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This paper addresses the recognition of daily-life objects by a robot equipped with tactile sensors. The main contribution is a deep learning framework that can recognize objects already touched as well as objects never touched before.

To this end, we train a Deconvolutional Neural Network that generates synthetic tactile data for novel classes. Then, we use both these synthetic data and the real data collected by touching objects, to train a Convolutional Neural Network to recognize both known (trained) objects and novel objects. Furthermore, we propose a method for integrating newly encountered data into novel classes. Finally, we evaluate the framework using the largest available dataset of tactile objects descriptions.

I. INTRODUCTION

R OBOTS operating in household environments are sur- rounded by a wide variety of objects. Just like a blind person, a robot can use its tactile sensors to recognize objects when vision is not available (e.g. when performing in the dark). In this work, we study the recognition of daily-life objects using the sense of touch.

Traditionally, in the tactile recognition literature [START_REF] Schmitz | Tactile object recognition using deep learning and dropout[END_REF]- [START_REF] Orii | Tactile texture recognition using convolutional neural networks for time-series data of pressure and 6-axis acceleration sensor[END_REF], robots are trained with the data recorded while touching multiple objects. Such data are then mapped to a finite set of training object classes. Finally, this mapping is used to recognize unknown objects. This method however, omits an important case: the recognition of novel objects not included in the training set, which is often the case in daily life. This is because, first, the number of objects in common daily environment can be huge (30000 as estimated in [START_REF] Biederman | Recognition-by-components: a theory of human image understanding[END_REF]), and second, new objects being added continuously. It is therefore impossible to train a robot on all daily-life objects in advance.

The first solution that comes to mind is to retrain the robot each time it encounters a novel object. However, tactile data collection is non-trivial, because the robot control required to guarantee stable and complete robot-object physical interactions can be very complex, and the use of tactile sensors involves to satisfy temporal constraints in order to guarantee the quality of acquired data. Due to these reasons, a solution that aims to collect training tactile data each time a novel object is encountered can hamper robot operation.

A solution to the above problems, which drastically decreases the cost of novel objects recognition, is to collect semantic information about objects, or specifically, humanunderstandable properties [START_REF] Yu | Designing category-level attributes for discriminative visual recognition[END_REF]. These can be provided by All authors are with the Interactive Digital Human IDH group, Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), University of Montpellier CNRS, 860 Rue Saint Priest, 34095 Montpellier, France. E-mail:firstname.lastname@lirmm.fr.

G. Ganesh is also with the CNRS-AIST JRL UMI3218/RL 1-1-1 Umezono, 305-8560 Tsukuba, Japan. E-mail: gans gs@hotmail.com humans [START_REF] Lampert | Learning to detect unseen object classes by between-class attribute transfer[END_REF] or automatically mined from semantic databases (e.g. Wikipedia [START_REF] Elhoseiny | Write a classifier: Zeroshot learning using purely textual descriptions[END_REF]). The semantic information can then be used with the tactile data available from trained objects to recognize new ones.

A popular form of semantic information is attributes, which refer to human-comprehensible semantic object properties. Attributes like thin, long, wooden, tapered, metallic and rubber, can describe a pencil. If a robot has learned the relation between attributes and tactile data, then given the attributebased description of a pencil, the robot can recognize a pencil when touching it even if it has not touched any pencil during the training phase. This approach is called attribute-based Zero-Shot Learning (ZSL) [START_REF] Lampert | Learning to detect unseen object classes by between-class attribute transfer[END_REF].

In this work, we design a unified recognition framework that, from tactile data, can recognize an object as a known (previously touched) or as novel object. Recognition of known objects is performed by using available multi-class classifiers built from training data, while recognition of novel objects relies on attribute-base ZSL approach. Furthermore, the integration of new tactile data for novel objects, starting from only one training sample, can be achieved by performing One-Shot Learning (OSL).

The proposed framework is based on deep Convolutional Neural Networks (CNNs). This choice was motivated by the good performance reported recently in multi-class tactile recognition [START_REF] Gandarias | Human and object recognition with a high-resolution tactile sensor[END_REF], [START_REF] Orii | Tactile texture recognition using convolutional neural networks for time-series data of pressure and 6-axis acceleration sensor[END_REF] when using CNNs. However, note that the use of CNNs for Zero-Shot Learning is not straightforward: if we simply train a CNN to map tactile data into object classes, the CNN will miss output classes having no training data. This decreases the classification accuracy due to the imbalance in the training set [START_REF] Hensman | The impact of imbalanced training data for convolutional neural networks[END_REF], [START_REF] Buda | A systematic study of the class imbalance problem in convolutional neural networks[END_REF]. To cope with this problem, for each novel class specified by its attribute-based description, we generate synthetic tactile training data.

This paper is structured as follows: in the next section, we present related studies on tactile recognition and ZSL, in addition to our contributions with respect to these studies. We give an overview of the proposed recognition framework in Sect. III. The details about the training data generation, and about the ZSL and OSL are presented in Sect. IV. The experimental setup is presented in Sect. V. Finally, we present and discuss the evaluation results in Sect. VI, and we give the conclusions in Sect. VII.

