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{dmitry.babichev, dmitrii.ostrovskii, francis.bach}@inria.fr

Abstract

We develop efficient algorithms to train ℓ1-regularized linear classifiers with large dimen-
sionality d of the feature space, number of classes k, and sample size n. Our focus is on
a special class of losses that includes, in particular, the multiclass hinge and logistic losses.
Our approach combines several ideas: (i) passing to the equivalent saddle-point problem
with a quasi-bilinear objective; (ii) applying stochastic mirror descent with a proper choice
of geometry which guarantees a favorable accuracy bound; (iii) devising non-uniform sam-
pling schemes to approximate the matrix products. In particular, for the multiclass hinge
loss we propose a sublinear algorithm with iterations performed in O(d+ n+ k) arithmetic
operations.

1 Introduction

We study optimization problems arising in multiclass linear classification with a large number
of classes and features. Formally, consider a dataset of n pairs (xi, yi), i ∈ [n] := {1, ..., n},
where xi ∈ R

d is the feature vector of the i-th example, and yi ∈ {e1, ..., ek} is the label vector
encoding one of k possible classes; here e1, ..., ek are the standard basis vectors in R

k. Given
such data, our goal is to find a linear classifier that minimizes the ℓ1-regularized empirical risk.
We thus consider a minimization problem of the form

min
U∈Rd×k

1

n

n∑

i=1

ℓ(U⊤xi, yi) + λ‖U‖1. (1)

Here, U ∈ R
d×k is the matrix whose columns specify the parameter vectors for each of the k

classes; ℓ(U⊤x, y), with ℓ : Rk×∆k → R and ∆k ⊂ R
k being the unit probability simplex, is the

loss corresponding to the margins U⊤x ∈ R
k assigned to x when its class is encoded by y; finally,

the regularization term λ‖U‖1, λ > 0, uses the elementwise ℓ1-norm ‖U‖1 =
∑d

i=1

∑k
j=1 |Uij |.

Apart from inducing sparsity of features and classes (Bühlmann and Van De Geer, 2011), this
choice of regularization is crucial from the algorithmic perspective, as will be explained in Sec. 3.

Our focus is on the so-called Fenchel-Young losses, introduced by Blondel et al. (2018),
which can be expressed as

ℓ(U⊤x, y) = max
v∈∆k

{
−f(v, y) + (v − y)⊤U⊤x

}
, (2)

∗Equal contribution.
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where ∆k is the probability simplex in R
k, and the function f(·, y) : ∆k → R is convex and

“simple” (i.e., quasi-separable in v), which implies that maximization in (2) can be performed
in running time O(k). In particular, this allows us to address two commonly used multiclass
losses:

• The multiclass logistic (or softmax) loss

log

(
k∑

l=1

exp(U⊤
l x)

)
− y⊤U⊤x, (3)

where Ul is the l-th column of U so that U⊤
l x is the l-th element of U⊤x. This loss corre-

sponds to (2) with the negative entropy term f(v, y) =
∑k

l=1 vl log vl, which is independent
of y.

• The multiclass hinge loss, given by

max
l∈[k]

{
1[el 6= y] + U⊤

l x
}
− y⊤U⊤x, (4)

and used in multiclass support vector machines (SVM). This loss reduces to (2) by set-
ting f(v, y) = v⊤y − 1 (refer to Appendix A for additional details).

Arranging the feature vectors into X ∈ R
n×d, and the class labels into Y ∈ R

n×k, and using
the Fenchel-type representation (2) of the loss, we can recast the initial problem (1) as the
following convex-concave saddle-point problem:

min
U∈Rd×k

max
V ∈V

−F(V, Y ) +
1

n
tr
[
(V − Y )⊤XU

]
+ λ‖U‖1, (5)

with F(V, Y ) :=
1

n

n∑

i=1

f(vi, yi), (6)

where vi, yi ∈ ∆k are the i-th rows of V and Y , and define the Cartesian product of probability
simplices

V := ∆⊗n
k ⊂ R

n×k, (7)

the set comprised of all right-stochastic matrices in R
n×k. Taking into account the Fenchel-type

representation (2), this reduction is quite natural. Indeed, while the objective in (1) can be
non-smooth, the essential part of the objective in (5),

Φ(U, V − Y ) :=
1

n
tr
[
(V − Y )⊤XU

]
, (8)

is not only smooth but bilinear in U and V − Y . On the other hand, the presence of the dual
constraints, as given by (7), does not seem problematic since V allows for a computationally
cheap projection oracle. Finally, in the saddle-point formulation we can control the duality gap
which provides an accuracy certificate for the initial problem, see, e.g., Nemirovski et al. (2010);
Ostrovskii and Harchaoui (2018).

In this work, we propose efficient algorithms for solving (1) via the associated saddle-point
problem (5), built upon the vector-field formulation of stochastic mirror descent (SMD), a well-
known general optimization method, see, e.g., Juditsky and Nemirovski (2011a) and references
therein. Mirror descent, as well as its cousin Mirror Prox (Juditsky and Nemirovski, 2011b),
allows to solve convex-concave saddle-point problems (CCSPPs) whenever the first-order in-
formation about the objective is available, and the primal and dual feasible sets have simple
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structures that allow for easily computable prox-mappings. While these algorithms are poorly
adapted for obtaining high-accuracy solutions, this is not a limitation in the context of empirical
risk minimization where the ultimate goal is to minimize the expected risk, and there is often a
natural level of statistical accuracy, going beyond which is unnecessary, see, e.g., Mokhtari et al.
(2016). On the other hand, mirror descent is especially well-suited to quasi-bilinear CCSPPs of
the form (5).

First, it uses the Bregman divergence, rather than the standard Euclidean distance, as a
proximity measure, which allows to adjust to the specific geometry associated to V and ‖ · ‖1.

Second, it retains its favorable convergence guarantee when the exact partial gradients

∇U [Φ(U, V − Y )] =
1

n
XU, ∇V [Φ(U, V − Y )] =

1

n
X⊤(V − Y ),

cf. (8), are replaced with their unbiased estimates. This is especially important: recall that
the exact computation of the matrix products XU, X⊤(V − Y ) requires O(dnk) arithmetic
operations (a.o.’s) while the subsequent proximal mappings can usually be done in linear time
in the combined size of the variables, i.e., O(dk+nk); thus, computation of the matrix products
becomes the main bottleneck. On the other hand, these matrix products can be approximated
via randomized subsampling of the elements of U , V −Y , and X. While a similar approach has
already been explored by Juditsky and Nemirovski (2011b) in the case of bilinear CCSPPs with
vector variables arising in sparse recovery, its extension to problems of the type (5) is non-trivial.
In fact, for a sampling scheme to be deemed “good”, it clearly has to satisfy two concurrent
requirements.

(a) On one hand, one must control the stochastic variability of the estimates in the chosen
sampling scheme. Ideally, the additional term due to sampling should not be much larger
than the term already present in the accuracy bound for deterministic mirror descent.

(b) On the other hand, the estimates must be computationally cheap. The immediate goal
is O(dk+nk) per iteration, i.e., the cost of the proximal mapping given the full gradients.
However, one might want to go beyond that, to O(d + n + k) per iteration, obtaining a
sublinear algorithm with complexity of an iteration much smaller than the combined size
of the variables.

Devising a sampling scheme that satisfies both these requirements simultaneously is a delicate
task. To solve it, one should carefully exploit the specific geometric structure of (5) associated
to V, the norm ‖ · ‖1, and the term F(V, Y ).

Contributions and Outline. We propose two sampling schemes with various levels of “ag-
gressiveness” satisfying the above requirements, study their statistical properties, and analyze
the numerical complexity of stochastic mirror descent (SMD) equipped with them. In particular,
we show that SMD with appropriately balanced entropy-type potentials (see Sec. 2) has nearly
the same complexity estimate, in terms of the number of iterations to guarantee a given duality
gap, as its deterministic counterpart with exact gradients, while at the same time enjoying a
drastically improved cost of iterations, with improvement depending on the scheme.

• The partial sampling scheme (see Sec. 3.1) is applicable to any problem of the form (5).
In it, we sample a single row of U and V −Y at a time, with probabilities minimizing the
expected squared norm of the gradient estimate at the current iterate. This leads to the
cost O(dn+ dk + nk) of iterations.
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• In the full sampling scheme (see Sec. 3.2), sampling of the rows of U and V − Y is aug-
mented with column sampling. Applying it to the multiclass hinge loss (4), we construct
a sublinear algorithm (see Sec. 4) with iteration cost of O(d + n + k) a.o.’s, and a one-
time additional cost of O(dn+nk) a.o.’s (starting from the zero primal solution allows to
remove the O(dk) term).

We conclude the paper with numerical experiments that illustrate our approach (see Sec. 5).

Related Work. Instead of passing to the saddle-point problem (5) we can solve the original
problem (1) directly. For deterministic first-order algorithms, this leads to O(dnk) numer-
ical complexity of one iteration, and for stochastic algorithms that sample one example at
a time, the complexity is O(dk), similarly to our approach with partial sampling. In par-
ticular, algorithms such as SAG (Schmidt et al., 2017), SVRG (Johnson and Zhang, 2013),
SDCA (Shalev-Shwartz and Zhang, 2013), SAGA (Defazio et al., 2014) use variance reduction
techniques to obtain accelerated convergence rates in terms of the number of iterations, but all
have O(dk) or O(dk + nk) runtime. Such variance reduction techniques have been extended to
saddle-point problems (Palaniappan and Bach, 2016; Shi et al., 2017) but with the same over-
all complexity (our full sampling scheme could also be adapted to them); still, none of these
algorithms are sublinear.

Regarding sublinear algorithms, several results can be found in the literature for the bi-
class setting. The case of bilinear CCSPPs was first considered by Grigoriadis and Khachiyan
(1995), then by Juditsky and Nemirovski (2011b), and by Xiao et al. (2017). Hazan et al. (2011)
proposed a sublinear algorithm for biclass SVM, and Garber and Hazan (2011, 2016) addressed
semidefinite programs; more general results were given by Clarkson et al. (2012). We reuse some
of the tools (mirror descent and multiplicative updates) considered in this literature. However,
none of these approaches can be easily extended to the multiclass setting without an extra O(k)
factor in the cost of iterations.

2 Mirror Descent for Quasi-Bilinear CCSPPs

Preliminary Reductions. We focus on a CCSPP given by (5)–(8), and make the following
assumption:

Assumption 1. We assume that the ‖ · ‖1-radius of an optimal solution U∗ to (5) is known:

‖U∗‖1 = R∗.

Remark 2.1. The accuracy bounds presented later on depend on R∗, and are preserved when R∗
becomes an upper bound on ‖U∗‖1. Since U = 0 is feasible, we always have R∗ 6 1/λ when the
loss is non-negative, but this bound is usually loose since λ typically decreases with n. Alterna-
tively, we can solve a series of constrained problems, starting with a small radius, and increasing
it by a constant factor until the obtained solution leaves the boundary of the feasible set.

