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Abstract

In this paper, we discuss the distribution of the t-statistic under the as-

sumption of normal autoregressive distribution for the underlying dis-

crete time process. This result generalizes the classical result of the

traditional t-distribution where the underlying discrete time process

follows an uncorrelated normal distribution. However, for AR(1), the

underlying process is correlated. All traditional results break down and

the resulting t-statistic is a new distribution that converges asymptot-

ically to a normal. We give an explicit formula for this new distribu-

tion obtained as the ratio of two dependent distribution (a normal and

the distribution of the norm of another independent normal distribu-

tion). We also provide a modified statistic that follows a non central

t-distribution. Its derivation comes from finding an orthogonal basis

for the the initial circulant Toeplitz covariance matrix. Our findings are

consistent with the asymptotic distribution for the t-statistic derived for

the asymptotic case of large number of observations or zero correlation.

This exact finding of this distribution has applications in multiple fields

and in particular provides a way to derive the exact distribution of the

Sharpe ratio under normal AR(1) assumptions.
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1 Introduction

Let X1, . . . , Xn be a random sample from a cumulative distribution function

(cdf) F (∆) with a constant mean µ and let define the following statistics

referred to as the t-statistic

Tn = T (Xn) =

√
n(X̄n − µ)

sn
(1)

where X̄n is the empirical mean, s2
n the empirical Bessel corrected empirical

variance, and Xn the regular full history of the random sample defined by:

X̄n =
1

n

n∑
i=1

Xi, s2
n =

1

n− 1

n∑
i=1

(Xi − X̄n)2, Xn = (X1, . . . , Xn)T (2)

It is well known that if the sample comes from a normal distribution,

N(0, σ), Tn has the Student t-distribution with n − 1 degrees of freedom.

The proof is quite simple (we provide a few in the appendix section in A.1).

If the variables (Xi)i=1..n have a mean µ non equal to zero, the distribution is

referred to as a non-central t-distribution with non centrality parameter given

by

η =
√
n

µ

σ
(3)

Extension to weaker condition for the t-statistics has been widely studied.

Mauldon [?] raised the question for which pdfs the t-statistic as defined by

1 is t-distributed with d− 1 degrees of freedom. Indeed, this characterization

problem can be generalized to the one of finding all the pdfs for which a certain

statistic possesses the property which is a characteristic for these pdfs. [?], [?]

and [?] to cite a few tackled Mauldon’s problem. [?] proved the necessary and

sufficient condition for a t-statistic to have Student’s t-distribution with d− 1

degrees of freedom for all sample sizes is the normality of the underlying dis-

tribution. It is not necessary that X1, ..., Xn is an independent sample. Indeed

consider X1, ..., Xn as a random vector Xn = (X1, ..., Xn)T each component of

which having the same marginal distribution function, F (∆). [?] has pointed

out that the weaker condition of symmetry can replace the normality assump-

tion. Later, [?] showed that if the vector Xn has a spherical distribution, then

the t-statistic has a t-distribution. A natural question that gives birth to this

paper was to check if the Student resulting distribution is conserved in the
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case of an underlying process (Xi)i=1,... following an AR(1) process. This ques-

tion and its answer has more implication than a simple theoretical problem.

Indeed, if by any chance, one may want to test the statistical significance of a

coefficient in a regression, one may do a t-test and rely upon the fact that the

resulting distribution is a Student one. If by any chance, the observations are

not independent but suffer from auto-correlation, the building blocks support-

ing the test break down. Surprisingly, as this problem is not easy, there has

been few research on this problem. Even if this is related to the Dickey Fuller

statistic (whose distribution is not closed form and needs to be computed by

Monte Carlo simulation), this is not the same statistics. [?] applied an Edge-

worth expansion precisely to the Dickey Fuller statistics but not to the original

t-statistic. The neighboring Dickey Fuller statistic has the great advantage to

be equal to the ratio of two known continuous time stochastic process making

the problem easier. In the sequel, we will first review the problem, comment

on the particular case of zero correlation and the resulting consequence of the

t-statistic. We will emphasize the difference and challenge when suddenly, the

underlying observations are not any more independent. We will study the

numerator and denominator of the t-statistic and derive their underlying dis-

tribution. We will in particular prove that it is only in the case of normal

noise in the underlying AR(1) process, that the numerator and denominator

are independent. We will then provide a few approximation for this statistic

and conclude.