II. RELATED WORK

A. Multi-Class Tactile Recognition

Following the massive advance in visual recognition [START_REF] Donahue | Decaf: A deep convolutional activation feature for generic visual recognition[END_REF], many works have studied the integration of new data sources such as tactile sensing, to recognition systems. This allowed the integration of new physical properties that cannot be estimated using vision, such as material [START_REF] Hoelscher | Evaluation of tactile feature extraction for interactive object recognition[END_REF], compliance [START_REF] Xu | Tactile identification of objects using bayesian exploration[END_REF] and texture [START_REF] Kaboli | Novel tactile descriptors and a tactile transfer learning technique for active in-hand object recognition via texture properties[END_REF] for object recognition. Several works have been proposed to deal with challenges associated with tactile data processing, including data sparsity and noise [START_REF] Jin | Object shape recognition approach for sparse point clouds from tactile exploration[END_REF], choice of object sets, and the sensing capabilities and constraints of robots [START_REF] Madry | ST-HMP: Unsupervised spatio-temporal feature learning for tactile data[END_REF] and using techniques such as deep learning [START_REF] Schmitz | Tactile object recognition using deep learning and dropout[END_REF] and sparse coding [START_REF] Liu | Object recognition using tactile measurements: Kernel sparse coding methods[END_REF]. Recent advances in tactile object recognition are reviewed in [START_REF] Liu | Recent progress on tactile object recognition[END_REF]. However, all these methods train and test their recognition systems on the same set of object classes. Next, we review studies focusing on Zero-Shot Learning, for recognizing novel objects having no training data.

B. Visual Zero-Shot Learning

Recognition of novel object classes without training examples, known as Zero-Shot Learning (ZSL), has gained increasing interest in the visual recognition community. Recognition of novel objects is possible when semantic descriptions of object classes are available. This allows to mine relationships between training and novel objects, and hence to use training data to recognize novel classes. A popular approach is to determine object properties, or attributes [START_REF] Yu | Designing category-level attributes for discriminative visual recognition[END_REF], [START_REF] Yu | Attribute-based transfer learning for object categorization with zero/one training example[END_REF]- [START_REF] Cheng | Random forest classifier for zero-shot learning based on relative attribute[END_REF]. Textual descriptions extracted from Wikipedia articles [START_REF] Elhoseiny | Write a classifier: Zeroshot learning using purely textual descriptions[END_REF], [START_REF] Ba | Predicting deep zero-shot convolutional neural networks using textual descriptions[END_REF] form a second popular source of semantic information. A third approach directly mines objects relationships from Linguistic knowledge databases such as WordNet [START_REF] Miller | Wordnet: a lexical database for english[END_REF], Wikipedia and search engines [START_REF] Rohrbach | What helps where-and why? semantic relatedness for knowledge transfer[END_REF].

The semantic descriptions have been used in different ways to achieve ZSL. Authors of [START_REF] Mensink | COSTA: Co-occurrence statistics for zero-shot classification[END_REF] solved ZSL by predicting regression parameters of a one-vs-all classifier for each novel class. Direct and hierarchical similarity measures have been used in [START_REF] Rohrbach | Evaluating knowledge transfer and zero-shot learning in a large-scale setting[END_REF] to compute the classification score of each novel class depending on scores of similar known classes. The works that are closest to ours aim at generating data samples for novel classes from their semantic descriptions. Authors of [START_REF] Changpinyo | Predicting visual exemplars of unseen classes for zero-shot learning[END_REF] learned a kernel-based regressor that predicts a prototypical visual sample for each novel class, based on its representation in a semantic space. In [START_REF] Mishra | A generative model for zero shot learning using conditional variational autoencoders[END_REF], a variational autoencoder was used to generate data for novel classes based on their attributes. Authors of [START_REF] Long | Zero-shot learning using synthesised unseen visual data with diffusion regularisation[END_REF] proposed an embedding algorithm to generate synthesized data from semantic features. A series of approaches to perform ZSL is reviewed and compared in [START_REF] Xian | Zero-shot learning -the good, the bad and the ugly[END_REF].

C. Extension to One-Shot Learning

An extension of ZSL, known as One-Shot Learning (OSL), is when only one tactile sample become available for novel classes. The recognition system usually under-fits these classes because of the very few number of samples compared to other classes. Few works extend ZSL to OSL. An example is [START_REF] Yu | Attribute-based transfer learning for object categorization with zero/one training example[END_REF], which applies topic modelling to attributes in order to recognize objects having zero or one training sample each. Another example is [START_REF] Snell | Prototypical networks for few-shot learning[END_REF], in which prototypical networks are used for both OSL and ZSL.

D. The contribution of this paper

The difficulty of tactile data collection makes classes with zero or one training sample very frequent in training sets. However, ZSL and OSL have gained significantly less attention in tactile recognition, compared to vision. Haptic ZSL was studied in [START_REF] Abderrahmane | Haptic Zero-Shot Learning: Recognition of objects never touched before[END_REF] using Direct Attribute Prediction [START_REF] Lampert | Learning to detect unseen object classes by between-class attribute transfer[END_REF] to recognize 10 novel daily-life objects with a robotic hand with tactile sensors. Authors of [START_REF] Liu | Cross-modal zero-shot-learning for tactile object recognition[END_REF] performed material-based tactile ZSL, using visual training data available for novel classes. Texture-based OSL was performed in [START_REF] Kaboli | Re-using prior tactile experience by robotic hands to discriminate in-hand objects via texture properties[END_REF] 

B. Recognition Framework Overview

Fig. 1 illustrates our proposed tactile recognition framework capable of recognizing both training and novel objects. To recognize a tactile test sample x ∈ X, this is processed by a convolutional network CONV XF that extracts a features vector f ext ∈ F , where F is the space in which the CNN features are represented. This latter is classified by one of two fully connected neural networks, FC FY or FC FZ , according to a novelty detection metric ND(x). This metric predicts if x is novel or not; if x is novel, then f ext is classified using FC FZ , having only objects in Z as outputs. If x has been collected from a training object, then f ext is classified using FC FY , classifying objects in Y only. This architecture requires to define a novelty detection metric and to use the set D train to train convolutional and fully connected networks.