With Assumption 1, we can put (5) in the constrained form:

min
‖U‖1≤R∗

max
V ∈V
−F(V, Y ) + Φ(U, V − Y ) + λ‖U‖1, (9)

and then reduce (9) to a simplex-constrained problem. Indeed, let 12d×k ∈ R
2d×k be the all-ones

matrix, and define
U :=

{
U ∈ R

2d×k : Uij > 0, tr[1⊤
2d×kU ] 6 R∗

}
, (10)
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i.e., the “solid” simplex in R
2d×k (note that tr[1⊤

2d×kU ] = ‖U‖1 on U). Consider now the
following CCSPP:

min
U∈U

max
V ∈V
−F(V, Y ) + Φ̂(U, V − Y ) + λ tr[1⊤

2d×kU ], (11)

where F(V, Y ) and V are given by (6)–(7), U by (10), and

Φ̂(U, V − Y ) :=
1

n
tr
[
(V − Y )⊤X̂U

]
, X̂ :=

[
X,−X

]
, (12)

using the “Matlab notation” for matrix concatenation (i.e., X̂ ∈ R
n×2d). One can verify

that (11) is equivalent to (9), and hence to (5), in the following sense: any ε-accurate (in terms
of the primal accuracy or duality gap, see below) solution (U, V ) to (11) with U = [U1;U2] re-
sults in the ε-accurate solution (U1−U2, V ) to (9). This reduction is motivated by the fact that
mirror descent with an entropy-type potential on U reduces to multiplicative updates, which is
crucial in the sublinear algorithm presented in Sec. 4.

Background on CCSPPs. The accuracy of a candidate solution (Ū , V̄ ) to a CCSPP

min
U∈U

max
V ∈V

f(U, V )

with compact sets U ,V can be quantified via the duality gap

Gap(Ū , V̄ ) := max
V ∈V

f(Ū , V )−min
U∈U

f(U, V̄ ). (13)

Under certain conditions which in particular hold for (11), see Sion (1958), this CCSPP possesses
an optimal solution W ∗ = (U∗, V ∗), called a saddle point, for which it holds f(U∗, V ∗) =
maxV ∈V f(U∗, V ) = minU∈U f(U, V ∗). That is, U∗ (resp. V ∗) is optimal in the primal problem
of minimizing fprim(U) := maxV ∈V f(U, V ) (resp. the dual problem of maximizing fdual(V ) :=
minU∈U f(U, V̄ )). Thus, the duality gap bounds from above the primal accuracy – in our case,
the accuracy of solving the initial problem (1).

2.1 Choice of the Geometry

When applied to CCSPPs, the geometry of mirror descent is specified by the choice of the pair
of the primal and dual norms ‖ · ‖U , ‖ · ‖V in which the optimal solution is likely to be small,
and the potentials, or distance-generating functions in the terminology of Nemirovski (2004),
that must satisfy some compatibility properties with respect to these norms.

Norms. It is natural to use ‖ · ‖1 as the primal norm ‖ · ‖U . On the other hand, due to (7),
it is reasonable to choose the norm ‖ · ‖V within the family of mixed ℓp × ℓq norms

‖V ‖p×q :=

(
∑

i

‖V (i, :)‖pq

)1/p

, p, q ∈ [1,∞], (14)

i.e., the ℓp-norm of the vector of ℓq-norms of the rows, with q = 1. The question is how to
choose p. The naive choice p = ∞, corresponding to the direct-product structure of V, does
not allow for a compatible potential (see Juditsky and Nemirovski (2011a)). The remedy is to
replace p = ∞ with p = 2, leading to the choice ‖ · ‖V = ‖ · ‖2×1. In fact, this choice can also
be motivated from the black-box model perspective (Nemirovsky and Yudin, 1983).

Remark 2.2. Other choices of the regularization norm and the norm ‖ · ‖V are explored in
Appendix E. As it turns out, the choice described here is the only one in a broad class of those
using the mixed ℓp×ℓq norms, for which one can achieve the goal stated in Section 1, that is, have
both a favorable accuracy guarantee and an efficient (sublinear) algorithmic implementation.
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Partial Potentials. A potential φU : U → R ∪ {∞} is called compatible with the norm ‖ ·
‖U in the sense of Nemirovski (2004) when it admits a continous selection of subgradients in
the relative interior of U , and is 1-strongly convex on U with respect to ‖ · ‖U . In order to
obtain favorable convergence guarantees, the primal and dual potentials φU , φV must satisfy
two conditions. First, they must be compatible with the chosen norms; second, the potential
differences, defined by

ΩU := maxU∈U φU (U)−minU∈U φU (U),

ΩV := maxV ∈V φV(V )−minV ∈V φV(V ),
(15)

must be upper-bounded, up to logarithmic factors in the problem dimension, with the squared
radii of U ,V in the corresponding norms (Nemirovsky and Yudin, 1983). We now specify the
potentials that satisfy these requirements.

The natural choice for the dual potential φV(·), reflecting the product structure of V, is the
sum of negative entropies (Beck and Teboulle, 2003):

φV(V ) =

n∑

i=1

k∑

l=1

Vil log(Vil). (16)

Its compatibility with ‖ · ‖2×1 follows from Pinsker’s inequality (Kemperman, 1969) applied
rowwise to V . On the other hand, we have

ΩV = n log k, (17)

whereas the squared ‖ · ‖2×1-norm of any feasible solution V to (9) is precisely n. Thus, (16) is
a valid potential on V.

Regarding the choice of the potential on U , consider first the unit “solid” simplex, i.e., the
set (10) with R∗ = 1. On this set, one can define the unnormalized negative entropy

H(U) =
d∑

i=1

k∑

j=1

{
Uij logUij − Uij

}
. (18)

Clearly, H(·) is continuously differentiable in the interior of its domain, and one can show that
it is 1-strongly convex on it (see Yu (2013)). Due to Assumption 1, we can consider

φU (U) := R2
∗ · H(U/R∗), (19)

which is then a compatible potential on U that satisfies

ΩU = R2
∗ log(2dk), (20)

and thus is a valid potential on U . Note that for our choice of the potentials, the corresponding
Bregman divergences are expressed in terms of the Kullback-Leibler divergence, and thus lead
to multiplicative updates. This circumstance is crucial for the sublinear algorithm considered
in Section 4.

2.2 Composite Saddle-Point Mirror Descent

We use the composite variant of saddle-point mirror descent applicable for quasi-bilinear CC-
SPPs, see Juditsky and Nemirovski (2011b); Ostrovskii and Harchaoui (2018). IntroducingW =
(U, V ) ∈ W [:= U × V], the algorithm can be summarized as follows. First, one constructs the
joint potential φ(W ) on W by reweighting φU (U) and φV(V ):

φ(W ) =
φU (U)

2ΩU
+

φV(V )

2ΩV
. (21)
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Such reweighting, possible in our case due to Assumption 1, allows to improve the accuracy
bound, replacing the factor ΩU + ΩV with

√
ΩUΩV (cf. Theorem 2.1 below). Then, initializing

with W 0 = minW∈W φW(W ), one iterates

W t+1=argmin
W∈W

h(W ) + 〈G(W t),W 〉+ Dφ(W,W t)

γt
, (22)

where {γt} is the sequence of stepsizes, h(W ) = F(V, Y )+λ tr[1⊤
2d×kU ] is the combined “simple”

term (cf. (6)),

G(W ) =

[
1

n
X⊤(V − Y ),− 1

n
XU

]
(23)

is the vector field of the partial gradients of Φ̂(U, V − Y ), cf. (12), and D(·, ·) is the Bregman
divergence1 linked to φ(·):

D(W,W ′) = φ(W )− φ(W ′)−
〈
∇φ(W ′),W −W ′〉 .

Note that in the case of (11), this amounts to the initialization

V 0 =
1

k
1n×k, U0 =

R∗
2dk

12d×k, (Init)

and iterations (separable in U and V ) of the form

(U t+1, V t+1)

= argmin
U∈U ,V ∈V

{
λ tr[1⊤

2d×kU ] + Φ̂(U, V t − Y ) +
DU (U,U t)

2γtΩU
+ F(V, Y )− Φ̂(U t, V ) +

DV(V, V t)

2γtΩV

}
,

(MD)
where DU ,DV are the Bregman divergences for φU , φV .

Complexity of Iterations. One iteration in (MD) has running time O(dnk), and is domi-
nated by the computation of the matrix products XU and X⊤(V − Y ); once they are known,
the proximal step only requires O(dk+nk) a.o.’s. Indeed, given St = 1

nX̂
⊤(V t−Y ), the primal

update with the choice (19) of φU can be expressed in closed form (refer to Lemma C.1 in
Appendix C for the derivation):

U t+1
il = U t

il e
−2γtSt

il
R∗L min

{
e−2γtλR∗L, R∗/M

}
,

where L := log(2dk), and M :=

2d∑

i=1

k∑

l=1

U t
il · e−2γtSt

il
R∗L.

(24)

On the other hand, our ability to perform the dual updates depends on the form of f(v, y) in the
representation (2). In the general case, due to f(v, y) being separable in v, we can reduce the dual
update to O(nk) one-dimensional optimization problems. This can be done by passing to the
Lagrangian dual problem (which is separable), minimizing the Lagrangian for the given value
of multiplier by solving O(nk) one-dimensional problems, and finding the optimal Lagrange
multiplier via root search. Moreover, for the multiclass hinge loss (4) we have the closed-form
updates:

V t+1
il =

V t
il exp

(
2γt[X̂U t − Y ]il log(k)

)
∑k

l=1 V
t
il exp

(
2γt[X̂U t − Y ]il log(k)

) . (25)

1We ignore subtleties related to the correct definition of the domain of D(W, ·) (see, e.g., (Beck and Teboulle,
2003)); nonetheless, the subsequent algorithms are correctly defined.

7



Convergence Rate. The convergence rate of mirror descent for CCSPPs of the form (11)
depends on the quantity

LU ,V :=
1

n
sup

‖U‖U 61
‖X̂U‖V ∗ , (26)

where ‖ · ‖V ∗ is the dual norm to ‖ · ‖V . Thus, LU ,V is the (U ,V ∗)-subordinate norm of the

linear mapping U 7→ 1
nX̂U . For the norms chosen in Section 2.1, LU ,V is expressed as a mixed

norm (14) (see Appendix for the proof):

Proposition 2.1. For ‖ · ‖U = ‖ · ‖1 and ‖ · ‖V = ‖ · ‖2×1, one has

LU ,V =
1

n
‖X⊤‖∞×2. (27)

We obtain the following convergence guarantee for our variant of mirror descent applied to
CCSPP (11). For simplicity, we consider constant stepsize and simple averaging; empirically
we observe similar results for the time-varying stepsize γt ∝ 1/

√
t+ 1.

Theorem 2.1. Let (ŪT , V̄ T ) = 1
T

∑T−1
t=0 (U t, V t) be the average of the first T iterates of mirror

descent (MD) with initialization (Init) and stepsize γt ≡ 1/(LU ,V

√
5TΩUΩV), with LU ,V , ΩU , ΩV

given by (27), (20), (17). Then the duality gap can be bounded as

Gap(ŪT , V̄ T ) 6
2
√
5LU ,V

√
ΩUΩV√

T
+

r

T

6
2
√
5‖X⊤‖∞×2√

n

log(2dk)R∗√
T

+
r

T
.

(28)

Here r = 0 for the multiclass hinge loss (4) and r = maxy∈∆k

{
f(1k

k , y)−minv∈∆k
f(v, y)

}
in the

general case; in particular, r = O(log(d)) for the softmax loss (3).

Proof. The first bound follows from the general result for quasi-bilinear CCSPPs, see Theo-
rem B.1 in Appendix.2 Its combination with (17), (20), and (27) results in (28).

Remark 2.3. Note that the j-th column Xj ∈ R
n of X represents the empirical distribution of

the feature ϕj . Hence, when the data is i.i.d., we have

‖X⊤‖∞×2√
n

= max
j∈[d]

√
‖Xj‖22

n

a.s.−→
n→∞

max
j∈[d]

(
Edata[ϕ

2
j ]
)1/2

, (29)

where the expectation Edata is over the data distribution. In other words, ‖X⊤‖∞×2/
√
n has a fi-

nite limit, converging to the largest L2-norm of a feature. In the non-asymptotic regime, ‖X⊤‖∞×2/
√
n

is the largest empirical L2-norm of a feature, and can be controlled if the features are bounded, or
sufficiently light-tailed, via standard concentration inequalities. In particular, ‖X⊤‖∞×2/

√
n 6

B if the features are uniformly bounded with B, and for the Gaussian features ϕj ∼ N (0, σ2
j )

with σj ≤ B we have, with probability at least 1− δ,

‖X⊤‖∞×2√
n

6 Cσ

(
1 +

√
log(d/δ)

n

)
, (30)

for some constant C, see Laurent and Massart (2000, Lem. 1).