2 AR(1) process

The assumptions that the underlying process (or observations) (Xi)i=1,...;n fol-

lows an AR(1) writes :{
Xt = µ+ εt t ≥ 1;

εt = ρεt−1 + σvt t ≥ 2;
(4)

where vt is an independent white noise processes (i.i.d. variables with zero

mean and unit constant variance). To assume a stationary process, we impose

|ρ| ≤ 1 (5)

It is easy to check that equation 4 is equivalent to

Xt = µ+ ρ(Xt−1 − µ) + σvt t ≥ 2; (6)
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We can also easily check that the variance and covariance of the returns

are given by

V (Xt) = σ2

1−ρ2 for t ≥ 1

Cov(Xt, Xu) = σ2ρ|t−u|

1−ρ2 for t, u ≥ 1
(7)

Both expressions in 7 are independent of time t and the covariance only

depends on |t− u| implying that Xt is a stationary process.

2.1 Case of Normal errors

If in addition, we assume that vt are distributed according to a normal distri-

bution, we can fully characterize the distribution of X and rewrite our model

in reduced matrix formulations as follows:

X =

 X1

...

Xn

 = µ · 1n + σ · ε = µ

 1
...

1

+ σ

 ε1
...

εn

 (8)

where ε ∼ N

(
0,Ω =

(
ρ|i−1|

1−ρ2

)
ij

)
, hence, X ∼ N (µ · 1n, σ2Ω).

The Ω matrix is a Toeplitz circulant matrix defined as

Ω =
1

1− ρ2


1 ρ . . . ρn−2 ρn−1

ρ 1 . . . ρn−3 ρn−2

...
...

. . .
...

...

ρn−2 ρn−3 . . . 1 ρ

ρn−1 ρn−2 . . . ρ 1

 = MTM (9)

Its Chlolesky decomposition is given by

M =
1√

1− ρ2


1 0 . . . 0 0

ρ
√

1− ρ2 . . . 0 0
...

...
. . .

...
...

ρn−2 ρn−3
√

1− ρ2 . . .
√

1− ρ2 0

ρn−1 ρn−2
√

1− ρ2 . . . ρ
√

1− ρ2
√

1− ρ2

(10)
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It is worth splitting M into In and another matrix as follows:

M =



1 +
1−
√

1−ρ2√
1−ρ2

0 . . . 0 0

ρ√
1−ρ2

1 . . . 0 0

...
...

. . .
...

...
ρn−2√

1−ρ2
ρn−3 . . . 1 0

ρn−1√
1−ρ2

ρn−2 . . . ρ 1


= In +



1−
√

1−ρ2√
1−ρ2

0 . . . 0 0

ρ√
1−ρ2

0 . . . 0 0

...
...

. . .
...

...
ρn−2√

1−ρ2
ρn−3 . . . 0 0

ρn−1√
1−ρ2

ρn−2 . . . ρ 0


︸ ︷︷ ︸
In + N

(11)

The inverse of Ω is given by

A = Ω−1 =


1 −ρ . . . 0 0

−ρ 1 + ρ2 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 + ρ2 −ρ
0 0 . . . −ρ 1

 = LTL (12)

Its Cholesky decomposition L is given by

L =



√
1− ρ2 0 . . . 0 0

−ρ 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

0 0 . . . −ρ 1

 (13)

Notice in the various matrix the dissymmetry between the first term and

the rest. This shows up for instance in the first diagonal term of L which is√
1− ρ2, while all other diagonal terms are equal to 1. Similarly, in the matrix

N , we can notice that the first column is quite different from the other ones

as it is a fraction over
√

1− ρ2.