On one hand, we propose to use a Gaussian Mixture Model (GMM) as a novelty detection metric. We use GMM to estimate the density distribution of the tactile training data from D train . A data sample x is classified as novel if it belongs to a region in the input space with low density, and as training otherwise. Formally, we compute a weighted log-likelihood of the fitted GMM given x: if it is lower than a threshold σ nov , then x is novel.

On the other hand, D train is the only training set we have to train the convolutional and fully connected networks in the framework. If we consider the CNN consisting of CONV XF and FC FY , it can directly be trained using D train since it maps X into Y . However, a problem arises with training FC FZ since D train does not include any tactile data collected from Z. Next, we present how we proceed to train FC FZ without collecting additional tactile data, other than D train .

C. Training FC FZ

Our solution to train FC FZ without collecting any tactile data other than D train is to generate synthetic training data for each z ∈ Z. This requires acquiring semantic information about objects. By learning the relationship between semantic and tactile spaces, synthetic tactile data can be generated for each object based on its semantic description.

Following the success of attribute-based ZSL, we choose attributes as a popular, efficient and intuitive semantic representation of objects. Let us consider the set of attributes A = {a 1 , . . . , a M }. We describe each object o ∈ O with a deterministic attribute vector a o = (a o 1 , . . . , a o M ), where for each m = 1, . . . , M : a o m = 1, if a m is present for object o and a o m = 0 otherwise. Let us take the example of O = {pencil, bottle, mug}, and A = {wooden, glass, porcelain, cylindrical, thin, concave}. We can describe objects in O using the following attribute vectors:

a pencil = [1, 0, 0, 1, 1, 0], a bottle = [0, 1, 0, 1, 0, 0] and a mug = [0, 0, 1, 1, 0, 1].
Then, our solution for generating synthetic data to train FC FZ is to learn a generator G : A -→ F that generates a feature vector in F given an attribute vector in A. Once G is learned, G generates for each z ∈ Z a set of feature vectors f gen = G(a z ) using a z . Finally, FC FZ is trained on classifying f gen as z.

IV. GENERATING SYNTHETIC FEATURES FOR NOVEL OBJECTS A. Solution Overview

We summarize in the following steps our solution for training the generator G:

1) We train the CNN consisting of CONV XF and FC FY on classifying objects in Y using D train ; 2) We train a Deconvolutional Neural Network G on generating synthetic features f gen ∈ F using attribute vectors {a y1 , . . . , a y N } describing training objects; 3) We improve the quality of G to generate features f gen similar to those extracted from real tactile data f ext . 4) We use the trained G to generate for each z ∈ Z a set of I z synthetic features F z = {f gen,1 , . . . f gen,Iz } using a z . Next, we detail our proposed solution to perform each step. 

B. Classifying Training Objects

The first step is to use D train to train CONV XF and FC FY to map tactile samples from X to Y classes. We remove from our framework illustrated in Fig. 1, the novelty detection and FC FZ since we are working with Y only. This is equivalent to training the CNN illustrated in Fig. 2 using D train .

C. Training a Synthetic Features Generator

The second step is to train a Deconvolutional Neural Network G to generate synthetic features in F from attributes in A. As illustrated in Fig. 3, we use the pre-trained FC FY to train G on how to generate features f gen ∈ F corresponding to attributes a yn from D a train = {(y n , a yn ), n = 1, . . . , N }. Here, FC FY is not fine-tuned and thus its parameters are not updated. Training G is described in Algorithm 1: for each pair (y n , a yn ) (line 3), a yn is input to G after adding random noise, to generate f gen (lines 4, 5). The random noise serves to generate multiple feature vectors for the same attribute vector at different training epochs. The generated f gen is input to FC FY that classifies it as y pred ∈ Y (line 6). Actually, the goal of G is to generate from a yn features f gen that are classified by FC FY as y n . This comes down to minimizing the loss L FC between predicted y pred and desired y n , computed at line 7. The parameters θ G of G are updated using the Adam optimization algorithm [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF], where ∂L FC /∂θ G is the gradient of L FC with respect to θ G (line 8). for n = 1 to N do ns ∼ N (0, 0.1)

5:

f gen ← G(a yn + ns)

6:

y pred ← FC FY (f gen ) 7:
L FC ← loss(y n , y pred ))

8:

θ G ← U pdate(θ G , ∂L FC /∂θ G ) 9:
end for 10: end for 11: return G 

D. Generating Realistic Features

Third, since our goal is to train FC FZ using generated features and test it using real ones, we must improve the quality of the generated features to make them "as similar as possible" to the real ones. To this end, we continue training G by adding another convolutional network, called D, that discriminates between synthetic and real features. G and D are trained via an adversarial process illustrated in Fig. 4 and detailed in Algorithm 2: at each training iteration, we input noised a yn to G to obtain feature vector f gen (lines 5-7) and a real tactile sample x to CONV XF to extract f ext (lines 8, 9). Then, we train D and G alternately, such that we train D (resp. G) in Fig. 4a (resp. Fig. 4b) using G (resp. D) parameters obtained from the previous step and without fine-tuning G (resp. D). We start with training D (see Fig. 4a) on returning 'synthetic' when inputting f gen and 'real' when inputting f ext (lines 11-16). We keep fine-tuning D until its loss becomes lower than a certain threshold σ D (lines [START_REF] Kaboli | Novel tactile descriptors and a tactile transfer learning technique for active in-hand object recognition via texture properties[END_REF][START_REF] Jin | Object shape recognition approach for sparse point clouds from tactile exploration[END_REF][START_REF] Liu | Object recognition using tactile measurements: Kernel sparse coding methods[END_REF]. Then, we switch to fine-tuning G using the newly trained D and the pre-trained FC FY simultaneously (see Fig. 4b). We update the G parameters, on one hand to minimize the loss between the desired y n and predicted y pred by inputting f gen into FC FY (lines [START_REF] Russakovsky | Attribute learning in large-scale datasets[END_REF][START_REF] Parikh | Relative attributes[END_REF][START_REF] Kankuekul | Online incremental attribute-based zero-shot learning[END_REF]. On the other hand, the updated G should generate f gen that D erroneously classifies as 'real' (lines [START_REF] Jayaraman | Zero-shot recognition with unreliable attributes[END_REF][START_REF] Al-Halah | How to transfer? zero-shot object recognition via hierarchical transfer of semantic attributes[END_REF][START_REF] Cheng | Random forest classifier for zero-shot learning based on relative attribute[END_REF]. We keep training G until the losses of FC FY and D become lower than a certain threshold σ G (lines 28-30). Then, we go back to training D with the new updated G. We continue alternating between training D and G (Figures 4a and4b, respectively). This adversarial training converges when D becomes unable to distinguish anymore between real and generated synthetic features. This means that G is generating synthetic features that are indistinguishable from real ones. (a yn , y n ) ← Next(D a train )

7:

f gen ← G(a yn + ns)

8:

x i ← Next(D train )

9:

f ext ← CONV XF (x i ) 10:
if train D then 11:

d pred ← D(f gen )
{See Fig. 4a} 12:

L s ← loss(d pred , synthetic )

13:

d pred ← D(real f eat) 14:
L r ← loss(d pred , real )

15:

L D ← L s + L r 16: θ D ← U pdate(θ D , ∂L D /∂θ D ) 17: if L D /2 < σ D then 18:
train G ← T rue y pred ← FC FY (f gen ) {See Fig. 4b} 23:

L FC ← loss(y n , y pred )

24:

θ G ← U pdate(θ G , ∂L FC /∂θ G )

25:

d pred ← D(f gen ) 26:
L D ← loss(d pred , real )

27:

θ G ← U pdate(θ G , ∂L D /∂θ G ) 28: if L F C < σ G and L D < σ G then 29:
train G ← False end if

33:

end for 34: end for 35: return G

E. Generating Training Data for Novel Classes

As illustrated in Fig. 5, once G is trained, we use it to generate a set of I z synthetic features for each z ∈ Z. We input its associated a z to the trained G, I z times with different noise values. This generates a set F z = {f 1 , . . . , f Iz } that will be considered as the synthetic training set of z.

The last step is to use D Z train = {(z l , F z l ), l = 1, . . . , L} to train FC FZ . We refer to this method as GEN-F. A variant of this method replaces the synthetic features by real ones collected from Y . Given F z l for each z l ∈ Z, we generate another training set for z l by replacing each f i by its nearest neighbor (using L1 distance) in F space from features extracted from real training data. Thus, each z l is trained using data collected from objects in Y that are the most similar to F z l in F . We refer to this variant as NEIGHB-F.

F. Extension to One-Shot Learning

Our framework, trained on real data for Y and on generated data only for Z, can integrate new real data for objects in Z, which can become available with time. Here, we focus on the extreme case of OSL where one training sample arrives for each z l ∈ Z. We obtain D Z train = {(z l , x l ), l = 1, . . . , L}. Directly integrating the only data sample available for each class is not expected to significantly improve the recognition performance, due to the tiny number of new samples. Instead, we use CONV XF to extract features of each x l , yielding f l = CONV XF (x l ). Then, we use the k nearest neighbors of each f l in F to resume training FC FZ for class z l . In this case, each new sample for an object z l ∈ Z can improve training with k samples instead of only one sample.

V. EXPERIMENTAL SETUP

A. Dataset

We evaluate our framework on the public PHAC-2 dataset [START_REF] Chu | Robotic learning of haptic adjectives through physical interaction[END_REF] used by many state of art studies for tactile understanding [START_REF] Gao | Deep learning for tactile understanding from visual and haptic data[END_REF]- [START_REF] Liu | Structured outputassociated dictionary learning for haptic understanding[END_REF]. This dataset contains 60 objects having a wide variety of texture, material and stiffness properties. Objects are described using a list of 24 binary haptic adjectives. After removing adjectives that are present in less than three objects, we obtained 19 adjectives that we use as attributes in our work: A = {absorbent, bumpy, compressible, cool, f uzzy, hard, hairy, metallic, porous, rough, scratchy, slippery, smooth, sof t, solid, springy, squishy, textured, thick}.

