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1. Introduction. We consider the following scaled version of the Jin-Xin approximation for systems of conservation laws in [START_REF] Jin | The relaxation schemes for system of conservation laws in arbitrary space dimensions[END_REF]:

(1)

∂ t u + ∂ x v = 0, ε 2 ∂ t v + λ 2 ∂ x u = f (u) -v,
where λ > 0 is a positive constant, u, v depend on (t, x) ∈ R + × R and take values in R, while f (u) : R → R is a Lipschitz function such that f (0) = 0, and f (0) = a, with a a constant value independent of ε, λ. The diffusion limit of this system for ε → 0 has been studied in [START_REF] Jin | Diffusion limit of a hyperbolic system with relaxation[END_REF][START_REF] Bouchut | Diffusive BGK Approximations for Nonlinear Multidimensional Parabolic Equations[END_REF], where the convergence to the following equations is proved:

(2)

∂ t u + ∂ x v = 0 v = f (u) -λ 2 ∂ x u.
From [START_REF] Natalini | A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws[END_REF][START_REF] Bouchut | Diffusive BGK Approximations for Nonlinear Multidimensional Parabolic Equations[END_REF], it is well-known that system (1) can be written in BGK formulation, [START_REF] Bouchut | Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws[END_REF],

by means of the linear change of variables:

(3)

u = f ε 1 + f ε 2 , v = λ ε (f ε 1 -f ε 2 ).
Precisely, the BGK form of (1) reads:

(4)

     ∂ t f ε 1 + λ ε ∂ x f ε 1 = 1 ε 2 (M 1 (u) -f ε 1 ), ∂ t f ε 2 - λ ε ∂ x f ε 2 = 1 ε 2 (M 2 (u) -f ε 2 ),
where the so-called Maxwellians are:

(5)

M 1 (u) = u 2 + εf (u) 2λ , M 2 (u) = u 2 - εf (u) 2λ .
According to the theory on diffusive limits of the Boltzmann equation and related BGK models, see [START_REF] Golse | The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels[END_REF][START_REF] Saint-Raymond | From the BGK model to the NavierStokes equations[END_REF], we consider fluctuations of the Maxwellian functions as initial data for the Cauchy problem associated with system [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF]. Namely, given a function ū0 (x), depending on the spatial variable, we assume [START_REF] Chern | Long-time effect of relaxation for hyperbolic conservation laws[END_REF] (u(0, x), v(0, x)) = (u 0 , v 0 ) = (ū 0 , f (ū 0 ) -λ 2 ∂ x ū0 ).

By using the change of variables (3), the BGK initial data read:

(7) (f ε 1 (0, x), f ε 2 (0, x)) = M 1 (ū 0 ) - ελ 2 ∂ x ū0 , M 2 (ū 0 ) + ελ 2 ∂ x ū0 ,
where the fluctuations are given by ± ελ 2 ∂ x ū0 .

System (1) is the parabolic scaled version of the hyperbolic relaxation approximation for systems of conservation laws, the Jin-Xin system, introduced in [START_REF] Jin | The relaxation schemes for system of conservation laws in arbitrary space dimensions[END_REF] in 1995. This model has been studied in [START_REF] Natalini | Convergence to equilibrium for the relaxation approximations of conservation laws[END_REF][START_REF] Chern | Long-time effect of relaxation for hyperbolic conservation laws[END_REF][START_REF] Jin | The relaxation schemes for system of conservation laws in arbitrary space dimensions[END_REF], and the hyperbolic relaxation limit has been investigated. A complete review on hyperbolic conservation laws with relaxation, and a focus on the Jin-Xin system is presented in [START_REF] Mascia | Twenty-eight years with Hyperbolic Conservation Laws with Relaxation[END_REF]. By means of the Chapman-Enskog expansion, local attractivity of diffusion waves for the Jin-Xin model was established in [START_REF] Chern | Long-time effect of relaxation for hyperbolic conservation laws[END_REF]. In [START_REF] Liu | Long-time diffusive behavior of solutions to a hyperbolic relaxation system[END_REF], the authors showed that, under some assumptions on the initial data and the function f (u), the first component of system [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF] with ε = 1 decays asymptotically towards the fundamental solution to the Burgers equation, for the case of f (u) = αu 2 /2. Besides, [START_REF] Orive | Long-time behavior of solutions to a non-linear hyperbolic relaxation system[END_REF] is a complete study of the long time behavior of this model for a more general class of functions f (u) = |u| q-1 u, with q ≥ 2. The method developed in [START_REF] Orive | Long-time behavior of solutions to a non-linear hyperbolic relaxation system[END_REF] can be also extended to the multidimensional case in space, and provides sharp decay rates. Here we study the parabolic scaled version of the system studied in [START_REF] Orive | Long-time behavior of solutions to a non-linear hyperbolic relaxation system[END_REF], i.e. [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF], and we consider a more general function f (u) = au + h(u), where a is a constant, and h(u) is a polynomial function whose terms are at least quadratic. We point out that only the case a = 0 has been handled in [START_REF] Orive | Long-time behavior of solutions to a non-linear hyperbolic relaxation system[END_REF], and in many previous works as well. In accordance with the theory presented in [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF] on partially dissipative hyperbolic systems, we are able to cover also the case a = 0. Furthermore, besides the aymptotic behavior of the solutions, here we are interested in studying the diffusion limit, for vanishing ε, of the Jin-Xin system, which is the main improvement of the present paper with respect to the results achieved in [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF]. Indeed, because of the presence of the singular parameter, we cannot approximate the analysis of the Green function of the linearized problems, as the authors did in [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF], and explicit calculations in that context are needed. The diffusive Jin-Xin system has been already investigated in the following works below. In [START_REF] Jin | Diffusion limit of a hyperbolic system with relaxation[END_REF], initial data around a traveling wave were considered, while in [START_REF] Bouchut | Diffusive BGK Approximations for Nonlinear Multidimensional Parabolic Equations[END_REF] the authors write system (1) in terms of a BGK model, and the diffusion limit is studied by using monotonicity properties of the solution. In all these cases, u, v are scalar functions. For simplicity, here we also take scalar unknowns u, v. However, our approach, which takes its roots in [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF], can be generalized to the case of vectorial functions u, v ∈ R N . As mentioned before, the novelty of the present paper consists in dealing with the singular approximation and, in the meantime, with the the large time asymptotic of system (1), which behaves like the limit parabolic equation [START_REF] Bianchini | Convergence of a vector BGK approximation for the incompressible Navier-Stokes equations[END_REF], without using This manuscript is for review purposes only. monotonicity arguments. We obtain, indeed, sharp decay estimates in time to the solution to system (1) in the Sobolev spaces, which are uniform with respect to the singular parameter. This provides the convergence to the limit nonlinear parabolic equation ( 2) both asymptotically in time, and in the vanishing ε-limit. To this end, we perform a crucial change of variables that highlights the dissipative property of the Jin-Xin system, and provides a faster decay of the dissipative variable with respect to the conservative one, which allows to close the estimates. Next, a deep investigation on the Green function of the linearized system (1) and the related spectral analysis is provided, since explicit expressions are needed in order to deal with the singular parameter ε. The dissipative property of the diffusive Jin-Xin system, together with the uniform decay estimates discussed above, and the Green function analysis combined with the Duhamel formula provide our main results, stated in the following. We should mention that we intend to adapt the present argument to the BGK approximation to the Navier-Stokes equations considered in [START_REF] Bianchini | Convergence of a vector BGK approximation for the incompressible Navier-Stokes equations[END_REF], in order to extend the local in time convergence of the approximating system to the solutions to the Navier-Stokes equations on the two dimensional torus, proved in [START_REF] Bianchini | Convergence of a vector BGK approximation for the incompressible Navier-Stokes equations[END_REF], to the global in time result. Define

E m = max{ u 0 L 1 + ε v 0 -au 0 L 1 , u 0 m + ε v 0 -au 0 m },
where • m stands for the H m (R) Sobolev norm and H 0 (R) = L 2 (R). Precise assumptions on f (u) in ( 1) are stated here.

