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Let the matrix operator L = D∂xx + q(x)A0, with D = diag(1, ν), ν = 1, q ∈ L ∞ (0, π), and A0 is a Jordan block of order 1. We analyze the boundary null controllability for the system yt -Ly = 0. When √ ν / ∈ Q * + and q is constant, q = 1 for instance, there exists a family of root vectors of (L * , D(L * )) forming a Riesz basis of L 2 (0, π; R 2 ). Moreover F. Ammar Khodja et al. [J. Funct. Anal. 267 (2014) 2077-2151] shows the existence of a minimal time of control depending on condensation of eigenvalues of (L * , D(L * )), that is to say the existence of T0(ν) such that the system is null controllable at time T > T0(ν) and not null controllable at time T < T0(ν). In the same paper, the authors prove that for all τ ∈ [0, +∞], there exists ν ∈]0, +∞[ such that T0(ν) = τ . When q depends on x, the property of Riesz basis is no more guaranteed. This leads to a new phenomena: simultaneous condensation of eigenvalues and eigenfunctions. This condensation affects the time of null controllability.

Introduction and main results

This paper deals with the controllability of two coupled one-dimensional parabolic equations, with different diffusion coefficients, where the control is exerted at one boundary point. Let us fix T > 0 and consider the following control problem:

     y t + Ly = 0 in Q T := (0, π) × (0, T ), y(0, •) = Bu, y(π, •) = 0 on (0, T ), y(•, 0) = y 0 in (0, π), (1.1) 
where L = -D∂ xx + q(x)A 0 , D = diag(1, ν), with ν > 0, A 0 = 0 1 0 0 and

B = 0 1 , (1.2) 
E.H. SAMB q ∈ L ∞ (0, π) is a given function, y 0 is the initial datum and u ∈ L 2 (0, T ) is the control function. Equivalently, the previous system (1.1) can be written as

         ∂ t y 1 = ∂ xx y 1 -qy 2 in Q T := (0, π) × (0, T ), ∂ t y 2 = ν∂ xx y 2 in Q T ,
y 1 (0, •) = 0, y 2 (0, •) = u, y(π, •) = 0 on (0, T ), y(•, 0) = y 0 in (0, π).

(1.

3)

It is known (see [START_REF] Fernàndez-Cara | Boundary controllability of parabolic coupled equations[END_REF], Prop. 2.2) that for any given initial data y 0 ∈ H -1 (0, π; R 2 ) and u ∈ L 2 (0, T ), system (1.1) possesses a unique solution defined by transposition which satisfies

y ∈ L 2 Q T ; R 2 ∩ C 0 [0, T ]; H -1 (0, π; R 2 )
and depends continuously on the data u and y 0 , i.e., there exists a constant C = C(T ) > 0 such that y L 2 (Q T ;R 2 ) + y C 0 ([0,T ];H -1 (0,π;R 2 )) ≤ C y 0 H -1 (0,π;R 2 ) + u L 2 (0,T ) .

Let us introduce the notion of null and approximate controllability for this kind of systems.

1. System (1.1) is approximately controllable in H -1 (0, π; R 2 ) at time T if for every y 0 , y d ∈ H -1 (0, π; R 2 ) and for every ε > 0, there exists a control u ∈ L 2 (0, T ) such that the solution to (1.1) associated to y 0 and u satisfies y(•, T ) -y d H -1 (0,π;R 2 ) ≤ ε.

2. System (1.1) is null controllable at time T if for every initial condition y 0 ∈ H -1 (0, π; R 2 ), there exists a control u ∈ L 2 (0, T ) such that the solution y to (1.1) satisfies y(•, T ) = 0 in H -1 (0, π; R 2 ).

The null controllability of parabolic partial differential equations has been widely studied since the pioneering work of [START_REF] Fattorini | Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations[END_REF]. From the works of [START_REF] Fursikov | Controllability of evolution equations[END_REF][START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], it was commonly admitted that, in the context of parabolic partial differential equations, there is no restriction on the final time T . But recently the study of particular examples highlighted the existence of a positive minimal time T 0 for null controllability. Actually, such an example was already provided in the 70s in [START_REF] Dolecki | Observability for the one-dimensional heat equation[END_REF]. The more recent results concerning such strictly positive a minimal time have been obtained in contexts of control of coupled parabolic equations [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF][START_REF] Khodja | New phenomena for the null controllability of parabolic systems: Minimal time and geometrical dependence[END_REF][START_REF] Duprez | Controllability of a 2 × 2 parabolic system by one force with space-dependent coupling term of order one[END_REF] and more generally see [START_REF] Khodja | Quantitative Fattorini-Hautus test and minimal null control time for parabolic problems[END_REF].

The main goal of this article is to address a new phenomenon arising in the null controllability issue for system (1.1). Let us first recall some known results about the controllability properties of scalar parabolic systems. The null controllability problem for scalar parabolic systems has been first considered in the onedimensional case. In [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF][START_REF] Fattorini | Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations[END_REF], using the moment method, H. O. Fattorini and D. L. Russell gave a positive answer for null controllability problem of considered parabolic system. Also, the authors proved a general result on existence of a bi-orthogonal family to {e -Λ k t } k≥1 in L 2 (0, T ) which fulfils appropriate bounds if the sequence Λ k ⊂ R + satisfies the following gap property:

k≥1 1 Λ k < ∞ and |Λ k -Λ l | ≥ ρ|k -l|, ∀k, l ≥ 1, (1.4) 
for a constant ρ > 0. In 1973, S. Dolecki addressed the pointwise controllability at time T of the one-dimensional heat equation (see [START_REF] Dolecki | Observability for the one-dimensional heat equation[END_REF]). S. Dolecki exhibited a minimal time which depends on the point x 0 . To our knowledge, this was the first result on null-controllability of parabolic problems where a minimal time of control appears. System (1.1) is a particular class of more general n × n parabolic control systems of the form:

   ∂ t y -(D∂ xx + A(x)
)y = 0 in Q T := (0, π) × (0, T ), y(0, •) = Bu, y(π, •) = 0 on (0, T ), y(•, 0) = y 0 in (0, π).

(1.5)

Here, D = diag(d 1 , .., d n ), with d i > 0 for i : 1 ≤ i ≤ n, A = (a ij ) 1≤i≤n ∈ L ∞ ((0, π); M n (R)) and B ∈ L(R m , R n ). In system (1.5), u ∈ L 2 (0, T ; R m ) is the control and we want to control the complete system (n equations) by means of m controls exerted on the boundary condition at point x = 0. Observe that the most interesting (and difficult) case is the case m < n.

The first results of null controllability for system (1.5) was obtained in [START_REF] Fernàndez-Cara | Boundary controllability of parabolic coupled equations[END_REF] in the case n = 2, m = 1 and D = Id, A ∈ M n (R). This result was generalized by [START_REF] Khodja | The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials[END_REF] to the case n ≥ 2, m ≥ 1. In these two papers, the authors used the method of moments of Fattorini-Russell to give a necessary and sufficient condition of null controllability at any time T > 0 for system (1.5). In both cases, the sequence of eigenvalues Λ = {Λ k } k≥1 ⊂ R + of the matrix operator A = Id∂ xx + A with Dirichlet boundary conditions continue to satisfy the gap condition in (1.4). As in the scalar case, this gap property (together with appropriate properties for the coupling and control matrices A and B) provides the null controllability result for system (1.5) at any positive time.

In [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF], the authors are interested in the extension of the previous null controllability results for system (1.5) to the case where D = Id, A ∈ M n (R), n > 1 and m < n. The main difference with the case D = Id lies in the behavior of the sequence of eigenvalues of the matrix operator A := D∂ xx + A. The operator -A admits a sequence of eigenvalues Λ = {Λ k } k≥1 which does not satisfy the gap condition appearing in (1.4) but the operator -A is diagonalizable, i.e., its eigenfunctions form a Riesz basis. As a consequence, the authors show the existence of a minimal time of control T 0 ∈ [0, +∞], depending to the so-called condensation index, c(Λ), of the sequence Λ of eigenvalues of the operator -A. To our knowledge, this condensation index has been introduced for the first time by V. Bernstein (see [START_REF] Bernstein | Lecons sur les Progrès Récents de la Théorie des Séries de Dirichlet[END_REF]) for increasing real sequences and later extended by J. R. Shackell (see [START_REF] Shackell | Overconvergence of Dirichlet series with complex exponents[END_REF]) to complex sequences. Roughly speaking, if we consider the complex sequence Λ = {Λ k } k≥1 ⊂ C, the condensation index of Λ, is a measure of the way how Λ n approaches Λ m for n = m.

In [START_REF] Khodja | New phenomena for the null controllability of parabolic systems: Minimal time and geometrical dependence[END_REF], the authors consider the case where D = Id, A(x) = q(x)A 0 , with q ∈ L ∞ (0, π) , n = 2 and m = 1. In this case the operator L * := -Id∂ xx + q(x)A * 0 admits a sequence of eigenvalues Λ = {Λ k } k≥1 which satisfy the gap condition appearing in (1.4) moreover using the eigenfunctions and the generalized eigenfunctions of the operator L * , we can construct a Riesz basis for the space L 2 (0, π; R 2 ) . As a consequence, the authors show the existence of a minimal time of control T 0 (q). They also proved that for any τ ∈ [0, +∞], there exists q ∈ L ∞ (0, π) such that T 0 (q) = τ .

In this paper, we study the null controllability properties of system (1.5) to the case where D = Id and A(x) = q(x)A 0 , q ∈ L ∞ (0, π), n = 2 and m = 1. This situation may seem like a simple perturbation of previous cases (in [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF][START_REF] Khodja | New phenomena for the null controllability of parabolic systems: Minimal time and geometrical dependence[END_REF]). It is not true, it contains a new phenomenon: simultaneous condensation of eigenvalues and eigenfunctions. This phenomenon was excluded from all previous cases because of the property that the family of eigenfunctions of the operator (L * , D(L * )) form a Riesz basis for the Hilbert space where the system is posed. This condensation of eigenfunctions can compensate the condensation of eigenvalues and the minimal time of control is affected. In [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF] as in [START_REF] Khodja | New phenomena for the null controllability of parabolic systems: Minimal time and geometrical dependence[END_REF] the authors proved the controllability by using the usual moments method but this method does not take into account such phenomena of eigenfunctions condensation. Under appropriate assumptions on D and q ∈ L ∞ (0, π), the operator L * = -D∂ xx + q(x)A * 0 admits a sequence of eigenvalues Λ = {Λ k } k≥1 which does not satisfy the gap condition appearing in (1.4) however the sequence of associated eigenfunctions is complete but it is not a Riesz basis (see Prop. 2.4) for some √ ν / ∈ Q * + and q ∈ L ∞ (0, π) . As a consequence, we will see that a minimal time of control T 0 ∈ [0, +∞], depends simultaneously of condensation of eigenvalues and associated eigenfunctions of (L * , D(L * )). To this end, we will use the block methods moment developed by A. Benabdallah, F. Boyer, M. Morancey (in [START_REF] Benabdallah | A block moments method to handle spectral condensation phenomenon in parabolic control problems[END_REF]).

The plan of the paper is the following one: In Section 1, we address some known results about the controllability of parabolic system and we give the main result of this work. In Section 2 we study the null-controllability of system (1.1) when

√ ν / ∈ Q * + , √ ν > 1 (resp. √ ν < 1). Section 3 is devoted to null-controllability of system (1.1) when √ ν ∈ Q * + .
Finally, in the Appendix we give additional properties of our main result. Let us present our first boundary control results, when

√ ν / ∈ Q * + .
Let us first introduce some notations. Let B, A 0 and D given by (1.2) and a function q ∈ L ∞ (0, π). Let us consider the operator

L * := -D∂ xx + q(x)A * 0 : D(L * ) ⊂ L 2 (0, π; R 2 ) -→ L 2 (0, π; R 2 ) (1.6) with domain D(L * ) = H 2 (0, π; R 2 ) ∩ H 1 0 (0, π; R 2 ). Given k ≥ 1, let us consider Φ * 1,k := ϕ k ψ k , Φ * 2,k := 0 ϕ k , (1.7) 
where ψ k is the unique solution of problem:

νψ k + k 2 ψ k = qϕ k in (0, π), ψ(0) = ψ(π) = 0. (1.8) Assume that B * D ∂Φ * 1,k ∂x (0) = 0, for all k ≥ 1. Let us defined, for any k ∈ N * , i k (resp. j k ) as the nearest integer to √ νk (resp. k √ ν ), i.e., | √ νk -i k | < 1 2 (resp. k √ ν -j k < 1 2 ). Let us denote ψ i,k := Φ * i,k B * D ∂Φ * i,k ∂x (0) 
, ∀k ≥ 1, ∀i = 1, 2.

