform a crucial change of variables that highlights the dissipative property of the
Jin-Xin system, and provides a faster decay of the dissipative variable with respect to
the conservative one, which allows to close the estimates. Next, a deep investigation
on the Green function of the linearized system (1) and the related spectral analysis
is provided, since explicit expressions are needed in order to deal with the singular
parameter ε. The dissipative property of the diffusive Jin-Xin system, together with
the uniform decay estimates discussed above, and the Green function analysis com-
bined with the Duhamel formula provide our main results, stated in the following. We
should mention that we intend to adapt the present argument to the BGK approxi-
mation to the Navier-Stokes equations considered in [2], in order to extend the local
in time convergence of the approximating system to the solutions to the Navier-Stokes
equations on the two dimensional torus, proved in [2], to the global in time result.
Define

Em = max{‖u0‖L1 + ε‖v0 − au0‖L1 , ‖u0‖m + ε‖v0 − au0‖m},

where ‖ · ‖m stands for the Hm(R) Sobolev norm and H0(R) = L2(R). Precise as-40

sumptions on f(u) in (1) are stated here.41

Assumption 1.1. f(u) : R→ R is a Lipschitz function such that:42

• f(0) = 0;43

• f ′(0) = a, which is a constant value independent of ε, λ;44

• f(u) = ah+ h(u), where h(u) is a polynomial functions of order higher than45

or equal to 2.46

Theorem 1.1. Under Assumptions 1.1, consider the Cauchy problem associated
with system (1) and initial data (6). If E2 is sufficiently small, then the unique
solution

(u, v) ∈ C([0,∞), H2(R)) ∩ C1([0,∞), H1(R)).

Moreover, the following decay estimate holds:

‖u(t)‖2 + ε‖v(t)− au(t)‖2 ≤ C min{1, t−1/4}E2.

Now, consider the equation below,47

(8) ∂twp + a∂xwp + ∂xh(wp)− λ2∂xxwp = 0.48

We state the following result.49

Theorem 1.2. Under Assumptions 1.1, let wp be the solution to the nonlinear
equation (8) with initial data

wp(0) = u(0) = u0 ∈ L1(R) ∩Hβ+4(R),

where β > 0, and u0 in (6) is the initial datum for the Jin-Xin system (1). For any50

µ ∈ [0, 1/2), if E1 is sufficiently small with respect to (1/2 − µ), then we have the51

following decay estimate:52

(9) ‖Dβ(u(t)− wp(t))‖0 ≤ Cεmin{1, t−1/4−µ−β/2}E|β|+4,53

with C = C(E|β|+4).54
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4 ROBERTA BIANCHINI

Once the right scaled variables, i.e. (u, ε2v), expressed at the beginning of Section55

2, have been identified, and the so-called conservative-dissipative (C-D) form in [1] for56

system (1) has been found, our approach essentially relies on the method developed57

in [1], with substantial differences listed here.58

• We need an explicit Green function analysis of the linearized system rather59

than expansions and approximations, in order to deal with the singular pa-60

rameter ε. The analysis performed in first part of Section 4 is as precise as it61

is possible.62

• Some estimates in [1] rely on the use of the Shizuta-Kawashima (SK) con-63

dition, explained in the following. Consider a linear first order system in64

compact form: ∂tu + A∂xu = Gu. Passing to the Fourier transform, define65

E(iξ) = G − iAξ. The (SK) condition states that, if λ(z) is an eigenvalue66

of E(z), then Re(λ(iξ)) ≤ −c |ξ|
2

1+|ξ|2 , for some constant c > 0 and for every67

ξ ∈ R − {0}. As it can be seen in (57), the eigenvalues associated with the68

compact linearized system in (C-D) form (22) of system (1) present different69

weights in ε. Thus, we cannot simply apply the (SK) condition to estimate70

the remainders in paragraph Remainders in between disregarding ε, as the71

authors did in [1], since the weights in ε play a key role to deal with the sin-72

gular nonlinear term in the Duhamel formula (66). Again, a further analysis73

is needed. We are not using the entropy dissipation and the (SK) condition74

in order to start the study of the asymptotic behavior on a given global in75

time solution, as the authors did in [1], Theorem 2.5. The semilinear nature76

of the Jin-Xin system allows us to use the estimates coming from the Green77

function analysis, not only to study the asymptotic behavior of the system for78

small ε and long times, but also, and first of all, to prove the global existence79

of smooth solutions, uniformly in ε, to our singular system. Such a result is80

stated in Theorem 1.1.81

• The coupling between the convergence to the limit equation (2) for vanishing82

ε and for large time in the last section is the main novelty of the present83

paper, and new ideas are needed to get this result.84

2. General setting. First of all, we write system (1) in the following form:85

(10)

∂tu1 +
∂xu2
ε2

= 0,

∂tu2 + λ2∂xu1 = f(u1)− u2
ε2
.

86

The unknown variable is u = (u1, u2) = (u, ε2v), in the spirit of the scaled variables87

introduced in [2], which are the right scaling to get the conservative-dissipative form88

discussed below. Here we write f(u1) = au1 + h(u1), where a = f ′(0), and system89

(10) reads90

(11)

∂tu1 +
∂xu2
ε2

= 0,

∂tu2 + λ2∂xu1 = au1 + h(u1)− u2
ε2
.

91

Equations (11) can be written in compact form:92

(12) ∂tu +A∂xu = −Bu +N(u1),93

This manuscript is for review purposes only.



ASYMPTOTIC ESTIMATES FOR THE DIFFUSIVE JIN-XIN MODEL 5

where94

(13) A =

(
0

1

ε2
λ2 0

)
, −B =

(
0 0

a − 1

ε2

)
, N(u) =

(
0

h(u)

)
.95

In particular, −Bu is the linear part of the source term, while N(u) is the remaining96

nonlinear one, which only depends on the first component of u = (u, ε2v). Now, we97

look for a right constant symmetrizer Σ for system (12), which also highlights the98

dissipative properties of the linear source term. Thus, we find99

(14) Σ =

(
1 aε2

aε2 λ2ε2

)
.100

Taking w such that101

(15)

u =

(
u1
u2

)
=

(
u
ε2v

)
= Σw =

(
(Σw)1
(Σw)2

)
,

where w =

(
w1

w2

)
=


λ2u− aε2v
λ2 − a2ε2

v − au
λ2 − a2ε2

 ,

102

system (12) reads103

(16) Σ∂tw +A1∂xw = −B1w +N((Σw)1),104

where105

A1 = AT1 = AΣ =

(
a λ2

λ2 aλ2ε2

)
, −B1 = −BΣ =

(
0 0
0 a2ε2 − λ2

)
,106

107

(17) N((Σw)1) =

(
0

h(w1 + aε2w2)