2Note that the results of Duchi et al. (2010) nor those of Nesterov and Nemirovski (2013) cannot be readily
applied in our setup.
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Remark 2.4. It is known that the convergence rate can be improved to O(1/T ) for the composite
version of Mirror Prox, but this improvement is not preserved in the stochastic setting. On the
other hand, this allows to emulate the “mini-batching” technique, by sampling the matrix prod-
ucts repeatedly (or in parallel), and controlling the variability of the averaged gradient estimates
via Nemirovski’s inequalities in the vein of Juditsky and Nemirovski (2011b, Sec. 2.5.1).

3 Sampling Schemes

Recall that the bottleneck of mirror descent iterations (MD) is computing the matrix prod-
ucts X̂U t, X̂⊤(V t − Y ) which requires O(dnk) a.o.’s. Inspired by Juditsky and Nemirovski
(2011b), we propose sampling schemes that produce unbiased estimates ξU t and ηV t,Y of X̂U t

and X̂⊤(V t − Y ) with reduced complexity of computation, and use them to approximate the
true partial gradients, arriving at the following variant of stochastic mirror descent:

(U t+1, V t+1)

= argmin
U∈U ,V ∈V

{
λ tr[1⊤

2d×kU ] +
1

n
tr
[
ηV t,Y U

]
+

DU (U,U t)

2γtΩU

+ F(V, Y )− 1

n
tr
[
ξ⊤U tV

]
+

DV(V, V t)

2γtΩV

}
.

(SMD)

Since the gradients are now replaced with their unbiased estimates, the accuracy bound gets
augmented with an extra term that reflects the variability of these estimates. This extra term

is known to be O(
√

(ΩUσ2
V +ΩVσ2

U )/T ), where σ
2
U and σ2

V are “variance proxies” – the natural

analogues of the variances of ξU and ηV,Y for the chosen norms:

σ2
U :=

1

n2
sup
U∈U

E

[∥∥X̂U − ξU
∥∥2

V ∗

]
,

σ2
V :=

1

n2
sup

(V,Y )∈V×V
E

[∥∥X̂⊤(V − Y )− ηV,Y
∥∥2

U ∗

]
.

(31)

We consider two sampling schemes for ξU and η
V,Y

: partial sampling where the estimates are
obtained by sampling the rows of U and V − Y , and full sampling, where one subsequently
samples their columns. In both cases, we derive the data-dependent sampling disrtibutions
with near-optimal variance proxies. Our finding is that for the mirror descent geometry chosen
in Sec. 2, and under mild assumptions on the data distribution, application of both schemes with
the found distributions results in essentially the same convergence rate as in the deterministic
case.

3.1 Partial Sampling Scheme

In the partial sampling scheme, we choose a pair of distributions p = (p1, ..., p2d) ∈ ∆2d and q =
(q1, ..., qn) ∈ ∆n, and draw one row of U and V − Y (i.e., a feature and a tratining example) at
a time according to p and q. In other words, we produce the estimates

ξU (p) = X̂
eie

⊤
i

pi
U, ηV,Y (q) = X̂⊤ eje

⊤
j

qj
(V − Y ), (Part-SS)

where ei ∈ ∆2d and ej ∈ ∆n are standard basis vectors, and i ∈ [2d], j ∈ [n] are drawn
from p, q correspondingly; clearly, this gives unbiased estimates. The challenge is to choose the
distributions p, q. In the Euclidean case, i.e., when ‖ · ‖U ∗ , ‖ · ‖V ∗ are Frobenius norms, one can
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explicitly minimize the variances of the resulting estimates, and it is equivalent to minimizing
the second moments E

[
‖ξU (p)‖2F

]
,E
[
‖ηV,Y (q)‖2F

]
. In general, this is not the case. Next we

show that for our mixed norms, the problem of minimizing the second moment proxies, i.e.,
finding

p∗ = p∗(X̂, U) ∈ Argmin
p∈∆2d

E
[
‖ξU (p)‖2V ∗

]
,

q∗ = q∗(X̂, V, Y ) ∈ Argmin
q∈∆n

E
[
‖ηV,Y (q)‖2U ∗

]
,

(32)

can be solved explicitly, due to the matrices in the right-hand side of (Part-SS) being one-rank.
The variance proxies (cf. (31)) can then be bounded via the triangle inequality.

Proposition 3.1. When ‖ ·‖U = ‖ ·‖1 and ‖ ·‖V = ‖ ·‖2×1, the optimal distributions p∗ and q∗,
cf. (32), are given by

p∗i ∝ ‖X̂(:, i)‖2 · ‖U(i, :)‖∞,

q∗j ∝ ‖X̂(j, :)‖∞ · ‖V (j, :) − Y (j, :)‖∞,
(33)

where A(i, :) and A(:, j) are the i-th row and j-th column of A. Moreover, the corresponding
variance proxies satisfy

σ2
U (p

∗) 6
4R2

∗‖X⊤‖2∞×2

n2
,

σ2
V(q

∗) 6
8‖X⊤‖2∞×2

n
+

8‖X‖21×∞
n2

.

(34)

See Appendix D.2 for the proof of an extended result for the general mixed norms (14). Com-
bined with the general result for composite saddle-point stochastic mirror descent (Theorem B.2
in Appendix), Proposition 3.1 implies the following result:

Theorem 3.1. Let (ŪT , V̄ T ) = 1
T

∑T−1
t=0 (U

t, V t) be the average of T iterates of stochastic
mirror descent (SMD) initialized with (Init), equipped with sampling scheme (Part-SS) with
distributions (33), and with stepsize

γt ≡
1√
2T

min
{ 1

LU ,V

√
5ΩUΩV

,
1√

ΩU σ̄2
V +ΩV σ̄2

U

}
, (35)

with LU ,V ,ΩU ,ΩV given by (27), (17), (20), and the upper bounds σ̄2
U , σ̄

2
V on the variance proxies

given by (34). Then

E[Gap(ŪT , V̄ T )] 6
2
√
10LU ,V

√
ΩUΩV√

T
+

2
√
2
√

ΩU σ̄2
V +ΩV σ̄2

U√
T

+
r

T

6

(16.2 ‖X⊤‖∞×2√
n

+
8‖X‖1×∞

n

) log(2dk)R∗√
T

+
r

T
,

(36)

where the expectation is over the randomness of the algorithm, and r is the same as in Theo-
rem 2.1.

Remark 3.1. Comparing (36) with (28), we see that the partial sampling (Part-SS) does
not deteriorate the convergence rate as long as the extra term ‖X‖1×∞/n does not domi-
nate ‖X⊤‖∞×2/

√
n. When the data is light-tailed, the two terms are comparable. Indeed, ‖X⊤‖∞×2/

√
n

a.s. converges to maxj∈[d]
(
Edata[ϕ

2
j ]
)1/2

, where ϕj ’s are the features (cf. (29)), and the term ‖X‖1×∞/n

clearly converges to Edata maxj∈[d] |ϕj |. When ϕj ’s are subgaussian, we have

Edata[max
j∈[d]
|ϕj |] 6 Õd(1)max

j∈[d]
(Edata[ϕ

2
j ])

1/2,
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where Õd(1) is a log-factor in d. Similar conclusions hold in finite sample: both terms admit
the same bound in terms of the uniform bound on the features (cf. Remark 2.3), and when ϕj ∼
N (0, σ2

j ) with σj 6 σ for any j ∈ [d], we have

‖X‖1×∞/n 6 Cσ
√

log(dn/δ),

w.p. 1− δ, with a similar bound for ‖X⊤‖∞×2/
√
n, cf. (30).

Complexity. O(dn) a.o.’s are needed once to compute the row and column norms of X̂
in (33). Producing ξU(p

∗), ηV,Y (q∗) costs O(dk + nk) a.o.’s, including the computation of the
distibutions (33); given them, the proximal step has the same complexity as discussed in Sec. 2.

3.2 Full Sampling Scheme

In the full sampling scheme, sampling of the rows of U and V −Y is augmented with a subsequent
column sampling:

ξU(p, P ) = X̂
eie

⊤
i

pi
U
ele

⊤
l

Pil
,

ηV,Y (q,Q) = X̂⊤ eje
⊤
j

qj
(V − Y )

ele
⊤
l

Qjl
,

(Full-SS)

where i ∈ [2d] and j ∈ [n] are drawn from distributions p ∈ ∆2d, q ∈ ∆n as before, and the rows
of the matrices P ∈ ∆⊗2d

k and Q ∈ ∆⊗n
k specify the conditional sampling distribution of the

class l ∈ [k] given i and j. Unbiasedness of these estimates is easy to verify. Next we derive the
optimal sampling distributions and bound their variance proxies (refer to Appendix D.3 for the
proof).

Proposition 3.2. Let ‖·‖U = ‖·‖1×1, ‖·‖V = ‖·‖2×1. The optimal solutions (p∗, P ∗), (q∗, Q∗)
to

min
p∈∆2d,P∈∆⊗2d

k

E‖ξU (p, P )‖2V ∗ , min
q∈∆n,Q∈∆⊗n

k

E‖ηV,Y (q,Q)‖2U ∗

are unique and given by

p∗i ∝ ‖X̂(:, i)‖2 ‖U(i, :)‖1, P ∗
il ∝ Uil;

q∗j ∝ ‖X̂(j, :)‖∞ ‖V (j, :) − Y (j, :)‖1, Q∗
jl ∝ |Vjl − Yjl|.

(37)

The respective variance proxies still admit the bounds (34).

Corollary 3.1. The second bound of (36) in Theorem 3.1 remains true when we replace (Part-SS)
with the sampling scheme (Full-SS) with distributions given by (37).

4 Sublinear Algorithm for Multiclass ℓ1-SVM

For the hinge loss (4), we provide a sublinear implementation of the bundle (SMD)+(Full-SS)
with sampling distributions (37).
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Lazy Updates. Note that although the estimates ξU , ηV,Y produced in (Full-SS) are sparse
(each contains a single non-zero column), the updates in (SMD), which can be expressed as (24)–
(25) with ξU , ηV,Y instead of the corresponding matrix products, are dense, and implementing
them naively costs O(dk+nk) a.o.’s. Fortunately, these updates have a special form: all elements
in each row of U t and V t are simply rescaled with the same factor – except for at most two
elements corresponding to a single non-zero element of ηV t,Y and at most two non-zero elements
of ξU t − Y in this row. To exploit this fact, we perform “lazy” updates: instead of explicitly
computing the actual iterates (U t, V t), we maintain the quadruple (Ũ , α, Ṽ , β), where Ũ , Ṽ have
the same dimensions as U, V , while α ∈ R

2d and β ∈ R
n are the “scaling vectors”, so that at

any iteration t it holds

U t(i, :) = Ũ(i, :) · α(i), V t(j, :) = Ṽ (j, :) · β(j) (38)

for any row of U t and V t. Initializing with (Ũ , Ṽ ) = (U, V ), α = 12d, β = 1n, we can update the
whole quadruple, while maintaining (38), by updating at most two elements in each row of Ũ
and Ṽ , and encapsulating the overall scaling of rows in α and β. Clearly, this update requires
only O(d+ n) operations once ξU t , ηV t,Y have been drawn.