Assumption 1.1. f (u) : R → R is a Lipschitz function such that:

• f (0) = 0; • f (0) = a, which is a constant value independent of ε, λ; • f (u) = ah + h(u)
, where h(u) is a polynomial functions of order higher than or equal to 2.

Theorem 1.1. Under Assumptions 1.1, consider the Cauchy problem associated with system (1) and initial data [START_REF] Chern | Long-time effect of relaxation for hyperbolic conservation laws[END_REF]. If E 2 is sufficiently small, then the unique solution

(u, v) ∈ C([0, ∞), H 2 (R)) ∩ C 1 ([0, ∞), H 1 (R)).
Moreover, the following decay estimate holds:

u(t) 2 + ε v(t) -au(t) 2 ≤ C min{1, t -1/4 }E 2 .
Now, consider the equation below,

∂ t w p + a∂ x w p + ∂ x h(w p ) -λ 2 ∂ xx w p = 0. (8) 
We state the following result.

Theorem 1.2. Under Assumptions 1.1, let w p be the solution to the nonlinear equation [START_REF] Hanouzet | Global Existence of Smooth Solutions for Partially Dissipative Hyperbolic Systems with a Convex Entropy[END_REF] with initial data

w p (0) = u(0) = u 0 ∈ L 1 (R) ∩ H β+4 (R),
where β > 0, and u 0 in (6) is the initial datum for the Jin-Xin system (1). For any µ ∈ [0, 1/2), if E 1 is sufficiently small with respect to (1/2 -µ), then we have the following decay estimate:

(9) D β (u(t) -w p (t)) 0 ≤ Cε min{1, t -1/4-µ-β/2 }E |β|+4 , with C = C(E |β|+4 ).
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Once the right scaled variables, i.e. (u, ε 2 v), expressed at the beginning of Section 2, have been identified, and the so-called conservative-dissipative (C-D) form in [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF] for system (1) has been found, our approach essentially relies on the method developed in [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF], with substantial differences listed here.

• We need an explicit Green function analysis of the linearized system rather than expansions and approximations, in order to deal with the singular parameter ε. The analysis performed in first part of Section 4 is as precise as it is possible.

• Some estimates in [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF] rely on the use of the Shizuta-Kawashima (SK) condition, explained in the following. Consider a linear first order system in compact form: ∂ t u + A∂ x u = Gu. Passing to the Fourier transform, define

E(iξ) = G -iAξ. The (SK) condition states that, if λ(z) is an eigenvalue of E(z), then Re(λ(iξ)) ≤ -c |ξ| 2 1+|ξ| 2 ,
for some constant c > 0 and for every ξ ∈ R -{0}. As it can be seen in ( 57), the eigenvalues associated with the compact linearized system in (C-D) form [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF] of system (1) present different weights in ε. Thus, we cannot simply apply the (SK) condition to estimate the remainders in paragraph Remainders in between disregarding ε, as the authors did in [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF], since the weights in ε play a key role to deal with the singular nonlinear term in the Duhamel formula (66). Again, a further analysis is needed. We are not using the entropy dissipation and the (SK) condition in order to start the study of the asymptotic behavior on a given global in time solution, as the authors did in [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF], Theorem 2.5. The semilinear nature of the Jin-Xin system allows us to use the estimates coming from the Green function analysis, not only to study the asymptotic behavior of the system for small ε and long times, but also, and first of all, to prove the global existence of smooth solutions, uniformly in ε, to our singular system. Such a result is stated in Theorem 1.1.

• The coupling between the convergence to the limit equation (2) for vanishing ε and for large time in the last section is the main novelty of the present paper, and new ideas are needed to get this result.

2. General setting. First of all, we write system (1) in the following form:

(10)    ∂ t u 1 + ∂ x u 2 ε 2 = 0, ∂ t u 2 + λ 2 ∂ x u 1 = f (u 1 ) - u 2 ε 2 .
The unknown variable is u = (u 1 , u 2 ) = (u, ε 2 v), in the spirit of the scaled variables introduced in [START_REF] Bianchini | Convergence of a vector BGK approximation for the incompressible Navier-Stokes equations[END_REF], which are the right scaling to get the conservative-dissipative form discussed below. Here we write f (u 1 ) = au 1 + h(u 1 ), where a = f (0), and system (10) reads ( 11)

   ∂ t u 1 + ∂ x u 2 ε 2 = 0, ∂ t u 2 + λ 2 ∂ x u 1 = au 1 + h(u 1 ) - u 2 ε 2 .
Equations ( 11) can be written in compact form:

(12) ∂ t u + A∂ x u = -Bu + N (u 1 ),
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where

(13) A = 0 1 ε 2 λ 2 0 , -B = 0 0 a - 1 ε 2 , N (u) = 0 h(u) .
In particular, -Bu is the linear part of the source term, while N (u) is the remaining nonlinear one, which only depends on the first component of u = (u, ε 2 v). Now, we look for a right constant symmetrizer Σ for system [START_REF] Kawashima | Large-time behavior of solutions to hyperbolic-parabolic systems of conservation laws and applications[END_REF], which also highlights the dissipative properties of the linear source term. Thus, we find

(14) Σ = 1 aε 2 aε 2 λ 2 ε 2 .
Taking w such that

(15) u = u 1 u 2 = u ε 2 v = Σw = (Σw) 1 (Σw) 2 , where w = w 1 w 2 =      λ 2 u -aε 2 v λ 2 -a 2 ε 2 v -au λ 2 -a 2 ε 2      , system (12) reads (16) Σ∂ t w + A 1 ∂ x w = -B 1 w + N ((Σw) 1 ),
where

A 1 = A T 1 = AΣ = a λ 2 λ 2 aλ 2 ε 2 , -B 1 = -BΣ = 0 0 0 a 2 ε 2 -λ 2 , (17) N ((Σw) 1 ) = 0 h(w 1 + aε 2 w 2 )
.

By using the Cauchy inequality we get the following lemma.