)
.108

By using the Cauchy inequality we get the following lemma.109

Lemma 2.1. The symmetrizer Σ is definite positive. Precisely110

(18)
1

2
‖w1‖20 +ε2‖w2‖20(λ2−2a2ε2) ≤ (Σw,w)0 ≤ ‖w1‖20(1+aε2)+‖w2‖20(a+λ2)ε2.111

Notice that from the theory on hyperbolic systems, [14], the Cauchy problem112

for (16) with initial data w0 in Hm(R), m ≥ 2, has a unique local smooth solution113

wε for each fixed ε > 0. We denote by T ε the maximum time of existence of this114

local solution and, hereafter, we consider the time interval [0, T ∗], with T ∗ ∈ [0, T ε)115

for every ε. In the following, we study the Green function of system (16), and we116

establish some uniform energy estimates and decay rates of the smooth solution to117

system (16).118
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6 ROBERTA BIANCHINI

2.1. The conservative-dissipative form. In this section, we introduce a linear119

change of variable, so providing a particular structure for our system, the so-called120

conservative-dissipative form (C-D), defined in [1]. The (C-D) form allows to identify121

a conservative and a dissipative variable for system (1), such that a faster decay of the122

dissipative variable, playing a key role in the following, is observed. Thanks to this123

change of variables, we are able indeed to handle the case a 6= 0 in (11). Hereafter,124

(·, ·) denotes the standard scalar product in L2(R), and ‖ · ‖m is the Hm(R)-norm, for125

m ∈ N, where H0(R) = L2(R).126

Proposition 2.2. Given the right symmetrizer Σ in (14) for system (12), denot-127

ing by128

(19) w̃ = Mu =

 1 0

−aε√
λ2 − a2ε2

1

ε
√
λ2 − a2ε2

u =


u

ε(v − au)√
λ2 − a2ε2

 ,129

system (12) can be written in (C-D) form defined in [1], i.e.130

(20) ∂tw̃ + Ã∂xw̃ = −B̃w̃ + Ñ(w̃1),131

where132

(21)

Ã =


a

√
λ2 − a2ε2

ε

√
λ2 − a2ε2

ε
−a

 , B̃ =

 0 0

0
1

ε2

 ,

Ñ(w̃1) =


0

h(w̃1)

ε
√
λ2 − a2ε2

 .

133

3. The Green function of the linear partially dissipative system. We134

consider the linear part of the (C-D) system (20)-(21) without the tilde for simplicity,135

(22) ∂tw +A∂xw = −Bw.136

We want to apply the approach developed in [1], to study the singular approximation137

system above. The main difficulty here is to deal with the singular perturbation138

parameter ε. We consider the Green kernel Γ(t, x) of (22), which satisfies139

(23)

{
∂tΓ +A∂xΓ = −BΓ,

Γ(0, x) = δ(x)I.
140

Taking the Fourier transform Γ̂, we get141

(24)

{
d
dt Γ̂ = (−B − iξA)Γ̂,

Γ̂(0, ξ) = I.
142

Consider the entire function143

(25) E(z) = −B − zA =


−az −z

√
λ2 − a2ε2
ε

−z
√
λ2 − a2ε2
ε

az − 1

ε2

 .144

This manuscript is for review purposes only.



ASYMPTOTIC ESTIMATES FOR THE DIFFUSIVE JIN-XIN MODEL 7

Formally, the solution to (24) is given by145

(26) Γ̂(t, ξ) = eE(iξ)t =

∞∑
n=0

(−B − iξA)n.146

Since E(z) in (25) is symmetric, if z is not exceptional we can write

E(z) = λ1(z)P1(z) + λ2(z)P2(z),

where λ1(z), λ2(z) are the eigenvalues of E(z), and P1(z), P2(z) the related eigenpro-
jections, given by

Pj(z) = − 1

2πi

∮
|ξ−λj(z)|<<1

(E(z)− ξI)−1 dξ, j = 1, 2.

Following [1], we study the low frequencies (case z = 0) and the high frequencies one147

(case z =∞) separately.148

Case z = 0. The total projector for the eigenvalues near to 0 is149

(27) P (z) = − 1

2πi

∮
|ξ|<<1

(E(z)− ξI)−1 dξ.150

Besides, the following expansion holds true, see [11],151

(28) P (z) = Q0 +
∑
n≥1

znPn(z),152

where Q0 is the eigenprojection for E(0)− ξI = −B − ξI, i.e.153

(29)

Q0 = − 1

2πi

∮
|ξ|<<1

(−B − ξI)−1 dξ =

(
1 0
0 0

)
,

Pn(z) = − 1

2πi

∮
R(n)(ξ) dξ, n ≥ 1,

154

R(n) being the n-th term in the expansion of the resolvent (30). Here Q0 is the
projection onto the null space of the source term, while we denote by Q− = I − Q0

the complementing projection, and by L−, L0 and R−, R0 the related left and right
eigenprojectors, see [11, 1], i.e.

L− = RT− =
(

0 1
)
, L0 = RT0 =

(
1 0

)
,

Q− = R−L−, Q0 = R0L0.

On the other hand, from [11],155

R(ξ, z) = (E(z)− ξI)−1 = (−B − zA− ξI)−1 = (−B − ξI)−1
∞∑
n=0

(Az(−B − ξI)−1)n156

= (−B − ξI)−1 +
∑
n≥1

(−B − ξI)−1zn(A(−B − ξI)−1)n157

= R0(ξ) +
∑
n≥1

R(n)(ξ),158

159

This manuscript is for review purposes only.



8 ROBERTA BIANCHINI

i.e.160

(30) R(n) = zn(−B − ξI)−1(A(−B − ξI)−1)n.161

Since we are in a neighborhood of z = 0, at this point the authors in [1] consider162

only the first two terms of the asymptotic expansion of the total projector (28), so163

obtaining an expression with a remainder O(z2). The same approximation cannot be164

performed here, since we need to handle the singular terms in ε. Thus, we develop an165

explicit spectral analysis for the Green function of our problem. First of all,166

(31) A(−B − ξI)−1 =


−a
ξ

−ε
√
λ2 − a2ε2
1 + ε2ξ

−
√
λ2 − a2ε2
εξ

aε2

1 + ε2ξ

 ,167

which is diagonalizable, i.e.