Sampling. Computing the distributions p∗, q∗ from (37) requires the knowledge of ‖X̂(:, i)‖2
and ‖X̂(j, :)‖∞ which can be precomputed in O(dn) a.o.’s, and maintaining O(d+n) norms πi, ρj
of the rows of U t and V t−Y that can maintained in O(1) a.o.’s each using (38). Thus, p∗ and q∗

can be updated in O(d+n). Once it is done, we can sample it ∼ p∗ and jt ∼ q∗, and then sample
the class from P ∗ and Q∗, cf. (37), by computing only the it-th row of P ∗ and the jt-th row
of Q∗, both in O(k) a.o.’s. Thus, the total complexity of producing ξU t , ηV t,Y is O(d+ n+ k).

Tracking the Averages. Similar “lazy” updates can be performed for the running averages
of the iterates. Omitting the details, this requires O(d + n) a.o.’s per iteration, plus post-
processing of O(dk + nk) a.o.’s.

The above ideas are implemented in Algorithm 1 whose correctness is formally shown in
Appendix F (see also Sec. G for an additional discussion). Its close inspection shows the iteration
cost of O(d+n+ k) a.o.’s, plus O(dn+ dk+nk) a.o.’s for pre/post-processing, and the memory
complexiy of O(dn+dk+nk). Moreover, the term O(dk), which dominates in high-dimensional
and highly multiclass problems, can be removed if one exploits sparsity of the corresponding
primal solution to the ℓ1-constrained problem (9), and outputs it directly, bypassing the explicit
storage of Ũ (see Appendix F for details). Note that when n = O(min(d, k)), the resulting
algorithm enters the sublinear regime after as few as O(n) iterations.

5 Experiments

Sublinear Runtime. To illustrate the sublinear iteration cost of Algorithm 1, we consider
the following experiment. Fixing n = d = k, we generate X with i.i.d. standard Gaus-
sian entries, take Uo to be the identity matrix (thus very sparse), and generate the labels
by argmaxl∈[k] xjU

o
l + 1√

d
N (0, Id), where xj’s are the rows of X, and Uo

l ’s are the columns

of Uo. This is repeated 10 times with n = d = k increasing by a constant factor κ; each time
we run Algorithm 1 for a fixed (large) number of iterations to dominate the cost of pre/post-
processing, with R∗ = ‖Uo‖1 and λ = 10−3, and measure its runtime. We observe (see Tab. 1)
that the runtime is proportional to κ, as expected.
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Synthetic Data Experiment. We compare Algorithm 1 with two competitors: ‖·‖1-composite
stochastic subgradient method (SSM) for the primal problem (1), in which one uniformly sam-
ples one training example at a time (Shalev-Shwartz et al., 2011), leading to O(dk) iteration
cost; deterministic saddle-point Mirror Prox (MP) with geometry chosen as in Algorithm 1,
for which we have O(dnk) cost of iterations but O(1/T ) convergence in terms of the number
of iterations. We generate data as in the previous experiment, fixing n = d = k = 103. The
randomized algorithms are run 10 times for T ∈ {10m/2,m = 1, ..., 12} iterations with constant
stepsize (we use stepsize (35) in Algorithm 1, choose the one recommended in Theorem 2.1 for
MP, and use the theoretical stepsize for SSM, explicitly computing the variance of subgradients
and the Lipschitz constant). Each time we compute the duality gap and the primal accuracy,
and measure the runtime (see Fig. 1). We see that Algorithm 1 outperforms SSM, which might
be the combined effect of sublinearity and our choice of geometry. It also outmatches MP up to

Algorithm 1 Sublinear Multiclass ℓ1-Regularized SVM

Input: X ∈ R
n×d, y ∈ [k]⊗n, λ, R∗, T > 1, {γt}T−1

t=0

1: Obtain Y ∈ ∆⊗n
k from the labels y; X̂ ≡ [X,−X]

2: α← 12d; Ũ ← R∗12d×k

2dk ; β ← 1n; Ṽ ← 1n×k

k
3: for ı = 1 to 2d do
4: σ(ı) ≡ ‖X̂(:, ı)‖2; π(ı)← ‖Ũ (ı, :)‖1
5: end for
6: for  = 1 to n do
7: τ() ≡ ‖X̂(, :)‖∞; ρ()← ‖Ṽ (, :) − Y (, :)‖1
8: end for
# Initialize machinery to track the cumulative sums
9: UΣ ← 02d×k; VΣ ← 0n×k # Cumulative sums

10: A← 02d; B ← 0n; Apr ← 02d×k; Bpr ← 0n×k

11: for t = 0 to T − 1 do # (SMD) iterations
12: Draw j ∼ τ ◦ ρ # ◦ is the elementwise product
13: Draw l ∼ |Ṽ (j, :) · βj − Y (j, :)|
14: [UΣ, Apr, A]← TrackPrimal(Ũ , UΣ, Apr, A, α, l)
# The only non-zero column of ηV t,Y , cf. (Full-SS):

15: η ← X̂(j, :) ·
∑n

=1
τ()·ρ()·sign[β·V (,l)−Y (,l)]

τ(j)

16: [Ũ , α, π]← UpdatePrimal(Ũ , α, π, η, l, γt, λ,R∗)
17: Draw i ∼ σ ◦ π
18: Draw ℓ ∼ Ũ(i, :)
19: [VΣ, Bpr, B]← TrackDual(Ṽ , VΣ, Bpr, B, β, ℓ, y)
# The only non-zero column of ξU t, cf. (Full-SS):

20: ξ ← X̂(:, i) ·
∑

2d
ı=1

σ(ı)·π(ı)
σ(i)

21: [Ṽ , β, ρ]← UpdateDual(Ṽ , Y, β, ρ, ξ, ℓ, y, γt)
22: end for
23: for l = 1 to k do # Postprocessing of cumulative sums
24: UΣ(:, l)← UΣ(:, l) + Ũ(:, l) ◦ (α+A−Apr(:, l))

25: VΣ(:, l)← VΣ(:, l) + Ṽ (:, l) ◦ (β +B −Bpr(:, l))
26: end for
Output: 1

T+1UΣ,
1

T+1VΣ # Averages (ŪT+1, V̄ T+1)
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Procedure 1 UpdatePrimal

Input: Ũ ∈ R
2d×k, α, π, η ∈ R

2d, l ∈ [k], γ, λ, R∗
1: L ≡ log(2dk)
2: for i = 1 to 2d do
3: µi = πi − αi · Ũ(i, l) · (1− e−2γLR∗ηi/n)
4: end for
5: M =

∑2d
i=1 µi

6: ν = min{e−2γLR∗λ, R∗/M}
7: for i = 1 to 2d do
8: Ũ(i, l)← Ũ(i, l) · e−2γLR∗ηi/n

9: α+
i = ν · αi

10: π+
i = ν · µi

11: end for
Output: Ũ , α+, π+

Procedure 2 UpdateDual

Input: Ṽ , Y ∈ R
n×k, β, ρ, ξ ∈ R

n, ℓ ∈ [k], y ∈ [k]⊗n, γ
1: θ = e−2γ log(k)

2: for j = 1 to n do
3: ωj = e2γ log(k)ξj

4: εj = e−2γ log(k)Y (j,ℓ)

5: χj = 1− βj · Ṽ (j, ℓ) · (1− ωj · εj)
6: if ℓ 6= yj then # not the actual class of j drawn

7: χj ← χj − βj · Ṽ (j, yj) · (1− θ)
8: end if
9: β+

j = βj/χj

10: Ṽ (j, ℓ)← Ṽ (j, ℓ) · ωj · εj
11: Ṽ (j, yj)← Ṽ (j, yj) · ωj · θ
12: ρ+j = 2− 2β+

j · Ṽ (j, yj)
13: end for
Output: Ṽ , β+, ρ+

Procedure 3 TrackPrimal

Input: Ũ , UΣ, Apr ∈ R
2d×k, A,α ∈ R

2d, l ∈ [k]
1: for i = 1 to 2d do
2: UΣ(i, l)← UΣ(i, l) + Ũ(i, l) · (Ai + αi −Apr(i, l))
3: Apr(i, l)← Ai + αi

4: Ai ← Ai + αi

5: end for
Output: UΣ, Apr, A

n = d = k 400 800 1600 3200 6400

T = 104 1.17 2.07 4.27 7.55 15.56

T = 2 · 104 2.47 4.27 8.74 14.65 30.77

Table 1: Runtime (in seconds) of Algorithm 1 in a synthetic data experiment.
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Procedure 4 TrackDual

Input: Ṽ , VΣ, Bpr ∈ R
n×k, B, β ∈ R

n, ℓ ∈ [k], y ∈ [k]⊗n

1: for j = 1 to n do
2: for l ∈ {ℓ, yj} do # {ℓ, yj} has 1 or 2 elements

3: VΣ(j, l)← VΣ(j, l) + Ṽ (j, l) · (Bj + βj −Bpr(j, l))
4: Bpr(j, l)← Bj + βj
5: end for
6: Bj ← Bj + βj
7: end for

Output: VΣ, Bpr, B

high accuracy due to the sublinear effect (MP eventually “wins” because of its O(1/T ) rate).3

0 100 200 300 400 500
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Full-SMD, Acc.

SSM, Acc.

MP, Gap

MP, Acc.

101 102 103
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Figure 1: Primal accuracy and duality gap (when available) for Algorithm 1, stochastic sub-
gradient method (SSM), and Mirror Prox (MP) with exact gradients, on a synthetic data
benchmark, in the natural scale (left) and the log-log scale (right).

6 Conclusion and Perspectives

We proposed efficient algorithms based on stochastic mirror descent with entropy-type poten-
tials, that allows to train ℓ1-regularized multiclass linear classifiers in the case when the loss
admits an explicit Fenchel-type representation, by reducing the finite-sum minimization prob-
lem to its saddle-point equivalent. In particular, in the case of the multiclass hinge loss we
were able to construct a sublinear algorithm with the cost O(d+n+ k) of iterations, which was
possible due to the multiplicative form of the updates. We envision the following directions for
future work.

• It would be interesting to investigate whether out approach can also yield sublinear algo-
rithms for other Fenchel-Young losses, in particular for the multiclass logistic model (3),
which is widely used in Natural Language Processing (NLP) problems, where d, n and k
are on order of millions or even billions (Chelba et al., 2013; Partalas et al., 2015).

• It would be useful to implement more flexible stepsizes, including the online stepsize search
in the vein of Juditsky and Nemirovski (2011a), and to conduct larger scale experiments,
including those on real data.

3The codes of our experiments are available online at https://github.com/flykiller/sublinear-svm.
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• According to our result in Theorem 3.1 and Corollary 3.1, the loss of accuracy due to
sampling is negligible when the data is light-tailed, but otherwise, the additional error
due to sampling might be significant (see Remark 3.1). On the other hand, in the case of
(non-composite) bilinear problems with vector variables, Juditsky and Nemirovski (2011b,
Sec. 2.5.2.3) propose a technique of transforming the problem to an equivalent one, for
which the loss of accuracy due to sampling is always tolerable. Extending their technique
to our situation is non-trivial, and could be a worthwhile direction for future research.
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A Motivation for Multiclass Hinge Loss

We justify the multiclass extension (4) of the hinge loss due to (Shalev-Shwartz and Ben-David,
2014). In the binary case, the hinge loss is

1

n

n∑

i=1

[
max(0, 1 − ỹiu

⊤xi)
]
,

where u ∈ R
d and ỹi ∈ {−1, 1}. Introducing y = eỹ ∈ {e−1, e1} where ej is the j-th standard

basis vector (the dimensions of space are symbolically indexed in {−1, 1}), and putting u1 =
−u−1 =

u
2 , we can rewrite the loss as

max(0, 1 − ỹu⊤x) = max
k∈{1,−1}

{
1{ek 6= y}+ u⊤k x− u⊤ỹ x

}
.