Lemma 2.1. The symmetrizer Σ is definite positive. Precisely

(18) 1 2 w 1 2 0 + ε 2 w 2 2 0 (λ 2 -2a 2 ε 2 ) ≤ (Σw, w) 0 ≤ w 1 2 0 (1 + aε 2 ) + w 2 2 0 (a + λ 2 )ε 2 .
Notice that from the theory on hyperbolic systems, [START_REF] Majda | Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables[END_REF], the Cauchy problem for [START_REF] Mascia | Twenty-eight years with Hyperbolic Conservation Laws with Relaxation[END_REF] with initial data w 0 in H m (R), m ≥ 2, has a unique local smooth solution w ε for each fixed ε > 0. We denote by T ε the maximum time of existence of this local solution and, hereafter, we consider the time interval [0, T * ], with T * ∈ [0, T ε ) for every ε. In the following, we study the Green function of system ( 16), and we establish some uniform energy estimates and decay rates of the smooth solution to system [START_REF] Mascia | Twenty-eight years with Hyperbolic Conservation Laws with Relaxation[END_REF].
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2.1. The conservative-dissipative form. In this section, we introduce a linear change of variable, so providing a particular structure for our system, the so-called conservative-dissipative form (C-D), defined in [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF]. The (C-D) form allows to identify a conservative and a dissipative variable for system [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF], such that a faster decay of the dissipative variable, playing a key role in the following, is observed. Thanks to this change of variables, we are able indeed to handle the case a = 0 in [START_REF] Kato | Perturbation theory for linear operator[END_REF]. Hereafter, (•, •) denotes the standard scalar product in L 2 (R), and

• m is the H m (R)-norm, for m ∈ N, where H 0 (R) = L 2 (R).
Proposition 2.2. Given the right symmetrizer Σ in [START_REF] Majda | Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables[END_REF] for system [START_REF] Kawashima | Large-time behavior of solutions to hyperbolic-parabolic systems of conservation laws and applications[END_REF], denoting by

(19) w = M u =    1 0 -aε √ λ 2 -a 2 ε 2 1 ε √ λ 2 -a 2 ε 2    u =     u ε(v -au) √ λ 2 -a 2 ε 2     , system (12) 
can be written in (C-D) form defined in [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF], i.e.

(

) ∂ t w + Ã∂ x w = -B w + Ñ ( w1 ), 20 
where

à =      a √ λ 2 -a 2 ε 2 ε √ λ 2 -a 2 ε 2 ε -a      , B =    0 0 0 1 ε 2    , Ñ ( w1) =     0 h( w1) ε √ λ 2 -a 2 ε 2     . (21) 
3. The Green function of the linear partially dissipative system. We consider the linear part of the (C-D) system ( 20)-( 21) without the tilde for simplicity,

∂ t w + A∂ x w = -Bw. (22) 
We want to apply the approach developed in [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF], to study the singular approximation system above. The main difficulty here is to deal with the singular perturbation parameter ε. We consider the Green kernel Γ(t, x) of ( 22), which satisfies

(23) ∂ t Γ + A∂ x Γ = -BΓ, Γ(0, x) = δ(x)I.
Taking the Fourier transform Γ, we get (24)

d dt Γ = (-B -iξA) Γ, Γ(0, ξ) = I.
Consider the entire function ( 25)

E(z) = -B -zA =      -az - z √ λ 2 -a 2 ε 2 ε - z √ λ 2 -a 2 ε 2 ε az - 1 ε 2      .
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Formally, the solution to ( 24) is given by ( 26)

Γ(t, ξ) = e E(iξ)t = ∞ n=0 (-B -iξA) n .
Since E(z) in ( 25) is symmetric, if z is not exceptional we can write

E(z) = λ 1 (z)P 1 (z) + λ 2 (z)P 2 (z),
where λ 1 (z), λ 2 (z) are the eigenvalues of E(z), and P 1 (z), P 2 (z) the related eigenprojections, given by

P j (z) = - 1 2πi |ξ-λj (z)|<<1 (E(z) -ξI) -1 dξ, j = 1, 2.
Following [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF], we study the low frequencies (case z = 0) and the high frequencies one (case z = ∞) separately.

Case z = 0. The total projector for the eigenvalues near to 0 is ( 27)

P (z) = - 1 2πi |ξ|<<1 (E(z) -ξI) -1 dξ.
Besides, the following expansion holds true, see [START_REF] Kato | Perturbation theory for linear operator[END_REF],

(28)

P (z) = Q 0 + n≥1 z n P n (z),
where Q 0 is the eigenprojection for E(0) -ξI = -B -ξI, i.e.

(29) n) being the n-th term in the expansion of the resolvent (30). Here Q 0 is the projection onto the null space of the source term, while we denote by Q -= I -Q 0 the complementing projection, and by L -, L 0 and R -, R 0 the related left and right eigenprojectors, see [START_REF] Kato | Perturbation theory for linear operator[END_REF][START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF], i.e.

Q 0 = - 1 2πi |ξ|<<1 (-B -ξI) -1 dξ = 1 0 0 0 , P n (z) = - 1 2πi R (n) (ξ) dξ, n ≥ 1, R ( 
L -= R T -= 0 1 , L 0 = R T 0 = 1 0 , Q -= R -L -, Q 0 = R 0 L 0 .
On the other hand, from [START_REF] Kato | Perturbation theory for linear operator[END_REF],

R(ξ, z) = (E(z) -ξI) -1 = (-B -zA -ξI) -1 = (-B -ξI) -1 ∞ n=0 (Az(-B -ξI) -1 ) n = (-B -ξI) -1 + n≥1 (-B -ξI) -1 z n (A(-B -ξI) -1 ) n = R 0 (ξ) + n≥1 R (n) (ξ),
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i.e.

(30)

R (n) = z n (-B -ξI) -1 (A(-B -ξI) -1 ) n .
Since we are in a neighborhood of z = 0, at this point the authors in [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF] consider only the first two terms of the asymptotic expansion of the total projector (28), so obtaining an expression with a remainder O(z 2 ). The same approximation cannot be performed here, since we need to handle the singular terms in ε. Thus, we develop an explicit spectral analysis for the Green function of our problem. First of all, (31)

A(-B -ξI) -1 =       - a ξ - ε √ λ 2 -a 2 ε 2 1 + ε 2 ξ - √ λ 2 -a 2 ε 2 εξ aε 2 1 + ε 2 ξ       , which is diagonalizable, i.e. A(-B -ξI) -1 = V DV -1 ,
where D is the diagonal matrix with entries given by the eigenvalues, and V is the matrix with the eigenvectors on the columns. Explicitly, setting (32)

φ := a 2 + 4λ 2 ξ + 4ε 2 λ 2 ξ 2 ,
we have

(33) D = diag -a ± √ φ 2ξ(1 + ε 2 ξ) , V =     ε(a + √ φ + 2aε 2 ξ) 2(1 + ε 2 ξ) √ λ 2 -a 2 ε 2 ε(a - √ φ + 2aε 2 ξ) 2(1 + ε 2 ξ) √ λ 2 -a 2 ε 2 1 1     , (34) 
V -1 =       (1 + ε 2 ξ) √ λ 2 -a 2 ε 2 ε √ φ -a + √ φ -2aε 2 ξ 2 √ φ - (1 + ε 2 ξ) √ λ 2 -a 2 ε 2 ε √ φ a + √ φ + 2aε 2 ξ 2 √ φ      
. This way, denoting by

θ 1 = a -φ + 2aε 2 ξ, θ 2 = a + φ + 2aε 2 ξ, ψ 1 = - a + √ φ 2ξ(1 + ε 2 ξ) , ψ 2 = - a - √ φ 2ξ(1 + ε 2 ξ) ,
with φ in (32), from (30) we have

R (n) = z n (-B -ξI) -1 (A(-B -ξI) -1 ) n = z n (-B -ξI) -1 (V D n V -1 )
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= z n         θ 1 ψ n 2 -θ 2 ψ n 1 2 √ φξ -ε λ 2 -a 2 ε 2 φ (ψ n 1 -ψ n 2 ) -ε λ 2 -a 2 ε 2 φ (ψ n 1 -ψ n 2 ) - ε 2 2(1 + ε 2 ξ) √ φ (θ 2 ψ n 2 -θ 1 ψ n 1 )        
.