A(−B − ξI)−1 = V DV −1,

where D is the diagonal matrix with entries given by the eigenvalues, and V is the168

matrix with the eigenvectors on the columns. Explicitly, setting169

(32) φ := a2 + 4λ2ξ + 4ε2λ2ξ2,170

we have171

(33)

D = diag

{
−a±

√
φ

2ξ(1 + ε2ξ)

}
,

V =


ε(a+

√
φ+ 2aε2ξ)

2(1 + ε2ξ)
√
λ2 − a2ε2

ε(a−
√
φ+ 2aε2ξ)

2(1 + ε2ξ)
√
λ2 − a2ε2

1 1

 ,

172

173

(34) V −1 =


(1 + ε2ξ)

√
λ2 − a2ε2

ε
√
φ

−a+
√
φ− 2aε2ξ

2
√
φ

− (1 + ε2ξ)
√
λ2 − a2ε2

ε
√
φ

a+
√
φ+ 2aε2ξ

2
√
φ

 .174

This way, denoting by

θ1 = a−
√
φ+ 2aε2ξ, θ2 = a+

√
φ+ 2aε2ξ, ψ1 = − a+

√
φ

2ξ(1 + ε2ξ)
, ψ2 = − a−

√
φ

2ξ(1 + ε2ξ)
,

with φ in (32), from (30) we have

R(n) = zn(−B − ξI)−1(A(−B − ξI)−1)n = zn(−B − ξI)−1(V DnV −1)

This manuscript is for review purposes only.



ASYMPTOTIC ESTIMATES FOR THE DIFFUSIVE JIN-XIN MODEL 9

= zn


θ1ψ

n
2 − θ2ψn1
2
√
φξ

−ε

√
λ2 − a2ε2

φ
(ψn1 − ψn2 )

−ε

√
λ2 − a2ε2

φ
(ψn1 − ψn2 ) − ε2

2(1 + ε2ξ)
√
φ

(θ2ψ
n
2 − θ1ψn1 )

 .

The above matrix is bounded in ε, and so now we can approximate the expression175

of the total projector (28) up to the second order. To this end, we consider R(n) for176

n = 0, 1, 2, we apply the integral formula (29), and we obtain177

(35) P (z) =

 1 +O(z2) −εz
√
λ2 − a2ε2 + εO(z2)

−εz
√
λ2 − a2ε2 + εO(z2) ε2z2(λ2 − a2ε2) + ε2O(z3)

 .178

Now, let L(z), R(z) be the left and the right eigenprojector of P (z), i.e.179

P (z) = R(z)L(z), L(z)R(z) = I180

L(z)P (z) = L(z), P (z)R(z) = R(z).181182

According to (35), we consider the second order approximation, given by183

(36) P̃ (z) =

 1 −εz
√
λ2 − a2ε2

−εz
√
λ2 − a2ε2 ε2z2(λ2 − a2ε2)

 ,184

with185

L̃(z) =
(

1 −εz
√
λ2 − a2ε2

)
, R̃(z) =

(
1

−εz
√
λ2 − a2ε2

)
,186

187

where188

(37)
P̃ (z) = R̃(z)L̃(z), L̃(z)R̃(z) = 1 + ε2O(z2),

P̃ (z)R̃(z) = R̃(z) + ε2O(z2), L̃(z)P̃ (z) = L̃(z) + ε2O(z2),
189

and so

P (z) = P̃ (z) +O(z2), R(z) = R̃(z) +O(z2), L(z) = L̃(z) +O(z2).

Let us point out that further expansions of L(z), R(z) are not singular in ε too, since
the weights in ε of these vectors come from (35). Precisely, one can see that Lε(z)
depends on ε as follows:

Lε(·) =
(

1 O(ε)
)

= [R(·)ε]T .

Now, by using the left and the right operators, we decompose E(z), see [1],190

(38) E(z) = R(z)F (z)L(z) +R−(z)F−(z)L−(z),191

where L−(z), R−(z) are left and right eigenprojectors associated with

P−(z) = I − P (z),
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while
F (z) = L(z)E(z)R(z), F−(z) = L−(z)E(z)R−(z).

We use the previous approximations of L(z), R(z), so obtaining192

(39) F (z) = (L̃(z)+O(z2))(−B−Az)(R̃(z)+O(z2)) = −az+(λ2−a2ε2)z2 +O(z3).193

Now, consider F−(z). Matrix (35) and the above definition imply that194

(40) P−(z) =

 O(z2) zε
√
λ2 − a2ε2 + εO(z2)

zε
√
λ2 − a2ε2 + εO(z2) 1 + ε2O(z2)

 ,195

and, approximating again,

L−(z) = L̃−(z) +O(z2) =
(
zε
√
λ2 − a2ε2 1

)
+O(z2),

R−(z) = R̃−(z) +O(z2) =

(
zε
√
λ2 − a2ε2

1

)
+O(z2).

Thus,196

(41) F−(z) = L̃−(z)(−B −Az)R̃−(z) +O(z2) = − 1

ε2
+ az +O(z2).197

This yields the proposition below.198

Proposition 3.1. We have the following decomposition near z = 0:199

(42) E(z) = F (z)P (z) + E−(z),200

with F (z) in (39), P (z) in (35), E−(z) = R−(z)F−(z)L−(z), and F−(z) in (41).201

Case z = ∞. We consider E(z) = −B − Az = z(−B/z − A) = zE1(1/z) and,
setting z = iξ and ζ = 1/z = −iη, with ξ, η ∈ R, we have

E1(ζ) = −A− ζB

=


−a −

√
λ2 − a2ε2

ε

−
√
λ2 − a2ε2

ε
a− ζ

ε2

 =


−a −

√
λ2 − a2ε2

ε

−
√
λ2 − a2ε2

ε
a+

iη

ε2

 .