(1.9)

In the same way, denote

ψ 1,i k := Φ * 1,i k B * D ∂Φ * 1,i k ∂x (0) and ψ 2,j k := Φ * 2,j k B * D ∂Φ * 2,j k ∂x (0) , ∀k ≥ 1. (1.10) One has Theorem 1.1. Suppose √ ν / ∈ Q * + .
1. The spectrum of (L * , D(L * )) is given by σ(L * ) = {k 2 } k≥1 ∪ {νk 2 } k≥1 and the corresponding family of

eigenfunctions, Φ * 1,k , Φ * 2,k k≥1 , is complete in L 2 (0, π; R 2 ).
2. System (1.1) is approximately controllable at time T > 0, if and only if

B * D ∂Φ * 1,k ∂x (0) = 0, ∀k ≥ 1.
(1.11)

Introduce

T 0 := max        lim sup k→+∞ log ψ 1,k H 1 0 k 2 , lim sup k→+∞ log ψ1,i k -ψ 2,k H 1 0 |i 2 k -νk 2 | νk 2        = max T 1 , T 2 ∈ [0, +∞], (1.12) 
and

T 0 := max        lim sup k→+∞ log ψ 1,k H 1 0 k 2 , lim sup k→+∞ log ψ 1,k -ψ2,j k H 1 0 |k 2 -νj 2 k | k 2        = max T 1 , T 2 ∈ [0, +∞]. (1.13) (a) If √ ν > 1 then: system (1.1) is null-controllable in H -1 (0, π; R 2 ) for T > T 0 . On the other hand, if T 0 > 0, system (1.1) is not null-controllable in H -1 (0, π; R 2 ) for T < T 0 . (b) If √ ν < 1 then: system (1.1) is null-controllable in H -1 (0, π; R 2 ) for T > T 0 . On the other hand, if T 0 > 0, system (1.1) is not null-controllable in H -1 (0, π; R 2 ) for T < T 0 . Remark 1.2.
1. In Appendix A, we will write in a simple form the expressions of Theorem 1.1 and show that, T 0 and T 0 strongly depends on diffusion coefficient √ ν / ∈ Q * + and the coupling function q ∈ L ∞ (0, π). Moreover we will remark that T 0 = T 2 ≥ T 1 and T 2 ≥ T 2 (see (1.12) and (1.13)). 2. Condition (1.11) characterizes the approximate controllability property of system (1.1). Thus, (1.11) is a necessary condition for the null controllability at time T > 0 of this system. 3. The approximate controllability result stated in Theorem 1.1 does not depend on the final time T : approximate controllability of system (1.1) at a time T 0 > 0 is equivalent to the approximate controllability of system at any time T > 0. 4. We will prove, in Proposition A.2, that T 0 (resp. T 0 ) could take any value on the interval [0, ∞]. Thus, when T 0 , T 0 ∈ (0, ∞], from Theorem 1.1 we deduce that system (1.1) could have the approximate controllability property at a positive time T without being null controllable at this time T .

Let us now present our second boundary control results when √ ν = i0 j0 ∈ Q * + , where i 0 and j 0 are co-prime (i 0 ∧ j 0 = 1).

Theorem 1.3. Let us consider √ ν ∈ Q * + .
Let B, A 0 and D given by (1.2). To the function q ∈ L ∞ (0, π) and ν, we associate the sequence {I k } k≥1 , defined by

I k (ν, q) = π 0 q(s)ϕ k (s) π 2 sin k √ ν (π -s) ds. (1.14)
Then, one has:

1. System (1.1) is approximately controllable at time T > 0, if and only if

I k (ν, q) = 0, ∀k ≥ 1. (1.15)
2. Assume (1.15) holds and define

T 0 (ν, q) := lim sup k→+∞ -log |I k (ν, q)| k 2 ∈ [0, +∞]. (1.16)
Then if T > T 0 (ν, q) system (1.1) is null-controllable at time T . On the other hand, if T 0 (ν, q) > 0, system (1.1) is not null-controllable at time T in H -1 (0, π; R 2 ) for T < T 0 (ν, q). Remark 1.4. Under condition (1.15), the minimal time T 0 (ν, q) is well-defined. Moreover, the sequence {I k (ν, q)} k≥1 is bounded and T 0 (ν, q) ∈ [0, +∞].

Let q ∈ L ∞ (0, π) and A 0 given by (1.2). We introduce the backward adjoint problem associated with system (1.1):

   -θ t -(D∂ xx -qA * 0 )θ = 0 in Q T , θ(0, •) = θ(π, •) = 0 on (0, T ), θ(•, T ) = θ 0 in (0, π), (1.17) 
where θ 0 ∈ L 2 (0, π; R 2 ) is a given initial datum. Let us first see that this problem is well posed. One has:

Proposition 1.5. Assume that θ 0 ∈ L 2 (0, π; R 2 ) is given. Then, system (1.17) admits a unique solution θ ∈ L 2 (0, T ;

H 1 0 (0, π; R 2 )) ∩ C 0 ([0, T ]; L 2 (0, π; R 2 )
) and in addition satisfies

θ L 2 (0,T ;H 1 0 (0,π;R 2 )) + θ C 0 ([0,T ];L 2 (0,π;R 2 )) ≤ C(T ) θ 0 L 2 (0,π;R 2 ) ,
for a positive constant C(T ) > 0 independent of θ 0 . Furthermore, if θ 0 ∈ H 1 0 (0, π; R 2 ), then the solution θ of the adjoint problem (1.17) satisfies

θ ∈ L 2 (0, T ; H 2 (0, π; R 2 ) ∩ H 1 0 (0, π; R 2 )) ∩ C 0 ([0, T ]; H 1 0 (0, π; R 2 ))
and, for a positive constant C(T ) > 0

θ L 2 (0,T ;H 2 (0,π;R 2 )∩H 1 0 (0,π;R 2 )) + θ C 0 ([0,T ];H 1 0 (0,π;R 2 )) ≤ C(T ) θ 0 H 1 0 (0,π;R 2 )
The next proposition provides a relation between systems (1.1) and (1.17):

Proposition 1.6. Let us consider A 0 and B given by (1.2) and q ∈ L ∞ (0, π). Then, for any y 0 ∈ H -1 (0, π; R 2 ), u ∈ L 2 (0, T ) and θ 0 ∈ H 1 0 (0, π; R 2 ), one has

T 0 u(t)B * Dθ x (0, t)dt = y(•, T ), θ 0 H -1 ,H 1 0 -y 0 , θ(•, 0) H -1 ,H 1 0 , where y ∈ L 2 Q T ; R 2 ∩ C 0 [0, T ]; H -1 (0, π; R 2 ) and θ ∈ L 2 (0, T ; H 2 (0, π; R 2 ) ∩ H 1 0 (0, π; R 2 )) ∩ C 0 ([0, T ]; H 1 0 (0, π; R 2 ))
are, resp., the solution to (1.1) and (1.17) associated with (u, y 0 ) and θ 0 .

For a proof of the previous results see for instance [START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF] or [START_REF] Fernàndez-Cara | Boundary controllability of parabolic coupled equations[END_REF].

The controllability of system (1.1) can be characterized in terms of appropriate properties of the solutions to the adjoint problem (1.17). More precisely, we have Proposition 1.7. The following properties are equivalent:

1. There exists a positive constant C > 0 such that, for any y 0 ∈ H -1 (0, π; R 2 ), there exists a control u ∈ L 2 (0, T ) such that

u L 2 (0,T ) ≤ C y 0 H -1 (0,π;R 2 )
and the associated state satisfies

y(•, T ) = 0 in H -1 (0, π; R 2 ).
2. There exists a positive constant C such that the observability inequality

θ(•, 0) 2 H 1 0 (0,π;R 2 ) ≤ C T 0 |B * Dθ x (0, t)| 2 dt (1.18)
holds for every θ 0 ∈ H 1 0 (0, π; R 2 ). In (1.18), θ is the adjoint state associated with θ 0 .

This result is well known, the "Hilbert Uniqueness Method", see [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF].

Approximate and null-controllability result with an irrational diffusion coefficient

Some preliminary results

Let us consider the vectorial operator

L := -D∂ xx + q(x)A 0 : D(L) ⊂ L 2 (0, π; R 2 ) -→ L 2 (0, π; R 2 )
with domain D(L) = H 2 (0, π; R 2 ) ∩ H 1 0 (0, π; R 2 ) and also its adjoint L * given by (1.6).

Proposition 2.1. Let A 0 be given by (1.2) and consider the operator L given by (1.6) and also denote its adjoint

L * . Assume that √ ν / ∈ Q, then, 1. The spectrum of L * is given by σ(L * ) = {k 2 } k≥1 ∪ {νk 2 } k≥1 . 2. Given k ≥ 1, if Φ * 1,k := ϕ k ψ k , Φ * 2,k := 0 ϕ k ,
where ψ k is the unique solution of the following problem:

νψ k + k 2 ψ k = qϕ k in (0, π), ψ k (0) = ψ k (π) = 0. then L * -k 2 I d Φ * 1,k = 0 and L * -νk 2 I d Φ * 2,k = 0. E.H. SAMB
Moreover, an explicit expression of ψ k is given by:

ψ k (x) = ψ k (0) √ ν k sin kx √ ν + √ ν νk x 0 sin k √ ν (x -ξ) q(ξ)ϕ k (ξ) dξ, (2.1) 
where

ψ k (0) = - π 0 q(s)ϕ k (s) sin k √ ν (π -s) ds ν sin kπ √ ν (2.2)
Remark 2.2. Consider the following problem

y + λy = f (x) in (0, π), y(0) = 0, (2.3) 
where λ ∈ R * + . The general solution to (2.3) is given by

y(x) = a sin( √ λx) √ λ + 1 √ λ x 0 sin √ λ(x -s) f (s) ds, a ∈ R * , (2.4) 
and

y (x) = a cos( √ λx) + x 0 cos √ λ(x -s) f (s) ds, (2.5) 
consequently

y (0) = a = - π 0 f (s) sin √ λ(π -s) ds sin √ λπ , if √ λ / ∈ N * . (2.6)
On the other hand, for all √ λ / ∈ N * :

y(x) = n≥1 π 0 f (x)ϕ n (x) dx (λ -n 2 ) ϕ n (x).
Proof of Proposition 2.1.

Let us assume √ ν / ∈ Q. Let λ be an eigenvalue of L * and y = (y 1 , y 2 ) T an associated eigenfunction. Thus y is a solution of the following problem:

   -y 1 = λy 1 in (0, π), qy 1 -νy 2 = λy 2 in (0, π), y 1 (0) = y 2 (0) = 0, y 1 (π) = y 2 (π) = 0.
If y 1 ≡ 0, then, λ = νk 2 is an eigenvalue of L * and taking y 2 = ϕ k , we obtain Φ * 2,k as associated eigenfunction of L * . Now assume that y 1 ≡ 0, then λ = k 2 and y 1 = ϕ k is a (normalized) solution to the first o.d.e. Inserting this expression in the second equation, we get for y 2 :

y 2 + k 2 ν y 2 = 1 ν qϕ k in (0, π), y 2 (0) = y 2 (π) = 0. (2.7)
This proves that Φ * 1,k , is the second eigenfunction of L * , associated to k 2 . Moreover (2.1) (resp. (2.2)) can be deduce from (2.4) (resp. (2.6)).

Lemma 2.3. The sequence B * = Φ * 1,k , Φ * 2,k : k ∈ N * is complete in L 2 (0, π; R 2 ). Proof of Lemma 2.3 . Indeed, if f = (f 1 , f 2 ) is such that f, Φ * µ,k = 0, ∀k ≥ 1, ∀µ = 1, 2, then in particular ∀k ≥ 1 f 2 , ϕ k = 0 f 1 , ϕ k + f 2 , ψ k = 0.
This implies that f 1 = f 2 = 0 (since {ϕ k } k≥1 is an orthonormal basis in L 2 (0, π) and proves the completeness of B * .

