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A Deep Learning Framework for Tactile
Recognition of Known as well as Novel Objects

Zineb Abderrahmane, Gowrishankar Ganesh, André Crosnier, and Andrea Cherubini

Abstract—This paper addresses the recognition of daily-life
objects by a robot equipped with tactile sensors. The main
contribution is a deep learning framework that can recognize
objects already touched as well as objects never touched before.

To this end, we train a Deconvolutional Neural Network that
generates synthetic tactile data for novel classes. Then, we use
both these synthetic data and the real data collected by touching
objects, to train a Convolutional Neural Network to recognize
both known (trained) objects and novel objects. Furthermore,
we propose a method for integrating newly encountered data
into novel classes. Finally, we evaluate the framework using the
largest available dataset of tactile objects descriptions.

Index Terms—Tactile object recognition, Deep learning, Zero-
Shot Learning, One-Shot Learning, Convolutional Neural Net-
works, Generative Adversarial Networks.

I. INTRODUCTION

ROBOTS operating in household environments are sur-
rounded by a wide variety of objects. Just like a blind

person, a robot can use its tactile sensors to recognize objects
when vision is not available (e.g. when performing in the
dark). In this work, we study the recognition of daily-life
objects using the sense of touch.

Traditionally, in the tactile recognition literature [1]–[8],
robots are trained with the data recorded while touching
multiple objects. Such data are then mapped to a finite set
of training object classes. Finally, this mapping is used to
recognize unknown objects. This method however, omits an
important case: the recognition of novel objects not included
in the training set, which is often the case in daily life. This
is because, first, the number of objects in common daily
environment can be huge (30000 as estimated in [9]), and
second, new objects being added continuously. It is therefore
impossible to train a robot on all daily-life objects in advance.

The first solution that comes to mind is to retrain the robot
each time it encounters a novel object. However, tactile data
collection is non-trivial, because the robot control required
to guarantee stable and complete robot-object physical inter-
actions can be very complex, and the use of tactile sensors
involves to satisfy temporal constraints in order to guarantee
the quality of acquired data. Due to these reasons, a solution
that aims to collect training tactile data each time a novel
object is encountered can hamper robot operation.

A solution to the above problems, which drastically de-
creases the cost of novel objects recognition, is to collect
semantic information about objects, or specifically, human-
understandable properties [10]. These can be provided by
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(LIRMM), University of Montpellier CNRS, 860 Rue Saint Priest, 34095
Montpellier, France. E-mail:firstname.lastname@lirmm.fr.

G. Ganesh is also with the CNRS-AIST JRL UMI3218/RL 1-1-1 Umezono,
305-8560 Tsukuba, Japan. E-mail: gans gs@hotmail.com

humans [11] or automatically mined from semantic databases
(e.g. Wikipedia [12]). The semantic information can then be
used with the tactile data available from trained objects to
recognize new ones.

A popular form of semantic information is attributes, which
refer to human-comprehensible semantic object properties. At-
tributes like thin, long, wooden, tapered, metallic and rubber,
can describe a pencil. If a robot has learned the relation
between attributes and tactile data, then given the attribute-
based description of a pencil, the robot can recognize a pencil
when touching it even if it has not touched any pencil during
the training phase. This approach is called attribute-based
Zero-Shot Learning (ZSL) [11].

In this work, we design a unified recognition framework
that, from tactile data, can recognize an object as a known
(previously touched) or as novel object. Recognition of known
objects is performed by using available multi-class classifiers
built from training data, while recognition of novel objects
relies on attribute-base ZSL approach. Furthermore, the inte-
gration of new tactile data for novel objects, starting from only
one training sample, can be achieved by performing One-Shot
Learning (OSL).

The proposed framework is based on deep Convolutional
Neural Networks (CNNs). This choice was motivated by
the good performance reported recently in multi-class tactile
recognition [7], [8] when using CNNs. However, note that the
use of CNNs for Zero-Shot Learning is not straightforward: if
we simply train a CNN to map tactile data into object classes,
the CNN will miss output classes having no training data.
This decreases the classification accuracy due to the imbalance
in the training set [13], [14]. To cope with this problem, for
each novel class specified by its attribute-based description,
we generate synthetic tactile training data.

This paper is structured as follows: in the next section,
we present related studies on tactile recognition and ZSL,
in addition to our contributions with respect to these studies.
We give an overview of the proposed recognition framework
in Sect. III. The details about the training data generation,
and about the ZSL and OSL are presented in Sect. IV. The
experimental setup is presented in Sect. V. Finally, we present
and discuss the evaluation results in Sect. VI, and we give the
conclusions in Sect. VII.