The advantage of this reformulation is that we can naturally pass to the multiclass case, by re-
placing the set {−1, 1} with {1, ...,K} and introducing u1, ..., uK ∈ R

d without any restrictions:

max
k∈{1,...,K}

{
1{ek 6= y}+ u⊤k x− u⊤ỹ x

}
= max

v∈{e1,...,eK}

{
1{v 6= y}+

K∑

l=1

(v[l]− y[l])u⊤l x

}

= max
v∈{e1,...,eK}

{
1{v 6= y}+ (v − y)⊤U⊤x

}
=: ℓ(U, (x, y)),

where a[l] denotes the l-th element of a column-vector a, and U ∈ R
d×K has ul as its l-th

column. Finally, we can rewrite ℓ(U, (x, y)) as follows:

ℓ(U, (x, y)) = max
v∈∆K

{
1− v⊤y + (v − y)⊤U⊤x

}
.

This is because we maximize an affine function of v, and 1 − v⊤y = 1{v 6= y} at the ver-
tices. Thus, we obtain the Fechel dual representation of the multiclass hinge loss. Adding the
regularization term ‖ · ‖U , we also arrive at the saddle-point problem

min
U∈Rd×k

max
V ∈∆⊗n

k

1− 1

n
tr[V ⊤Y ] +

1

n
tr
[
(V − Y )⊤XU

]
+ λ‖U‖U .

B General Accuracy Bounds for Composite Saddle-Point Mir-

ror Descent

Deterministic Case. Here we provide general accuracy bounds which are instantiated in
Theorems 2.1 and 3.1. Below we outline the general setting that encompasses, in particular, the
case of (11) solved via (MD) with initialization (Init).

• We consider a convex-concave saddle-point problem

min
U∈U

max
V ∈V

f(U, V )

with a composite objective

f(U, V ) = Φ(U, V − Y ) + Υ(U)−F(V ),
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where

Φ(U, V ) =
1

n
V ⊤XU

is a bilinear function, and Υ(U),F(V ) are convex “simple” terms. Moreover, we assume
that the primal feasible set U belongs to the ‖ · ‖U -norm ball with radius R∗, the dual
constraint set V belongs to the ‖ · ‖V -norm ball with radius RV , and ‖Y ‖V 6 RV .4 To
simplify the results, we make the assumption (satisfied in all known to us situations):

ΩU > R2
∗, ΩV > R2

V . (39)

• Recall that the vector field of partial gradients of Ψ(U, V ) := Φ(U, V − Y ) is

G(W ) : = (∇UΨ(U, V ),−∇V Ψ(U, V ))

=
1

n
(X⊤(V − Y ),−XU)

(40)

• Given the partial proximal setups (‖ · ‖U , φU (·)) and (‖ · ‖V , φV(·)), we run Composite
Mirror Descent (22) on the vector field G(W ) with the joint penalty term

h(W ) = Υ(U) + F(V ),

the “balanced” joint potential given by (21), and stepsizes γt.

We now provide the convergence analysis of Mirror Descent, extending the argument of
Lem. 1 in (Duchi et al., 2010) to composite saddle-point optimization.

Theorem B.1. In the above setting, let (ŪT , V̄ T ) = 1
T

∑T−1
t=0 (U t, V t) be the average of the

first T iterates of the composite Mirror Descent (22) with constant stepsize

γt ≡
1

LU ,V

√
5TΩUΩV

,

where

LU ,V :=
1

n
sup

‖U‖U ≤1
‖XU‖V ∗ .

Then we have the following guarantee for the duality gap of f(·):

Gap(ŪT , V̄ T ) 6
2
√
5LU ,V

√
ΩUΩV√

T
+

Υ(U0)−minU∈U Υ(U)

T
+
F(V 0)−minV ∈V F(V )

T
.

Moreover, if one of the functions Υ(U), F(V ) is affine, the corresponding O(1/T ) error term
vanishes from the bound.

Proof. 1o. We begin by introducing the norm for W = (U, V ):

‖W‖W =

√
‖U‖2

U

2ΩU
+
‖V ‖2

V

2ΩV
, (41)

4Note that the linear term 1

n
Y ⊤XU can be absorbed into the simple term Υ(U), which will slightly improve

the bound in Theorem B.1. However, this improvement is impossible in the stochastic version of the algorithm
where we sample the linear form Y ⊤X but not the gradient of Υ(U).
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and its dual norm defined for G = (GU , GV ) with GU ∈ R
d×k and GV ∈ R

n×k:

‖G‖W ∗ =
√

2ΩU‖GU‖2U ∗ + 2ΩV‖GV ‖2V ∗ , (42)

where ‖ · ‖U ∗ and ‖ · ‖V ∗ are the dual norms for ‖ · ‖U and ‖ · ‖V correspondingly. We now
make a few observations. First, the joint potential φW(W ) given by (21) is 1-strongly convex
with respect to the norm ‖ · ‖W . Second, we can compute the potential difference corresponding
to φW :

ΩW := max
W∈W

φW(W )− min
W∈W

φW(W ) = 1 (43)

Finally, by (40) and (26) we have

max
W∈W

‖GU (W )‖U ∗ 6 2LU ,V RV , max
W∈W

‖GV (W )‖V ∗ 6 LU ,V R∗,

combining which with (39) we bound the ‖ · ‖W ∗-norm of G(W ) on W:

max
W∈W

‖G(W )‖W ∗ 6
√
10LU ,V

√
ΩUΩV . (44)

2o. We now follow the convergence analysis of composite Mirror Descent, see (Duchi et al.,
2010), extending it to convex-concave objectives. By the convexity properties of Ψ(U, V ) =
Φ(U, V − Y ), for any (Ū , V̄ ) ∈ W and (U, V ) ∈ W it holds

Ψ(Ū , V )−Ψ(U, V̄ ) = Ψ(Ū , V )−Ψ(Ū , V̄ ) + Ψ(Ū , V̄ )−Ψ(U, V̄ )

6
〈
∇UΨ(Ū , V̄ ), Ū − U

〉
−
〈
∇VΨ(Ū , V̄ ), V̄ − V

〉

=
〈
G(W̄ ), W̄ −W

〉
,

Let W t = (U t, V t) be the t-th iterate of (22) for t ≥ 1. By convexity of Υ(U) and F(V ), and
denoting h(W ) = Υ(U) + F(V ), we have, for any W = [U, V ], that

Ψ(U t−1, V )−Ψ(U, V t−1) + h(W t)− h(W )

6
〈
G(W t−1),W t−1 −W

〉
+
〈
∂h(W t),W t −W

〉
.

(45)

Let us now bound the right-hand side. Note that the first-order optimality condition for (22)
(denoting φ(·) := φW(·) the joint potential) writes5

〈
γt[G(W t−1) + ∂h(W t)] +∇φ(W t)−∇φ(W t−1),W t −W

〉
6 0. (46)

Combining this with (45), we get

γt[Ψ(U t−1, V )−Ψ(U, V t−1) + h(W t)− h(W )] 6
〈
∇φ(W t−1)−∇φ(W t),W t −W

〉

+ γt
〈
G(W t−1),W t−1 −W t

〉
.

(47)

By the well-known identity,

〈
∇φ(W t−1)−∇φ(W t),W t −W

〉
= Dφ(W,W t−1)−Dφ(W,W t)−Dφ(W

t,W t−1), (48)

see, e.g., Beck and Teboulle (2003, Lemma 4.1). On the other hand, by the Fenchel-Young
inequality we have

γt
〈
G(W t−1),W t−1 −W t

〉
6

γ2t ‖G(W t−1)‖2
W ∗

2
+
‖W t−1 −W t‖2

W

2

6 5γ2t L2U ,V ΩUΩV +Dφ(W
t,W t−1),

(49)
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where we used (44) and 1-strong convexity of φ(·) with respect to ‖ · ‖W . Thus, we obtain

γt[Ψ(U t−1, V )−Ψ(U, V t−1) + h(W t)− h(W )] ≤Dφ(W,W t−1)−Dφ(W,W t) + 5γ2t L2U ,V ΩUΩV .
(50)

3o. Now, assuming the constant stepsize, by the convexity properties of Ψ(·, ·) and h(·) we
obtain

f(ŪT , V )− f(U, V̄ T ) = Ψ(ŪT , V )−Ψ(U, V̄ T ) + h(W̄ T )− h(W )

6
1

T

T∑

t=1

Ψ(U t−1, V )−Ψ(U, V t−1) + h(W t−1)− h(W )

6
1

T

(
h(W 0)− h(W T ) +

Dφ(W,W 0)

γ
+ 5TγL2U ,V ΩUΩV

)

6
1

T

(
h(W 0)− min

W∈W
h(W ) +

1

γ
+ 5TγL2U ,V ΩUΩV

)
.

(51)

where for the third line we substituted (50), simplified the telescoping sum, and used thatD(W,W T ) >
0, and in the last line we used D(W,W 0) 6 ΩW 6 1, cf. (43). The choice

γ =
1

LU ,V

√
5TΩUΩV

,

results in the accuracy bound from the premise of the theorem:

Gap(ŪT , V̄ T ) 6
2
√
5LU ,V

√
ΩUΩV√

T
+

h(W 0)−minW∈W h(W )

T
.

Finally, assume that one of the terms Υ(U), F(V ) is affine – w.l.o.g. let it be Υ(U). Then,
since∇Υ(U) is constant, ∂h(W t) = (∇Υ(U t), ∂F(V t)) in (46) can be replaced with (∇Υ(U t−1), ∂F(V t)).
Then in (50) we can replace h(W t)− h(W 0) with Υ(U t−1)−Υ(U) + F(V t)− F(V ), implying
that the term h(W 0)−h(W T ) in the right-hand side of (51) gets replaced with F(V 0)−F(V t).
The claim is proved.

Stochastic Mirror Descent. We now consider the stochastic setting that allows to encom-
pass (SMD). Stochastic Mirror Descent is given by

W 0 = min
W∈W

φW(W );

W t = arg min
W∈W

{
h(W ) + 〈Ξ(W t−1),W 〉+ 1

γt
DφW

(W,W t−1)

}
, t ≥ 1,

(52)

where

Ξ(W ) :=
1

n
(ηV,Y ,−ξU )

is the unbiased estimate of the first-order oracle G(W ) = 1
n(X

⊤(V −Y ),−XU). Let us introduce
the corresponding variance proxies (refer to the preamble of Section 3 for the discussion):

σ2
U =

1

n2
sup
U∈U

E

[
‖XU − ξU‖2V ∗

]
, σ2

V =
1

n2
sup

(V,Y )∈V×V
E

[∥∥∥X⊤(V − Y )− ηV,Y

∥∥∥
2

U ∗

]
. (53)

We assume that the noises G(W t−1) − Ξ(W t−1) are independent along the iterations of (52).
In this setting, we prove the following generalization of Theorem B.1:

5Note that φ(W ) is continuously differentiable in the interior of W, and ∇φ diverges on the boundary of W,
then the iterates are guaranteed to stay in the interior of W (Beck and Teboulle, 2003).
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Theorem B.2. Let (ŪT , V̄ T ) = 1
T

∑T−1
t=0 (U

t, V t) be the average of the first T iterates of stochas-
tic composite mirror descent (52) with constant stepsize

γt ≡
1√
T

min





1√
10LU ,V

√
ΩUΩV

,
1

√
2
√

ΩU σ̄2
V +ΩV σ̄2

U



 ,

where LU ,V ,ΩU ,ΩV are the same as in Theorem B.2, and σ̄2
U , σ̄

2
V are the upper bounds for σ2

U , σ
2
V ,

cf. (53). Then it holds

E[Gap(ŪT , V̄ T )] 6
2
√
10LU ,V

√
ΩUΩV√

T
+

2
√
2
√
ΩU σ̄2

V +ΩV σ̄2
U√

T

+
Υ(U0)−minU∈U Υ(U)

T
+
F(V 0)−minV ∈V F(V )

T
,

where E[·] is the expectation over the randomness in (52). Moreover, if one of the func-
tions Υ(U), F(V ) is affine, the corresponding O(1/T ) term can be discarded.