Proposition 2.4. There exists

√ ν / ∈ Q * + and q ∈ L ∞ (0, π) such that B * = Φ * 1,k , Φ * 2,k : k ∈ N * is not a Riesz basis for L 2 (0, π; R 2 ).
To prove this result we will need the following two lemmas. Lemma 2.5. For a sequence {f k } k≥1 in Hilbert space (H, , ) the following conditions are equivalent:

1. {f k } k≥1 is a Riesz basis for H. 2. {f k } k≥1 is complete, and its Gram matrix ( f k , f j ) k,j≥1 defines a bounded, invertible operator on l 2 (N) the space of square summable scalar sequences.

Proof of Lemma 2.5. See for instance [START_REF] Christensen | An Introduction to Frames and Riesz Bases[END_REF], Theorem 3.6.6, page 66.

Lemma 2.6. For any σ ∈ (0, ∞), there exist an irrational number ν > 0 and a sequence of rational numbers {k p , j p } p≥0 such that k p and j p are co-prime positive integers, the sequences {k p } p≥0 and {j p } p≥0 are strictly increasing and

lim e k 2+σ p √ ν - k p j p = 0. (2.8)
In particular, we deduce the existence of a positive constant C > 0 such that

j p √ ν -k p ≤ Ck p e -k 2+σ p , ∀p ≥ 1. (2.9)
Proof of Lemma 2.6 . See [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF], Lemma 6.22, page 47.

We now have all the ingredients to prove Proposition 2.4.

Proof of Proposition 2.4. The determinant of the Gram matrix associated to the normalized vectors of B * is equal to

det [G kp,jp (ν, q)] = 1 - | Φ 1,k , Φ 2,j | 2 Φ 1,k 2 H 1 0 Φ 2,j 2 
H 1 0 = 1 - π 0 ψ k (x)ϕ j (x)dx 2 j 2 k 2 + ψ k 2 H 1 0 = 1 - j 2 π 0 q(x)ϕ k (x)ϕ j (x)dx 2      k 2 + n≥1 n 2 π 0 q(x)ϕ k (x)ϕ n (x)dx 2 |k 2 -νn 2 | 2      |k 2 -νj 2 | 2 = 1 - 1 {1 + U k,j (ν, q) [k 2 + V k,j (ν, q)]} , (2.10) 
where

U k,j (ν, q) = k 2 -νj 2 2 j 2 π 0 q(x)ϕ k (x)ϕ j (x)dx 2 , V k,j (ν, q) = n =j n 2 π 0 q(x)ϕ k (x)ϕ n (x)dx 2 |k 2 -νn 2 | 2 .
Remark that, there exists a constant C(ν, q L ∞ ) > 0 such that,

V k,j (ν, q) ≤ C(ν, q L ∞ ), ∀k, j ≥ 1.
Thanks to Lemma 2.6, we can extract a subsequence (k p + j p ) p≥0 of even numbers only or odd numbers only, such that this two situations:

1. By choosing the subsequence of even numbers with q(x) = sin(x), x ∈ (0, π), we obtain

π 0 q(x)ϕ kp (x)ϕ jp (x)dx = 2 π 4k p j p [(j p -k p ) 2 -1] [(j p + k p ) 2 -1] . Consequently k 2 p U kp,jp -→ p-→+∞ 0, thus det [G kp,jp ] -→ p-→+∞ 0.
2. By choosing the subsequence of odd numbers with q(x) = sin(2x), x ∈ (0, π), we obtain

π 0 q(x)ϕ kp (x)ϕ jp (x)dx = 2 π 8k p j p |(j p -k p ) 2 -2| [(j p + k p ) 2 -2] . Consequently k 2 p U kp,jp -→ p-→+∞ 0, thus det [G kp,jp ] -→ p-→+∞ 0.
Indeed, take the first point (1) and let us fix σ > 0 and √ ν > 0. We have

k p U kp,jp = k p k 2 p -νj 2 p j p π 0 q(x)ϕ kp (x)ϕ jp (x)dx = π 2 
k p |k p + √ νj p | (j p -k p ) 2 -1 (j p + k p ) 2 -1 2j 2 p k p k p - √ νj p ≤ π 2 |k p + √ νj p | (j p -k p ) 2 -1 (j p + k p ) 2 -1 2j 2 p k p k 2 p e -k 2+σ p -→ p-→+∞ 0.
Thanks to formula (2.10),

det [G kp,jp ] -→ p-→+∞ 0.
The point (2) can be similarly shown.

Concerning the approximate controllability of system (1.1), it is well known that can be characterized in terms of a property of the solutions to (1.17). More precisely, system (1.1) is approximately controllable if and only if the following unique continuation property holds:

"Let θ 0 ∈ H 1 0 (0, π; R 2 ) be given and let θ be the associated adjoint state. Then, if B * Dθ x (0, t) = 0 on (0, T ), one has θ 0 ≡ 0 in Q T ". Fattorini gave an interesting characterization of the approximate controllability under a general abstract framework. In his paper [START_REF] Fattorini | Some remarks on complete controllability[END_REF], he proved that, under some reasonable assumptions, the only observation of the eigenfunctions completely characterizes the approximate controllability. Actually, this theorem has been proved for bounded observation operators but G. Olive (in [START_REF] Olive | Boundary approximate controllability of some linear parabolic systems[END_REF]), give a generalization to the case of relatively bounded observation operators. We deduce that system (1.1) is approximately controllable at time T > 0, if and only if for any s ∈ C and any

u ∈ D(L * ) = H 2 (0, π; R 2 ) ∩ H 1 0 (0, π; R 2 ) we have L * u = su, B * D∂ x u(0) = 0 =⇒ u ≡ 0 in (0, π). (2.11)
This previous relation (2.11) justifies the second point of the Theorem 1.1 and will be used to prove the approximate controllability of system (1.1).

Proof of Theorem 1.1: first point (a)

In this subsection, our objective is to prove that system (1.1) is null controllable at time

T if T > T 0 ∈ [0, ∞), when √ ν > 1.
If y is the solution of system (1.1) associated with y 0 ∈ H -1 (0, π; R 2 ) and u ∈ L 2 (0, T ), then it can be checked that y(T ) = 0 in (0, π) if and only if

T 0 u(t)B * Dθ x (0, t)dt = -y 0 , θ(•, 0) H -1 ,H 1 0 , ∀θ 0 ∈ H 1 0 (0, π; R 2 ), (2.12) 
where θ is the solution of the adjoint problem (1.17) associated with θ 0 . Taking

θ 0 := Φ * i,k , ∀k ≥ 1, i = 1, 2,
the corresponding solution to the adjoint problem (1.17) is given by

θ 1,k (x, t) = e -k 2 (T -t) Φ * 1,k (x), θ 2,k (x, t) = e -νk 2 (T -t) Φ * 2,k (x), ∀k ≥ 1.
Since the sequence

B * = Φ * 1,k , Φ * 2,k : k ∈ N * is complete in L 2 (0, π; R 2
), the null controllability problem for system (1.1) is equivalent to find u ∈ L 2 (0, T ) such that:

         T 0 e -k 2 t u(T -t) dt = -e -k 2 T y 0 , ψ 1,k H -1 ,H 1 0 , T 0 e -νk 2 t u(T -t) dt = -e -νk 2 T y 0 , ψ 2,k H -1 ,H 1 0 , ∀k ≥ 1, (2.13) 
where ψ 1,k and ψ 2,k are defined in (1.9) . We are now going to give some results that will be crucial, to solve (2.13). One has:

Proposition 2.7. Let √ ν > 1.
Let us define

I : N * -→ N * k -→ i k
where, for any k ∈ N * , i k is the nearest integer to

√ νk i.e √ νk -i k < 1 2 .

Thus for any

k ∈ N * , | √ νk -i| > 1 2 , ∀ i ∈ N * , i = i k . Then 1. The function I is injective. 2. I = N * \ I(N * ) = { i k : k ≥ 1}
, is a infinite set, where the elements of I are classified in ascending order.

Proof of Proposition 2.7.

Let us assume that

I(k 1 ) = I(k 2 ), where k 1 , k 2 ∈ N * . We have i k1 = i k2 with | √ νk 1 -i k1 | < 1 2 and | √ νk 2 -i k2 | < 1 2 . This leads to -1 + (i k1 -i k2 ) < √ ν(k 1 -k 2 ) < 1 + (i k1 -i k2 ),
and thus

|k 1 -k 2 | < 1 √ ν < 1, which implies k 1 = k 2 . 2. Assume √ ν > 1, √ ν / ∈ Q * + . • If √ ν > 2 then, ∀n ∈ N * , i n+1 -i n > 1. • Suppose 1 < √ ν < 2.
There exists a sequence of integers (n k ) k∈N * strictly increasing, such that i n k +1i n k > 1. Actually, let us take for instance

n k ∈ 2k + 1 2( √ ν -1) -1, 2k + 1 2( √ ν -1) , k ≥ 1.
We deduce

- 1 2 < 1 2 - √ ν + 1 < n k √ ν -(n k + k) < 1 2 , i.e i n k = n k + k. Moreover i n k +1 -i n k = i n k +1 -n k -k > √ ν(n k + 1) -1 2 -n k -k = n k √ ν -(n k + k) + √ ν -1 2 > 1 2 - √ ν + 1 + √ ν -1 2 = 1.

Positive null controllability result

Thanks to Proposition 2.7 we can reformulate (2.13). We say that the null controllability property at time T for system (1.1) is equivalent to find u ∈ L 2 (0, T ) such that:

                   T 0 e -i 2 k t u(T -t) dt = -e -i 2 k T y 0 , ψ 1, i k -1,1 , T 0 e -i 2 k t u(T -t) dt = -e -i 2 k T y 0 , ψ 1,i k -1,1 , T 0 e -νk 2 t u(T -t) dt = -e -νk 2 T y 0 , ψ 2,k -1,1 , ∀k ≥ 1. (2.14)
We can now state our following main result.

Proposition 2.8. Let us introduce the (closed) space E T ⊂ L 2 (0, T ) given by

E T = span{e -k 2 t , e -νk 2 t : k ≥ 1} L 2 (0,T )
. Then 1. There exists a family

{q k } k≥1 ⊂ E T such that                            T 0 e -i 2 k t q k (t) dt = -e -i 2 k T y 0 , ψ 1, i k -1,1 , T 0 e -i 2 k t q k (t) dt = -e -i 2 k T y 0 , ψ 1,i k -1,1 , T 0 e -νk 2 t q k (t) dt = -e -νk 2 T y 0 , ψ 2,k -1,1 , k ≥ 1, T 0 e -i 2 k t q j (t)dt = T 0 e -i 2 k t q j (t)dt = T 0 e -νk 2 t q j (t)dt = 0, k = j.
(2.15)

2. If T > T 0 = max T 1 , T 2 (see (1.
12)) then we infer that an explicit solution u of moment problem (2.14) is given by

u(t) = k≥1 q k (T -t).
Proof of Proposition 2.8. Let us start by recalling classical properties of the Laplace transform (see for instance [START_REF] Shackell | Overconvergence of Dirichlet series with complex exponents[END_REF], pp. [START_REF] Shackell | Overconvergence of Dirichlet series with complex exponents[END_REF][START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF]. Let H 2 (C + ) the space of holomorphic functions Φ on

C + = {z ∈ C, (z) > 0} such that sup σ>0 Φ(σ + i•) L 2 (R;C) < ∞, endowed with the norm Φ 2 H 2 (C+) = sup σ>0 Φ(σ + i•) 2 L 2 (R;C) = R |Φ(iτ )| 2 dτ.
Then the Laplace transform

L : L 2 (0, +∞; C) -→ H 2 (C + ) f -→ Φ λ ∈ C + -→ R e -λt f (t)dt .
is an isomorphism. In the sequel, We shall construct for each k, a function J k ∈ H 2 (C + ) satisfying appropriate properties, and take advantage of the isomorphism property of the Laplace transform to conclude. Let us fix k ≥ 1, we define J k , for λ ∈ C + , as