The above matrix is bounded in ε, and so now we can approximate the expression of the total projector (28) up to the second order. To this end, we consider R (n) for n = 0, 1, 2, we apply the integral formula (29), and we obtain (35)

P (z) =   1 + O(z 2 ) -εz √ λ 2 -a 2 ε 2 + εO(z 2 ) -εz √ λ 2 -a 2 ε 2 + εO(z 2 ) ε 2 z 2 (λ 2 -a 2 ε 2 ) + ε 2 O(z 3 )   .
Now, let L(z), R(z) be the left and the right eigenprojector of P (z), i.e.

P (z) = R(z)L(z), L(z)R(z) = I L(z)P (z) = L(z), P (z)R(z) = R(z).
According to (35), we consider the second order approximation, given by ( 36)

P (z) =   1 -εz √ λ 2 -a 2 ε 2 -εz √ λ 2 -a 2 ε 2 ε 2 z 2 (λ 2 -a 2 ε 2 )   , with L(z) = 1 -εz √ λ 2 -a 2 ε 2 , R(z) = 1 -εz √ λ 2 -a 2 ε 2 ,
where

P (z) = R(z) L(z), L(z) R(z) = 1 + ε 2 O(z 2 ), P (z) R(z) = R(z) + ε 2 O(z 2 ), L(z) P (z) = L(z) + ε 2 O(z 2 ), (37) 
and so

P (z) = P (z) + O(z 2 ), R(z) = R(z) + O(z 2 ), L(z) = L(z) + O(z 2 ).
Let us point out that further expansions of L(z), R(z) are not singular in ε too, since the weights in ε of these vectors come from (35). Precisely, one can see that L ε (z) depends on ε as follows:

L ε (•) = 1 O(ε) = [R(•) ε ] T .
Now, by using the left and the right operators, we decompose E(z), see [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF],

(38)

E(z) = R(z)F (z)L(z) + R -(z)F -(z)L -(z),
where L -(z), R -(z) are left and right eigenprojectors associated with

P -(z) = I -P (z),
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while

F (z) = L(z)E(z)R(z), F -(z) = L -(z)E(z)R -(z).
We use the previous approximations of L(z), R(z), so obtaining

(39) F (z) = ( L(z) + O(z 2 ))(-B -Az)( R(z) + O(z 2 )) = -az + (λ 2 -a 2 ε 2 )z 2 + O(z 3 ).
Now, consider F -(z). Matrix (35) and the above definition imply that (40)

P -(z) =   O(z 2 ) zε √ λ 2 -a 2 ε 2 + εO(z 2 ) zε √ λ 2 -a 2 ε 2 + εO(z 2 ) 1 + ε 2 O(z 2 )   ,
and, approximating again,

L -(z) = L-(z) + O(z 2 ) = zε √ λ 2 -a 2 ε 2 1 + O(z 2 ), R -(z) = R-(z) + O(z 2 ) = zε √ λ 2 -a 2 ε 2 1 + O(z 2 ). Thus, (41) 
F -(z) = L-(z)(-B -Az) R-(z) + O(z 2 ) = - 1 ε 2 + az + O(z 2 ).
This yields the proposition below. Case z = ∞. We consider E(z) = -B -Az = z(-B/z -A) = zE 1 (1/z) and, setting z = iξ and ζ = 1/z = -iη, with ξ, η ∈ R, we have

E 1 (ζ) = -A -ζB =      -a - √ λ 2 -a 2 ε 2 ε - √ λ 2 -a 2 ε 2 ε a - ζ ε 2      =      -a - √ λ 2 -a 2 ε 2 ε - √ λ 2 -a 2 ε 2 ε a + iη ε 2     
.

Since E 1 (ζ) is symmetric, we determine the eigenvalues and the right eigenprojectors,

-A -ζB = λ E1 1 (ζ)R 1 (ζ)R T 1 (ζ) + λ E1 2 (ζ)R 2 (ζ)R T 2 (ζ), such that, for j = 1, 2, R T j (ζ)R j (ζ) = I.
The following expression for the eigenvalues of E 1 (iη) is provided

λ E1 1,2 (z) = iη 2ε 2 ± 4ε 2 λ 2 + 4aηε 2 i -η 2 2ε 2 ,
and it is simple to prove that both the corresponding eigenvalues of E(z), which can be obtained multiplying λ E1 1 (z) and λ E1 2 (z) by z = iξ = i/η, have a strictly negative real part in the high frequencies regime (|ζ| = |η| << 1) and in the vanishing ε This manuscript is for review purposes only.

limit. Moreover, setting δ

1,2 = 8ε 2 λ 2 + 2ζ 2 -8aε 2 ζ ± (-2ζ √ µ + 4aε 2 √ µ), where µ = 4ε 2 λ 2 + ζ 2 -4aε 2 ζ
, the normalized right eigenprojectors are given by:

R 1 (ζ) = 1 δ 1   (2aε 2 -ζ) + √ µ 2ε √ λ 2 -a 2 ε 2   , R 2 (ζ) = 1 δ 2   (2aε 2 -ζ) - √ µ 2ε √ λ 2 -a 2 ε 2   .
The eigenprojectors are bounded in ε, even for ζ near zero. Thus, we can approximate the total projector of E 1 (ζ) = -A -ζB in a more convenient way, i.e. we decompose

A = λ 1 R 1 R T 1 + λ 2 R 2 R T 2 ,
where λ 1 = λ/ε, λ 2 = -λ/ε, and the corresponding eigenprojectors read

R 1 = 1 √ 2λ   √ λ + aε √ λ -aε   , R 2 = 1 √ 2λ   - √ λ -aε √ λ + aε   .
Now, by considering the total projector for the family of eigenvalues going to λ j = ±λ/ε as ζ ≈ 0, we obtain the following approximations:

(43) F 1j (ζ) = -λ j I + ζR T j (-B)R j + O(ζ 2 ).
Explicitly, (44)

F 11 (ζ) = - λ ε - (λ -aε)ζ 2λε 2 + O(ζ 2 ), F 12 (ζ) = λ ε - (λ + aε)ζ 2λε 2 + O(ζ 2 ).
Since E(z) = zE 1 (1/z), we multiply F 1 (ζ) = F 1 (1/z) by z and, for |z| → +∞, (45)

λ 1 (z) = - λ ε z - λ -aε 2λε 2 + O(1/z), λ 2 (z) = λ ε z - λ + aε 2λε 2 + O(1/z),
while the projectors are (46)

P j (z) = R j R T j + O(1/z), j = 1, 2.
Remark 3.1. Notice that the term O(1/z) in (45) could be singular in ε. However, from the previous discussion, the eigenvalues of E(z) have a strictly negative real part. This implies that the coefficients of the even powers of z in (45) have a negative sign, while the others are imaginary terms. Thus, e λ1,2(z) are bounded in ε.