2.2 T-statistics issue

The T-statistic given by equation 1 is not easy to compute. For the numerator,

we have that X̄n − µ follows a normal distribution. The proof is immediate

as X̄n is a linear combination of the Gaussian vector generated by the AR(1)

process. We have X̄n = 1
n
1n ·X. It follows that X̄n ∼ N(µ, σ

2

n21
T
n · Ω · 1n) (for
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a quick proof of the fact that any linear combination of a Gaussian vector is

normal, see B.1). In section 3, we will come back on the exact computation

of the characteristics of the distribution of the numerator and denominator as

this will be useful in the rest of the paper.

As for the denominator, for a non null correlation ρ, the distribution of s2
n

is not a known distribution.

The distributions of the variables
(
Yi = Xi − X̄n

)
i=2,...,n

are normal given by

Yi ∼ N(0, σYi) with σYi = (δi− 1
n
1n)T ·Ω·(δi− 1

n
1n). where δi = (0, 0, . . . , 1, . . . , 0, 0)T︸ ︷︷ ︸

1 at ith position

Hence the square of these normal variables Zi = Y 2
i is the sum of Gamma

distributions. However, we cannot obtain a closed form for the distribution s2
n

as the variance of the different terms are different and the terms are neither

independent. If the correlation is null, and only in this specific case, we can

apply the Cochran’s Theorem to prove that s2
n follows a Chi square distribution

with n − 1 degree of freedom. However, in the general case, we need to rely

on approximation that will be presented in the rest of the paper.

Another interesting result is to use the Cholesky decomposition of the in-

verse of the covariance matrix of our process to infer a modified t-statistic that

has now independent terms and is defined as follows

Let us take the modified process defined by

U = LX (14)

The variables U is distributed according to a normal U ∼ N(µL1, Idn). We

can compute the modified T-statistic T̃n on U as follows:

T̃n =

√
n(Ūn − µ)

s̃n
(15)

where

Ūn =
1

n

n∑
i=1

Ui, s̃2
n =

1

n− 1

n∑
i=1

(Ui − Ūn)2 (16)

In this specific case, the distribution of T̃n is a Student distribution of

degree n − 1. We will now work on the numerator and denominator of the

T-statistic in the specific case of AR(1) with a non null correlation ρ.
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3 Expectation and variance of numerator and

denominator

The numerator of the T-statistic writes

√
n(X̄n − µ) =

1√
n

n∑
i=1

(Xi − µ), (17)

Its expectation is null as each term is of zero expectation. Its variance is

given by

Lemma 3.1.

Var(
√
n(X̄n − µ)) =

σ2

1− ρ2

[
1 + ρ

1− ρ
− 2ρ(1− ρn)

n(1− ρ)2

]
(18)

=
σ2

(1− ρ)2

[
1− 2ρ(1− ρn)

n(1− ρ)(1 + ρ)

]
(19)

Proof. : See B.2

The proposition 3.1 is interesting as it states that the sample mean variance

converges to
σ2

(1− ρ)2
for large n. It is useful to keep the two forms of the

variance. The first one (equation (18)) is useful in following computation as it

shares the denominator term 1− ρ2. The second form (equation 19) gives the

asymptotic form.

The denominator writes:

sn =

√√√√ 1

n− 1

n∑
i=1

(Xi − X̄n)2, (20)

In the following, we denote by Yi = Xi−µ the zero mean variable and work

with these variables to make computation easier. We also write Y ⊥i the variable

orthogonal to Yi whose variance (we sometimes refer to it as its squared norm

to make notation easier) is equal to the one of Yi : ‖Yi‖2 =
∥∥Y ⊥i ∥∥2

. To see the

impact of correlation, we can write for any j > i, Yj = ρj−iYi+
√

1− ρ2(j−i)Y ⊥i .