J k (λ) = α k (λ -i 2 k )(λ -i 2 k ) + β k (λ -νk 2 )(λ -i 2 k ) + γ k (λ -νk 2 )(λ -i 2 k ) L k (λ),
where α k , β k and γ k are constants to be determined and L k is the following Blaschke-type product

L k (λ) = 1 (1 + λ) 3 j≥1,j =k λ -νj 2 λ + νj 2 λ -i 2 j λ + i 2 j λ -i 2 j λ + i 2 j .
(2.16)

Notice that for any k ≥ 1,

|L k (iτ )| 2 = 1 (1 + τ 2 ) 3 , ∀ τ ∈ R. This implies J k ∈ H 2 (C + ), moreover J k (νj 2 ) = J k (i 2 j ) = J k ( i 2 j ) = 0, ∀j ≥ 1, j = k.
So, using that the Laplace transform is a isomorphism from L 2 (0, ∞; C) into H 2 (C + ), we infer the existence of a nontrivial function qk ∈ L 2 (0, ∞; C) such that

J k (λ) = +∞ 0 e -λt q k (t)dt, ∀λ ∈ C + . Now, we can choose α k , β k and γ k such that        J k (νk 2 ) = -e -νk 2 T y 0 , ψ 2,k -1,1 , J k (i 2 k ) = -e -i 2 k T y 0 , ψ 1,i k -1,1 , J k ( i 2 k ) = -e -i 2 k T y 0 , ψ 1, i k -1,1 , ∀k ≥ 1.
We obtain

                     α k = - e -νk 2 T (νk 2 -i 2 k )(νk 2 -i 2 k )L k (νk 2 ) y 0 , ψ 2,k -1,1 , β k = - e -i 2 k T (i 2 k -νk 2 )(i 2 k -i 2 k )L k (i 2 k ) y 0 , ψ 1,i k -1,1 , γ k = - e -i 2 k T ( i 2 k -νk 2 )( i 2 k -i 2 k )L k ( i 2 k ) y 0 , ψ 1, i k -1,1 , ∀k ≥ 1.
(2.17)

The Parseval equality gives

q k 2 L 2 (0,∞;C) = +∞ -∞ |J k (iτ )| 2 dτ, = +∞ -∞ (iτ -i 2 k ) (α k + β k )(iτ -i 2 k ) + β k (i 2 k -νk 2 ) + γ k (iτ -νk 2 )(iτ -i 2 k ) 2 |1 + iτ | 6 dτ, = +∞ -∞ (α k + β k )(iτ -i 2 k )(iτ -i 2 k ) + β k (i 2 k -νk 2 )(iτ -i 2 k ) + γ k (iτ -νk 2 )(iτ -i 2 k ) 2 |1 + τ 2 | 3 dτ, ≤ Cν 2 k 4 i 4 k i 4 k (α k + β k ) 2 + β 2 k (i 2 k -νk 2 ) 2 + γ 2 k .
In the sequel, we will show that there exists q k ∈ L 2 (0, T ) such that

q k 2 L 2 (0,T ) ≤ Cν 2 k 4 i 4 k i 4 k (α k + β k ) 2 + β 2 k (i 2 k -νk 2 ) 2 + γ 2 k . (2.18)
Assume that a countable family Λ satisfies the weak gap condition. 1 On one hand, let us consider the closed space A(Λ, T ) ⊂ L 2 (0, T ; C) given by

A(Λ, T ) = Span{e -λt ; λ ∈ Λ} L 2 (0,T ;C)
.

For any T ∈ (0, +∞), the restriction operator

R Λ,T : φ ∈ A(Λ, ∞) → R Λ,T φ = φ |(0,T ) ∈ A(Λ, T ) (2.19)
is an isomorphism. Moreover there exists a constant C T such that

R -1 Λ,T ≤ C T . (2.20)
Indeed, the fact that R Λ,T is an isomorphism is proved in [START_REF] Schwartz | Etude des Sommes d'Exponentielles, 2ème éd[END_REF]. The proof of the bound (2.20) can be done by contradiction (see [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF]. Lem. 4.2 and [5], Prop. 2.4).

On the other hand, for any T > 0, there exists a constant C T such that for any q ∈ L 2 (0, +∞; C) there exists q ∈ L 2 (0, T ; C) satisfying T 0 q(t)e -λt dt = +∞ 0 q(t)e -λt dt, ∀λ ∈ Λ, and

q L 2 (0,T,C) ≤ C T q L 2 (0,+∞,C) .
Indeed, from [START_REF] Khodja | The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials[END_REF] Corollary 4.3, it comes that A(Λ, ∞) is a proper subspace of L 2 (0, +∞; C). Let Π Λ the associated orthogonal projection and q ∈ L 2 (0, +∞; C). Then, by construction, we have +∞ 0 Π Λ q(t)e -λt dt = +∞ 0 q(t)e -λt dt, ∀λ ∈ Λ.

(2.21)

Since the restriction operator R Λ,T defined in (2. [START_REF] Shackell | Overconvergence of Dirichlet series with complex exponents[END_REF]) is an isomorphism, choose q := (R -1 Λ,T ) * Π Λ q, thus, there exists C T such that

q L 2 (0,T,C) ≤ C T q L 2 (0,+∞,C) . Using (2.21), for every λ ∈ Λ T 0 q(t)e -λt dt = (R -1 Λ,T ) * Π Λ q(•), e -λ• L 2 (0,T ) , = Π Λ q(•), R -1 Λ,T R Λ,T e -λ• L 2 (0,+∞) , = T 0 q k (t)e -λt dt.
This proves inequality (2.18). Now, thanks to equalities (2.17), we obtain for all k ≥ 1:

                       (α k + β k ) 2 = 1 (νk 2 -i 2 k ) 2 y 0 , e -νk 2 T ψ 2,k (νk 2 -i 2 k )L k (νk 2 ) - e -i 2 k T ψ 1,i k (i 2 k -i 2 k )L k (i 2 k ) , -1,1 2 , β 2 k (i 2 k -νk 2 ) 2 + γ 2 k = 1 ( i 2 k -i 2 k ) 2      e -2i 2 k T y 0 , ψ 1,i k -1,1 2 |L k (i 2 k )| 2 + e -2 i 2 k T y 0 , ψ 1, i k -1,1 2 
( i 2 k -νk 2 ) 2 L k ( i 2 k ) 2     
.

Thus the control u defines an element of L 2 (0, T ) if

U = k≥1 U k = k≥1 (ki k i k ) 4 (νk 2 -i 2 k ) 2 y 0 , e -νk 2 T ψ 2,k (νk 2 -i 2 k )L k (νk 2 ) - e -i 2 k T ψ 1,i k (i 2 k -i 2 k )L k (i 2 k ) -1,1 2 < +∞, (2.22) 
and

V = k≥1 V k = k≥1 (ki k i k ) 4 ( i 2 k -i 2 k ) 2      e -2i 2 k T y 0 , ψ 1,i k -1,1 2 |L k (i 2 k )| 2 + e -2 i 2 k T y 0 , ψ 1, i k -1,1 2 
( i 2 k -νk 2 ) 2 L k ( i 2 k ) 2      < +∞. (2.23) 
Let us give first some properties of L k (see (2.16)).

Lemma 2.9.

Assume √ ν > 1, √ ν / ∈ Q * + . 1.
For every ε > 0 there exists positive constants C 1 (ε), C 2 (ε), and C 3 (ε), independent of k, such that

|L k (i 2 k )| ≥ C 1 (ε)e -εi 2 k , |L k ( i 2 k )| ≥ C 2 (ε)e -ε i 2 k , and |L k (νk 2 )| ≥ C 3 (ε)e -ενk 2 , ∀k ≥ 1.
2. There exists a constant C > 0, independent of k, such that

|L k (λ)| ≤ C, ∀λ ≥ 0.
Proof of Lemma 2.9.

1. Let us fix k ≥ 1 and work with L k (νk 2 ). We have

|L k (νk 2 )| = 1 (1 + νk 2 ) 3 j ≥ 1 j = k |1 -νk 2 νj 2 | (1 + νk 2 νj 2 ) |1 -νk 2 i 2 j | (1 + νk 2 i 2 j ) |1 -νk 2 i 2 j | (1 + νk 2 i 2 j ) .
(2.24)

• Let us fix ε > 0, there exists N (ε) such that j≥N (ε)

1 νj 2 + 1 i 2 j + 1 i 2 j ≤ ε.
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Using the inequality 1 + x ≤ e x , x ∈ R, we can estimate the denominator of (2.24) as follows:

(1 + νk 2 ) 3 j≥1,j =k 1 + νk 2 νj 2 1 + νk 2 i 2 j 1 + νk 2 i 2 j ≤ (1 + νk 2 ) 3 N (ε)-1 j=1 1 + νk 2 3 j≥N (ε) 1 + νk 2 νj 2 1 + νk 2 i 2 j 1 + νk 2 i 2 j ≤ (1 + νk 2 ) 3 N (ε)-1 j=1 1 + νk 2 3 exp    νk 2 j≥N (ε) 1 νj 2 + 1 i 2 j + 1 i 2 j    ≤ (1 + νk 2 ) 3N (ε) e ενk 2 ≤ C(ε)e ενk 2 , ∀k ∈ N * ,
for a positive constant C(ε).

• Let us now work on the numerator of (2.24). Let us recall that (see Prop. 2.7), for all k, j ≥ 1 with j = k, we have

| √ νj - √ νk| ≥ √ ν, |i j - √ νk| > 1 2 and | i j - √ νk| > 1 2 ,
we deduce that, the conditions (1.8) et (1.9) of Theorem 1.1 in [START_REF] Fattorini | Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations[END_REF] are satisfied. Thus for every ε > 0 there exists positive constants C 1 (ε), C 2 (ε) and

C 3 (ε) such that j≥1,j =k 1 - νk 2 νj 2 ≥ C 1 (ε)e -ενk 2 , j≥1,j =k 1 - νk 2 i 2 j ≥ C 2 (ε)e -ενk 2 and j≥1,j =k 1 - νk 2 i 2 j ≥ C 3 (ε)e -ενk 2 .
2. For all λ ≥ 0, one has

L k (λ) L k (λ) = d dλ log L k (λ) = -3 1 + λ + j≥1,j =k 2 i 2 j (λ + i 2 j ) 2 λ + i 2 j λ -i 2 j + 2νj 2 (λ + νj 2 ) 2 λ + νj 2 λ -νj 2 + 2i 2 j (λ + i 2 j ) 2 λ + i 2 j λ -i 2 j , consequently |L k (λ)| ≤ 3 + 2 +∞ j=1 1 i 2 j + 1 νj 2 + 1 i 2 j < +∞.
Let us now show that V (see (2.23)) is a convergent series, when T > T 1 (see (1.12)). One has

V ≤ C k≥1 k 4 i 4 k i 4 k      e -2i 2 k T y 0 , ψ 1,i k -1,1 2 |L k (i 2 k )| 2 + e -2 i 2 k T y 0 , ψ 1, i k -1,1 2 L k ( i 2 k ) 2      ≤ C(ε) y 0 2 -1 k≥1 k 4 i 4 k i 4 k e -2i 2 k (T -ε) ψ 1,i k 2 + e -2 i 2 k (T -ε) ψ 1, i k 2 ≤ C(ε) y 0 2 -1 k≥1 k 4 i 4 k i 4 k e -2k 2 (T -ε) ψ 1,k 2 = C(ε) y 0 2 H -1 k≥1 k 4 i 4 k i 4 k e -2k 2 (T - log ψ 1,k k 2 -ε) = C(ε) y 0 2 H -1 k≥1 k 4 i 4 k i 4 k e -2k 2 (T -T1-2ε)
If we take, ε ∈ (0, T -T1

2 ), we deduce that V converges if T > T 1 . Let us see now that U (see (2.22)) is a convergent series, when T > T 2 (see (1.12)). One has, for all k ≥ 1s

U k = k 4 i 4 k i 4 k (νk 2 -i 2 k ) 2 y 0 , e -i 2 k T ψ 1,i k (i 2 k -i 2 k )L k (i 2 k ) - e -νk 2 T ψ 2,k (νk 2 -i 2 k )L k (νk 2 ) 2 , ≤ k 4 i 4 k i 4 k y 0 2 -1 (νk 2 -i 2 k ) 2 e -i 2 k T (ψ 1,i k -ψ 2,k ) (i 2 k -i 2 k )L k (i 2 k ) + e -i 2 k T (i 2 k -i 2 k )L k (i 2 k ) - e -νk 2 T (νk 2 -i 2 k )L k (νk 2 ) ψ 2,k 2 , ≤ k 4 i 4 k i 4 k C(ε) y 0 2 -1   exp      -2i 2 k   T - log ψ 2,k -ψ1,i k |νk 2 -i 2 k | i 2 k -ε         + e -2λ * k (T - i 2 k λ * k ε) + e -2νk 2 (T -ε-i 2 k νk 2 ε)    , ≤ k 4 i 4 k i 4 k C(ε ) y 0 2 -1 e -2i 2 k [T -T2-ε ] + e -2λ * k (T -2ε ) + e -2νk 2 (T -ε ) , where λ * k = (1 -θ k )νk 2 + θ k i 2 k , with θ k ∈]0, 1[. If we take, ε ∈ (0, T -T2
2 ), we deduce that U converge if T > T 2 . This gives the proof of null-controllability of system (1.1) if T > T 0 = max T 1 , T 2 .