Proposition 3.2. We have the following decomposition near z = ∞:

(47) E(z) = λ 1 (z)P 1 (z) + λ 2 (z)P 2 (z),
with λ 1 (z), λ 2 (z) in (45), and P 1 (z), P 2 (z) in (46).

Green function estimates.

Green function estimates near z = 0. We associate to (39) the parabolic equation

∂ t w + a∂ x w = (λ 2 -a 2 ε 2 )∂ xx w.
We can write the explicit solution

(48) g(t, x) = 1 2 (λ 2 -a 2 ε 2 )πt exp - (x -at) 2 4(λ 2 -a 2 ε 2 )t .
This means that, for some c 1 , c 2 > 0,

(49) |g(t, x)| ≤ c 1 √ t e -(x-at) 2 /ct , (t, x) ∈ R + × R, ∀ε > 0.
Now, recalling Proposition 3.1 and considering the approximation P (z) in (36) of the total projector P (z) in ( 35),

e E(z)t = ĝ(z) P (z) + R -(z)e F-(z)t L -(z) + R1 (t, z),
where ĝ(z) = -az -(λ 2 -ε 2 a 2 )z 2 , and R 1 (t, x) is a remainder term, we take the inverse of the Fourier transform of (50) K(z) = ĝ(z) P (z), which yields the expression of the first part of the Green function near z = 0, i.e.

(51)

K(t, x) =      g(t, x) ε √ λ 2 -a 2 ε 2 dg(t, x) dx ε √ λ 2 -a 2 ε 2 dg(t, x) dx ε 2 (λ 2 -a 2 ε 2 ) d 2 g(t, x) d 2 x      .
Here, K(t, ξ) is the approximation of Γ(t, ξ) in ( 26) for |ξ| ≈ 0. Thus, for ξ ∈ [-δ, δ] with δ > 0 sufficiently small, we consider the following remainder term (52)

R 1 (t, x) = 1 2π δ -δ
(e E(iξ)t -e K(t,ξ)t )e iξx dξ = 1 2π δ -δ e iξ(x-at)-ξ 2 (λ 2 -a 2 ε 2 )t (e O(ξ 3 t) P (iξ) -P (iξ)) dξ

+ 1 2π δ -δ R -(iξ)e F-(iξ)t L -(iξ)e iξx dξ.
We need an estimate for the remainder above. First of all, from (41) and ( 40),

1 2π δ -δ R -(iξ)e F-(iξ)t L -(iξ)e iξx dξ ≤ 1 2π δ -δ P -(iξ)e (-1/ε 2 +aiξ+O(ξ 2 ))t e iξx dξ ≤ Ce -t/ε 2
for some constant C. Following [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF],

|e O(ξ 3 t) P (iξ) -P (iξ)| = |z 3 |te 2µ|z| 2 t O(1) O(ε)|z| O(ε)|z| O(ε 2 )|z| 2 ,
for a constant µ > 0. This way,

R 1 (t, x) = e -(x-at) 2 /(ct) O(1)(1 + t) -1 O(ε)(1 + t) -3/2 O(ε)(1 + t) -3/2 O(ε 2 )(1 + t) -2 .
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Green function estimates near z = ∞. We associate to (45) the following equations:

∂ t w + λ ε ∂ x w = - λ -aε 2λε 2 w, ∂ t w - λ ε ∂ x w = - λ + aε 2λε 2 w.
We can write explicitly the solutions

g 1 (t, x) = δ(x -λt/ε)e -(λ-aε)t/(2λε 2 ) , g 2 (t, x) = δ(x + λt/ε)e -(λ+aε)t/(2λε 2 ) .
Thus,

|g j (t, x)| ≤ Cδ(x ± λt/ε)e -ct/ε 2 , j = 1, 2.
We determine the Fourier transform of the Green function for |z| going to infinity,

(53) K(t, ξ) = exp -i λtξ ε - (λ -aε)t 2λε 2 P 1 (∞) + exp i λtξ ε - (λ + aε)t 2λε 2 P 2 (∞).
This way, from Proposition 3.2, the remainder term here is

(54) R 2 (t, x) = 1 2π |ξ|≥N (e E(iξ)t -K(t, ξ))e iξx dξ, and 
|R 2 | ≤ 1 2π |ξ|≥N e iξ(x-λt/ε)-(λ-aε)t/(2λε 2 ) • (e O(1)t/(iξ)+O(1)t/ξ 2 P 1 (iξ) -P 1 (∞)) dξ + 1 2π |ξ|≥N e iξ(x+λt/ε)-(λ+aε)t/(2λε 2 ) • (e O(1)t/(iξ)+O(1)t/ξ 2 P 2 (iξ) -P 2 (∞)) dξ .
Following [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF] and thanks to Remark 3.1,

|R 2 (t, x)| ≤ Ce -ct/ε 2 |ξ|≥N e iξ(x±λt/ε) ξ dξ + |ξ|≥N 1 ξ 2 dξ ≤ Ce -ct/ε 2 .
Remainders in between. Until now, we studied the Green function of the linearized diffusive Jin-Xin system for z ≈ 0, which yields the parabolic kernel K in (50), and for z ≈ ∞, so obtaining K in (53). In these two cases, we also provided estimates for the remainder terms:

• R 1 in (52) for the parabolic kernel K for |ξ| ≤ δ, with δ sufficiently small;

• R 2 in (54) for the transport kernel K for |ξ| ≥ N, with N big enough.

It remains to estimate the last remainder terms, namely the parabolic kernel K for |ξ| ≥ δ, t ≥ 1, the transport kernel K for |ξ| ≤ N, and the kernel E(z) for δ ≤ |ξ| ≤ N.

Parabolic kernel K(t, x) for |ξ| ≥ δ, δ << 1 . Let us define (55) R 3 (t, x) = 1 2π |ξ|≥δ K(t, ξ)e iξx dξ.
Thus, from (50), for t ≥ 1,

|R 3 (t, x)| ≤ C |ξ|≥δ e iξ(x-at) e -(λ 2 -a 2 ε 2 )ξ 2 t P (iξ) dξ ≤ Ce -t/C √ t O(1) O(ε) O(ε) O(ε 2 ) . Transport kernel for |ξ| ≤ N . Set (56) R 4 (t, x) = 1 2π |ξ|≤N K(t, ξ)e iξx dξ,
and, from (53),

|R 4 (t, x)| ≤ Ce -(λ+|a|ε)t/(2λε 2 ) N -N e iξ(x±λt/ε) dξ ≤ Ce -ct/ε 2 min N, 1 |x ± λt/ε| . Kernel E(z) for δ ≤ |ξ| ≤ N . Finally, we set R 5 (t, x) = 1 2π δ≤|ξ|≤N e E(iξ)t e iξt dξ.
Unlike [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF], here we cannot simply apply the (SK) condition, as mentioned in the Introduction, and a further analysis is needed. The eigenvalues of E(iξ) = -iξA -B are expressed here:

(57)