II. RELATED WORK

A. Multi-Class Tactile Recognition

Following the massive advance in visual recognition [15],
many works have studied the integration of new data sources
such as tactile sensing, to recognition systems. This allowed
the integration of new physical properties that cannot be
estimated using vision, such as material [4], compliance [16]
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and texture [17] for object recognition. Several works have
been proposed to deal with challenges associated with tactile
data processing, including data sparsity and noise [18], choice
of object sets, and the sensing capabilities and constraints
of robots [2] and using techniques such as deep learning
[1] and sparse coding [19]. Recent advances in tactile object
recognition are reviewed in [20]. However, all these methods
train and test their recognition systems on the same set of
object classes. Next, we review studies focusing on Zero-Shot
Learning, for recognizing novel objects having no training
data.

B. Visual Zero-Shot Learning
Recognition of novel object classes without training exam-

ples, known as Zero-Shot Learning (ZSL), has gained increas-
ing interest in the visual recognition community. Recognition
of novel objects is possible when semantic descriptions of
object classes are available. This allows to mine relationships
between training and novel objects, and hence to use training
data to recognize novel classes. A popular approach is to
determine object properties, or attributes [10], [21]–[27]. Tex-
tual descriptions extracted from Wikipedia articles [12], [28]
form a second popular source of semantic information. A third
approach directly mines objects relationships from Linguistic
knowledge databases such as WordNet [29], Wikipedia and
search engines [30].

The semantic descriptions have been used in different ways
to achieve ZSL. Authors of [31] solved ZSL by predicting
regression parameters of a one-vs-all classifier for each novel
class. Direct and hierarchical similarity measures have been
used in [32] to compute the classification score of each
novel class depending on scores of similar known classes.
The works that are closest to ours aim at generating data
samples for novel classes from their semantic descriptions.
Authors of [33] learned a kernel-based regressor that predicts
a prototypical visual sample for each novel class, based on its
representation in a semantic space. In [34], a variational auto-
encoder was used to generate data for novel classes based
on their attributes. Authors of [35] proposed an embedding
algorithm to generate synthesized data from semantic features.
A series of approaches to perform ZSL is reviewed and
compared in [36].

C. Extension to One-Shot Learning
An extension of ZSL, known as One-Shot Learning (OSL),

is when only one tactile sample become available for novel
classes. The recognition system usually under-fits these classes
because of the very few number of samples compared to
other classes. Few works extend ZSL to OSL. An example
is [21], which applies topic modelling to attributes in order
to recognize objects having zero or one training sample each.
Another example is [37], in which prototypical networks are
used for both OSL and ZSL.

D. The contribution of this paper
The difficulty of tactile data collection makes classes with

zero or one training sample very frequent in training sets.
However, ZSL and OSL have gained significantly less atten-
tion in tactile recognition, compared to vision. Haptic ZSL

Fig. 1. Overview of our framework: recognition of known and novel objects.

was studied in [38] using Direct Attribute Prediction [11]
to recognize 10 novel daily-life objects with a robotic hand
with tactile sensors. Authors of [39] performed material-based
tactile ZSL, using visual training data available for novel
classes. Texture-based OSL was performed in [40] using least
squares support vector machines to recognize 12 new textures
given only one tactile training sample per texture.

Here our main contributions are as follows:
1) We propose a comprehensive tactile recognition system,

that can recognize classes having many training data as
well as classes without or with very few training data,
which is very common in daily-life tactile recognition.

2) Recognition of novel objects using their attribute-based
description and tactile data collected from training ob-
jects. This is a very important advantage in tactile recog-
nition as it reduces tactile data collection and replaces it
with semantic information which is much easier to obtain.

III. TACTILE OBJECT RECOGNITION FRAMEWORK

A. Problem Statement
We study the problem of training a robot on recognizing

the set of object classes Y = {y1, . . . , yN} from tactile data
and testing it on recognizing the set O = Y ∪ Z including
both training classes Y and novel classes Z = {z1, . . . , zL},
s.t. Y ∩ Z = ∅. During the training phase, the robot collects
tactile data from each object y ∈ Y ensuing the training set
Dtrain = {(yn, (x1, . . . , xIn)), n = 1, . . . , N}, where In is
the number of training samples collected from yn, and all
tactile samples xi are represented in a certain space X . During
the test phase, a tactile sample x ∈ X should be classified as
one of the set O objects without any prior knowledge if it
belongs to a training object (to Y ) or to a completely novel
one (to Z) and without collecting any additional training data
from any of Z objects.

B. Recognition Framework Overview
Fig. 1 illustrates our proposed tactile recognition framework

capable of recognizing both training and novel objects. To
recognize a tactile test sample x ∈ X , this is processed by a
convolutional network CONVXF that extracts a features vector
fext ∈ F , where F is the space in which the CNN features
are represented. This latter is classified by one of two fully
connected neural networks, FCFY or FCFZ , according to a
novelty detection metric ND(x). This metric predicts if x is
novel or not; if x is novel, then fext is classified using FCFZ ,
having only objects in Z as outputs. If x has been collected
from a training object, then fext is classified using FCFY ,
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classifying objects in Y only. This architecture requires to
define a novelty detection metric and to use the set Dtrain to
train convolutional and fully connected networks.