Proof. The proof closely follows that of Theorem B.1. First, 1o remains unchanged. Then,
in the first-order condition (46) one must replace G(W t−1) with Ξ(W t−1), which results in
replacing (47) with

γt[Ψ(U t−1, V )−Ψ(U, V t−1) + h(W t)− h(W )]

6
〈
∇φ(W t−1)−∇φ(W t),W t −W

〉

+ γt
〈
Ξ(W t−1),W t−1 −W t

〉

+ γt
〈
G(W t−1)− Ξ(W t−1),W t−1 −W

〉
,

where the last term has zero mean. The term γt
〈
Ξ(W t−1),W t−1 −W t

〉
can be bounded using

Young’s inequality, and 1-strong convexity of φ(·), cf. (49):

γt
〈
Ξ(W t−1),W t−1 −W t

〉

6
γ2t ‖Ξ(W t−1)‖2

W ∗

2
+
‖W t−1 −W t‖2

W

2
6 γ2t ‖G(W t−1)‖2W ∗ + γ2t ‖Ξ(W t−1)−G(W t−1)‖2W ∗ +Dφ(W

t,W t−1).

Combining (44), (42), and (53), this implies

γt
〈
Ξ(W t−1),W t−1 −W t

〉
6 10γ2t L2U ,V ΩUΩV + 2γ2t

(
ΩU σ̄

2
V +ΩV σ̄

2
U
)
+Dφ(W

t,W t−1).

Using (48) and (43), this results in

E[Gap(ŪT , V̄ T )] = E

[
max

(U,V )∈W

{
f(ŪT , V )− f(U, V̄ T )

}]

6
1

T

[
h(W 0)− min

W∈W
h(W ) +

1

γ
+ 2Tγ

(
5L2U ,V ΩUΩV +ΩU σ̄

2
V +ΩV σ̄

2
U
)]

;

note that maximization on the left is under the expectation (and not vice versa) because the
right hand side is independent from W = (U, V ). Choosing γ to balance the terms, we arrive
at the desired bound. Finally, improvement in the case of affine Υ(U), F(V ) is obtained in the
same way as in Theorem B.2.
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C Auxiliary Lemmas

Lemma C.1. Let X0 ∈ R
n
+ and X1 = arg min

‖X‖16R
X∈Rn

+

{
C1‖X‖1+〈S,X〉+C2

n∑
i=1

Xi log
Xi

X0
i

}
. Then,

X1
i = ρ · X

0
i · exp(−Si/C2)

M
,

where M =
n∑

j=1
X0

j · exp(−Sj/C2) and ρ = min(M · e−
C1+C2

C2 , R).

Proof. Clearly, we have

X1 = argmin
r6R

min
‖X‖1=r
X∈Rn

+

{
C1r + 〈S,X〉 +C2

n∑

i=1

Xi log
Xi

X0
i

}
.

Let us first do the internal minimization. By simple algebra, the first-order optimality condition
for the Lagrangian dual problem (with constraint ‖X‖1 = R) amounts to

Si + C2 + C2 logX
1
i −C2 logX

0
i + κ = 0,

where κ is Lagrange multiplier, and
n∑

i=1
X1

i = r. Equivalently,

X1
i = X0

i · exp
(
−
(
κ+ C2 + Si

C2

))
,

that is,

X1
i = r · X0

i · exp(−Si/C2)∑
j
X0

j · exp(−Sj/C2)
.

Denoting Dj = exp(−Sj/C2) and M =
∑
j
X0

j · Dj and substituting for X1 in the external

minimization problem, we arrive at

ρ = argmin
r6R

{
C1r + r

∑

i

X0
i DiSi

M
+ C2 · r

∑

i

X0
i Di

M
· log

[
r ·Di

M

]}
.

One can easily verify that the counterpart of this minimization problem with R = ∞ has a

unique stationary point r∗ = M · e−
C1+C2

C2 > 0. As the minimized function is convex, the
minimum is attained at the point ρ = min(r∗, R).

Lemma C.2. Given X ∈ R
n×d and mixed norms (cf. (14)) ‖ · ‖p1

U
×p2

U
on R

d×k and ‖ · ‖q1
V
×q2

V

on R
n×k with p2U 6 q2V , one has

sup
‖U‖

p1
U

×p2
U
61

{
d∑

i=1

‖X(:, i)‖q1
V
· ‖U(i, :)‖q2

V

}
= ‖X⊤‖q1

U
×q1

V
,

where q1U is the conjugate of p1U , i.e., 1/p
1
U + 1/q1U = 1.
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Proof. First assume p2U = q2V . Let ai = ‖X(:, i)‖q1
V
, ui = ‖U(i, :)‖q2

V
, 1 6 i 6 d. Then,

sup
‖U‖

p1
U

×p2
U
61

{
d∑

i=1

‖X(:, i)‖q1
V
· ‖U(i, :)‖q2

V

}
= sup

‖u‖
p1
U
61

d∑

i=1

aiui = ‖a‖q1
U
= ‖X⊤‖q1

U
×q1

V
.

Now let p2U < q2V . Then, for any i ≤ d one has ‖U(i, :)‖q2
V

< ‖U(i, :)‖p2
U

unless U(i, :) has a

single non-zero element, in which case ‖U(i, :)‖q2
V
= ‖U(i, :)‖p2

U
. Hence, the supremum must be

attained on such U , for which the previous argument applies.

Lemma C.3. In the setting of Lemma C.2, for any q1U > 1 and q2U > 1 one has:

sup
‖V ‖∞×161

{
n∑

i=1

‖X⊤(:, i)‖q1
U
· ‖V (i, :)‖q2

U

}
= ‖X‖1×q1

U
.

Proof. The claim follows by instatiating Lemma C.2.

D Deferred Proofs

D.1 Proof of Proposition 2.1

By (26), and verifying that the dual norm to ‖ · ‖2×1 is ‖ · ‖2×∞, we have

LU ,V = sup
‖U‖1×161

‖XU‖2×∞.

The maximization over the unit ball ‖U‖1×1 6 1 can be replaced with that over its extremal
points, which are the matrices U that have zeroes in all positions except for one in which there
is 1. Let (i, j) be this position, then for every such U we have:

‖XU‖2×∞ =

√√√√
n∑

l=1

sup
j
|X(l, :)U(:, j)|2 =

√√√√
n∑

l=1

|X(l, i)|2 =

√√√√
n∑

l=1

|X⊤(i, l)|2.

As a result,

sup
‖U‖1×161

‖XU‖2×∞ = sup
1≤i≤k

√√√√
n∑

l=1

|X⊤(i, l)|2 =
∥∥∥X⊤

∥∥∥
∞×2

.

D.2 Proof of Proposition 3.1

We prove an extended result that holds when ‖ · ‖U and ‖ · ‖V are more general mixed (ℓp× ℓq)-
norms, cf. (14).

Proposition D.1. Let ‖ · ‖U = ‖ · ‖p1
U
×p2

U
on R

2d×k, and ‖ · ‖V = ‖ · ‖p1
V
×p2

V
on R

n×k. Then,

optimal solutions p∗ = p∗(X̂, U) and q∗ = q∗(X̂, V, Y ) to (32) are given by

p∗i =
‖X̂(:, i)‖q1

V
· ‖U(i, :)‖q2

V∑2d
ı=1 ‖X̂(:, ı)‖q1

V
· ‖U(ı, :)‖q2

V

, q∗j =
‖X̂(j, :)‖q1

U
· ‖V (j, :) − Y (j, :)‖q2

U∑n
=1 ‖X̂(, :)‖q1

U
· ‖V (, :) − Y (, :)‖q2

U

.

Moreover, we can bound their respective variance proxies (cf. (31)): introducing

L2U ,V =
1

n2
sup

‖U‖U ≤1
‖X̂U‖2V ∗ ,
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we have, as long as p2U 6 q2V ,

σ2
U(p

∗) 6 2R2
∗L2U ,V +

2

n2
R2

∗‖X̂⊤‖2q1
U
×q1

V
,

and, as long as p1V > 2,

σ2
V(q

∗) 6 8nL2U ,V +
8

n2
‖X̂‖21×q1

U
.

Proof. Note that the dual norms to ‖·‖p1
U
×p2

U
and ‖·‖p1

V
×p2

V
are given by ‖·‖q1

U
×q2

U
and ‖·‖q1

V
×q2

V

correspondingly, see, e.g., (Sra, 2012).
1o. For E

[
‖ξU (p)‖2V ∗

]
we have:

E
[
‖ξU (p)‖2V ∗

]
=

2d∑

i=1

pi

∥∥∥∥X̂
eie

⊤
i

pi
U

∥∥∥∥
2

q1
V
×q2

V

=

2d∑

i=1

1

pi

∥∥X̂(:, i) · U(i, :)
∥∥2
q1
V
×q2

V

=
2d∑

i=1

1

pi
‖X̂(:, i)‖2q1

V
· ‖U(i, :)‖2q2

V
,

where the last transition can be verified directly. The right-hand side can be easily minimized
on ∆2d explicitly, which results in

p∗i =
‖X̂(:, i)‖q1

V
· ‖U(i, :)‖q2

V∑2d
ı=1 ‖X̂(:, ı)‖q1

V
· ‖U(ı, :)‖q2

V

and

E
[
‖ξU (p∗)‖2V ∗

]
=

[
2d∑

i=1

‖X̂(:, i)‖q1
V
· ‖U(i, :)‖q2

V

]2
.

Now we can bound σ2
U (p

∗) via the triangle inequality:

σ2
U (p

∗) 6
2

n2
sup
U∈U
‖X̂U‖2V ∗ +

2

n2
sup
U∈U

E
[
‖ξU (p∗)‖2V ∗

]

= 2R2
∗L2U ,V +

2

n2
sup
U∈U

[
2d∑

i=1

‖X̂(:, i)‖q1
V
· ‖U(i, :)‖q2

V

]2

= 2R2
∗L2U ,V +

2

n2
sup

‖U‖U ≤R∗

[
2d∑

i=1

‖X̂(:, i)‖q1
V
· ‖U(i, :)‖q2

V

]2

= 2R2
∗L2U ,V +

2

n2
R2

∗‖X̂⊤‖2q1
U
×q1

V
,

where we used Lemma C.2 (see Appendix C) in the last transition.
2o. We now deal with E

[
‖ηV,Y (q)‖2U ∗

]
. As previously, we can explicitly compute

q∗j =
‖X̂(j, :)‖q1

U
· ‖V (j, :) − Y (j, :)‖q2

U∑n
=1 ‖X̂(, :)‖q1

U
· ‖V (, :)− Y (, :)‖q2

U

and

E
[
‖ηV,Y (q∗)‖2U ∗

]
=




n∑

j=1

‖X̂(j, :)‖q1
U
· ‖V (j, :) − Y (j, :)‖q2

U



2

.
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Thus, by the triangle inequality,

σ2
V(q∗) 6

2

n2
sup

(V,Y )∈V×V
‖X̂⊤(V − Y )‖2U ∗ +

2

n2
sup

(V,Y )∈V×V
E
[
‖ηV,Y (q∗)‖2U ∗

]

6
2

n2
sup

‖V ‖∞×162
‖X̂⊤V ‖2U ∗ +

2

n2
sup

‖V ‖∞×162




n∑

j=1

‖X̂(j, :)‖q1
U
· ‖V (j, :)‖q2

U



2

=
8

n
sup

‖V ‖2×161
‖X̂⊤V ‖2U ∗ +

8

n2
‖X̂‖21×q1

U

6
8

n
sup

‖V ‖
p1
V

×p2
V
61
‖X̂⊤V ‖2U ∗ +

8

n2
‖X̂‖21×q1

U

= 8nL2U ,V +
8

n2
‖X̂‖21×q1

U
.