λ 1/2 = 1 2ε 2 -1 ± 1 -4ε 2 (iaξ + λ 2 ξ 2 ) = -2(aiξ + λ 2 ξ 2 ) 1 ± 1 -4ε 2 (aiξ + λ 2 ξ 2 ) .
By using the Taylor expansion for ε ≈ 0,

λ 1 = - aiξ + λ 2 ξ 2 1 -ε 2 (aiξ + λ 2 ξ 2 ) , λ 2 = - 1 ε 2 .
Explicitly, denoting by

= 1 -4ε 2 ξ(λ 2 ξ + ia), φ 1 = -1 + + 2iaξε 2 , φ 2 = 1 + -2iaξε 2 ,
one can find that

e E(iξ)t =       e λ2t 2 φ 1 + e λ1t 2 φ 2 - iξε √ λ 2 -a 2 ε 2 (e λ1t -e λ2t ) - iξε √ λ 2 -a 2 ε 2 (e λ1t -e λ2t ) e λ1t 2 φ 1 + e λ2t 2 φ 2       , where φ 1 = -1 + = -2ε 2 ξ(λ 2 ξ + ia) + O(ε 2 ) = O(ε 2 ), φ 2 = 1 + = O(1),
and, in terms of the singular parameter ε, this yields

e E(iξ)t =   O(1)(e λ1t + e λ2t ) O(ε)(e λ1t -e λ2t ) O(ε)(e λ1t -e λ2t ) e λ1t O(ε 2 ) + O(1)e λ2t   .
Putting the above calculations all together and integrating in space with respect to the Fourier variable for δ ≤ |ξ| ≤ N, we get

(58) |R 5 (t, x)| ≤ C   O(1)e -t/C O(ε)e -t/C O(ε)e -t/C O(ε 2 )e -t/C + O(1)e -t/ε 2   .
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From (52), ( 54), ( 55), ( 56), (58), we denote the remainder by ( 59)

R(t) = R 1 (t) + R 2 (t) + R 3 (t) + R 4 (t) + R 5 (t).
The previous estimates provide the following lemma.

Lemma 4.1. Let Γ(t, x) be the Green function of the linear system [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]. We have the following decomposition: 51), ( 53) and (59) respectively. Moreover, for some constants c, C,

Γ(t, x) = K(t, x) + K(t, x) + R(t, x), with K(t, x), K(t, x), R(t, x) in (
• |K(t, x)| ≤ e -(x-at) 2 /(ct) O(1)(1 + t) -1 O(ε)(1 + t) -3/2 O(ε)(1 + t) -3/2 O(ε 2 )(1 + t) -2 ; • |K(t, x)| ≤ Ce -ct/ε 2 ; • |R(t)| ≤ e -(x-at) 2 /(ct) O(1)(1 + t) -1 O(ε)(1 + t) -3/2 O(ε)(1 + t) -3/2 O(ε 2 )(1 + t) -2 + O(1) O(ε) O(ε) O(ε 2 ) e -ct + Id e -ct/ε 2 .
.

Decay estimates.

Let us consider the solution to the Cauchy problem associated with the linear system [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF] and initial data w 0 ,

ŵ(t, ξ) = Γ(t, ξ) ŵ0 (ξ) = e E(iξ)t ŵ0 (ξ).
By using the decomposition provided by Lemma 4.1, we get the following theorem. Theorem 4.2. Consider the linear system in [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF], i.e. ∂ t w + A∂ x w = -Bw, and let Q 0 = R 0 L 0 and Q -= R -L -as before, i.e. the eigenprojectors onto the null space and the negative definite part of -B respectively. Then, for any function w 0 ∈ L 1 ∩ L 2 (R, R), the solution w(t) = Γ(t)w 0 to the related Cauchy problem can be decomposed as

w(t) = Γ(t)w 0 = K(t)w 0 + K(t)w 0 + R(t)w 0 .
Moreover, for any index β, the following estimates hold:

(60) L 0 D β K(t)w 0 0 ≤ C min{1, t -1/4-|β|/2 } L 0 w 0 L 1 + Cε min{1, t -3/4-|β|/2 } L -w 0 L 1 , (61) 
L -D β K(t)w 0 0 ≤ Cε min{1, t -3/4-|β|/2 } L 0 w 0 L 1 + Cε 2 min{1, t -5/4-|β|/2 } L -w 0 L 1 , (62) D β K(t)w 0 0 ≤ Ce -ct/ε 2 D β w 0 0 , (63) 
L 0 D β R(t)w 0 0 ≤ C min{1, t -1/4-|β|/2 } L 0 w 0 L 1 + Cε min{1, t -3/4-|β|/2 } L -w 0 L 1 + Ce -ct L 0 w 0 L 1 + Cεe -ct L -w 0 L 1 + Ce -ct/ε 2 w 0 L 1 ,
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(64)

L -D β R(t)w 0 0 ≤ Cε min{1, t -3/4-|β|/2 } L 0 w 0 L 1 + Cε 2 min{1, t -5/4-|β|/2 } L -w 0 L 1 + Cεe -ct L 0 w 0 L 1 + Cε 2 e -ct L -w 0 L 1 + Ce -ct/ε 2 w 0 L 1 .
Proof. From Lemma 4.1, for some constants c, C > 0, and for an index β, it holds (65)

D β K(t)w 0 0 ≤ Ce -ct/ε 2 D β w 0 0 .
On the other hand, the hyperbolic kernel (50) can be estimated as

|L 0 K(t)w 0 | ≤ Ce -c|ξ| 2 t (|L 0 ŵ0 | + ε|ξ||L -ŵ0 |), |L -K(t)w 0 | ≤ Ce -c|ξ| 2 t (ε|ξ||L 0 ŵ0 | + ε 2 |ξ| 2 |L -ŵ0 |).
This yields

L 0 K(t)w 0 2 0 ≤ C ∞ 0 S 0 e -2c|ξ| 2 t (|L 0 ŵ0 (ξ)| 2 + ε 2 |ξ| 2 |L -ŵ0 (ξ)| 2 ) dζdξ ≤ C min{1, t -1/2 } L 0 ŵ0 2 ∞ + Cε 2 min{1, t -3/2 } L -ŵ0 2 ∞ ≤ C min{1, t -1/2 } L 0 w 0 2 L 1 + Cε 2 min{1, t -3/2 } L -w 0 2 L 1 , and 
L -K(t)w 0 2 0 ≤ C ∞ 0 S 0 e -2c|ξ|t (ε 2 |ξ| 2 |L 0 ŵ0 (ξ)| 2 + ε 4 |ξ| 2 |L -ŵ0 (ξ)| 2 ) dζdξ ≤ Cε 2 min{1, t -3/2 } L 0 w 0 2 L 1 + Cε 4 min{1, t -5/2 } L -w 0 2 L 1 .
Besides, for every β we multiply by ξ 2β the integrand and we get

L 0 D β K(t)w 0 0 ≤ C min{1, t -1/4-|β|/2 } L 0 w 0 L 1 + Cε min{1, t -3/4-|β|/2 } L -w 0 L 1 , L -D β K(t)w 0 0 ≤ Cε min{1, t -3/4-|β|/2 } L 0 w 0 L 1 + Cε 2 min{1, t -5/4-|β|/2 } L -w 0 L 1 .
The estimates for R(t) are obtained in a similar way.