On one hand, we propose to use a Gaussian Mixture Model
(GMM) as a novelty detection metric. We use GMM to
estimate the density distribution of the tactile training data
from Dtrain. A data sample x is classified as novel if it belongs
to a region in the input space with low density, and as training
otherwise. Formally, we compute a weighted log-likelihood of
the fitted GMM given x: if it is lower than a threshold σnov ,
then x is novel.

On the other hand, Dtrain is the only training set we have
to train the convolutional and fully connected networks in the
framework. If we consider the CNN consisting of CONVXF

and FCFY , it can directly be trained using Dtrain since it
maps X into Y . However, a problem arises with training FCFZ
since Dtrain does not include any tactile data collected from
Z. Next, we present how we proceed to train FCFZ without
collecting additional tactile data, other than Dtrain.

C. Training FCFZ
Our solution to train FCFZ without collecting any tactile

data other than Dtrain is to generate synthetic training data
for each z ∈ Z. This requires acquiring semantic information
about objects. By learning the relationship between semantic
and tactile spaces, synthetic tactile data can be generated for
each object based on its semantic description.

Following the success of attribute-based ZSL, we choose
attributes as a popular, efficient and intuitive semantic rep-
resentation of objects. Let us consider the set of attributes
A = {a1, . . . , aM}. We describe each object o ∈ O with
a deterministic attribute vector ao = (ao1, . . . , a

o
M ), where

for each m = 1, . . . ,M : aom = 1, if am is present for
object o and aom = 0 otherwise. Let us take the example of
O = {pencil, bottle, mug}, and A = {wooden, glass, porce-
lain, cylindrical, thin, concave}. We can describe objects in O
using the following attribute vectors: apencil = [1, 0, 0, 1, 1, 0],
abottle = [0, 1, 0, 1, 0, 0] and amug = [0, 0, 1, 1, 0, 1].

Then, our solution for generating synthetic data to train
FCFZ is to learn a generator G : A −→ F that generates
a feature vector in F given an attribute vector in A. Once
G is learned, G generates for each z ∈ Z a set of feature
vectors fgen = G(az) using az. Finally, FCFZ is trained on
classifying fgen as z.

IV. GENERATING SYNTHETIC FEATURES FOR NOVEL
OBJECTS

A. Solution Overview
We summarize in the following steps our solution for

training the generator G:
1) We train the CNN consisting of CONVXF and FCFY on

classifying objects in Y using Dtrain;
2) We train a Deconvolutional Neural Network G on gener-

ating synthetic features fgen ∈ F using attribute vectors
{ay1 , . . . ,ayN} describing training objects;

3) We improve the quality of G to generate features fgen
similar to those extracted from real tactile data fext.

4) We use the trained G to generate for each z ∈ Z a set of
Iz synthetic features Fz = {fgen,1, . . . fgen,Iz} using az.

Next, we detail our proposed solution to perform each step.

Fig. 2. Classification of training objects using CNNXY : CONVXF is the
convolutional part and FCFY is the fully connected part.

Fig. 3. Train G to generate features associated with objects in Y .

B. Classifying Training Objects

The first step is to use Dtrain to train CONVXF and FCFY
to map tactile samples from X to Y classes. We remove from
our framework illustrated in Fig. 1, the novelty detection and
FCFZ since we are working with Y only. This is equivalent
to training the CNN illustrated in Fig. 2 using Dtrain.

C. Training a Synthetic Features Generator

The second step is to train a Deconvolutional Neural Net-
work G to generate synthetic features in F from attributes in
A. As illustrated in Fig. 3, we use the pre-trained FCFY to
train G on how to generate features fgen ∈ F corresponding
to attributes ayn from Da

train = {(yn,ayn), n = 1, . . . , N}.
Here, FCFY is not fine-tuned and thus its parameters are not
updated. Training G is described in Algorithm 1: for each
pair (yn,ayn) (line 3), ayn is input to G after adding random
noise, to generate fgen (lines 4, 5). The random noise serves to
generate multiple feature vectors for the same attribute vector
at different training epochs. The generated fgen is input to
FCFY that classifies it as ypred ∈ Y (line 6). Actually, the goal
of G is to generate from ayn features fgen that are classified
by FCFY as yn. This comes down to minimizing the loss
LFC between predicted ypred and desired yn, computed at
line 7. The parameters θG of G are updated using the Adam
optimization algorithm [41], where ∂LFC/∂θG is the gradient
of LFC with respect to θG (line 8).

Algorithm 1: Training G

Input: Da
train, number of training epochs epochmax, number

of training objects N , pre-trained FCFY
Output: Trained G

1: for epochi = 1 to epochmax do
2: for n = 1 to N do
3: (ayn , yn)← Next(Da

train) {Load the next pair}
4: ns ∼ N (0, 0.1)
5: fgen ← G(ayn + ns)
6: ypred ← FCFY (fgen)
7: LFC ← loss(yn, ypred))
8: θG ← Update(θG, ∂LFC/∂θG)
9: end for

10: end for
11: return G
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(a) Train D to distinguish between real and generated features.

(b) Train G to generate synthetic features similar to real ones.