Here in the second line we used that the Minkowski sum ∆k + (−∆k) belongs to the ℓ1-ball
with radius 2 (whence V + (−V) belongs to the (ℓ∞ × ℓ1)-ball with radius 2); in the third line
we used Lemma C.3 (see Appendix C) and the relation on R

n×k:

‖ · ‖2×1 6
√
n‖ · ‖∞×1;

lastly, we used that p1V ≥ 2 and that ‖ · ‖p1
V
×p2

V
is non-increasing in p1V , p

2
V ≥ 1.

Proof of Proposition 3.1. We instantiate Proposition D.1 with ‖·‖U = ‖·‖1×1 and ‖·‖V =
‖ · ‖2×1, and observe, using Proposition 2.1, that for X̂ = [X,−X] ∈ R

n×2d it holds

LU ,V =
1

n
‖X̂⊤‖∞×2 =

1

n
‖X⊤‖∞×2

and
‖X̂‖1×∞ = ‖X‖1×∞.

D.3 Proof of Proposition 3.2

We have

min
p∈∆2d,

P∈(∆⊤
k
)⊗2d

E‖ξU (p, P )‖22×∞ = min
p∈∆2d,

P∈(∆⊤
k
)⊗2d

2d∑

i=1

1

pi
‖X̂(:, i)‖22 ·

[
k∑

l=1

1

Pil
· |U(i, l)|2

]

= min
p∈∆2d

2d∑

i=1

1

pi
‖X̂(:, i)‖22 · ‖U(i, :)‖21,

where we carried out the internal minimization explicitly, obtaining

P ∗
il =

|Uil|
‖U(i, :)‖1

.

Optimization in p gives:

p∗i =
‖X̂(:, i)‖2 · ‖U(i, :)‖1

2d∑
ı=1
‖X̂(:, ı)‖2 · ‖U(ı, :)‖1

, E‖ξU (p∗, P ∗)‖22×∞ =

2d∑

i=1

‖X̂(:, i)‖2 · ‖U(i, :)‖1.
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Defining

LU ,V =
1

n
sup

‖U‖U 61
‖XU‖V ∗

and proceeding as in the proof of Proposition D.1, we get

σ2
U (p

∗, P ∗) 6
2

n2
sup
U∈U
‖X̂U‖22×∞ +

2

n2
sup
U∈U

E
[
‖ξU (p∗, P ∗)‖22×∞

]

= 2R2
∗L2U ,V +

2

n2
sup
U∈U

[
2d∑

i=1

‖X̂(:, i)‖2 · ‖U(i, :)‖1
]2

= 2R2
∗L2U ,V +

2R2
∗

n2
sup

‖U‖1×161

[
2d∑

i=1

‖X̂(:, i)‖2 · ‖U(i, :)‖1
]2

= 2R2
∗L2U ,V +

2

n2
R2

∗‖X̂⊤‖22×1

=
4

n2
R2

∗‖X⊤‖22×1,

where in the last two transitions we used Lemma C.2 and Proposition 2.1 (note that ‖X̂⊤‖2×1 =
‖X⊤‖2×1). Note that the last transition requires that ‖ · ‖U has ℓ1-geometry in the classes –
otherwise, Lemma C.2 cannot be applied.

To obtain (q∗, Q∗) we proceed in a similar way:

min
q∈∆n,

Q∈(∆⊤
k
)⊗n

E‖ηV,Y (q,Q)‖2∞×∞ = min
q∈∆n,

Q∈(∆⊤
k
)⊗n

n∑

j=1

1

qj
‖X̂(j, :)‖2∞ ·

[
k∑

l=1

1

Qjl
· |V (j, l)− Y (j, l)|2

]

= min
q∈∆n

n∑

j=1

1

qj
‖X̂(j, :)‖2∞ · ‖V (j, :) − Y (j, :)‖21,

which results in

q∗j =
‖X̂(j, :)‖∞ · ‖V (j, :) − Y (j, :)‖1∑n
=1 ‖X̂(, :)‖∞ · ‖V (, :) − Y (, :)‖1

Q∗
jl =

|Vjl − Yjl|
‖V (j, :) − Y (j, :)‖1

.

The corresponding variance proxy can then be bounded in the same way as in the proof of
Proposition D.1.

E Discussion of Alternative Geometries

Here we consider alternative choices of the proximal geometry in mirror descent applied to the
saddle-point formulation of the CCSPP (1), possibly with other choices of regularization than
the entrywise ℓ1-norm. The goal is to show that the geometry chosen in Sec. 2 is the only one
for which we can obtain favorable accuracy guarantees for stochastic mirror descent (SMD).

Given the structure of the primal and dual feasible sets, it is reasonable to consider general
mixed norms of the type (14):

‖ · ‖U = ‖ · ‖p1
U
×p2

U
, ‖ · ‖V = ‖ · ‖p1

V
×p2

V
,

where p1,2U , p1,2V ≥ 1 (in the case of ‖ · ‖U , we also assume the same norm for regularization).
Note that their dual norms can be easily computed: the dual norm of ‖ · ‖p1×p2 is ‖ · ‖q1×q2 ,
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where q1,2 are the corresponding conjugates to p1,2, i.e., 1/pi+1/qi = 1 (see, e.g., Lemma 3 in Sra
(2012)). Moreover, it makes sense to fix p1V = 2 for the reasons discussed in Section 2.1. This
leaves us with the obvious choices p2V ∈ {1, 2}, p2U ∈ {1, 2} which corresponds to the sparsity-
inducing or the standard Euclidean geometry of the classes in the dual/primal; p1U ∈ {1, 2}
which corresponds to the sparsity-inducing or Euclidean geometry of the features. Finally, the
choice p1U = 2 (i.e., the Euclidean geometry in the features) can also be excluded: its combination
with p1V = 2 is known to lead to the large variance term in the biclass case.6 This leaves us
with the possibilities

p2U , p
2
V ∈ {1, 2} × {1, 2}. (54)

In all these cases, the quantity LU ,V defined in (26) can be controlled by extending Proposi-
tion 2.1:

Proposition E.1. For any α > 1 and β > 1 such that β > α it holds:

LU ,V :=
‖X‖1×α, 2×β

n
=
‖X⊤‖∞×2

n
.

The proof of this proposition follows the steps in the proof of Proposition 2.1, and is omitted.
Finally, the corresponding partial potentials could be constructed by combining the Eu-

clidean and an entropy-type potential in a way similar to the one described in Sec. 2.1 for
the dual variable; alternatively, one could use the power potential of Nesterov and Nemirovski
(2013) that results in the same rates up to a constant factor.

Using Proposition E.1, we can also compute the potential differences for the four remaining
setups (54). The results are shown in Table 2. Up to logarithmic factors, we have equivalent
results for all four geometries, with the radius R∗ evaluated in the corresponding norm ‖ · ‖1×2

or ‖ · ‖1×1 = ‖ · ‖1.

Norm for V ∈ R
n×k

2× 1 2× 2

Norm for U ∈ R
d×k

1× 2
ΩU = ‖U∗‖21×2 log d

ΩV = n log k
ΩU = ‖U∗‖21×2 log d

ΩV = n

1× 1
ΩU = ‖U∗‖21 log(dk)

ΩV = n log k
ΩU = ‖U∗‖21 log(dk)

ΩV = n

Table 2: Comparison of the potential differences for the norms corresponding to (54).

As a result, for the deterministic Mirror Descent (with balanced potentials) we obtain the
accuracy bound (cf. (28)):

Gap(ŪT , V̄ T ) 6
O(1)LU ,V

√
ΩUΩV√

T
6

Õd,k(1)R∗√
T

‖X⊤‖∞×2√
n

+
r

T
.

in all four cases, where Õd,k(1) is a logarithmic factor in d and k, and R∗ = ‖U∗‖1×2 or R∗ =
‖U∗‖1 depending on p2U ∈ {1, 2}. In other words, the deterministic accuracy bound of The-
orem 2.1 is essentially preserved for all four geometries in (54). On the other hand, using

6Note that in the biclass case, our variance estimate for the partial sampling scheme (cf. Theorem 3.1)
reduces to those in (Juditsky and Nemirovski, 2011b, Section 2.5.2.3). They consider the cases of ℓ1/ℓ1 and ℓ1/ℓ2
geometries for the primal/dual, and omit the case of ℓ2/ℓ2-geometry, in which the sampling variance “explodes”.
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Proposition D.1, we obtain that in the case of (Part-SS), the extra part of the accuracy bound
due to sampling (cf. (36)) is also essentially preserved:

E[Gap(ŪT , V̄ T )] 6
Õd,k(1)R∗√

T

(‖X⊤‖∞×2√
n

+
‖X‖1×∞

n

)
+

r

T
.

However, if we consider full sampling, the situation changes: in the case p2U = 2 the variance
bound that holds for (Part-SS) is not preserved for (Full-SS). This is because our argument
to control the variance of the full sampling scheme always requires that p2U 6 1 (see the proof of
Proposition 3.2 in Appendix D.3 for details; note that for q2V we do not have such a restriction
since the variance proxy σ2

V is controlled on the set V given by (7) that has ℓ∞×ℓ1-type geometry
regardless of the norm ‖·‖V . This leaves us with the final choice between the ‖·‖2×1 and ‖·‖2×2

norm in the dual, as we have to use the elementwise ‖ · ‖1-norm in the primal. Both choices
result in essentially the same accuracy bound (note that this choice only influences the algorithm
but not the saddle-point problem itself). We have focused on the ‖ · ‖2×1 norm because of the
algorithmic considerations: with this norm, we have multiplicative updates in the case of the
multiclass hinge loss, which allows for a sublinear algorithm presented in Section 4.

F Correctness of Subroutines in Algorithm 1

In this section, we recall the subroutines used in Algorithm 1 – those for performing the lazy
updates and tracking the running averages – and demonstrate their correctness.

Procedure 1 UpdatePrimal

Input: Ũ ∈ R
2d×k, α, π, η ∈ R

2d, l ∈ [k], γ, λ, R∗
1: L ≡ log(2dk)
2: for i = 1 to 2d do
3: µi = πi − αi · Ũ(i, l) · (1− e−2γLR∗ηi/n)
4: end for
5: M =

∑2d
i=1 µi

6: ν = min{e−2γLR∗λ, R∗/M}
7: for i = 1 to 2d do
8: Ũ(i, l)← Ũ(i, l) · e−2γLR∗ηi/n

9: α+
i = ν · αi

10: π+
i = ν · µi

11: end for
Output: Ũ , α+, π+

Primal Updates (Procedure 1). To demonstrate the correctness of Procedure 1, we prove
the following result:

Lemma F.1. Suppose that at t-iteration of Algorithm 1, Procedure 1 was fed with Ũ = Ũ t, α =
αt, π = πt, η = ηt, l = lt for which one had

Ũ t(:, l) ◦ αt = U t(:, l), ∀l ∈ [k], (55)

where U t is the t-th primal iterate of (SMD) equipped with (Full-SS) with the optimal sampling
distributions (37), and ηt was the only non-zero column ηV t,Y (:, l

t) of ηV t,Y . Moreover, suppose
also that

πt(ı) = ‖U t(ı, :)‖1 =
∑

l∈[k]
U t(ı, l), ı ∈ [2d], (56)
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were the correct norms at the t-th step. Then Procedure 1 will output Ũ t+t, αt+1, πt+1 such that

Ũ t+1(:, l) ◦ αt+1 = U t+1(:, l), ∀l ∈ [k]

and
πt+1(ı) =

∑

l∈[k]
U t+1(ı, l), ı ∈ [2d].