Decay estimates and convergence. Consider the local solution w to the

Cauchy problem associated with [START_REF] Orive | Long-time behavior of solutions to a non-linear hyperbolic relaxation system[END_REF], where we drop the tilde, and initial data w 0 .

The solution to the nonlinear problem (20) can be expressed by using the Duhamel formula (66)

w(t) = Γ(t)w 0 + t 0 Γ(t -s)(N (w 1 (s)) -DN (0)w 1 (s)) ds = Γ(t)w 0 + t 0 Γ(t -s)   0 h(w 1 (s)) ε √ λ 2 -a 2 ε 2   ds t ∈ [0, T * ].
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From (29) and the formulas below, we recall that w 1 = L 0 w = (1 -L -)w is the conservative variable, while w 2 = L -w is the dissipative one. We remind the Green function decomposition given by Lemma 4.1. For the β-derivative,

D β w(t) = D β K(t)w(0) + K(t)D β w(0) + R(t)D β w(0) + t/2 0 D β K(t -s)R -L -   0 h(w 1 (s)) ε √ λ 2 -a 2 ε 2   ds + t t/2 K(t -s)R -D β L -   0 h(w 1 (s)) ε √ λ 2 -a 2 ε 2   ds + t 0 K(t -s)D β   0 h(w 1 (s)) ε √ λ 2 -a 2 ε 2   ds + t/2 0 D β R(t -s)R -L -   0 h(w 1 (s)) ε √ λ 2 -a 2 ε 2   ds + t t/2 R(t -s)R -D β L -   0 h(w 1 (s)) ε √ λ 2 -a 2 ε 2   ds = D β K(t)w(0) + K(t)D β w(0) + R(t)D β w(0) + t/2 0 D β K 12 (t -s) D β K 22 (t -s) h(w 1 (s)) ε √ λ 2 -a 2 ε 2 ds + t t/2 K 12 (t -s) K 22 (t -s) D β h(w 1 (s)) ε √ λ 2 -a 2 ε 2 ds + t 0 K(t -s)D β   0 h(w 1 (s)) ε √ λ 2 -a 2 ε 2   ds + t/2 0 D β R 12 (t -s) D β R 22 (t -s) h(w 1 (s)) ε √ λ 2 -a 2 ε 2 ds + t t/2 R 12 (t -s) R 22 (t -s) D β h(w 1 (s)) ε √ λ 2 -a 2 ε 2 ds.
Notice that, from (51), K 12 , K 22 are of order ε and ε 2 respectively, and the same holds for

R 12 = O(ε)(1 + t) -3/2 e -(x-at) 2 /ct + O(ε)e -ct + O(1)e -ct/ε 2 , R 22 = O(ε 2 )(1 + t) -2 e -(x-at) 2 /ct + O(ε 2 )e -ct + O(1)e -ct/ε 2 .
From the previous assumptions, f (u) = f (w 1 ) = aw 1 +h(w 1 ), where h(w 1 ) = w 2 1 h(w 1 )

for some function h(w 1 ). Thus, by using the estimates of Theorem 4.

2, and recalling
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that • m = • H m (R) , for m = 0, 1, 2, (H 0 = L 2 ), we have, for j = 1, 2, w(t) m ≤ C min{1, t -1/4 } w 0 L 1 + Ce -ct/ε 2 w 0 m + C t 0 min{1, (t -s) -3/4 }( w 2 1 h(w 1 ) L 1 + w 2 1 h(w 1 ) m ) ds + C t 0 e -c(t-s) w 2 1 h(w 1 ) m ds + C t 0 1 ε e -c(t-s)/ε 2 w 2 1 h(w 1 ) m ds.
For m big enough,

w(t) m ≤ C min{1, t -1/4 } w 0 L 1 + Ce -ct/ε 2 w 0 m + t 0 min{1, (t -s) -3/4 }C(|w 1 | ∞ ) w 1 2 m ds + t 0 e -c(t-s) C(|w 1 | ∞ ) w 1 2 m ds + t 0 1 ε e -c(t-s)/ε 2 C(|w 1 | ∞ ) w 1 2 j ds. From (19), we recall that w =   w 1 w 2   =     u ε(v -au) √ λ 2 -a 2 ε 2     , and so, for m = 2, u(t) 2 + cε v(t) -au(t) 2 ≤ C min{1, t -1/4 }( u 0 L 1 + cε v 0 -au 0 L 1 ) + e -ct/ε 2 ( u 0 2 + cε v 0 -au 0 2 ) + t 0 min{1, (t -s) -3/4 }C(|u| ∞ ) u 2 2 ds + t 0 e -c(t-s) C(|u| ∞ ) u 2 2 ds + t 0 1 ε e -c(t-s)/ε 2 C(|u| ∞ ) u 2 2 ds.
Let us denote by (67)

E m = max{ u 0 L 1 + ε v 0 -au 0 L 1 , u 0 m + ε v 0 -au 0 m },
where, according to [START_REF] Chern | Long-time effect of relaxation for hyperbolic conservation laws[END_REF],

v 0 = f (u 0 ) -λ 2 ∂ x u 0 , and (68) 
M 0 (t) = sup 0≤τ ≤t {max{1, τ 1/4 }( u(τ ) 2 + ε v(τ ) -au(τ ) 2 )}.
The first term of the right hand side of the above estimate gives

C min{1, t -1/4 }( u 0 L 1 + cε v 0 -au 0 L 1 ) + Ce -ct/ε 2 ( u 0 2 + cε v 0 -au 0 2 ) ≤ C min{1, t -1/4 }E 2 .
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Besides, C(|u| ∞ ) u 2 2 ≤ C(|u| ∞ ) min{1, s -1/2 }M 2 0 (s). Thus, u(t) 2 + ε v(t) -au(t) 2 ≤ C min{1, t -1/4 }E 2 + M 2 0 (t) t 0 e -c(t-s) c(|u| ∞ ) min{1, s -1/2 } ds + M 2 0 (t) t 0 1 ε e -c(t-s)/ε 2 c(|u| ∞ ) min{1, s -1/2 } ds + M 2 0 (t) t 0 c(|u| ∞ ) min{1, (t -s) -3/4 } min{1, s -1/2 } ds.
From the Sobolev embedding theorem,

c(|u(s)| ∞ ) ≤ c( u(s) 2 ) ≤ C min{1, s -1/4 }M 0 (s) ≤ CM 0 (s).
This way,

u(t) 2 + ε v(t) -au(t) 2 ≤ C min{1, t -1/4 }E 2 + CM 3 0 (t) t 0 e -c(t-s) min{1, s -1/2 } ds + CM 3 0 (t) t 0 1 ε e -c(t-s)/ε 2 min{1, s -1/2 } ds + CM 3 0 (t) t 0 min{1, (t -s) -3/4 } min{1, s -1/2 } ds.
Notice that

1 ε t 0 e -c(t-s)/ε 2 min{1, s -1/2 } ds = εe -ct/ε 2 t/ε 2 0 e cτ min{1, ε √ τ } dτ ≤ εe -ct/ε 2 t/ε 2 0 e cτ dτ = ε c [1 -e -ct/ε 2 ] ≤ Cε.
By using this inequality in the previous estimate,

u(t) 2 + ε v(t) -au(t) 2 ≤ C min{1, t -1/4 }E 2 + CM 3 0 (t) t 0 e -c(t-s) min{1, s -1/2 } ds + εCM 3 0 (t) + CM 3 0 (t) t 0 min{1, (t -s) -3/4 } min{1, s -1/2 } ds.
Applying usual lemmas on integration, as Lemma 5.2 in [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF], we get the following inequality M 0 (t) ≤ C(E 2 + M 3 0 (t)).