Fig. 4. Adversarial training of G and D.

D. Generating Realistic Features

Third, since our goal is to train FCFZ using generated
features and test it using real ones, we must improve the
quality of the generated features to make them “as similar as
possible” to the real ones. To this end, we continue training
G by adding another convolutional network, called D, that
discriminates between synthetic and real features. G and D
are trained via an adversarial process illustrated in Fig. 4
and detailed in Algorithm 2: at each training iteration, we
input noised ayn to G to obtain feature vector fgen (lines
5-7) and a real tactile sample x to CONVXF to extract fext
(lines 8, 9). Then, we train D and G alternately, such that
we train D (resp. G) in Fig. 4a (resp. Fig. 4b) using G
(resp. D) parameters obtained from the previous step and
without fine-tuning G (resp. D). We start with training D
(see Fig. 4a) on returning ’synthetic’ when inputting fgen and
’real’ when inputting fext (lines 11-16). We keep fine-tuning
D until its loss becomes lower than a certain threshold σD
(lines 17-19). Then, we switch to fine-tuning G using the
newly trained D and the pre-trained FCFY simultaneously
(see Fig. 4b). We update the G parameters, on one hand to
minimize the loss between the desired yn and predicted ypred
by inputting fgen into FCFY (lines 22-24). On the other
hand, the updated G should generate fgen that D erroneously
classifies as ’real’ (lines 25-27). We keep training G until
the losses of FCFY and D become lower than a certain
threshold σG (lines 28-30). Then, we go back to training D
with the new updated G. We continue alternating between
training D and G (Figures 4a and 4b, respectively). This
adversarial training converges when D becomes unable to
distinguish anymore between real and generated synthetic
features. This means that G is generating synthetic features
that are indistinguishable from real ones.

Algorithm 2: Adversarial training of G

Input: G trained using algorithm 1, Da
train, Dtrain, pre-

trained FCFY , number of training epochs epochmax, num-
ber of training objects N ,σD: threshold of D training loss,
σG: threshold of G training loss

Fig. 5. Train FCFZ using data generated by G.

Output: Trained G to output realistic features
1: trainG ← False
2: trainD ← True {Start with training D}
3: for epochi = 1 to epochmax do
4: for n = 1 to N do
5: ns ∼ N (0, 0.1)
6: (ayn , yn)← Next(Da

train)
7: fgen ← G(ayn + ns)
8: xi ← Next(Dtrain)
9: fext ← CONVXF (xi)

10: if trainD then
11: dpred ← D(fgen) {See Fig. 4a}
12: Ls ← loss(dpred,

′synthetic′)
13: dpred ← D(real feat)
14: Lr ← loss(dpred,

′real′)
15: LD ← Ls + Lr

16: θD ← Update(θD, ∂LD/∂θD)
17: if LD/2 < σD then
18: trainG ← True
19: trainD ← False
20: end if
21: else if trainG then
22: ypred ← FCFY (fgen) {See Fig. 4b}
23: LFC ← loss(yn, ypred)
24: θG ← Update(θG, ∂LFC/∂θG)
25: dpred ← D(fgen)
26: LD ← loss(dpred,

′real′)
27: θG ← Update(θG, ∂LD/∂θG)
28: if LFC < σG and LD < σG then
29: trainG ← False
30: trainD ← True
31: end if
32: end if
33: end for
34: end for
35: return G

E. Generating Training Data for Novel Classes

As illustrated in Fig. 5, once G is trained, we use it to
generate a set of Iz synthetic features for each z ∈ Z. We
input its associated az to the trained G, Iz times with different
noise values. This generates a set Fz = {f1, . . . , fIz} that will
be considered as the synthetic training set of z.

The last step is to use DZ
train = {(zl, Fzl), l = 1, . . . , L} to

train FCFZ . We refer to this method as GEN-F. A variant of
this method replaces the synthetic features by real ones col-
lected from Y . Given Fzl for each zl ∈ Z, we generate another
training set for zl by replacing each fi by its nearest neighbor
(using L1 distance) in F space from features extracted from
real training data. Thus, each zl is trained using data collected
from objects in Y that are the most similar to Fzl in F . We
refer to this variant as NEIGHB-F.
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F. Extension to One-Shot Learning

Our framework, trained on real data for Y and on generated
data only for Z, can integrate new real data for objects in Z,
which can become available with time. Here, we focus on the
extreme case of OSL where one training sample arrives for
each zl ∈ Z. We obtain DZ

train = {(zl, xl), l = 1, . . . , L}.
Directly integrating the only data sample available for each
class is not expected to significantly improve the recognition
performance, due to the tiny number of new samples. Instead,
we use CONVXF to extract features of each xl, yielding fl =
CONVXF (xl). Then, we use the k nearest neighbors of each fl
in F to resume training FCFZ for class zl. In this case, each
new sample for an object zl ∈ Z can improve training with k
samples instead of only one sample.