Since E1(ζ) is symmetric, we determine the eigenvalues and the right eigenprojectors,

−A− ζB = λE1
1 (ζ)R1(ζ)RT1 (ζ) + λE1

2 (ζ)R2(ζ)RT2 (ζ),

such that, for j = 1, 2, RTj (ζ)Rj(ζ) = I. The following expression for the eigenvalues
of E1(iη) is provided

λE1
1,2(z) =

iη

2ε2
±
√

4ε2λ2 + 4aηε2i− η2
2ε2

,

and it is simple to prove that both the corresponding eigenvalues of E(z), which can
be obtained multiplying λE1

1 (z) and λE1
2 (z) by z = iξ = i/η, have a strictly negative

real part in the high frequencies regime (|ζ| = |η| << 1) and in the vanishing ε
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limit. Moreover, setting δ1,2 =
√

8ε2λ2 + 2ζ2 − 8aε2ζ ± (−2ζ
√
µ+ 4aε2

√
µ), where

µ = 4ε2λ2 + ζ2 − 4aε2ζ, the normalized right eigenprojectors are given by:

R1(ζ) =
1

δ1

 (2aε2 − ζ) +
√
µ

2ε
√
λ2 − a2ε2

 , R2(ζ) =
1

δ2

 (2aε2 − ζ)−√µ

2ε
√
λ2 − a2ε2

 .

The eigenprojectors are bounded in ε, even for ζ near zero. Thus, we can ap-
proximate the total projector of E1(ζ) = −A− ζB in a more convenient way, i.e. we
decompose

A = λ1R1R
T
1 + λ2R2R

T
2 ,

where λ1 = λ/ε, λ2 = −λ/ε, and the corresponding eigenprojectors read

R1 =
1√
2λ

 √λ+ aε

√
λ− aε

 , R2 =
1√
2λ

 −√λ− aε√
λ+ aε

 .

Now, by considering the total projector for the family of eigenvalues going to λj =202

±λ/ε as ζ ≈ 0, we obtain the following approximations:203

(43) F1j(ζ) = −λjI + ζRTj (−B)Rj +O(ζ2).204

Explicitly,205

(44) F11(ζ) = −λ
ε
− (λ− aε)ζ

2λε2
+O(ζ2), F12(ζ) =

λ

ε
− (λ+ aε)ζ

2λε2
+O(ζ2).206

Since E(z) = zE1(1/z), we multiply F1(ζ) = F1(1/z) by z and, for |z| → +∞,207

(45) λ1(z) = −λ
ε
z − λ− aε

2λε2
+O(1/z), λ2(z) =

λ

ε
z − λ+ aε

2λε2
+O(1/z),208

while the projectors are209

(46) Pj(z) = RjR
T
j +O(1/z), j = 1, 2.210

Remark 3.1. Notice that the term O(1/z) in (45) could be singular in ε. How-211

ever, from the previous discussion, the eigenvalues of E(z) have a strictly negative212

real part. This implies that the coefficients of the even powers of z in (45) have a213

negative sign, while the others are imaginary terms. Thus, eλ1,2(z) are bounded in ε.214

Proposition 3.2. We have the following decomposition near z =∞:215

(47) E(z) = λ1(z)P1(z) + λ2(z)P2(z),216

with λ1(z), λ2(z) in (45), and P1(z),P2(z) in (46).217

4. Green function estimates.218

Green function estimates near z = 0. We associate to (39) the parabolic equation

∂tw + a∂xw = (λ2 − a2ε2)∂xxw.

We can write the explicit solution219

(48) g(t, x) =
1

2
√

(λ2 − a2ε2)πt
exp

{
− (x− at)2

4(λ2 − a2ε2)t

}
.220
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This means that, for some c1, c2 > 0,221

(49) |g(t, x)| ≤ c1√
t
e−(x−at)

2/ct, (t, x) ∈ R+ × R, ∀ε > 0.222

Now, recalling Proposition 3.1 and considering the approximation P̃ (z) in (36) of the
total projector P (z) in (35),

eE(z)t = ĝ(z)P̃ (z) +R−(z)eF−(z)tL−(z) + R̂1(t, z),

where ĝ(z) = −az − (λ2 − ε2a2)z2, and R1(t, x) is a remainder term, we take the223

inverse of the Fourier transform of224

(50) K̂(z) = ĝ(z)P̃ (z),225

which yields the expression of the first part of the Green function near z = 0, i.e.226

(51) K(t, x) =


g(t, x) ε

√
λ2 − a2ε2 dg(t, x)

dx

ε
√
λ2 − a2ε2 dg(t, x)

dx
ε2(λ2 − a2ε2)

d2g(t, x)

d2x

 .227

Here, K̂(t, ξ) is the approximation of Γ̂(t, ξ) in (26) for |ξ| ≈ 0. Thus, for ξ ∈ [−δ, δ]228

with δ > 0 sufficiently small, we consider the following remainder term229

(52)

R1(t, x) =
1

2π

∫ δ

−δ
(eE(iξ)t − eK̂(t,ξ)t)eiξx dξ

=
1

2π

∫ δ

−δ
eiξ(x−at)−ξ

2(λ2−a2ε2)t(eO(ξ3t)P (iξ)− P̃ (iξ)) dξ

+
1

2π

∫ δ

−δ
R−(iξ)eF−(iξ)tL−(iξ)eiξx dξ.

230

We need an estimate for the remainder above. First of all, from (41) and (40),231 ∣∣∣∣∣ 1

2π

∫ δ

−δ
R−(iξ)eF−(iξ)tL−(iξ)eiξx dξ

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

2π

∫ δ

−δ
P−(iξ)e(−1/ε

2+aiξ+O(ξ2))teiξx dξ

∣∣∣∣∣232

233

≤ Ce−t/ε
2

234235

for some constant C. Following [1],

|eO(ξ3t)P (iξ)− P̃ (iξ)| = |z3|te2µ|z|
2t

(
O(1) O(ε)|z|
O(ε)|z| O(ε2)|z|2

)
,

for a constant µ > 0. This way,

R1(t, x) = e−(x−at)
2/(ct)

(
O(1)(1 + t)−1 O(ε)(1 + t)−3/2

O(ε)(1 + t)−3/2 O(ε2)(1 + t)−2

)
.
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Green function estimates near z = ∞. We associate to (45) the following equa-236

tions:237

∂tw +
λ

ε
∂xw = −λ− aε

2λε2
w, ∂tw −

λ

ε
∂xw = −λ+ aε

2λε2
w.238

239

We can write explicitly the solutions240

g1(t, x) = δ(x− λt/ε)e−(λ−aε)t/(2λε
2), g2(t, x) = δ(x+ λt/ε)e−(λ+aε)t/(2λε

2).241242

Thus,

|gj(t, x)| ≤ Cδ(x± λt/ε)e−ct/ε
2

, j = 1, 2.