This manuscript is for review purposes only. The last result and estimate (69) prove Theorem 1.1.

Remark 5.1. Note that the time derivative estimates of the solution (72), (73) can be obtained by applying again the Duhamel formula and so, similarly to (69), D β ∂ t w(t) 0 is bounded by a constant depending on D β ∂ t w| t=0 . The latter is not singular in ε, thanks to the particular form of the initial data, as it is shown below. The initial data satisfy (6), i.e. v 0 = f (u 0 ) -λ 2 ∂ x u 0 = au 0 + h(u 0 ) -λ 2 ∂ x u 0 .

In terms of the (C-D) variable w,

   u = w 1 , v = aw 1 + √ λ 2 -a 2 ε 2 ε w 2 ,
this gives the following relation:

(74) √ λ 2 -a 2 ε 2 ε w 0 2 = h(w 0 1 ) -λ 2 ∂ x w 0 1 .
Using (74) in system ( 20),

               ∂ t w 1 | t=0 = -a∂ x w 0 1 - √ λ 2 -a 2 ε 2 ε ∂ x w 0 2 , ∂ t w 2 | t=0 = - √ λ 2 -a 2 ε 2 ε ∂ x w 0 1 + a∂ x w 0 2 + λ 2 ε √ λ 2 -a 2 ε 2 ∂ x w 0 1 = a 2 ε √ λ 2 -a 2 ε 2 ∂ x w 0 1 + a∂ x w 0 2 . (75) 
In terms of the original variable,

   ∂ t w 1 | t=0 = -∂ x f (ū 0 ) + λ 2 ∂ xx ū0 , ∂ t w 2 | t=0 = aε √ λ 2 -a 2 ε 2 (∂ x f (ū 0 ) -λ 2 ∂ xx ū0 ).
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and associated Green function is provided here Γ p (t) = K 11 (t) + K(t) + R(t), with K 11 in (51). We take the difference between the conservative variable u = w 1 and w p , This manuscript is for review purposes only.

Proposition 3 . 1 .

 31 We have the following decomposition near z = 0: (42) E(z) = F (z)P (z) + E -(z), with F (z) in (39), P (z) in (35), E -(z) = R -(z)F -(z)L -(z), and F -(z) in (41).

D 2 0D/ 2 0Dt t/ 2 D 0 K

 2220 β (u(t) -w p (t)) = t/β D(K 11 (t -s) + R(t -s))(h(w p (s)) -h(u(s))) ds+ tβ D(K 11 (t -s) + R(t -s))S(s) ds + (K 11 (t -s) + R(t -s))D β (h(w p (s)) -h(u(s)) + S(s)) ds + t (t -s)D β D(h(w p (s)) -h(u(s)) + S(s)) ds.By using (70), (71), (73), we haveD β S 0 ≤ Cε min{1, t -5/4-β/2 }E β+1 . Let us define, for µ ∈ [0, 1/2), (82) m 0 (t) = sup τ ∈[0,t] {max{1, τ 1/4+µ } u(τ ) -w p (τ ) 0 }. For β = 0, u(t) -w p (t) 0 ≤ CE 1 m 0 (t) t 0 min{1, (t -s) -3/4 } min{1, s -1/2-µ } ds + CεE 3 t 0 min{1, (t -s) -3/4 } min{1, s -1 } ds + C(E 1 m 0 (t) + εE 4 ) t 0 e -c(t-s) min{1, s -5/4 } ds ≤ C min{1, s -1/4-µ }(E 1 m 0 (t) + εE 1 + εE 4 + (1/2 -µ) -1 E 1 m 0 (t)), i.e., if E 1 is small enough, (83) m 0 (t) ≤ CεE 4 .Similarly, it can be proved by induction that, for γ < β, defining(84) m β (t) = sup τ ∈[0,t] {max{1, τ 1/4+µ+β/2 } D β (u(τ ) -w p (τ )) 0 },and assuming m γ (t) ≤ C(µ)εE γ+4 , thenD β (h(u(s)) -h(w p (s))) 0 ≤ C min{1, t -1/2-µ-β/2 }(C(µ)E β+1 E β+3 + E 1 m β (t)).Using the last inequality, (79) and (83) in (81), finally we get m β (t) ≤ C(µ)εE β+4 , which ends the proof of Theorem 1.2.

  Then, if E 2 is small enough, M 0 (t) ≤ CE 2 , + ε v(t) -au(t) 2 ≤ C min{1, t -1/4 }E 2 .By arguing as before and following[START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF], we have the theorem below.Proposition 5.1. The following estimates hold, with C a constant independent of ε,(70) D β w(t) 0 ≤ C min{1, t -1/4-|β|/2 }E |β|+3/2 , (71) D β w 2 (t) 0 ≤ C min{1, t -3/4-|β|/2 }E |β|+3/2 ,(72)D β ∂ t w(t) 0 ≤ C min{1, t -3/4-|β|/2 }E |β|+5/2 ,(73) D β ∂ t w 2 (t) 0 ≤ C min{1, t -5/4-|β|/2 }E |β|+7/2 .

	i.e.	
	(69)	u(t) 2
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Remark 5.2. As shown in the previous remark, the well-prepared initial data [START_REF] Chern | Long-time effect of relaxation for hyperbolic conservation laws[END_REF] allow to bound the H s norm of the time derivative of the solution to [START_REF] Orive | Long-time behavior of solutions to a non-linear hyperbolic relaxation system[END_REF], uniformly in ε. The case of general initial data should be explored in future works. However, in this remark let us consider, at least formally, the case of Mawellian initial data, meaning that, instead of (6), we take

In terms of the (C-D) variables w in ( 19),

Consider the difference ww M , where w is the solution to [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF] with well-prepared initial data in [START_REF] Chern | Long-time effect of relaxation for hyperbolic conservation laws[END_REF], while w M is the solution to [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF] with Maxwellian initial data (77).

The associated initial conditions are:

We apply again the Duhamel formula as in (66), in order to estimate the behavior of the difference between the two solutions. Taking into account the decomposition of the Green function in Lemma 4.1, it follows that, for t > 0,

Thus, after the initial layer, for t > 0, the difference between the solution w, with well-prepared initial data, and w M , with Maxwellian initial data, is of order ε 2 .

Convergence in the diffusion limit and asymptotic behavior. We perform the one dimensional Chapman-Enskog expansion. Recalling that

where u is the conservative variable and u d is the dissipative one, system (20) is

with A in [START_REF] Paicu | Une perturbation hyperbolique des équations de Navier-Stokes[END_REF] and q(u) = -

. We consider the following nonlinear parabolic equation

The homogeneous equation is (80) ∂ t w p + a∂ x w p + ∂ x h(w p ) -(λ 2 -a 2 ε 2 )∂ xx w p = 0, This manuscript is for review purposes only.