V. EXPERIMENTAL SETUP

A. Dataset

We evaluate our framework on the public PHAC-2 dataset
[42] used by many state of art studies for tactile understanding
[43]–[45]. This dataset contains 60 objects having a wide
variety of texture, material and stiffness properties. Objects
are described using a list of 24 binary haptic adjectives. After
removing adjectives that are present in less than three objects,
we obtained 19 adjectives that we use as attributes in our
work: A = {absorbent, bumpy, compressible, cool, fuzzy,
hard, hairy,metallic, porous, rough, scratchy, slippery,
smooth, soft, solid, springy, squishy, textured, thick}.

These attributes were defined by human participants, who
blindly explored objects using their hands, and expressed their
sensations using words. Defining good quality attributes is
still an open research problem. Two main points must be
considered: (1) Defining non-ambiguous attributes that de-
scribe well the objects and increase objects separability and (2)
reducing the effort of attributes definition and class-attribute
labeling. For instance, thanks to crowd-sourcing, humans can
collaborate to describe voluminous object datasets using haptic
attributes. Clearly, this takes much less effort than exploring
all objects using the robot. Studies such as [10] focused on
this problem. However, this is out of the scope of this work,
we take attributes provided with PHAC-2 dataset.

Authors of [42] explored each one of the 60 objects 10
times (trials) using the gripper of the Willow Garage PR2
Robot equipped with 2 SynTouch BioTac R© sensors. In our
work, we use data collected from the pair of BioTacs and we
do not consider the gripper kinesthetic data. This is because
of the simple and similar shapes of PHAC-2 objects. BioTacs
readings are pre-processed and data are augmented following
the method of [43] that used BioTacs readings for binary
classification of all attributes in A. This consists in first trans-
forming BioTac signals measured from each exploration trial
into a tactile image of 32 channels × 30 time samples. The 32
channels correspond to the 4 pressure and temperature BioTac
readings along with the first 4 principal components (obtained
by PCA) of the 19 BioTacs electrode signals, all measured
during 4 exploration procedures leading to ((4 + 4)× 4 = 32
channels). This defines the tactile data space X = R32×30. By
considering the 2 BioTacs as identical and after augmenting
data by sub-sampling the signals using 5 different starting
points, each exploration trial ensues 10 samples (2 BioTacs

TABLE I
NEURAL NETWORKS’ HYPER-PARAMETERS USED IN OUR WORK.

Neural
Network Type layers Convolutional layers parameters

channels stride kernel group
CONVXF conv. 2 96-256 2-2 (3,1)-(3,1) 32
G deconv. 2 96-256 2-1 (4,1)-(3,1) No
D conv. 2 96-1 2-2 (3,1)-(3,1) No

× 5 signals). Thus, we obtain a raw tactile dataset composed
of 6000 samples (60 objects × 10 trials × 10 samples).

ZSL requires to split the 60 objects into 2 disjoint sets Z and
Y . We randomly select 6 objects (10%) to be the test objects
for Z and the remaining 54 objects for Y (90%). In order to
ensure the framework’s robustness to the choice of Y and Z,
we repeat this splitting process 7 times to generate different
splits Z-Y . This avoids reporting results that are dependent on
the choice of objects rather than on the design of the solution.
Finally, we made sure that spaces F and A were correlated
for each split.

B. Implementation Choices
In Table I, we present the architecture of networks used in

this work. Hyper-parameters were tuned to find a compromise
between complexity and number of samples available to train
each network. In our case, we have 100 samples for each
object in Y , a number that does not allow us to train very
complex models. FCFY and FCFZ are both one-layer fully
connected networks. Convolutional Layers are followed by
ReLU activation function for non-linearity. The weights of
both the convolutional and fully connected layers are initial-
ized using the Xavier method [46] and all deconvolutional
layers are initialized using a Gaussian initializer. We used
softmax function followed by multinomial logistic loss to train
the fully connected layers and cross-entropy loss to train D.
According to the architecture of CONVXF , we obtained the
features space F = R256×6, where 256 is the number of
channels and (6 × 1) is the size of the output. Algorithms
1 and 2 are implemented by using batches of 50 samples.

All our algorithms are implemented in Python and executed
on a PC with an Intel(R) Core(TM) i7-3840QM 2.8 GHz
processor and a 8 GB RAM. We exploited the available code1

developed in [43] to process and extract features from the
PHAC-2 database raw data. Python scikit-learn2 was used to
estimate the parameters of the GMM. We used Caffe [47] to
implement all networks listed in Table I. Finally, we used3 [48]
to implement Generative adversarial Networks (GAN) for the
adversarial training of G and D. Finally, each convolutional
network is trained for 600 epochs, which takes from 25 to 30
minutes, using the CPU only. Since we perform an offline
recognition, we are not constrained by the training time,
however, it can be optimized by using GPU.