We determine the Fourier transform of the Green function for |z| going to infinity,243

(53) K̂(t, ξ) = exp

{
− iλtξ

ε
− (λ− aε)t

2λε2

}
P1(∞) + exp

{
i
λtξ

ε
− (λ+ aε)t

2λε2

}
P2(∞).244

This way, from Proposition 3.2, the remainder term here is245

(54) R2(t, x) =
1

2π

∫
|ξ|≥N

(eE(iξ)t − K̂(t, ξ))eiξx dξ, and246

247

|R2| ≤
1

2π

∣∣∣∣∣
∫
|ξ|≥N

eiξ(x−λt/ε)−(λ−aε)t/(2λε
2) · (eO(1)t/(iξ)+O(1)t/ξ2P1(iξ)− P1(∞)) dξ

∣∣∣∣∣248

+
1

2π

∣∣∣∣∣
∫
|ξ|≥N

eiξ(x+λt/ε)−(λ+aε)t/(2λε
2) · (eO(1)t/(iξ)+O(1)t/ξ2P2(iξ)− P2(∞)) dξ

∣∣∣∣∣.249

250

Following [1] and thanks to Remark 3.1,251

|R2(t, x)| ≤ Ce−ct/ε
2

[∣∣∣∣∣
∫
|ξ|≥N

eiξ(x±λt/ε)

ξ
dξ

∣∣∣∣∣+

∫
|ξ|≥N

1

ξ2
dξ

]
≤ Ce−ct/ε

2

.252

253

Remainders in between. Until now, we studied the Green function of the linearized254

diffusive Jin-Xin system for z ≈ 0, which yields the parabolic kernel K̂ in (50), and255

for z ≈ ∞, so obtaining K̂ in (53). In these two cases, we also provided estimates for256

the remainder terms:257

• R1 in (52) for the parabolic kernel K for |ξ| ≤ δ, with δ sufficiently small;258

• R2 in (54) for the transport kernel K for |ξ| ≥ N, with N big enough.259

It remains to estimate the last remainder terms, namely the parabolic kernel K for260

|ξ| ≥ δ, t ≥ 1, the transport kernel K for |ξ| ≤ N, and the kernel E(z) for δ ≤ |ξ| ≤ N.261

Parabolic kernel K(t, x) for |ξ| ≥ δ, δ << 1 . Let us define262

(55) R3(t, x) =
1

2π

∫
|ξ|≥δ

K̂(t, ξ)eiξx dξ.263

Thus, from (50), for t ≥ 1,264

|R3(t, x)| ≤ C

∣∣∣∣∣
∫
|ξ|≥δ

eiξ(x−at)e−(λ
2−a2ε2)ξ2tP̃ (iξ) dξ

∣∣∣∣∣265

≤ Ce−t/C√
t

(
O(1) O(ε)
O(ε) O(ε2)

)
.266

267
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Transport kernel for |ξ| ≤ N . Set268

(56) R4(t, x) =
1

2π

∫
|ξ|≤N

K̂(t, ξ)eiξx dξ,269

and, from (53),270

|R4(t, x)| ≤ Ce−(λ+|a|ε)t/(2λε
2)
∑∣∣∣∣∣

∫ N

−N
eiξ(x±λt/ε)dξ

∣∣∣∣∣271

≤ Ce−ct/ε
2

min

{
N,

1

|x± λt/ε|

}
.272

273

Kernel E(z) for δ ≤ |ξ| ≤ N . Finally, we set

R5(t, x) =
1

2π

∫
δ≤|ξ|≤N

eE(iξ)teiξtdξ.

Unlike [1], here we cannot simply apply the (SK) condition, as mentioned in the274

Introduction, and a further analysis is needed. The eigenvalues of E(iξ) = −iξA−B275

are expressed here:276

(57) λ1/2 =
1

2ε2

(
− 1±

√
1− 4ε2(iaξ + λ2ξ2)

)
=

−2(aiξ + λ2ξ2)

1±
√

1− 4ε2(aiξ + λ2ξ2)
.277

By using the Taylor expansion for ε ≈ 0,

λ1 = − aiξ + λ2ξ2

1− ε2(aiξ + λ2ξ2)
, λ2 = − 1

ε2
.

Explicitly, denoting by

4 =
√

1− 4ε2ξ(λ2ξ + ia), φ1 = −1 +4+ 2iaξε2, φ2 = 1 +4− 2iaξε2,

one can find that278

eE(iξ)t =


eλ2t

24
φ1 +

eλ1t

24
φ2 − iξε

√
λ2 − a2ε2(eλ1t − eλ2t)

4

− iξε
√
λ2 − a2ε2(eλ1t − eλ2t)

4
eλ1t

24
φ1 +

eλ2t

24
φ2

 ,279

where φ1 = −1 +4 = −2ε2ξ(λ2ξ + ia) +O(ε2) = O(ε2), φ2 = 1 +4 = O(1),

and, in terms of the singular parameter ε, this yields280

eE(iξ)t =

 O(1)(eλ1t + eλ2t) O(ε)(eλ1t − eλ2t)

O(ε)(eλ1t − eλ2t) eλ1tO(ε2) +O(1)eλ2t

 .281

Putting the above calculations all together and integrating in space with respect to282

the Fourier variable for δ ≤ |ξ| ≤ N, we get283

(58) |R5(t, x)| ≤ C

 O(1)e−t/C O(ε)e−t/C

O(ε)e−t/C O(ε2)e−t/C +O(1)e−t/ε
2

 .284
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From (52), (54), (55), (56), (58), we denote the remainder by285

(59) R(t) = R1(t) +R2(t) +R3(t) +R4(t) +R5(t).286

The previous estimates provide the following lemma.287

Lemma 4.1. Let Γ(t, x) be the Green function of the linear system (22). We have
the following decomposition:

Γ(t, x) = K(t, x) +K(t, x) +R(t, x),

with K(t, x),K(t, x), R(t, x) in (51), (53) and (59) respectively. Moreover, for some288

constants c, C,289

• |K(t, x)| ≤ e−(x−at)2/(ct)
(

O(1)(1 + t)−1 O(ε)(1 + t)−3/2

O(ε)(1 + t)−3/2 O(ε2)(1 + t)−2

)
;290

• |K(t, x)| ≤ Ce−ct/ε2 ;291

•
|R(t)| ≤ e−(x−at)

2/(ct)

(
O(1)(1 + t)−1 O(ε)(1 + t)−3/2

O(ε)(1 + t)−3/2 O(ε2)(1 + t)−2

)
+

(
O(1) O(ε)
O(ε) O(ε2)

)
e−ct + Id e−ct/ε

2

.