These attributes were defined by human participants, who blindly explored objects using their hands, and expressed their sensations using words. Defining good quality attributes is still an open research problem. Two main points must be considered: (1) Defining non-ambiguous attributes that describe well the objects and increase objects separability and (2) reducing the effort of attributes definition and class-attribute labeling. For instance, thanks to crowd-sourcing, humans can collaborate to describe voluminous object datasets using haptic attributes. Clearly, this takes much less effort than exploring all objects using the robot. Studies such as [START_REF] Yu | Designing category-level attributes for discriminative visual recognition[END_REF] focused on this problem. However, this is out of the scope of this work, we take attributes provided with PHAC-2 dataset.

Authors of [START_REF] Chu | Robotic learning of haptic adjectives through physical interaction[END_REF] explored each one of the 60 objects 10 times (trials) using the gripper of the Willow Garage PR2 Robot equipped with 2 SynTouch BioTac R sensors. In our work, we use data collected from the pair of BioTacs and we do not consider the gripper kinesthetic data. This is because of the simple and similar shapes of PHAC-2 objects. BioTacs readings are pre-processed and data are augmented following the method of [START_REF] Gao | Deep learning for tactile understanding from visual and haptic data[END_REF] ZSL requires to split the 60 objects into 2 disjoint sets Z and Y . We randomly select 6 objects (10%) to be the test objects for Z and the remaining 54 objects for Y (90%). In order to ensure the framework's robustness to the choice of Y and Z, we repeat this splitting process 7 times to generate different splits Z-Y . This avoids reporting results that are dependent on the choice of objects rather than on the design of the solution. Finally, we made sure that spaces F and A were correlated for each split.

B. Implementation Choices

In Table I, we present the architecture of networks used in this work. Hyper-parameters were tuned to find a compromise between complexity and number of samples available to train each network. In our case, we have 100 samples for each object in Y , a number that does not allow us to train very complex models. FC FY and FC FZ are both one-layer fully connected networks. Convolutional Layers are followed by ReLU activation function for non-linearity. The weights of both the convolutional and fully connected layers are initialized using the Xavier method [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF] and all deconvolutional layers are initialized using a Gaussian initializer. We used softmax function followed by multinomial logistic loss to train the fully connected layers and cross-entropy loss to train D. According to the architecture of CONV XF , we obtained the features space F = R 256×6 , where 256 is the number of channels and (6 × 1) is the size of the output. Algorithms 1 and 2 are implemented by using batches of 50 samples.

All our algorithms are implemented in Python and executed on a PC with an Intel(R) Core(TM) i7-3840QM 2.8 GHz processor and a 8 GB RAM. We exploited the available code1 developed in [START_REF] Gao | Deep learning for tactile understanding from visual and haptic data[END_REF] to process and extract features from the PHAC-2 database raw data. Python scikit-learn2 was used to estimate the parameters of the GMM. We used Caffe [START_REF] Jia | Caffe: Convolutional architecture for fast feature embedding[END_REF] to implement all networks listed in Table I. Finally, we used3 [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF] to implement Generative adversarial Networks (GAN) for the adversarial training of G and D. Finally, each convolutional network is trained for 600 epochs, which takes from 25 to 30 minutes, using the CPU only. Since we perform an offline recognition, we are not constrained by the training time, however, it can be optimized by using GPU.

VI. EVALUATION A. Object Splits

First, we analyze the characteristic of objects used in our experiments. Fig. 6 illustrates some examples of PHAC-2 objects, their attributes, and the test objects of split 1. We note that, although test objects (framed in blue) are semantically different from training ones, both sets share the same attributes. For instance, the soap dispenser shares the attribute smooth with the koozie, all its attributes with the notepad and attribute smooth with the pool noodle. On the other hand, although test objects share some attributes, each one of them has a discriminative attribute vector that distinguishes it from the other. For instance, the silicone block and the blue sponge are both compressible and squishy, yet, the first is springy while the second is absorbent and soft. The shared attributes between the sets Z and Y and the uniqueness of the attribute vector of each object in Z are verified for each split, which allows to perform ZSL using our framework.

B. Novelty Detection

Given a test sample x ∈ X, we want to estimate whether it is collected from a training or a novel object using a GMM. To tune σ nov , we split Y into two disjoint sets Y tr and Y val : Y tr contains 90% of the training objects (48 objects), while Y val contains the remaining 6 objects (10%). Then, we split the data collected from Y tr into X tr and X te : X tr contains 90 samples (90%) per object and X te contains the remaining 10 samples (10%) per class. First, X tr is used to fit the GMM, then we tune σ nov to maximize the accuracy of classifying X te as collected from training objects and X val (collected from Y val ) as novel. Fig. 7 shows that very low threshold values classify the majority of samples as known and very high values classify all the samples as novel. Thus, we choose for each split the σ nov that maximizes the average accuracy of classifying X te samples as known and X val samples as novel. Once σ nov is tuned for each split, we report in Table II the accuracies in classifying X te as known, and both X val and X Z (collected from Z) as novel. By averaging accuracies over all splits, we found that 90.3% of x collected from training objects and not used to fit the GMM, have been classified as known, and that 89.5% of data collected from novel objects have been classified as novel.