VI. EVALUATION

A. Object Splits
First, we analyze the characteristic of objects used in our

experiments. Fig. 6 illustrates some examples of PHAC-2

1people.eecs.berkeley.edu
2sikit-learn.org
3github.com/samson-wang/dcgan.caffe

https://people.eecs.berkeley.edu/~yg/icra2016/
http://scikit-learn.org/stable/
https://github.com/samson-wang/dcgan.caffe
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Fig. 6. Test objects (framed in blue) with their attributes (right side) in Z
for split 1 and examples of training objects with their attributes (right side).

objects, their attributes, and the test objects of split 1. We
note that, although test objects (framed in blue) are seman-
tically different from training ones, both sets share the same
attributes. For instance, the soap dispenser shares the attribute
smooth with the koozie, all its attributes with the notepad and
attribute smooth with the pool noodle. On the other hand,
although test objects share some attributes, each one of them
has a discriminative attribute vector that distinguishes it from
the other. For instance, the silicone block and the blue sponge
are both compressible and squishy, yet, the first is springy
while the second is absorbent and soft. The shared attributes
between the sets Z and Y and the uniqueness of the attribute
vector of each object in Z are verified for each split, which
allows to perform ZSL using our framework.

B. Novelty Detection

Given a test sample x ∈ X , we want to estimate whether it
is collected from a training or a novel object using a GMM.
To tune σnov , we split Y into two disjoint sets Ytr and Yval:
Ytr contains 90% of the training objects (48 objects), while
Yval contains the remaining 6 objects (10%). Then, we split
the data collected from Ytr into Xtr and Xte: Xtr contains 90
samples (90%) per object and Xte contains the remaining 10
samples (10%) per class. First, Xtr is used to fit the GMM,
then we tune σnov to maximize the accuracy of classifying
Xte as collected from training objects and Xval (collected
from Yval) as novel. Fig. 7 shows that very low threshold
values classify the majority of samples as known and very
high values classify all the samples as novel. Thus, we choose
for each split the σnov that maximizes the average accuracy
of classifying Xte samples as known and Xval samples as
novel. Once σnov is tuned for each split, we report in Table II
the accuracies in classifying Xte as known, and both Xval and
XZ (collected from Z) as novel. By averaging accuracies over
all splits, we found that 90.3% of x collected from training
objects and not used to fit the GMM, have been classified as
known, and that 89.5% of data collected from novel objects
have been classified as novel.

C. Multi-class Classification of Known Objects

First, we focus on the part of the framework recognizing
x in the case where it belongs to Y . We randomly select 10

Fig. 7. Tuning σnov : the accuracy of classifying Xte as known (blue) and
Xval as novel (red) for split 1.

TABLE II
ACCURACY OF NOVELTY DETECTION (%): DISTINCTION BETWEEN

KNOWN AND NOVEL OBJECTS.

Split x ∈ Xte x ∈ Xval x ∈ XZ

1 89.8 96.2 94.7
2 91.0 95.5 89.7
3 78.1 86.7 93.3
4 92.7 96.8 81.3
5 89.2 95.2 94.7
6 96.7 98.5 83
7 94.8 98 67.5

average 90.3 95.3 89.5

TABLE III
RECOGNITION ACCURACIES (%) FOR MULTI-CLASS CLASSIFICATION OF

Y WITH MANY TRAINING SAMPLES PER OBJECT.

Split 1 2 3 4 5 6 7 avg.
90 samples 96.2 95.1 90.8 96.2 95.9 96.5 95.4 95.2

samples from each y ∈ Y and consider them as the test data,
while the remaining 90 samples are used to train CNNXY . We
report in Table III the recognition accuracy that the framework
can achieve when training data are available. We can see that
the recognition accuracy is very high. This result is important
because it has an impact on the training of CONVXF and
thus also on recognizing novel objects. In addition, it reveals
the efficiency of our framework in classifying objects when
BioTacs data are available.

D. Evaluation of Synthetic Features Generation

Synthetic features are generated in order to train the recog-
nition system if real training data are missing. Thus, the
quality of features generated using the algorithm presented
in Sect. IV-C can be evaluated by the accuracy of novel
object recognition after training the framework using synthetic
features alone, and testing it on real features.

1) Comparison with real features : In table IV, we compare
the recognition performance of test objects when real training
features are available, and when they are replaced by synthetic
training features. This was achieved by training FCFZ once
using real features extracted from BioTac data, and once with
synthetic features generated according to GEN-F using the
attribute vectors.

Several points emerge from Table IV:
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TABLE IV
RECOGNITION ACCURACIES (%) FOR MULTI-CLASS CLASSIFICATION

(REAL TRAINING DATA) AND ZSL (SYNTHETIC TRAINING DATA) WHEN
TRAINING FCFZ USING 0, 10, 50, 90 OR 100 SAMPLES PER CLASS.

Split Training using real features Training using synthetic features
0 10 50 90 10 50 100

1 17 88 97 98 36 34 35
2 17 95 100 100 24 22 23
3 17 95 95 100 20 10 10
4 17 97 98 100 36 38 37
5 17 68 85 100 32 34 33
6 17 70 88 100 33 34 33
7 17 67 77 83 35 31 33

average 17 83 91 97 31 29 29

TABLE V
RECOGNITION ACCURACIES (%) FOR ZSL USING GEN-F AND

NEIGHB-F.