The negative null controllability result

Let us prove that if 0 < T < T 0 , then system (1.1) is not null controllable at time T . We argue by contradiction. In particular, we assume that T 0 > 0, otherwise there is nothing to prove. By Proposition 1.7, system (1.1) is null-controllable at time T if and only if there exists C > 0 such that any solution θ of the adjoint problem (1.17) satisfies the observability inequality:

θ(0) 2 H 1 0 (0,π;R 2 ) ≤ C T 0 |B * Dθ x (0, t)| 2 dt, ∀θ 0 ∈ H 1 0 0, π; R 2 .
(2.25)
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Let us recall that

T 0 = max T 1 , T 2 with T 1 = lim sup k-→+∞ log ψ 1,k H 1 0 k 2 , T 2 = lim sup k→+∞ log ψ 2,k -ψ1,i k |νk 2 -i 2 k | νk 2 = lim sup k→+∞ log ψ 2,k -ψ1,i k |νk 2 -i 2 k | i 2 k .
• Let us suppose T 0 = T 1 , and work with the particular solutions of the adjoint problem (1.17) associated with initial data

θ 0 k = ψ 1,k ,
where ψ 1,k is given by (1.9). With this choice, the solution θ k of the adjoint problem is given by

θ k (x, t) = ψ 1,k (x)e -k 2 (T -t) .
The observability inequality reads as

θ k (•, 0) 2 H 1 0 ≤ C T 0 B * D ∂θ k (0, t) ∂x (0, t) 2 dt.
From the definition of T 1 , there exists a sub-sequence {k n } n≥1 such that:

T 1 = lim n→+∞ log ψ 1,kn H 1 0 k 2 n ∈]0, +∞].
in this case, for every ε > 0, there exists a positive integer n ε ≥ 1 such that

ψ 1,kn H 1 0 > e k 2 n (T1-ε) , ∀n ≥ n ε , thus      θ kn (•, 0) 2 H 1 0 = e -2k 2 n T ψ 1,kn 2 H 1 0 ≥ e -2k 2 n [T -T1+ε] -→ n→+∞ +∞, T 0 |B * D ∂θ kn (0, t) ∂x (0, t)| 2 dt = T 0 e -2k 2 n t dt -→ n→+∞ 0.
This proves that the observability inequality does not hold • Let us suppose now, T 0 = T 2 . Let us fix k ≥ 1 and work with the particular solutions associated with initial data

θ 0 k = ψ 1,i k -ψ 2,k ,
with this choice, the solution θ k of adjoint problem is given by

θ k (x, t) = ψ 1,i k (x)e -i 2 k (T -t) -ψ 2,k (x)e -νk 2 (T -t) .
We have

       θ k (•, 0) 2 H 1 0 = e -i 2 k T (ψ 1,i k -ψ 2,k ) + ψ 2,k e -i 2 k T -e -νk 2 T 2 H 1 0 , T 0 B * D ∂θ k (0, t) ∂x (0, t) 2 dt = T 0 e -i 2 k t -e -νk 2 t 2 dt,
thus we obtain

     θ k (•, 0) H 1 0 ≥ e -2i 2 k T ψ 1,i k -ψ 2,k 2 -2e -i 2 k T ψ 1,i k -ψ 2,k ψ 2,k i 2 k -νk 2 T 0 |B * D ∂θ k (0,t) ∂x (0, t)| 2 dt ≤ i 2 k -νk 2 2 ,
and

θ k (•, 0) 2 H 1 0 T 0 |B * D ∂θ k (0,t) ∂x (0, t)| 2 dt ≥ e -2i 2 k T ψ 1,i k -ψ 2,k 2 |i 2 k -νk 2 | 2 1 -2e i 2 k T i 2 k -νk 2 ψ 1,i k -ψ 2,k ψ 2,i k .
From the definition of T 2 , there exists an increasing unbounded sub-sequence (k n ) n≥1 such that

T 2 = lim n→+∞ log ψ 2,kn -ψ1,i kn |νk 2 n -i 2 kn | i k 2 n ∈]0, +∞],
in this case, for every ε > 0, there exists a positive integer n ε ≥ 1 such that

ψ 2,kn -ψ 1,i kn |νk 2 n -i 2 kn | > e i 2 kn ( T2-ε) , ∀n ≥ n ε , thus e -i 2 kn T ψ 2,kn -ψ 1,i kn |νk 2 n -i 2 kn | > e i 2 kn ( T2-T -ε) -→ n→+∞ +∞, ∀ε ∈ (0, T 2 -T ).
This proves that the observability inequality does not hold and finishes the proof of the negative null controllability result of (1.1).

Proof of Theorem 1.1: second case (b)

In this subsection, our objective is to prove that system (1.1) is null controllable at time T if T > T 0 ∈ [0, ∞), when √ ν < 1 . Thus, in the sequel we consider √ ν < 1.
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Positive null controllability result

Let us start with the following crucial result.

Proposition 2.10. Let √ ν < 1. Let us define the function

J : N * -→ N * k -→ j k ,
where, for any k ∈ N * , j k is the nearest integer to k

√ ν i.e k √ ν -j k < 1 2 . Thus for any k ∈ N * , k √ ν -j > 1 2 , ∀ j ∈ N * , j = j k . Then 1. The function J is injective. 2. J = N * \ J(N * ) = { j k : k ≥ 1} is a infinite set,
where the elements of J are classified in ascending order.

Proof of Proposition 2.10. The proof can be done in the same way as in Proposition 2.7. Thus, thanks to Proposition 2.10 we can reformulate (2.13). We say that the null controllability property at time T for system (1.1) is equivalent to find u ∈ L 2 (0, T ) such that:

                   T 0 e -k 2 t u(T -t) dt = -e -k 2 T y 0 , ψ 1,k -1,i , T 0 e -νj 2 k t u(T -t) dt = -e -νj 2 k T y 0 , ψ 2,j k -1,1 , T 0 e -ν j 2 k t u(T -t) dt = -e -ν j 2 k T y 0 , ψ 2, j k -1,1 , k ≥ 1.
(2.26)

We can now state our following main result.

Proposition 2.11. There exists

{q k } k≥1 ⊂ E T such that 1.                            T 0 e -k 2 t q k (t) dt = -e -k 2 T y 0 , ψ 1,k -1,i , T 0 e -νj 2 k t q k (t) dt = -e -νj 2 k T y 0 , ψ 1,j k -1,1 , T 0 e -ν j 2 k t q k (t) dt = -e -ν j 2 k T y 0 , ψ 2, j k -1,1 , k ≥ 1, T 0 e -k 2 t q i (t)dt = T 0 e -νj 2 k t q i (t)dt = T 0 e -ν j 2 k t q i (t)dt = 0, k = i.
2. If T > T 0 = max{T 1 , T 2 } (see (1.13) then we infer that an explicit solution u of moment problem (2.26) given by

u(t) = k≥1 q k (T -t).
Proof of Proposition 2.11. Just use here the same reasoning as in the previous Proposition 2.8.

The negative null controllability result

Let us prove that if 0 < T < T 0 , then system (1.1) is not null controllable at time T . We argue by contradiction. Let us first recall that

T 0 = max T 1 , T 2
where

T 1 = lim sup k-→+∞ log ψ 1,k H 1 0 k 2 and T 2 = lim sup k→+∞ log ψ 1,k -ψ2,j k |k 2 -νj 2 k | k 2 = lim sup k→+∞ log ψ 1,k -ψ1,j k |k 2 -νj 2 k | νj 2 k .
Assume that system (1.1) is null-controllable at time T < T 0 . System (1.1) is null-controllable at time T if and only if there exists C > 0 such that any solution θ of the adjoint problem (1.17) satisfies the observability inequality:

θ(0) 2 H 1 0 (0,π;R 2 ) ≤ C T 0 |B * Dθ x (0, t)| 2 dt, ∀θ 0 ∈ H 1 0 0, π; R 2 .
• Let us suppose T 0 = T 1 and work with the particular solutions of adjoint problem (1.17) associated with initial data

θ 0 k = ψ 1,k ,
where ψ 1,k is given by (1.9). With this choice, the solution θ k of adjoint problem is given by

θ k (x, t) = ψ 1,k (x)e -k 2 (T -t) .
The observability inequality reads as

θ k (•, 0) 2 H 1 0 ≤ C T 0 B * D ∂θ k (0, t) ∂x (0, t) 2 dt.
From the definition of T 1 , there exists a subsequence {k n } n≥1 such that:

T 1 = lim n→+∞ log ψ 1,kn H 1 0 k 2 n ∈]0, +∞],
in this case, for every ε > 0, there exits a positive integer n ε ≥ 1 such that

ψ 1,kn H 1 0 > e k 2 n (T1-ε) , ∀n ≥ n ε , thus,      θ kn (•, 0) 2 H 1 0 = e -2k 2 n T ψ 1,kn 2 H 1 0 ≥ e -2k 2 n [T -T1+ε] -→ +∞, when n -→ +∞, T 0 |B * D ∂θ kn (0, t) ∂x (0, t)| 2 dt = T 0 e -2k 2 n t dt -→ 0, when n -→ +∞.
This proves that the observability inequality does not hold.

• Assume T 0 = T 2 . Let us fix k ≥ 1 and work with the particular solutions associated with initial data

θ 0 k = ψ 1,k -ψ 2,j k .
With this choice, the solution θ k of adjoint problem is given by

θ k (x, t) = ψ 1,k (x)e -k 2 (T -t) -ψ 2,j k (x)e -νj 2 k (T -t) .
We have

       θ k (•, 0) 2 H 1 0 = e -k 2 T (ψ 1,k -ψ 2,j k ) + ψ 2,j k e -k 2 T -e -νj 2 k T 2 H 1 0 , T 0 B * D ∂θ k (0, t) ∂x (0, t) 2 dt = T 0 e -k 2 t -e -νj 2 k t 2 dt.
Thus we obtain

     θ k (•, 0) H 1 0 ≥ e -2k 2 T ψ 1,k -ψ 2,j k 2 -2e -k 2 T ψ 1,k -ψ 2,j k ψ 2,j k k 2 -νj 2 k , T 0 B * D ∂θ k (0, t) ∂x (0, t) 2 dt ≤ k 2 -νj 2 k 2 ,
and

θ k (•, 0) 2 H 1 0 T 0 B * D ∂θ k (0, t) ∂x (0, t) 2 dt ≥ e -2k 2 T ψ 1,k -ψ 2,j k 2 |k 2 -νj 2 k | 2 1 -2e k 2 T k 2 -νj 2 k ψ 1,k -ψ 2,j k ψ 2,j k .
From the definition of T 2 , there exists an increasing unbounded subsequence (k n ) n≥1 such that

T 2 = lim n→+∞ log ψ 1,kn -ψ2,j kn |k 2 n -νj 2 kn | k 2 n ∈]0, +∞],
in this case, for every ε > 0, there exits a positive integer n ε ≥ 1 such that

ψ 1,kn -ψ 2,j kn |k 2 n -νj 2 kn | > e k 2 n ( T2-ε) , ∀n ≥ n ε , thus, e -k 2 n T ψ 2,kn -ψ 1,i kn |νk 2 n -i 2 kn | > e k 2 n ( T2-T -ε) -→ +∞, ∀ε ∈ (0, T 2 -T ).
This proves that the observability inequality does not hold and finishes the proof of the negative null controllability result of (1.1).