Proof. Recall that the matrix ηt = ηV t,Y produced in (Full-SS) has a single non-zero col-
umn ηt = ηt(:, lt), and according to (SMD), the primal update U t → U t+1 writes as (cf. (24)):

U t+1
il = U t

il · e−2γtR∗LηV t,Y (i,l)/n ·min
{
e−2γtR∗Lλ, R∗/M

}
,

where

L := log(2dk), Mt :=

2d∑

i=1

k∑

l=1

U t
il · e−2γtR∗LηV t,Y (i,l)/n,

and ηV t,Y has a single non-zero column ηt = ηtV t,Y (:, l
t). This can be rewritten as

U t+1
il =

{
U t
il · ν · qti , l = lt,

U t
il · ν, l 6= lt,

(57)

where
qti = e−2γtLR∗ηti/n,

ν = min{e−2γtLR∗λ, R∗/M},
M =

∑

i∈[2d]
U t
ilt · qti +

∑

i∈[2d]

∑

l∈[k]\{lt}
U t
il.

Thus, M and ν can be expressed via πt(i) =
∑

l∈[k]U
t(i, l), cf. (56):

M =
∑

i∈[2d]
πt
i − αt

iŨ
t
i,lt︸ ︷︷ ︸

U t

i,lt

(1− qti), (58)

where we used the premise (55). Now we can see that lazy updates of Ũ can be expressed as

αt+1
i = ν · αt

i,

Ũ t+1
i,lt = Ũ t

i,lt · qti ,
(59)

and the updates for the norms πt+1 as

πt+1
i = νt

[
πt
i + αt

iŨ
t
i,lt(q

t
i − 1)

]
(60)

One can immediately verify that this is exactly the update produced in the call of Procedure 1
in line 15 of Algorithm 1.
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Procedure 2 UpdateDual

Input: Ṽ , Y ∈ R
n×k, β, ρ, ξ ∈ R

n, ℓ ∈ [k], y ∈ [k]⊗n, γ
1: θ = e−2γ log(k)

2: for j = 1 to n do
3: ωj = e2γ log(k)ξj

4: εj = e−2γ log(k)Y (j,ℓ)

5: χj = 1− βj · Ṽ (j, ℓ) · (1− ωj · εj)
6: if ℓ 6= yj then # not the actual class of j drawn

7: χj ← χj − βj · Ṽ (j, yj) · (1− θ)
8: end if
9: β+

j = βj/χj

10: Ṽ (j, ℓ)← Ṽ (j, ℓ) · ωj · εj
11: Ṽ (j, yj)← Ṽ (j, yj) · ωj · θ
12: ρ+j = 2− 2β+

j · Ṽ (j, yj)
13: end for
Output: Ṽ , β+, ρ+

Dual Updates (Procedure 2). To demonstrate the correctness of Procedure 2, we prove
the following lemma.

Lemma F.2. Suppose that at t-iteration of Algorithm 1, Procedure 2 was fed with Ṽ = Ṽ t, β =
βt, ρ = ρt, ξ = ξt, ℓ = ℓt, for which one had

Ṽ t(:, l) ◦ βt = V t(:, l), ∀l ∈ [k], (61)

where V t is the t-th dual iterate of (SMD) equipped with (Full-SS) with the optimal sampling
distributions (37), and ξt was the only non-zero column ξU t(:, ℓt) of ξU t. Moreover, suppose also
that

ρt() = ‖V t(, :) − Y (, :)‖1,  ∈ [n] (62)

were the correct norms at the t-th step. Then Procedure 2 will output Ṽ t+t, βt+1, ρt+1 such that

Ṽ t+1(:, l) ◦ βt+1 = V t+1(:, l), ∀l ∈ [k]

and
ρt+1() = ‖V t+1(, :)− Y (, :)‖1,  ∈ [n].

Proof. Recall that the random matrix ξU t has a single non-zero column ξt := ξU t(:, ℓt), and
according to (SMD), the update V t → V t+1 writes as (cf. (25)):

V t+1
jl = V t

jl ·
exp[2γt log(k) · (ξU t(j, l) − Y (j, l))]

k∑
ℓ=1

V t
jℓ · exp[2γt log(k) · (ξU t(j, ℓ) − Y (j, ℓ))]

. (63)

Note that all elements of the matrix ξU t −Y in each row j have value 1, except for at most two
elements in the columns ℓt and yj, where yj is the actual label of the j-th training example,
that is, the only l ∈ [k] for which Y (j, l) = 1. Recall also that

∑
ℓ∈[k] V

t(j, ℓ) = 1 for any j ∈ [n].
Thus, introducing

ωj = e2γt log(k)ξ
t
j , εj = e−2γt log(k)Y (j,l)
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as defined in Procedure 2, we can express the denominator in (63) as

χj =





1− βt
j · Ṽ t

j,ℓt︸ ︷︷ ︸
V t

j,ℓt

·(1− ωj · εj), if ℓt = yj,

1− βt
j · Ṽ t

j,ℓt︸ ︷︷ ︸
V t
j,ℓt

·(1− ωj · εj)− βt
j · Ṽ t

j,yj︸ ︷︷ ︸
V t
j,yj

·(1 − e−2γt log(k)), if ℓt 6= yj,
(64)

where we used the premise (61). One can verify that this corresponds to the value of χj produced
by line 8 of Procedure 2. Then, examining the numerator in (63), we can verify that lines 9–11
guarantee that

Ṽ t+1
j,l · βt+1

j = V t+1
j,l , ∀l ∈ [k]

holds for the updated values. To verify the second invariant, we combining this result with the
premise (62). This gives

ρt+1
j = 2− V t+1

j,yj
= 2− 2βt+1

j · Ṽ t+1
j,yj

, (65)

which indeed corresponds to the update in line 12 of the procedure.

Correctness of Tracking the Cumulative Sums. We only consider the primal variables
(Procedure 3 and line 24 of Algorithm 1); the complimentary case can be treated analogously.
Note that due to the previous two lemmas, at any iteration t of Algorithm 1 Procedure 3 is fed
with l = lt, Ũ = Ũ t, α = αt for which it holds Ũ tαt = U t. Now, assume that all previous input
values Aτ , τ ≤ t, of variable A, and the current inputs At

pr, U
t
Σ of variables Apr, UΣ, satisfy the

following:

Aτ =

τ−1∑

s=0

αs, ∀τ ≤ t, (66)

At
pr(i, l) = A

τ t(i,l)
i , (67)

U t
Σ(i, l) =

τ t(i,l)∑

s=0

U s(i, l), (68)

where 0 6 τ t(i, l) 6 t− 1 is the latest moment s, strictly before t, when the sampled ls ∈ [k]
coincided with the given l:

τ t(i, l) = argmax
s6t−1

{s : ls = l}. (69)

Let us show that this invariant will be preserved aftet the call of Procedure 3 – in other words,
that (66)–(69) hold for t + 1, i.e., for the ouput values U t+1

Σ , At+1
pr , At+1 (note that the vari-

ables UΣ, Apr, A
t+1 only changed within Procedure 3, so their output values are also the input

values at the next iteration).

Proof. Indeed, it is clear that (66) will be preserved (cf. line 4 of Procedure 3). To ver-
ify (67), note that Apr(i, l) only gets updated when l = lt (cf. line 3), and in this case we
will have τ t+1(i, l) = t, and otherwise τ t+1(i, l) = τ t(i, l), cf. (69).

Thus, it only remains to verify the validity of (68) after the update. To this end, note that
by (69) we know that the value Ũ s(i, l) of the variable Ũ(i, l) remained constant for τ t(i, l) ≤ s <
t, and it will not change after the call at t-th iteration unless lt = l, that is, unless τ t+1(i, l) = t.
This is exactly when line (2) is invoked, and it ensures (68) for t+ 1.

Finally, invoking (66)–(69) at t = T , we see that line 24 results in the correct final value
∑T

t=0 U
t

of the cumulative sum UΣ. Thus, the correctness of Algorithm 1 is verified.
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G Additional Remarks on Algorithm 1

Removing the O(dk) Complexity Term. In fact, the extra term O(dk) in the runtime and
memory complexities of Algorithm 1 can be easily avoided. To see this, recall that when solving
the simplex-constrained CCSPP (11), we are foremost interested in solving the ℓ1-constrained
CCSPP (9), and an ε-accurate solution U = [U1;U2] ∈ R

2d×k to (11) yields an ε-accurate
solution Û = U1 − U2 ∈ R

d×k to (9). Recall that we initialize Algorithm 1 with Ũ0 = 12d×k

and α0 = 12d, which corresponds to Û0 = 02d×k. Moreover, at any iteration we change a single
entry of Ũ t, and scale the whole scaling vector α0 = 12d by a constant (in fact, all entries
of αt are always equal to each other; we omitted this fact in the main text to simplify the
presentation, since the entries of β generally have different values). Hence, the final candidate
solution ÛT = [ŪT

1 − ŪT
2 ] to the ℓ1-constrained problem will actually have at most O(dT ) non-

zero entries that correspond to the entries of Ũ changed in the course of the algorithm. To
exploit this, we can modify Algorithm 1 as follows:

• Instead of explicitly initializing and storing the whole matrices Ũ , UΣ, and Apr, we can

hard-code the “default” value Ũ(i, l) = 1 (cf. line 2 of Algorithm 1), and use a bit mask
to flag the entries Ũ(i, l) that have already been changed at least once. This mask can be
stored as a list Changed of pairs (i, l), i.e. in a sparse form.

• When post-processing the cumulative sum UΣ (see line (24) of Algorithm 1), instead of
post-processing all entries of UΣ, we can only process those in the list Changed, and ignore
the remaining ones, since the corresponding to them entries in ÛT (a candidate solution
to (9)) will have zero values. We can then directly output ÛT in a sparse form.

It is clear that such modification of Algorithm 1 results in the replacement of the O(dk) term
in runtime complexity with O(dT ) (which is always an improvement since O(d) a.o.’s are done
anyway in each iteration); moreover, the memory complexity changes from O(dn + nk + dk)
to O(dn+ nk + dmin(T, k)).

Infeasibility of the Noisy Dual Iterates. Note that when we generate an estimate of
the primal gradient XT (V t − Y ) according to (Full-SS) or (Part-SS), we also obtain an
unbiased estimate of the dual iterate V t, and vice versa. In the setup with vector vari-
ables, Juditsky and Nemirovski (2011b) propose to average such noisy iterates instead of the
acutal iterates (U t, V t) as we do in (SMD). Averaging of the noisy iterates is easier to imple-
ment since they are sparse (one does not need to track the cumulative sums), and one could
show similar guarantees for the primal accuracy of their running averages. However, in the
case of the dual variable its noisy counterpart is infeasible (Juditsky and Nemirovski, 2011b,
Sec. 2.5.1); as a result, one loses the guarantee for the duality gap. Hence, we prefer to track
the averages of the actual iterates of (SMD) as we do in Algorithm 1.
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