.292

Decay estimates. Let us consider the solution to the Cauchy problem associated
with the linear system (22) and initial data w0,

ŵ(t, ξ) = Γ̂(t, ξ)ŵ0(ξ) = eE(iξ)tŵ0(ξ).

By using the decomposition provided by Lemma 4.1, we get the following theorem.293

Theorem 4.2. Consider the linear system in (22), i.e.

∂tw +A∂xw = −Bw,

and let Q0 = R0L0 and Q− = R−L− as before, i.e. the eigenprojectors onto the
null space and the negative definite part of −B respectively. Then, for any function
w0 ∈ L1 ∩L2(R,R), the solution w(t) = Γ(t)w0 to the related Cauchy problem can be
decomposed as

w(t) = Γ(t)w0 = K(t)w0 +K(t)w0 +R(t)w0.

Moreover, for any index β, the following estimates hold:294

(60)
‖L0D

βK(t)w0‖0 ≤ C min{1, t−1/4−|β|/2}‖L0w0‖L1

+ Cεmin{1, t−3/4−|β|/2}‖L−w0‖L1 ,
295

296

(61)
‖L−DβK(t)w0‖0 ≤ Cεmin{1, t−3/4−|β|/2}‖L0w0‖L1

+ Cε2 min{1, t−5/4−|β|/2}‖L−w0‖L1 ,
297

298

(62) ‖DβK(t)w0‖0 ≤ Ce−ct/ε
2

‖Dβw0‖0,299

300

(63)

‖L0D
βR(t)w0‖0 ≤ C min{1, t−1/4−|β|/2}‖L0w0‖L1

+ Cεmin{1, t−3/4−|β|/2}‖L−w0‖L1

+ Ce−ct‖L0w0‖L1 + Cεe−ct‖L−w0‖L1 + Ce−ct/ε
2

‖w0‖L1 ,

301
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302

(64)

‖L−DβR(t)w0‖0 ≤ Cεmin{1, t−3/4−|β|/2}‖L0w0‖L1

+ Cε2 min{1, t−5/4−|β|/2}‖L−w0‖L1

+ Cεe−ct‖L0w0‖L1 + Cε2e−ct‖L−w0‖L1 + Ce−ct/ε
2

‖w0‖L1 .

303

Proof. From Lemma 4.1, for some constants c, C > 0, and for an index β, it holds304

(65) ‖DβK(t)w0‖0 ≤ Ce−ct/ε
2

‖Dβw0‖0.305

On the other hand, the hyperbolic kernel (50) can be estimated as306

|L0K̂(t)w0| ≤ Ce−c|ξ|
2t(|L0ŵ0|+ ε|ξ||L−ŵ0|),307

|L−K̂(t)w0| ≤ Ce−c|ξ|
2t(ε|ξ||L0ŵ0|+ ε2|ξ|2|L−ŵ0|).308309

This yields310

‖L0K(t)w0‖20 ≤ C
∫ ∞
0

∫
S0

e−2c|ξ|
2t(|L0ŵ0(ξ)|2 + ε2|ξ|2|L−ŵ0(ξ)|2) dζdξ311

≤ C min{1, t−1/2}‖L0ŵ0‖2∞ + Cε2 min{1, t−3/2}‖L−ŵ0‖2∞312

≤ C min{1, t−1/2}‖L0w0‖2L1 + Cε2 min{1, t−3/2}‖L−w0‖2L1 ,313314

and315

‖L−K(t)w0‖20 ≤ C
∫ ∞
0

∫
S0

e−2c|ξ|t(ε2|ξ|2|L0ŵ0(ξ)|2 + ε4|ξ|2|L−ŵ0(ξ)|2) dζdξ316

≤ Cε2 min{1, t−3/2}‖L0w0‖2L1 + Cε4 min{1, t−5/2}‖L−w0‖2L1 .317318

Besides, for every β we multiply by ξ2β the integrand and we get319

‖L0D
βK(t)w0‖0 ≤ C min{1, t−1/4−|β|/2}‖L0w0‖L1

+ Cεmin{1, t−3/4−|β|/2}‖L−w0‖L1 ,
320

321

‖L−DβK(t)w0‖0 ≤ Cεmin{1, t−3/4−|β|/2}‖L0w0‖L1

+ Cε2 min{1, t−5/4−|β|/2}‖L−w0‖L1 .
322

The estimates for R(t) are obtained in a similar way.323

5. Decay estimates and convergence. Consider the local solution w to the324

Cauchy problem associated with (20), where we drop the tilde, and initial data w0.325

The solution to the nonlinear problem (20) can be expressed by using the Duhamel326

formula327

(66)

w(t) = Γ(t)w0 +

∫ t

0

Γ(t− s)(N(w1(s))−DN(0)w1(s)) ds

= Γ(t)w0 +

∫ t

0

Γ(t− s)

 0
h(w1(s))

ε
√
λ2 − a2ε2

 ds t ∈ [0, T ∗].

328
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From (29) and the formulas below, we recall that w1 = L0w = (1 − L−)w is the329

conservative variable, while w2 = L−w is the dissipative one. We remind the Green330

function decomposition given by Lemma 4.1. For the β-derivative,331

Dβw(t) = DβK(t)w(0) +K(t)Dβw(0) +R(t)Dβw(0)332

+

∫ t/2

0

DβK(t− s)R−L−

 0
h(w1(s))

ε
√
λ2 − a2ε2

 ds333

+

∫ t

t/2

K(t− s)R−DβL−

 0
h(w1(s))

ε
√
λ2 − a2ε2

 ds334

+

∫ t

0

K(t− s)Dβ

 0
h(w1(s))

ε
√
λ2 − a2ε2

 ds335

+

∫ t/2

0

DβR(t− s)R−L−

 0
h(w1(s))

ε
√
λ2 − a2ε2

 ds336

+

∫ t

t/2

R(t− s)R−DβL−

 0
h(w1(s))

ε
√
λ2 − a2ε2

 ds337

338

339

= DβK(t)w(0) +K(t)Dβw(0) +R(t)Dβw(0)340

+

∫ t/2

0

(
DβK12(t− s)
DβK22(t− s)

)
h(w1(s))

ε
√
λ2 − a2ε2

ds341

+

∫ t

t/2

(
K12(t− s)
K22(t− s)

)
Dβ h(w1(s))

ε
√
λ2 − a2ε2

ds342

+

∫ t

0

K(t− s)Dβ

 0
h(w1(s))