Null-controllability result with an rational diffusion coefficient

Some preliminary results

In this subsection we will give some properties which will be used below. We are interested in studying the spectrum of the operators L * . Let us define the sets

         Λ 1 := i 2 0 j 2 0 j 2 : j ∈ N * \ j 0 N * , Λ 2 := k 2 : k ∈ N * \ i 0 N * , Λ 3 := i 2 0 l 2 : l ≥ 1 . (3.1)
Observe that Λ 1 , Λ 2 and Λ 3 are disjoint sets.

Remark 3.1.

If i 0 = 1 then Λ 2 = ∅, Λ 1 := { j 2 j 2 0 : j ∈ N * \ j 0 N * } and Λ 3 := {l 2 : l ≥ 1}.
Thus in the sequel, the controllability of the system (1.1) will be studied in only when √ ν = i0 j0 ∈ Q * + and i 0 > 1. The case i 0 = 1 is much easier and it is left to the reader.

In the sequel, for the proof of Theorem 1.3, we shall use the following notations

I(ζ) = π 0 q(s)ϕ √ ζ (s) π 2 sin ζ ν (π -s) ds, ζ ∈ Λ 2 ∪ Λ 3 = {k 2 : k ≥ 1},
and T 0 (ν, q) becomes T 0 (ν, q) := lim sup ζ∈Λ2∪Λ3, ζ→+∞

-log |I(ζ)| ζ ∈ [0, +∞]. (3.2)
Proposition 3.2. Let A 0 be given by (1.2) and consider the operator (L, D(L)) given by (1.6) and its adjoint L * .

1. The spectrum of L * is given by

σ(L * ) = Λ 1 ∪ Λ 2 ∪ Λ 3 . (3.3) E.H. SAMB 2. Given j ∈ N * \ j 0 N * , k ∈ N * \ i 0 N * and l ≥ 1, let us introduce Φ * 2,j := 0 ϕ j , Φ * 1,k := ϕ k ψ k and Φ * 1,l := ϕ i0l ψ l . (3.4) (a) Given j ∈ N * \ j 0 N * , then L * -νj 2 I d Φ * 2,j = 0. (b) Given k ∈ N * \ i 0 N * , then L * -k 2 I d Φ * 1,k = 0.
where, ψ k is the unique solution of following problem:

   -ψ k - k 2 ν ψ k = - 1 ν qϕ k in (0, π), ψ k (0) = ψ k (π) = 0. (3.5)
Moreover, an explicit expression of ψ k is given by:

ψ k (x) = ψ k (0) √ ν k sin kx √ ν + √ ν νk x 0 sin k √ ν (x -ξ) q(ξ)ϕ k (ξ) dξ, (3.6) 
with (see Rem. 2.2)

ψ k (0) = - I(k 2 ) ν π 2 sin kπ √ ν . (3.7) (c) Given l ≥ 1, then L * -i 2 0 l 2 I d Φ * 2,j0l = 0, L * -i 2 0 l 2 I d Φ * 1,l = I(i 2 0 l 2 )Φ * 2,j0l , ∀l ≥ 1,
and ψ l is the unique solution of following problem:

           -ψ l -j 2 0 l 2 ψ l = 1 ν [I(i 2 0 l 2 )ϕ j0l -qϕ i0l ] in (0, π), ψ l (0) = ψ l (π) = 0, π 0 ψ l (x)ϕ j0l (x) dx = 0,
an explicit expression of ψ l is given by:

ψ l (x) = α l ϕ j0l (x) + β l (x), for all x ∈ (0, π), (3.8) 
where

       β l (x) = - 1 νj 0 l x 0 sin (j 0 l(x -ξ)) [I(i 2 0 l 2 )ϕ j0l (ξ) -q(ξ)ϕ i0l (ξ)] dξ α l = 1 νj 0 l π 0 x 0 sin (j 0 l(x -ξ)) [I(i 2 0 l 2 )ϕ j0l (ξ) -q(ξ)ϕ i0l (ξ)]ϕ j0l (x) dξ dx.
Moreover (see Rem. 2.2 for instance)

β l (x) = - 1 ν x 0 cos (j 0 l(x -ξ)) [I(i 2 0 l 2 )ϕ j0l (ξ) -q(ξ)ϕ i0l (ξ)] dξ, (3.9) 
thus β l (0) = 0.

In the next result we are going to give some properties of ψ k (see 3.6) and ψ l (see 3.8). These properties will be used later and will be crucial in the proof of Theorem 1.3.

Proposition 3.3.
1. Let us fix q ∈ L ∞ (0, π) and take k ∈ N * \ i 0 N * . Then, one has:

ψ k (x) = - I(k 2 ) ν π 2 sin kπ √ ν cos kx √ ν + 1 ν x 0 cos k √ ν (x -ξ) q(ξ)ϕ k (ξ) dξ. (3.10) 
In addition, there exists a constant C > 0 such that

ψ k L ∞ (0,π) ≤ C, k ∈ N * \ i 0 N * .
2. Let us take l ≥ 1. There exists a constant C > 0 such that

|α l | ≤ C and ψ l L ∞ (0,π) ≤ C, l ≥ 1. (3.11) 
Proof of Proposition 3.3.

1. Let us fix k ∈ N * \ i 0 N * , the expression (3.10) can be deduced from (2.5) and (2.6). Moreover, there exists a constant C > 0 such that

ψ k L ∞ (0,π) ≤ C sin kπ √ ν + C, = C sin π(n k -kj0 i0 ) + C for each k, n k is the nearest integer of kj 0 i 0 , ≤ πC 2 π(n k -kj0 i0 ) + C 0 < n k - kj 0 i 0 ≤ 1 2 , ∀ x ∈ [0, π 2 ], 2 π x ≤ sin x , ≤ i 0 C 2 + C since 0 < 1 i 0 ≤ n k - kj 0 i 0 ≤ 1 2 .
2. The properties (3.11) can be deduced from (3.8) . This finalizes the proof.

Proof of Proposition 3.2.

First, let λ be an eigenvalue of L * and y = (y 1 , y 2 ) T an associated eigenfunction. Thus y is a solution of the following problem:

     -y 1 = λy 1 in (0, π) qy 1 -νy 2 = λy 2 in (0, π) y 1 (0) = y 2 (0) = 0, y 1 (π) = y 2 (π) = 0.
• If y 1 ≡ 0, then, λ = νj 2 is an eigenvalue of L * and taking y 2 = ϕ j , we obtain Φ * 2,j as associated eigenfunction of L * .

• Now assume that y 1 ≡ 0, then λ = k 2 and y 1 = ϕ k is a solution to the first o.d.e. Inserting this expression in the second equation, we get for y 2 :

y 2 + k 2 ν y 2 = 1 ν qϕ k in (0, π) y 2 (0) = y 2 (π) = 0. (3.12) 
Let us multiply (3.12) by sin k √ ν (π -s) and using partial integration, we obtain:

             y 2 (0) = - π 0 q(s)ϕ k (s) sin k √ ν (π -s) ds ν sin kπ √ ν = - I(k 2 ) ν π 2 sin kπ √ ν , if k = i 0 l, π 0 q(s)ϕ i0l (s)ϕ j0l (s)ds = I(i 2 0 l 2 ) = 0, if k = i 0 l.
• Observe that, suppose k = i 0 l, thus (3.12) admits a solution if and only if I(i 2 0 l 2 ) = 0. In this case, i 2 0 l 2 is a double eigenvalue of L * (take j = j 0 l). From the above considerations, it is clear that if I(i 2 0 l 2 ) = 0, then the eigenvalue i 2 0 l 2 of L * is simple and Φ * 2,j0l is an associated eigenfunction. Observe that, taking

Φ * 1,l = (z 1 , z 2 ) T the equation L * -i 2 0 l 2 I d Φ * 1,l = cΦ 2,j0l writes:      -z 1 -i 2 0 l 2 z 1 = 0 in (0, π), -νz 2 -i 2 0 l 2 z 2 = [cϕ j0l -qz 1 ] in (0, π), z 1 (0) = z 2 (0) = 0, z 1 (π) = z 2 (π) = 0.
Thus, choosing z 1 = ϕ i0l and inserting this expression in the second equation, we get:

   -z 2 -j 2 0 l 2 z 2 = 1 ν [cϕ j0l -qϕ i0l ] in (0, π), z 2 (0) = z 2 (π) = 0. (3.13) 
A necessary and sufficient condition for the previous no-homogeneous Sturm-Liouville problem to have a solution is that

π 0 [cϕ 2 j0l (x) -q(x)ϕ i0l (x)ϕ j0l (x)]dx = 0, i.e c = π 0 qϕ i0l ϕ j0l ds.
With this value of c, (3.13) has a continuum of solutions. This proves that, for

k = i 0 l, Φ 1,l is a generalized eigenfunction of L * associated to λ = i 2 0 l 2 . • Otherwise, if k = i 0 l, then y 2 (0) = - π 0 q(s)ϕ k (s) sin k √ ν (π -s) ds ν sin kπ √ ν = - I(k 2 ) ν π 2 sin kπ √ ν , and Φ 1,k is a eigenfunction of L * associated to λ = k 2 with k = i 0 l. Lemma 3.4. The family B * = Φ * 2,j : j ∈ N * \ j 0 N * ; Φ * 1,k : k ∈ N * \ i 0 N * ; Φ * 2,j0l , Φ * 1,l : l ≥ 1 is complete in L 2 (0, π; R 2 ). Proof of Lemma 3.4. Indeed, if f = (f 1 , f 2 ) is such that            f, Φ * 2,j = 0, j ∈ N * \ j 0 N * , f, Φ * 1,k = 0, k ∈ N * \ i 0 N * , f, Φ * 2,j0l = 0, l ≥ 1, f, Φ * 1,l = 0, l ≥ 1.
Then in particular

           f 2 , ϕ j = 0, j ∈ N * \ j 0 N * , f 1 , ϕ k + f 2 , ψ k = 0, k ∈ N * \ i 0 N * , f 2 , ϕ j0l = 0, l ≥ 1, f 1 , ϕ i0l + f 2 , ψ l = 0, l ≥ 1.
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This implies that f 1 = f 2 = 0 (since {ϕ k } k≥1 is an orthonormal basis in L 2 (0, π)) and proves the completeness of B * .

3.2. Proof of Theorem 1.3

Approximate controllability

This subsection is devoted to proving the approximate controllability of system (1.1), that is to say, the first point of Theorem 1.3. To this end, we are going to apply the property (2.11).

Necessary condition: Let us suppose that condition (1.15) does not hold i.e. there exists

k 0 ∈ N * \ i 0 N * (resp. l 0 ∈ N * ) such that I(k 2 0 ) = 0 (resp. I(i 2 0 l 2 0 ) = 0). • If I(k 2 0 ) = 0, with k 0 ∈ N * \ i 0 N * , then we deduce that Φ * 1,k0 = ϕ k0 ψ k0 (see (3.4)),
is an non-trivial eigenfunction associated with the eigenvalue k 2 0 of the operator L * satisfying

B * D ∂ Φ * 1,k0 ∂x (0) = ν ψ k0 (0) = - I(k 2 0 ) π 2 sin k0π √ ν = 0 (see (3.7)). • If I(i 2 0 l 2 0 ) = 0, with l 0 ∈ N * , then we deduce that Φ * 1,l0 -α l0 Φ * 2,j0l0 = ϕ i0l0 β l0 (see (3.4) and (3.8)),
is an non-trivial eigenfunction associated with the eigenvalue i 2 0 l 2 0 of the operator L * satisfying

B * D ∂ Φ * 1,l0 -α l0 Φ * 2,j0l
∂x (0) = νβ l0 (0) = 0 (see (3.9)). 