C. Multi-class Classification of Known Objects

First, we focus on the part of the framework recognizing x in the case where it belongs to Y . We randomly select 10 samples from each y ∈ Y and consider them as the test data, while the remaining 90 samples are used to train CNN XY . We report in Table III the recognition accuracy that the framework can achieve when training data are available. We can see that the recognition accuracy is very high. This result is important because it has an impact on the training of CONV XF and thus also on recognizing novel objects. In addition, it reveals the efficiency of our framework in classifying objects when BioTacs data are available.

D. Evaluation of Synthetic Features Generation

Synthetic features are generated in order to train the recognition system if real training data are missing. Thus, the quality of features generated using the algorithm presented in Sect. IV-C can be evaluated by the accuracy of novel object recognition after training the framework using synthetic features alone, and testing it on real features.

1) Comparison with real features : In table IV, we compare the recognition performance of test objects when real training features are available, and when they are replaced by synthetic training features. This was achieved by training FC FZ once using real features extracted from BioTac data, and once with synthetic features generated according to GEN-F using the attribute vectors.

Several points emerge from Table IV: • It is obvious that the recognition accuracies are significantly higher after training with real features, than after training with synthetic features. This is important to highlight that ZSL cannot compete with multi-class classification, but replaces it when training data are not available. In fact, recognition using the BioTac readings is more efficient than using attributes. BioTacs give an average accuracy of 97% compared to 31% using attributes.

• The usefulness of ZSL can be observed from the performance of FC FZ when no real data are available for any of the objects in Z (second column of the table). The multiclass classifier is not able to distinguish between objects in this case and classification accuracy is at chance level for 6 objects. • On the other hand, for all object splits, ZSL could give a classification accuracy above chance. Generating synthetic features improved the recognition accuracy to 36% for splits 1 and 4, with an average accuracy of 31% for all splits. • We notice that, contrary to real features, increasing the number of generated training samples does not necessarily improve the recognition. This is probably due to the fact that synthetic features of each class are generated from the same attribute vector (by the addition of a small amount of noise), and hence are similar. Due to this similarity, generating multiple features for an object probably leads to the over-fitting of the objects features in the training samples.

2) Zero-Shot Learning: Here, we analyze the recognition performance of novel objects, for which there is no real training data. For each x collected from a novel object, its feature vector is classified using FC FZ , which was trained using generated features. We compare the classification performance of the two methods GEN-F and NEIGHB-F in Table V, using 10 generated training samples per class.

Results show that NEIGHB-F outperforms GEN-F for al- [START_REF] Abderrahmane | Haptic Zero-Shot Learning: Recognition of objects never touched before[END_REF] AND NEIGHB-F. most all splits, with an improvement of 5% of the average accuracy of all splits. NEIGHB-F reaches an accuracy of 41% in recognizing objects in Z of split 5, which is a considerable improvement compared to 17% obtained without generating the synthetic features. Furthermore, to show the efficiency of our method, we compare it to other methods proposed for ZSL. First, we analyze the necessity of using the GAN-based setting, by skipping Algorithm 2 and training the generator using Algorithm 1 alone. This means that the generator is trained to generate synthetic features that are not necessarily similar to the real features. Results reported in table VI show a significant drop in performance when removing adversarial training from the learning algorithm. In fact, since FC FZ is trained on generated features and tested on real ones, removing the GAN makes the generated features very different from the real ones.

Second, we compare our ZSL framework to the only previous study on haptic ZSL [START_REF] Abderrahmane | Haptic Zero-Shot Learning: Recognition of objects never touched before[END_REF]. Table VII presents the comparison of recognition accuracies of all splits between the framework of [START_REF] Abderrahmane | Haptic Zero-Shot Learning: Recognition of objects never touched before[END_REF] and NEIGHB-F. The latter performs better than [START_REF] Abderrahmane | Haptic Zero-Shot Learning: Recognition of objects never touched before[END_REF] for 4 of the 7 splits. However, both methods have the same average accuracy. Therefore, for ZSL, the two methods perform quite similarly. Yet, the improvement we make w.r.t [START_REF] Abderrahmane | Haptic Zero-Shot Learning: Recognition of objects never touched before[END_REF] is the possibility of recognizing previously trained and novel objects in the same framework. Furthermore, the current framework can integrate new training data for a smooth transition to multi-class classification, which were not possible in [START_REF] Abderrahmane | Haptic Zero-Shot Learning: Recognition of objects never touched before[END_REF].

E. One-Shot Learning

To integrate a single training sample for each z ∈ Z, we use the method presented in Sect. IV-F to complete the training of FC FZ , which was initially trained using NEIGHB-F (see Table V). Table VIII details the performance improvement achieved by the integration of a single training sample per class. We note that for most splits, performance is improved. For instance, adding one sample improves the accuracy of split 7 of 16%, and that of split 5 up to 55%. Overall, we obtain an average accuracy of 44% for all objects from all splits.