ε
√
λ2 − a2ε2

 ds343

344

345

+

∫ t/2

0

(
DβR12(t− s)
DβR22(t− s)

)
h(w1(s))

ε
√
λ2 − a2ε2

ds346

347

+

∫ t

t/2

(
R12(t− s)
R22(t− s)

)
Dβ h(w1(s))

ε
√
λ2 − a2ε2

ds.348

349

Notice that, from (51), K12,K22 are of order ε and ε2 respectively, and the same holds350

for351

R12 = O(ε)(1 + t)−3/2e−(x−at)
2/ct +O(ε)e−ct +O(1)e−ct/ε

2

,352

R22 = O(ε2)(1 + t)−2e−(x−at)
2/ct +O(ε2)e−ct +O(1)e−ct/ε

2

.353354

From the previous assumptions, f(u) = f(w1) = aw1+h(w1), where h(w1) = w2
1h̃(w1)355

for some function h̃(w1). Thus, by using the estimates of Theorem 4.2, and recalling356
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that ‖ · ‖m = ‖ · ‖Hm(R), for m = 0, 1, 2, (H0 = L2), we have, for j = 1, 2,357

‖w(t)‖m ≤ C min{1, t−1/4}‖w0‖L1 + Ce−ct/ε
2

‖w0‖m358

+ C

∫ t

0

min{1, (t− s)−3/4}(‖w2
1h̃(w1)‖L1 + ‖w2

1h̃(w1)‖m) ds359

+ C

∫ t

0

e−c(t−s)‖w2
1h̃(w1)‖m ds360

+ C

∫ t

0

1

ε
e−c(t−s)/ε

2

‖w2
1h̃(w1)‖m ds.361

362

For m big enough,363

‖w(t)‖m ≤ C min{1, t−1/4}‖w0‖L1 + Ce−ct/ε
2

‖w0‖m364

+

∫ t

0

min{1, (t− s)−3/4}C(|w1|∞)‖w1‖2m ds365

+

∫ t

0

e−c(t−s)C(|w1|∞)‖w1‖2m ds366

+

∫ t

0

1

ε
e−c(t−s)/ε

2

C(|w1|∞)‖w1‖2j ds.367
368

From (19), we recall that w =

 w1

w2

 =


u

ε(v − au)√
λ2 − a2ε2

 , and so, for m = 2,369

‖u(t)‖2 + cε‖v(t)− au(t)‖2 ≤ C min{1, t−1/4}(‖u0‖L1 + cε‖v0 − au0‖L1)370

+ e−ct/ε
2

(‖u0‖2 + cε‖v0 − au0‖2)371

+

∫ t

0

min{1, (t− s)−3/4}C(|u|∞)‖u‖22 ds372

+

∫ t

0

e−c(t−s)C(|u|∞)‖u‖22 ds373

+

∫ t

0

1

ε
e−c(t−s)/ε

2

C(|u|∞)‖u‖22 ds.374
375

Let us denote by376

(67) Em = max{‖u0‖L1 + ε‖v0 − au0‖L1 , ‖u0‖m + ε‖v0 − au0‖m},377

where, according to (6), v0 = f(u0)− λ2∂xu0, and378

(68) M0(t) = sup
0≤τ≤t

{max{1, τ1/4}(‖u(τ)‖2 + ε‖v(τ)− au(τ)‖2)}.379

The first term of the right hand side of the above estimate gives380

C min{1, t−1/4}(‖u0‖L1 + cε‖v0 − au0‖L1) + Ce−ct/ε
2

(‖u0‖2 + cε‖v0 − au0‖2)381

≤ C min{1, t−1/4}E2.382383
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Besides,
C(|u|∞)‖u‖22 ≤ C(|u|∞) min{1, s−1/2}M2

0 (s).

Thus,384

‖u(t)‖2 + ε‖v(t)− au(t)‖2 ≤ C min{1, t−1/4}E2385

+M2
0 (t)

∫ t

0

e−c(t−s)c(|u|∞) min{1, s−1/2} ds386

+M2
0 (t)

∫ t

0

1

ε
e−c(t−s)/ε

2

c(|u|∞) min{1, s−1/2} ds387

+M2
0 (t)

∫ t

0

c(|u|∞) min{1, (t− s)−3/4}min{1, s−1/2} ds.388
389

From the Sobolev embedding theorem,

c(|u(s)|∞) ≤ c(‖u(s)‖2) ≤ C min{1, s−1/4}M0(s) ≤ CM0(s).

This way,390

‖u(t)‖2 + ε‖v(t)− au(t)‖2 ≤ C min{1, t−1/4}E2391

+ CM3
0 (t)

∫ t

0

e−c(t−s) min{1, s−1/2} ds392

+ CM3
0 (t)

∫ t

0

1

ε
e−c(t−s)/ε

2

min{1, s−1/2} ds393

+ CM3
0 (t)

∫ t

0

min{1, (t− s)−3/4}min{1, s−1/2} ds.394
395

Notice that396

1

ε

∫ t

0

e−c(t−s)/ε
2

min{1, s−1/2} ds = εe−ct/ε
2

∫ t/ε2

0

ecτ min{1, ε
√
τ} dτ397

≤ εe−ct/ε
2

∫ t/ε2

0

ecτ dτ398

=
ε

c
[1− e−ct/ε

2

]399

≤ Cε.400401

By using this inequality in the previous estimate,402

‖u(t)‖2 + ε‖v(t)− au(t)‖2 ≤ C min{1, t−1/4}E2403

+ CM3
0 (t)

∫ t

0

e−c(t−s) min{1, s−1/2} ds404

+ εCM3
0 (t)405

+ CM3
0 (t)

∫ t

0

min{1, (t− s)−3/4}min{1, s−1/2} ds.406
407

Applying usual lemmas on integration, as Lemma 5.2 in [1], we get the following408

inequality409

M0(t) ≤ C(E2 +M3
0 (t)).410411
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Then, if E2 is small enough,
M0(t) ≤ CE2,

i.e.412

(69) ‖u(t)‖2 + ε‖v(t)− au(t)‖2 ≤ C min{1, t−1/4}E2.413

By arguing as before and following [1], we have the theorem below.414

Proposition 5.1. The following estimates hold, with C a constant independent415

of ε,416

(70) ‖Dβw(t)‖0 ≤ C min{1, t−1/4−|β|/2}E|β|+3/2,417

418

(71) ‖Dβw2(t)‖0 ≤ C min{1, t−3/4−|β|/2}E|β|+3/2,419

420

(72) ‖Dβ∂tw(t)‖0 ≤ C min{1, t−3/4−|β|/2}E|β|+5/2,421

422

(73) ‖Dβ∂tw2(t)‖0 ≤ C min{1, t−5/4−|β|/2}E|β|+7/2.423

The last result and estimate (69) prove Theorem 1.1.424

Remark 5.1. Note that the time derivative estimates of the solution (72), (73)
can be obtained by applying again the Duhamel formula and so, similarly to (69),
‖Dβ∂tw(t)‖0 is bounded by a constant depending on ‖Dβ∂tw|t=0‖. The latter is not
singular in ε, thanks to the particular form of the initial data, as it is shown below.
The initial data satisfy (6), i.e.

v0 = f(u0)− λ2∂xu0 = au0 + h(u0)− λ2∂xu0.