Split 1 2 3 4 5 6 7 avg.
GEN-F 36 24 20 36 32 33 35 31

NEIGHB-F 37 33 37 34 41 34 35 36

• It is obvious that the recognition accuracies are sig-
nificantly higher after training with real features, than
after training with synthetic features. This is important
to highlight that ZSL cannot compete with multi-class
classification, but replaces it when training data are not
available. In fact, recognition using the BioTac readings
is more efficient than using attributes. BioTacs give
an average accuracy of 97% compared to 31% using
attributes.

• The usefulness of ZSL can be observed from the perfor-
mance of FCFZ when no real data are available for any of
the objects in Z (second column of the table). The multi-
class classifier is not able to distinguish between objects
in this case and classification accuracy is at chance level
for 6 objects.

• On the other hand, for all object splits, ZSL could
give a classification accuracy above chance. Generating
synthetic features improved the recognition accuracy to
36% for splits 1 and 4, with an average accuracy of 31%
for all splits.

• We notice that, contrary to real features, increasing the
number of generated training samples does not necessar-
ily improve the recognition. This is probably due to the
fact that synthetic features of each class are generated
from the same attribute vector (by the addition of a
small amount of noise), and hence are similar. Due to
this similarity, generating multiple features for an object
probably leads to the over-fitting of the objects features
in the training samples.

2) Zero-Shot Learning: Here, we analyze the recognition
performance of novel objects, for which there is no real train-
ing data. For each x collected from a novel object, its feature
vector is classified using FCFZ , which was trained using
generated features. We compare the classification performance
of the two methods GEN-F and NEIGHB-F in Table V, using
10 generated training samples per class.

Results show that NEIGHB-F outperforms GEN-F for al-

TABLE VI
RECOGNITION ACCURACIES (%) FOR ZSL WITH GAN AND WITHOUT

GAN.

Split 1 2 3 4 5 6 7 avg.
No-GAN 31 15 26 29 17 32 11 23

GAN 37 33 37 34 41 34 35 36

TABLE VII
RECOGNITION ACCURACIES (%) FOR ZSL WITH THE METHOD OF [38]

AND NEIGHB-F.

Split 1 2 3 4 5 6 7 avg.
[38] 23 20 32 48 43 52 32 36

NEIGHB-F 37 33 37 34 41 34 35 36

most all splits, with an improvement of 5% of the average
accuracy of all splits. NEIGHB-F reaches an accuracy of 41%
in recognizing objects in Z of split 5, which is a considerable
improvement compared to 17% obtained without generating
the synthetic features.

Furthermore, to show the efficiency of our method, we com-
pare it to other methods proposed for ZSL. First, we analyze
the necessity of using the GAN-based setting, by skipping
Algorithm 2 and training the generator using Algorithm 1
alone. This means that the generator is trained to generate
synthetic features that are not necessarily similar to the real
features. Results reported in table VI show a significant drop
in performance when removing adversarial training from the
learning algorithm. In fact, since FCFZ is trained on generated
features and tested on real ones, removing the GAN makes the
generated features very different from the real ones.

Second, we compare our ZSL framework to the only
previous study on haptic ZSL [38]. Table VII presents the
comparison of recognition accuracies of all splits between
the framework of [38] and NEIGHB-F. The latter performs
better than [38] for 4 of the 7 splits. However, both methods
have the same average accuracy. Therefore, for ZSL, the two
methods perform quite similarly. Yet, the improvement we
make w.r.t [38] is the possibility of recognizing previously
trained and novel objects in the same framework. Furthermore,
the current framework can integrate new training data for a
smooth transition to multi-class classification, which were not
possible in [38].

E. One-Shot Learning

To integrate a single training sample for each z ∈ Z, we use
the method presented in Sect. IV-F to complete the training
of FCFZ , which was initially trained using NEIGHB-F (see
Table V). Table VIII details the performance improvement
achieved by the integration of a single training sample per
class. We note that for most splits, performance is improved.
For instance, adding one sample improves the accuracy of split
7 of 16%, and that of split 5 up to 55%. Overall, we obtain
an average accuracy of 44% for all objects from all splits.

F. Recognition Performance of Split 1

To further analyze the performance of our framework, we
illustrate in Fig. 8a, 8b and 8c the confusion matrices of the
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TABLE VIII
RECOGNITION ACCURACIES (%) FOR OSL.

Split 1 2 3 4 5 6 7 avg.
NEIGHB-F 37 33 37 34 41 34 35 36

OSL 49 41 37 28 55 49 51 44

(a) ZSL: GEN-F. (b) ZSL: NEIGHB-F.

(c) OSL. (d) similarity in attributes space

Fig. 8. Confusion matrices and attribute-based similarity matrix of split 1.