F. Recognition Performance of Split 1

To further analyze the performance of our framework, we illustrate in Fig. 8a, 8b and 8c the confusion matrices of the ZSL and the OSL classifications on split 1. In addition, Fig. 8d illustrates the similarity matrix of objects in Z by computing the Jaccard distance between the attribute vectors of each pair of objects. The most misclassified objects are confused with objects that are close to them in attributes space. This typically happens to object z 2 , that is mostly misclassified as z 4 , that is its most similar object according to the similarity matrix. This is not surprising since the training features have been generated from attributes, and close attributes vectors are expected to generate close features .

G. Robustness To the Number of Training Objects

Finally, we test the robustness of our ZSL and OSL recognition methods by reducing the number of training objects and increasing the number of novel ones. To this end, we randomly redefine new object splits such that Y contains 48 objects (80%) and Z contains the remaining 12 objects (20%). Table IX presents the recognition accuracies. As expected, the accuracies drop w.r.t. tables V and VIII, since we make the recognition task more challenging. However, crucially the recognition accuracies still remain above chance (8% for classifying 12 novel objects). These results provide some insights about the limit of our method to generalize novel objects, and shows that it cannot handle more challenging splits (like 70/30 or 60/40) especially with datasets of the size similar to PHAC2, which is unfortunately the largest tactile dataset available at present. However, these numbers can be arguably improved if the dataset is larger and more diverse.

VII. DISCUSSION AND CONCLUSION

In this work, we developed a recognition framework that is able to handle recognition of both known as well as novel objects. Our results showed the capacity of our framework to recognize objects having many training data (90 samples per class) with an average accuracy of 95% (Table III), in addition to recognizing 6 objects having no training data with an average accuracy of 36% (Table V), which was not possible using traditional training (Table IV). Furthermore, the framework efficiently integrates incoming data and reaches a high accuracy of multi-class classification when enough data becomes available with time (Table VIII for one sample, and Table IV for many samples). However, our framework still presents some limitations that can be a starting point for further improvements. First, recognition of novel objects is limited by the domain shift problem [START_REF] Fu | Transductive multiview zero-shot learning[END_REF], and the correlation between attributes space and features space. Besides, the set of novel classes that our framework can recognize must be known, and adding novel classes requires the modification of the output layer of FC FZ . Similarly, the addition of new attributes requires the modification of the input layer of G. This can however be solved by utilizing classifiers that add new classes with a low cost, as in [START_REF] Mensink | Distance-based image classification: Generalizing to new classes at near-zero cost[END_REF]. Besides, our method has been tested only on the PHAC-2 dataset, and it may need to be adapted for use in other experimental setups.

One way to improve the current framework is to integrate visual data, when available. This is particularly promising, considering the good achievements of CNN and adversarial settings for image recognition and generation [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF]. Visuotactile recognition can significantly improve recognition performance, since each modality can cope with problems faced by the other [START_REF] Gao | Deep learning for tactile understanding from visual and haptic data[END_REF], [START_REF] Liu | Visual-tactile fusion for object recognition[END_REF]. In addition, we used the attributes designed by [START_REF] Chu | Robotic learning of haptic adjectives through physical interaction[END_REF], which are semantic binary attributes. Exploring non-semantic and real-valued attributes can improve the accuracy and the generalization capability of the recognition [START_REF] Yu | Designing category-level attributes for discriminative visual recognition[END_REF], [START_REF] Parikh | Relative attributes[END_REF]. Finally, we recognize objects based on tactile data only, the current work can be extended by using vision as in [START_REF] Abderrahmane | Haptic Zero-Shot Learning: Recognition of objects never touched before[END_REF], [START_REF] Abderrahmane | Visuotactile recognition of daily-life objects never seen or touched before[END_REF] However, even with these issues, our framework is probably the first tactile recognition system that handles objects with many, one, and zero training samples.
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 1 Fig. 1. Overview of our framework: recognition of known and novel objects.

Fig. 2 .

 2 Fig. 2. Classification of training objects using CNN XY : CONV XF is the convolutional part and FC FY is the fully connected part.

Algorithm 1 :

 1 Training G Input: D a train , number of training epochs epoch max , number of training objects N , pre-trained FC FY Output: Trained G 1: for epoch i = 1 to epoch max do 2:

3 :

 3 (a yn , y n ) ← Next(D a train ) {Load the next pair} 4:

  (a) Train D to distinguish between real and generated features. (b) Train G to generate synthetic features similar to real ones.

Fig. 4 .

 4 Fig. 4. Adversarial training of G and D.

Algorithm 2 :

 2 Adversarial training of G Input: G trained using algorithm 1, D a train , D train , pretrained FC FY , number of training epochs epoch max , number of training objects N ,σ D : threshold of D training loss, σ G : threshold of G training loss

Fig. 5 .

 5 Fig. 5. Train FC FZ using data generated by G.

  that used BioTacs readings for binary classification of all attributes in A. This consists in first transforming BioTac signals measured from each exploration trial into a tactile image of 32 channels × 30 time samples. The 32 channels correspond to the 4 pressure and temperature BioTac readings along with the first 4 principal components (obtained by PCA) of the 19 BioTacs electrode signals, all measured during 4 exploration procedures leading to ((4 + 4) × 4 = 32 channels). This defines the tactile data space X = R 32×30 . By considering the 2 BioTacs as identical and after augmenting data by sub-sampling the signals using 5 different starting points, each exploration trial ensues 10 samples (2 BioTacs

Fig. 6 .