∂x (0) = νϕ k (0) = kν 2 π = 0.
Moreover, the set of the eigenvectors associated with the eigenvalue k 2 , k ∈ N * \ i 0 N * , of L * is generated by Φ * 1,k (see Prop. 2.1). In this case, we remark that for all k

∈ N * \ i 0 N * B * D ∂ Φ * 1,k ∂x (0) = ν ψ k (0) = - I(k 2 ) π 2 sin kπ √ ν = 0 (see (3.7)).
We conclude with the help of (2.11).

Positive null controllability result

In this subsection, our objective is to prove that system (1.1) is exactly controllable to zero at time T if T > T 0 ∈ [0, ∞) (see (1.16)). To this end, for y 0 ∈ H -1 (0, π; R 2 ) we will reformulate the null controllability problem as a moment problem. Let us first observe that condition (1.15) is a necessary condition for having the null controllability property of system (1.1) at time T > 0. Using Proposition 1.5 and Proposition 1.6 we deduce that the control u ∈ L 2 (0, T ) drives the solution of (1.1) to zero at time T if and only if u ∈ L 2 (0, T ) satisfies

T 0 u(t)B * Dθ x (0, t)dt = -y 0 , θ(•, 0) H -1 ,H 1 0 , ∀θ 0 ∈ H 1 0 (0, π; R 2 ),
where θ is the solution to the adjoint problem (1.17) associated with θ 0 . Since B * is complete in H 1 0 (0, π; R 2 ), the null controllability property at time T for system (1.1) is equivalent to find u ∈ L 2 (0, T ) such that

                           T 0 u(t)B * Dθ 2,j x (0, t)dt = -y 0 , θ 2,j (•, 0) H -1 ,H 1 0 , j ∈ N * \ j 0 N * , T 0 u(t)B * D θ 1,k x (0, t)dt = -y 0 , θ 1,k (•, 0) H -1 ,H 1 0 , k ∈ N * \ i 0 N * , T 0 u(t)B * Dθ 2,j0l x (0, t)dt = -y 0 , θ 2,j0l (•, 0) H -1 ,H 1 0 , l ≥ 1, T 0 u(t)B * D θ 1,l x (0, t)dt = -y 0 , θ 1,l (•, 0) H -1 ,H 1 0 , l ≥ 1,
where θ 2,j is the solution of adjoint problem (1.17) associated with θ 0 = Φ * 2,j , and θ 1,k (resp. θ 1,l ) is the solution of adjoint problem(1.17) associated with θ 0 = Φ * 1,k (resp. θ 0 = Φ * 1,k ). One has:

1. If we take θ 0 ≡ Φ * 2,j , the solution of the adjoint problem is θ 2,j (•, t) = e -νj 2 (T -t) Φ * 2,j and we obtain:

T 0 e -νj 2 t u(T -t) dt = e -νj 2 T y 0 , Φ * 2,j νϕ j (0) -1,1 = e -νj 2 T M (y 0 , νj 2 ), ∀j ∈ N * \ j 0 N * ,
where

M (y 0 , νj 2 ) = y 0 , Φ * 2,j νϕ j (0) H -1 ,H 1 0 , ∀j ∈ N * \ j 0 N * . Moreover M (y 0 , α) ≤ C y 0 H 1 0 (0,π;R 2 ) , ∀α ∈ Λ 1 (see (3.1)), (3.14) 
for a positive constant C independent of α ∈ Λ 1 and y 0 . 2. If we take θ 0 ≡ Φ * 1,k , the solution of the adjoint problem is θ 1,k (•, t) = e -k 2 (T -t) Φ * 1,k and we obtain:

T 0 e -k 2 t u(T -t) dt = e -k 2 T y 0 , Φ * 1,k ν ψ k (0) -1,1 = e -k 2 T I(k 2 ) M (y 0 , k 2 ), ∀k ∈ N * \ i 0 N * .
where

M (y 0 , k 2 ) = ν π/2 sin kπ √ ν y 0 , Φ * 1,k H -1 ,H 1 0 , ∀k ∈ N * \ i 0 N * .
Using the properties of the function ψ k stated in Proposition 3.3, one has

| M (y 0 , β)| ≤ C y 0 H 1 0 (0,π;R 2 ) , ∀β ∈ Λ 2 , (3.15) 
for a new positive constant C independent of β ∈ Λ 2 and y 0 . 3. Let us now take θ 0 ≡ Φ * 2,j0l resp. θ 0 ≡ Φ * 1,l , the solution of the adjoint problem is

θ 2,j0l (•, t) = e -i 2 0 l 2 (T -t) Φ * 2,j0l resp. θ 1,l (•, t) = e -i 2 0 l 2 (T -t) Φ * 1,l -(T -t)I(i 2 0 l 2 )Φ * 2,j0l
, for all l ≥ 1. Thus, the control u must also satisfy

         T 0 e -i 2 0 l 2 t u(T -t) dt = e -i 2 0 l 2 T M * (y 0 , i 2 0 l 2 ), T 0 te -i 2 0 l 2 t u(T -t) dt = e -i 2 0 l 2 T I(i 2 0 l 2 ) M (y 0 , i 2 0 l 2 ), ∀l ≥ 1,
where

M * (y 0 , i 2 0 l 2 ) = y 0 , Φ * 2,j0l νϕ j0l (0) H -1 ,H 1 0 , ∀l ≥ 1,
and, for all l ≥ 1

M (y 0 , i 2 0 l 2 ) = 1 νϕ j0l (0) y 0 , Φ * 1,l + ψ l (0) ϕ j0l (0) -T I(i 2 0 l 2 ) Φ * 2,j0l -1,1 
.

Using the properties of the function ψ k stated in Proposition 3.3, one has

| M (y 0 , γ)| ≤ C y 0 H 1 0 (0,π;R 2 ) , ∀γ ∈ Λ 3 , |M * (y 0 , γ)| ≤ C y 0 H 1 0 (0,π;R 2 ) , ∀γ ∈ Λ 3 , (3.16)
for a new positive constant C independent of γ ∈ Λ 3 and y 0 . Summarizing, we have proved that u ∈ L 2 (0; T ) is such that the solution y of system (1.1) satisfies y(•, T ) = 0 in (0; π) if and only if, u ∈ L 2 (0; T ) satifies

                           T 0 e -αt u(T -t) dt = e -αT M (y 0 , α), ∀α ∈ Λ 1 , T 0 e -βt u(T -t) dt = e -βT I(β) M (y 0 , β), ∀β ∈ Λ 2 , T 0 e -γt u(T -t) dt = e -γT M * (y 0 , γ), ∀γ ∈ Λ 3 , T 0 te -γt u(T -t) dt = e -γT I(γ) M (y 0 , γ), ∀γ ∈ Λ 3 .
(3.17)

Proposition 3.5 (gap-condition). ∀ α, β ∈ σ(L * ), with α = β, |α -β| > 1 j 2 0 .
Proof of Proposition 3.5. For all α, β ∈ σ(L * ), there exist p, q ∈ N * where p = q, such that j 2 0 α = p 2 and j 2 0 β = q 2 (see (3.1) and (3.3)), consequently

|α -β| = 1 j 2 0 p 2 -q 2 ≥ 1 j 2 0 .
Thus, from the results in [START_REF] Fernàndez-Cara | Boundary controllability of parabolic coupled equations[END_REF] (see Lemma 3.1. (b), page 1725-1726), we know that the sequence {e -αt , te -αt } α∈σ(L * ) admits a biorthogonal family {q 1,α , q 2,α } α∈σ(L * ) in L 2 (0, T ), i.e., a family satisfying

         T 0 e -αt q 1,β (t)dt = δ αβ , T 0 te -αt q 1,β (t)dt = 0, and 
         T 0 e -αt q 2,β (t)dt = 0, T 0 te -αt q 2,β (t)dt = δ αβ ,
where α, β ∈ σ(L * ), which moreover satisfies that for every ε > 0 there exists a constant C ε,T > 0 such that

q j,β L 2 (0,T ) ≤ C ε,T e εβ , β ∈ σ(L * ), j ∈ {1, 2}. (3.18) 
Using now the formulas in (3.17) and the property (3.18), we infer that an explicit formal solution u is given by

u(T -t) = α∈Λ1 e -αT M (y 0 , α)q 1,α (t) + β∈Λ2 e -βT M (y 0 , β)q 1,β (t) I(β) + γ∈Λ3 e -γT M * (y 0 , γ)q 1,γ (t) + M (y 0 , γ)q 2,γ (t) I(γ) (3.19) 
Let us see that this series defines an element of L 2 (0, T ) when T > T 0 , i.e., the previous series converges in L 2 (0, T ) if T > T 0 . Indeed, from the definition of the minimal time T 0 (see (3.2)) and for any fixed ε > 0, we can infer that there exists a positive constant C ε such that

1 |I(ζ)| ≤ C ε e ζ(T0+ε) , ∀ζ ∈ Λ 2 ∪ Λ 3 .
On one hand, we can use (3.18), (3.14) and (3.16), and get for any α ∈ Λ 1 and γ ∈ Λ 3 , a positive constant C ε,T > 0 for which

e -αT M (y 0 , α)q 1,α (t) L 2 (0,T ) + e -γT M * (y 0 , γ)q 1,γ (t) L 2 (0,T ) ≤ C ε,T y 0 H 1 0 e α(ε-T ) + e γ(ε-T ) .
On the other hand, we can use (3.18), (3.15) and (3.16), and get for any

β ∈ Λ 2 and γ ∈ Λ 3 , a new positive constant C ε,T > 0 such that e -βT I(β) M (y 0 , β)q 2,β (t) L 2 ≤ C ε,T y 0 H 1 0 e β(ε-T ) |I(β)| ≤ C ε,T y 0 H 1 0 e β(T0-T +2ε) , e -γT I(γ) M (y 0 , γ)q 2,γ (t) L 2 ≤ C ε,T y 0 H 1 0 e γ(ε-T ) |I(γ)| ≤ C ε,T y 0 H 1 0 e γ(T0-T +2ε) .
These previous two inequalities prove the absolute convergence of the series (3.19) which defines the control u since ε may be chosen arbitrarily small (take ε ∈ (0, T -T0 2 ) for instance). This proves the null controllability of system (1.1) at time T when T > T 0 .

The negative null controllability result

Let us prove that if 0 < T < T 0 , then system (1.1) is not null controllable at time T . We argue by contradiction. Let us first remark that .20) Assume that (1.1) is null-controllable at time T < T 0 , system (1.1) is null-controllable at time T if and only if there exists C > 0 such that any solution θ of the adjoint problem (1.17) satisfies the observability inequality:

T 0 = max {T 0,1 , T 0,2 } with T 0,1 = lim sup k∈N * \i0N * , k→+∞ log 1 |I(k 2 )| k 2 and T 0,2 = lim sup l∈N * , l→+∞ log 1 |I(i 2 0 l 2 )| i 2 0 l 2 . ( 3 
θ(0) 2 H 1 0 (0,π;R 2 ) ≤ C T 0 |B * Dθ x (0, t)| 2 dt, ∀θ 0 ∈ H 1 0 0, π; R 2 . ( 3 

.21)

• Let us suppose T 0 = T 0,1 . Let us work with the particular solutions θ k associated with initial data

θ 0 k = 1 |I(k 2 n )| 2 e -2k 2 n T , ≥ k 2 n π 2 4 i 2 0 e -2k 2 n T - log | I(k 2 n ) | k 2 n , ≥ k 2 n π 2 4 i 2 0 e -2k 2 n [T -T0,1+ε] -→ n→+∞ +∞, ε ∈ (0, T 0,1 -T ),
and

T 0 |B * D ∂θ kn (0, t) ∂x (0, t)| 2 dt = T 0 e -2k 2 n t dt -→ n→+∞ 0.
This proves that the observability inequality (3.21) does not hold. • Let us suppose now, T 0 = T 0,2 . Let us work with the particular solutions θ l associated with initial data

θ 0 = a l Φ * 1,l + b l Φ * 2,j0l , l ≥ 1,
with a l , b l ∈ R, to be determined. Recall that π 0 ψ l (x)ϕ j0l (x) dx = 0 (see (3.5)).

With this choice, the solution θ l of (1.17) is given by

θ l (•, t) = a l e -i 2 0 l 2 (T -t) Φ 1,l + (T -t)I(i 2 0 l 2 )Φ * 2,j0l + b l e -i 2 0 l 2 (T -t) Φ * 2,j0l , ∀l ≥ 1,
In all the sequel, assume that condition (1.11) is holds. We have Proposition A.1. Let us consider the definitions of the Theorem 1.1. One has 1.