ZSL and the OSL classifications on split 1. In addition, Fig. 8d
illustrates the similarity matrix of objects in Z by computing
the Jaccard distance between the attribute vectors of each pair
of objects. The most misclassified objects are confused with
objects that are close to them in attributes space. This typically
happens to object z2, that is mostly misclassified as z4, that is
its most similar object according to the similarity matrix. This
is not surprising since the training features have been generated
from attributes, and close attributes vectors are expected to
generate close features .

G. Robustness To the Number of Training Objects
Finally, we test the robustness of our ZSL and OSL recog-

nition methods by reducing the number of training objects
and increasing the number of novel ones. To this end, we
randomly redefine new object splits such that Y contains 48
objects (80%) and Z contains the remaining 12 objects (20%).
Table IX presents the recognition accuracies. As expected,
the accuracies drop w.r.t. tables V and VIII, since we make
the recognition task more challenging. However, crucially
the recognition accuracies still remain above chance (8% for
classifying 12 novel objects). These results provide some
insights about the limit of our method to generalize novel
objects, and shows that it cannot handle more challenging
splits (like 70/30 or 60/40) especially with datasets of the size
similar to PHAC2, which is unfortunately the largest tactile
dataset available at present. However, these numbers can be
arguably improved if the dataset is larger and more diverse.

VII. DISCUSSION AND CONCLUSION

In this work, we developed a recognition framework that
is able to handle recognition of both known as well as novel
objects. Our results showed the capacity of our framework

TABLE IX
ZSL AND OSL RECOGNITION ACCURACIES OF 12 NOVEL OBJECTS.

Split 1 2 3 4 5 6 7
GEN-F 17 19 10 17 14 14 13
NEIGHB-F 24 19 18 13 14 13 15
OSL 31 30 24 27 31 27 34

to recognize objects having many training data (90 samples
per class) with an average accuracy of 95% (Table III), in
addition to recognizing 6 objects having no training data
with an average accuracy of 36% (Table V), which was not
possible using traditional training (Table IV). Furthermore, the
framework efficiently integrates incoming data and reaches a
high accuracy of multi-class classification when enough data
becomes available with time (Table VIII for one sample, and
Table IV for many samples). However, our framework still
presents some limitations that can be a starting point for
further improvements. First, recognition of novel objects is
limited by the domain shift problem [49], and the correlation
between attributes space and features space. Besides, the set
of novel classes that our framework can recognize must be
known, and adding novel classes requires the modification
of the output layer of FCFZ . Similarly, the addition of new
attributes requires the modification of the input layer of G.
This can however be solved by utilizing classifiers that add
new classes with a low cost, as in [50]. Besides, our method
has been tested only on the PHAC-2 dataset, and it may need
to be adapted for use in other experimental setups.

One way to improve the current framework is to integrate
visual data, when available. This is particularly promising,
considering the good achievements of CNN and adversarial
settings for image recognition and generation [48]. Visuo-
tactile recognition can significantly improve recognition per-
formance, since each modality can cope with problems faced
by the other [43], [51]. In addition, we used the attributes
designed by [42], which are semantic binary attributes. Explor-
ing non-semantic and real-valued attributes can improve the
accuracy and the generalization capability of the recognition
[10], [23]. Finally, we recognize objects based on tactile data
only, the current work can be extended by using vision as in
[38], [52] However, even with these issues, our framework
is probably the first tactile recognition system that handles
objects with many, one, and zero training samples.

ACKNOWLEDGMENT

We would like to thank the authors of [42] for providing us
with the PHAC-2 database. Zineb Abderrahmane is supported
by the Ministry of Higher Education and Scientific Research
of Algeria through the Excellence Fellowship.

REFERENCES

[1] A. Schmitz, Y. Bansho, K. Noda, H. Iwata, T. Ogata, and S. Sugano,
“Tactile object recognition using deep learning and dropout,” in IEEE-
RAS Int. Conf. on Humanoid Robots, 2014, pp. 1044–1050.

[2] M. Madry, L. Bo, D. Kragic, and D. Fox, “ST-HMP: Unsupervised
spatio-temporal feature learning for tactile data,” in IEEE Int. Conf. on
Robotics and Automation (ICRA), 2014, pp. 2262–2269.

[3] H. Soh and Y. Demiris, “Incrementally learning objects by touch: Online
discriminative and generative models for tactile-based recognition,”
IEEE Trans. on Haptics, vol. 7, no. 4, pp. 512–525, 2014.



9

[4] J. Hoelscher, J. Peters, and T. Hermans, “Evaluation of tactile feature
extraction for interactive object recognition,” in IEEE-RAS Int. Conf. on
Humanoid Robots, 2015, pp. 310–317.

[5] J. Yang, H. Liu, F. Sun, and M. Gao, “Tactile sequence classification
using joint kernel sparse coding,” in Int. Joint Conf. on Neural Networks
(IJCNN), 2015, pp. 1–6.

[6] M. Kaboli, R. Walker, G. Cheng et al., “In-hand object recognition via
texture properties with robotic hands, artificial skin, and novel tactile
descriptors,” in IEEE-RAS Int. Conf. on Humanoid Robots, 2015, pp.
1155–1160.
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