 6 Fig. 6. Test objects (framed in blue) with their attributes (right side) in Z for split 1 and examples of training objects with their attributes (right side).

Fig. 7 .

 7 Fig. 7. Tuning σnov: the accuracy of classifying Xte as known (blue) and X val as novel (red) for split 1.

Fig. 8 .

 8 Fig. 8. Confusion matrices and attribute-based similarity matrix of split 1.

  = {y 1 , . . . , y N } from tactile data and testing it on recognizing the set O = Y ∪ Z including both training classes Y and novel classes Z = {z 1 , . . . , z L }, s.t. Y ∩ Z = ∅. During the training phase, the robot collects tactile data from each object y ∈ Y ensuing the training set D train = {(y n , (x 1 , . . . , x In )), n = 1, . . . , N }, where I n is the number of training samples collected from y n , and all tactile samples x i are represented in a certain space X. During the test phase, a tactile sample x ∈ X should be classified as one of the set O objects without any prior knowledge if it belongs to a training object (to Y ) or to a completely novel one (to Z) and without collecting any additional training data from any of Z objects.

	using least
	squares support vector machines to recognize 12 new textures
	given only one tactile training sample per texture.
	Here our main contributions are as follows:
	1) We propose a comprehensive tactile recognition system,
	that can recognize classes having many training data as
	well as classes without or with very few training data,
	which is very common in daily-life tactile recognition.
	2) Recognition of novel objects using their attribute-based
	description and tactile data collected from training ob-
	jects. This is a very important advantage in tactile recog-
	nition as it reduces tactile data collection and replaces it
	with semantic information which is much easier to obtain.
	III. TACTILE OBJECT RECOGNITION FRAMEWORK
	A. Problem Statement
	We study the problem of training a robot on recognizing
	the set of object classes Y

TABLE I NEURAL

 I NETWORKS' HYPER-PARAMETERS USED IN OUR WORK.

	Neural Network	Type	layers	Convolutional layers parameters channels stride kernel group
	CONV XF conv.	2	96-256	2-2	(3,1)-(3,1)	32
	G	deconv. 2	96-256	2-1	(4,1)-(3,1)	No
	D	conv.	2	96-1	2-2	(3,1)-(3,1)	No
	× 5 signals). Thus, we obtain a raw tactile dataset composed
	of 6000 samples (60 objects × 10 trials × 10 samples).

TABLE II ACCURACY

 II OF NOVELTY DETECTION (%): DISTINCTION BETWEEN KNOWN AND NOVEL OBJECTS. Split x ∈ Xte x ∈ X val x ∈ X Z

	1	89.8	96.2	94.7
	2	91.0	95.5	89.7
	3	78.1	86.7	93.3
	4	92.7	96.8	81.3
	5	89.2	95.2	94.7
	6	96.7	98.5	83
	7	94.8	98	67.5
	average	90.3	95.3	89.5

TABLE III RECOGNITION

 III ACCURACIES (%) FOR MULTI-CLASS CLASSIFICATION OF Y WITH MANY TRAINING SAMPLES PER OBJECT.

	Split	1	2	3	4	5	6	7	avg.
	90 samples	96.2 95.1 90.8 96.2 95.9 96.5 95.4	95.2

TABLE IV RECOGNITION

 IV ACCURACIES (%) FOR MULTI-CLASS CLASSIFICATION (REAL TRAINING DATA) AND ZSL (SYNTHETIC TRAINING DATA) WHENTRAINING FC FZ USING 0, 10, 50, 90 OR 100 SAMPLES PER CLASS.

	Split	Training using real features	Training using synthetic features
		0	10	50	90	10		50		100
	1	17	88	97	98	36		34		35
	2	17	95	100	100	24		22		23
	3	17	95	95	100	20		10		10
	4	17	97	98	100	36		38		37
	5	17	68	85	100	32		34		33
	6	17	70	88	100	33		34		33
	7	17	67	77	83	35		31		33
	average	17	83	91	97	31		29		29
					TABLE V			
	RECOGNITION ACCURACIES (%) FOR ZSL USING GEN-F AND
					NEIGHB-F.			
		Split	1	2	3	4	5	6	7	avg.
		GEN-F	36 24 20 36 32 33 35	31
	NEIGHB-F	37 33 37 34 41 34 35	36

TABLE VI RECOGNITION

 VI ACCURACIES (%) FOR ZSL WITH GAN AND WITHOUT GAN.

	Split	1	2	3	4	5	6	7	avg.
	No-GAN	31 15 26 29 17 32 11	23
	GAN	37 33 37 34 41 34 35	36
				TABLE VII				
	RECOGNITION ACCURACIES (%) FOR ZSL WITH THE METHOD OF

TABLE VIII RECOGNITION

 VIII ACCURACIES (%) FOR OSL.

	Split	1	2	3	4	5	6	7	avg.
	NEIGHB-F	37 33 37 34 41 34 35	36
	OSL	49 41 37	28 55 49	51	44

TABLE IX ZSL

 IX AND OSL RECOGNITION ACCURACIES OF 12 NOVEL OBJECTS.

	Split	1	2	3	4	5	6	7
	GEN-F	17	19	10	17	14	14	13
	NEIGHB-F	24	19	18	13	14	13	15
	OSL	31	30	24	27	31	27	34
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