T 1 = lim sup k→+∞    1 k 2 log sin kπ √ ν π 0 q(s)ϕ k (s) sin k √ ν (π -s) ds    ∈ [0, +∞]. If √ ν > 1, then T 2 = lim sup k→+∞    1 i 2 k log 1 π 0 q(s)ϕ i k (s) sin i k √ ν (π -s) ds    ∈ [0, +∞]. 2. If √ ν < 1, then T 2 = lim sup k→+∞    1 k 2 log 1 π 0 q(s)ϕ k (s) sin k √ ν (π -s) ds    ≥ T 1 , consequently T 0 = T 2 .
Poof of Proposition A.1 . Let us recall that for all k ≥ 1, one has

Φ * 1,k := ϕ k ψ k , Φ * 2,k := 0 ϕ k (see (1.7)),
and

ψ 1,k := Φ * 1,k B * D ∂Φ * 1,k ∂x (0) = Φ * 1,k νψ k (0) (see (1.9)),
where (see (2.1))

ψ k (x) = ψ k (0) √ ν k sin kx √ ν + √ ν νk x 0 sin k √ ν (x -ξ) q(ξ)ϕ k (ξ) dξ.
Moreover, one has

ψ k (x) = ψ k (0) cos kx √ ν + 1 ν x 0 cos k √ ν (x -ξ) q(ξ)ϕ k (ξ) dξ.
We immediately see that there is a constant C > 0 such that

ψ k 2 L 2 (0,π) ≤ C|νψ k (0)| 2 + C. (A.2)
1. On one hand, using the previous inequality (A.2), one has

k 2 |νψ k (0)| 2 ≤ ψ 1,k 2 H 1 0 = k 2 + ψ k 2 L 2 |νψ k (0)| 2 ≤ k 2 + C|νψ k (0)| 2 + C |νψ k (0)| 2 ≤ k 2 + C |νψ k (0)| 2 + C, thus T 1 = lim sup k→+∞ log ψ 1,k H 1 0 k 2 = lim sup k→+∞ -log |νψ k (0)| k 2 = lim sup k→+∞    1 k 2 log sin kπ √ ν π 0 q(s)ϕ k (s) sin k √ ν (π -s) ds    (see (A.1)).
On the other hand, for all k ≥ 1 and

√ ν > 1, one has |i k - √ νk| < 1 2 , (A.3) where i k is the nearest integer to √ νk, thus | i k √ ν -k| < 1 2 √ ν < 1 2 . Consequently 2 i k √ ν -k ≤ sin i k π √ ν ≤ π i k √ ν -k . (A.4) Thus ψ 1,i k -ψ 2,k 2 H 1 0 |i 2 k -νk 2 | 2 = 1 |i 2 k -νk 2 | 2 i 2 k |νψ i k (0)| 2 + νϕ k (0)ψ i k -νψ i k (0)ϕ k 2 L 2 |νψ i k (0)| 2 |νϕ k (0)| 2 ≤ 1 |i 2 k -νk 2 | 2 i 2 k |νψ i k (0)| 2 + 2 ψ i k 2 L 2 |νψ i k (0)| 2 + 2k 2 |νϕ k (0)| 2 ≤ 1 |i 2 k -νk 2 | 2 i 2 k + C |νψ i k (0)| 2 + C + π ν ≤ C i 2 k |i 2 k -νk 2 | 2    sin i k π √ ν 2 π 0 q(s)ϕ i k (s) sin i k √ ν (π -s) ds 2    ≤ C i 2 k |i k + √ νk| 2 π 2 ν    1 π 0 q(s)ϕ i k (s) sin i k √ ν (π -s) ds 2    , and 
ψ 1,i k -ψ 2,k 2 H 1 0 |i 2 k -νk 2 | 2 = 1 |i 2 k -νk 2 | 2 i 2 k |νψ i k (0)| 2 + νϕ k (0)ψ i k -νψ i k (0)ϕ k 2 L 2 |νψ i k (0)| 2 |νϕ k (0)| 2 ≥ 1 |i 2 k -νk 2 | 2 i 2 k |νψ i k (0)| 2 ≥ i 2 k |i 2 k -νk 2 | 2    sin i k π √ ν 2 π 0 q(s)ϕ i k (s) sin i k √ ν (π -s) ds 2    ≥ i 2 k |i k + √ νk| 2 4 ν    1 π 0 q(s)ϕ i k (s) sin i k √ ν (π -s) ds 2    ,
and then, we deduce that T 2 = lim sup k→+∞ -log π 0 q(s)ϕ i k (s) sin i k √ ν (π -s) ds νk 2 .

2. Similarly, we show that, for √ ν < 1

T 0 = T 2 = lim sup k→+∞ -log π 0 q(s)ϕ k (s) sin k √ ν (π -s) ds k 2 ≥ T 1 .
In the following Proposition A.2 we will give a positive answer to the natural question: Let τ 0 ∈ [0, +∞], is there √ ν / ∈ Q * and q ∈ L ∞ (0, π) such that T 0 = τ 0 (or T 0 = τ 0 )?

Proposition A.2. Let √ ν / ∈ Q.

1. For any τ 0 ∈ [0, +∞], there exists √ ν > 1 and q ∈ L ∞ (0, π) such that T 0 = max{T 1 , T 2 } = τ 0 .

2. For any τ 0 ∈ [0, +∞], there exists √ ν < 1 and q ∈ L ∞ (0, π) such that

T 0 = T 2 = τ 0 .
Proof of Proposition A.2 In the sequel, we will work with T 0 . The arguments to prove that T 0 = τ 0 ∈ [0, +∞], are similar. Let us recall Lemma A.3.

1. Let us fixed τ 0 ∈ (0, ∞), x 0 ∈ [0, ∞) and ε > 0. Then, there exist an irrational number ν > 0 and a sequence of rational numbers {p k /q k } k≥1 such that p k and q k are co-prime positive integers, the sequences {p k } k≥1 and {q k } k≥1 are strictly increasing, |ν -x 0 | ≤ ε and lim k→∞ e τ0q 2 k ν -p k q k = 1. (A.5)

Moreover, for any k ≥ 1 one has 0 < |q k ν -p k | ≤ |qν -p| , ∀p, q ∈ N * , with q < q k+1 . (A.6)

2. For any σ ∈ (0, ∞), x 0 ∈ [0, ∞) and ε > 0, there exists an irrational number ν > 0 and a sequence of rational numbers {p k /q k } k≥1 such that p k and q k are co-prime positive integers, the sequences {p k } k≥1 and {q k } k≥1 are strictly increasing and (see (A.3)) .

Let us fixed x 0 ≥ 0 et ε > 0. We will distinguish three different cases in the proof of Proposition A.2. Case τ 0 = 0: Given x 0 ≥ 1 and ε > 0 such that x 0 -ε > 1. Taking ν > 1 a irrational algebraic number of order n ≥ 2, we deduce the existence of a positive constant C > 0 such that

| sin(i k π/ √ ν| ≥ C i n-1 k , ∀k ≥ 1, Consequently T 0 = T 2 = 0.
Case τ 0 ∈ (0, ∞): Given τ 0 , x 0 ≥ 0 and ε > 0 such that x 0 -ε > 1. We deduce the existence of a irrational algebraic number ν > 1 which fulfills (A.5) and (A.6) for the sequences of positive integers {p k } k≥0 et {q k } k≥0 . From (A.5) we deduce lim(p k -q k √ ν) = 0, lim p k /q k = √ ν. Thus from the Lemma A.4, we have Let us take n 0 (ε) = q k0(ε) ≥ 1. Thus, using that the sequence {q k } k≥1 is strictly increasing, if n ≥ n 0 (ε), we infer the existence of k ≥ k 0 (ε) such that q k ≤ n < q k+1 . These last properties together with the second formula in (A. Since q k ≤ n < q k+1 , the previous inequality and (A. 

≤

τ 0 ν + ε, ∀n ≥ n 0 (ε), such that q k ≤ n < q k+1 , and

T 2 = lim sup -log |sin ( √ νnπ)| νn 2 ≤ τ 0 ν + ε, ∀ε > 0.
Case τ 0 = ∞: Fix σ > 0 and take x 0 ∈ (0, +∞) and ε > 0 such that x 0 -ε > 1. We apply the second item in Lemma A.3 with, for instance, σ = 1/2. We deduce the existence of a positive irrational number ν > 1 and two sequences of positive integers {p k } k≥0 and {q k } k≥0 which fulfills (A.7). Thus, we deduce This shows that T 2 = ∞ and finishes the third case and the proof of Proposition A.2.

|ν -x 0 | ≤ ε and lim k→∞ 7 ) 2 k 1 π 1 π0 2 i-log sin i k π √ ν i 2 k.Finally, we have Lemma A. 4 .

 7211224 Proof of Lemma A.3 See for example[START_REF] Khodja | New phenomena for the null controllability of parabolic systems: Minimal time and geometrical dependence[END_REF] Lemma A.1, page 35. Note that by choosing q(x) = 1, x ∈ [0, π], we obtainsin kπ √ ν π 0 q(s)ϕ k (s) sin k √ ν (π -s) ds = sin kπ √ ν π 0 ϕ k (s) sin k √ ν (π -s) ds = π |ν -1| ν ,and thus T 1 = 0. But0 q(s)ϕ i k (s) sin i k √ ν (π -s) ds = ϕ i k (s) sin i k √ ν (π -s) ds = π k |ν -1| ν sin i k π √ ν, thus in this caseT 0 = T 2 = lim sup k→+∞ Let ν / ∈ Q * and i k nearest integer to √ νk, for each k ≥ 1. If ν > 1 then lim sup k→+∞ -log sin i k π

T 2 = lim sup k→+∞ -log sin i k π √ ν i 2 k- 2 ,

 22 log |sin ( √ νkπ -hπ)| νk 2 , ∀h ∈ N, ≥ lim sup k→+∞ -log |sin ( √ νq k π -hπ)Let us now show T 2 ≤ τ 0 . Note that we can deduce from the previous result that lim supk→+∞ -log |sin π ( √ νq k -p k )| νq 2 exists k 0 (ε) ≥ 1 such that -log |sin π ( √ νq k -p k )| νq 2 k ≤ τ 0 ν + ε, ∀k ≥ k 0 (ε). (A.8)for every n ≥ 1, there is i n ∈ N * for which| √ νn -i n | < 1 ∀n ≥ 1.

6 )

 6 allow us to write| √ νq k -p k | ≤ | √ νn -i n | < 1 2 ,and| sin( √ νnπ)| = | sin(π( √ νn -i n ))| = sin(π| √ νn -i n |), ≥ sin(π| √ νq k -p k |) = | sin(π( √ νq k -p k ))|, ∀n ≥ n 0 (ε), such that q k ≤ n < q k+1 .

T 2 -

 2 log |sin (π (q k √ ν -p k ))| νq 2 k = lim sup k→+∞ -log |π (q k √ ν -p k )| νq 2

  Thus, system (1.1) is not approximately controllable at time T .Sufficient condition: Let us suppose that condition (1.15) hold. The set of the eigenvectors associated with the eigenvalue νk 2 of L * is generated by Φ * 2,k (see Prop. 2.1). In this case, we remark that for all k ∈ N *

	B * D	∂Φ * 2,k

This notion was introduced in[START_REF] Benabdallah | A block moments method to handle spectral condensation phenomenon in parabolic control problems[END_REF].
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thus, the observability inequality (3.21) becomes

with, for all l ≥ 1

We can choose a l = I(i 2 0 l 2 ) and b l = -I(i 2 0 l 2 )ψ l (0)/ϕ j0l (0), we obtain for a new constant C > 0 not depending on l, such that:

From the definition of T 0,2 (see (3.20)), there exists a sub-sequence {l n } n≥1 such that:

Assume 0 < T 0,2 < +∞. In this case, for every ε > 0, there exits a positive integer n ε ≥ 1 such that

Taking for instance ε = T0,2-T 2

, we have

This proves that the observability inequality (3.21) does not hold and finishes the proof of the negative null controllability result of (1.1).