In terms of the (C-D) variable w,u = w1,

v = aw1 +

√
λ2 − a2ε2

ε
w2,

this gives the following relation:425

(74)

√
λ2 − a2ε2

ε
w0

2 = h(w0
1)− λ2∂xw0

1.426

Using (74) in system (20),427

(75)



∂tw1|t=0 = −a∂xw0
1 −
√
λ2 − a2ε2

ε
∂xw

0
2,

∂tw2|t=0 = −
√
λ2 − a2ε2

ε
∂xw

0
1 + a∂xw

0
2 +

λ2

ε
√
λ2 − a2ε2

∂xw
0
1

=
a2ε√

λ2 − a2ε2
∂xw

0
1 + a∂xw

0
2.

428

In terms of the original variable,∂tw1|t=0 = −∂xf(ū0) + λ2∂xxū0,

∂tw2|t=0 =
aε√

λ2 − a2ε2
(∂xf(ū0)− λ2∂xxū0).
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Remark 5.2. As shown in the previous remark, the well-prepared initial data (6)429

allow to bound the Hs norm of the time derivative of the solution to (20), uniformly430

in ε. The case of general initial data should be explored in future works. However,431

in this remark let us consider, at least formally, the case of Mawellian initial data,432

meaning that, instead of (6), we take433

(76)
(u0, v0) = (ū0, f(ū0)) = (ū0, aū0 +h(ū0)), (fε1 (0, x), fε2 (0, x)) = (M1(ū0),M2(ū0)).434

In terms of the (C-D) variables w in (19),435

(77) (w1(0, x), w2(0, x)) =

(
ū0,

εh(ū0)√
λ2 − a2ε2

)
.436

Consider the difference w − wM , where w is the solution to (22) with well-prepared437

initial data in (6), while wM is the solution to (22) with Maxwellian initial data (77).438

The associated initial conditions are:439

(78) w(0, x)−wM (0, x) =

(
0,
−λ2ε∂xh(ū0)√
λ2 − a2ε2

)
.440

We apply again the Duhamel formula as in (66), in order to estimate the behavior of
the difference between the two solutions. Taking into account the decomposition of the
Green function in Lemma 4.1, it follows that, for t > 0,

‖(w−wM )(t, x)‖0 ≤ ε2C‖∂xū0‖.

Thus, after the initial layer, for t > 0, the difference between the solution w, with441

well-prepared initial data, and wM , with Maxwellian initial data, is of order ε2.442

Convergence in the diffusion limit and asymptotic behavior. We perform the one
dimensional Chapman-Enskog expansion. Recalling that

w1 = u, w2 = ud,

where u is the conservative variable and ud is the dissipative one, system (20) is

∂t

(
u
ud

)
+A∂x

(
u
ud

)
=

(
0

q(u)

)
,

with A in (21) and q(u) = −w2

ε2
+

h(w1)

ε
√
λ2 − a2ε2

. We consider the following nonlinear443

parabolic equation444

∂tu+ a∂xu+ ∂xh(u)− (λ2 − a2ε2)∂xxu = ∂xS,445

where446

(79) S = ε
√
λ2 − a2ε2{∂tud − a∂xud}.447

The homogeneous equation is448

(80) ∂twp + a∂xwp + ∂xh(wp)− (λ2 − a2ε2)∂xxwp = 0,449
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and associated Green function is provided here

Γp(t) = K11(t) + K̃(t) + R̃(t),

with K11 in (51). We take the difference between the conservative variable u = w1450

and wp,451

(81)

Dβ(u(t)− wp(t)) =

∫ t/2

0

DβD(K11(t− s) + R̃(t− s))(h(wp(s))− h(u(s))) ds

+

∫ t/2

0

DβD(K11(t− s) + R̃(t− s))S(s) ds

+

∫ t

t/2

D(K11(t− s) + R̃(t− s))Dβ(h(wp(s))− h(u(s)) + S(s)) ds

+

∫ t

0

K̃(t− s)DβD(h(wp(s))− h(u(s)) + S(s)) ds.

452

By using (70), (71), (73), we have

‖DβS‖0 ≤ Cεmin{1, t−5/4−β/2}Eβ+1.

Let us define, for µ ∈ [0, 1/2),453

(82) m0(t) = sup
τ∈[0,t]

{max{1, τ1/4+µ}‖u(τ)− wp(τ)‖0}.454

For β = 0,455

‖u(t)− wp(t)‖0 ≤ CE1m0(t)

∫ t

0

min{1, (t− s)−3/4}min{1, s−1/2−µ} ds456

+ CεE3

∫ t

0

min{1, (t− s)−3/4}min{1, s−1} ds457

+ C(E1m0(t) + εE4)

∫ t

0

e−c(t−s) min{1, s−5/4} ds458

≤ C min{1, s−1/4−µ}(E1m0(t) + εE1 + εE4 + (1/2− µ)−1E1m0(t)),459460

i.e., if E1 is small enough,461

(83) m0(t) ≤ CεE4.462

Similarly, it can be proved by induction that, for γ < β, defining463

(84) mβ(t) = sup
τ∈[0,t]

{max{1, τ1/4+µ+β/2}‖Dβ(u(τ)− wp(τ))‖0},464

and assuming mγ(t) ≤ C(µ)εEγ+4, then

‖Dβ(h(u(s))− h(wp(s)))‖0 ≤ C min{1, t−1/2−µ−β/2}(C(µ)Eβ+1Eβ+3 + E1mβ(t)).

Using the last inequality, (79) and (83) in (81), finally we get

mβ(t) ≤ C(µ)εEβ+4,

which ends the proof of Theorem 1.2.465
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