As studying this denominator is not easy because of the presence of the

square root, it is easier to investigate the properties of its squared given by

s2
n =

∑n
i=1(Yi − Ȳn)2

n− 1
=

∑n
i=1 Y

2
i − nȲ 2

n

n− 1
(21)
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We have that the mean of Ȳn is zero while proposition 3.1 gives its variance

:

Var(Ȳn) =
σ2

n(1− ρ2)

[
1 + ρ

1− ρ
− 2ρ(1− ρn)

n(1− ρ)2

]
=

σ2

n(1− ρ)2

[
1− 2ρ(1− ρn)

n(1− ρ)(1 + ρ)

]
(22)

Lemma 3.2. The covariance between Ȳn and each stochastic variable Yj is

useful and given by

Cov(Ȳn, Yj) =
σ2

n(1− ρ2)

[
1 + ρ− ρn+1−j − ρj

1− ρ

]
(23)

In addition, we have a few remarkable identities

n∑
j=1

Cov(Ȳn, Yj) =
σ2

(1− ρ2)

[
1 + ρ

1− ρ
− 2ρ(1− ρn)

n(1− ρ)2

]
(24)

n∑
j=1

(
Cov(Ȳn, Yj)

)2
=

σ4

(1− ρ2)2

[
(1 + ρ)2 + 2ρn+1

(1− ρ)2

1

n
− 4(1 + ρ)2ρ(1− ρn)− 2ρ2(1− ρ2n)

(1− ρ)2(1− ρ2)

1

n2

]
(25)

Proof. : See B.3

We can now compute easily the expectation and variance of the denomi-

nators as follows

Proposition 3.1. The expectation of s2
n is given by:

Es2
n =

σ2

1− ρ2

(
1− 2ρ

(1− ρ)(n− 1)
+

2ρ(1− ρn)

n(n− 1)(1− ρ)2

)
(26)

Proof. : See B.4

Proposition 3.2. The second moment of s2
n is given by:

E[s4
n] =

σ4

(1− ρ2)2

1

(n− 1)2

[
n2 − 1 + ρ

(
nA1 + A2 +

1

n
A3 +

1

n2
A4

)]
(27)

with

A1 =
−4

1− ρ2
(28)

A2 =
−2 (3 + 9ρ+ 11ρ2 + 3ρ3 + 6ρn + 12ρn+1 + 6ρn+2 − 2ρ2n+2)

(1− ρ2)2
(29)

A3 =
4(1− ρn)(1− 3ρ+ 4ρ2 − 8ρn+1)

(1− r)3(1 + r)
(30)

A4 =
12ρ(1− ρn)2

(1− ρ)4
(31)
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Proof. : See B.5

Combining the two results leads to

Proposition 3.3. The variance of s2
n is given by:

Var[s4
n] =

σ4

(1− ρ2)2

1

(n− 1)

[
2 +

ρ

n− 1

(
nB1 +B2 +

1

n
B3 +

1

n2
B4

)]
(32)

with

B1 =
−2

1 + ρ
(33)

B2 = − 2

1− ρ
− 4ρ2

(1− ρ)2
− 2 (1− ρn)

(1− ρ)2
(34)

− 2 (12ρn+1 + 6ρn+2 − 2ρ2n+2 + 6ρn + 3ρ3 + 11ρ2 + 9ρ+ 3)

(1− ρ2)2 (35)

B3 =
(1− ρn)(13− 4ρ+ 15ρ2 − ρn − 32ρn+1 + ρn+2)

(1− r)3(1 + r)
(36)

B4 =
−4(1− 3ρ)(1− ρn)2

(1− ρ)4
(37)

Proof. : See B.6

It is worth noting that a direct approach as explained in [?] could also give

the results for the first, second moments and variance for the numerator and

denominator.

4 Resulting distribution

The previous section shows that under the AR(1) assumptions, the t-statistic

is no longer a Student distribution but the ratio of a normal whose first and

second moments have been given above and the norm of a Gaussian whose

moments have also been provided. To go further, one need to rely on numerical

integration. This is the subject of further research.

5 Conclusion

In this paper, we have given the explicit first, second moment and variance

of the numerator of the t statistic under the assumption of AR(1) underlying



9

process. We have seen that these moments are very sensitive to the correlation

ρ assumptions and that the distribution is far from a Student distribution.



10

A Various Proofs for the Student density

A.1 Deriving the t-student density

Let us first remark that in the T-statistic, the
√
n factor cancels out to show

the degree of freedom
√
n− 1 as follows:

Tn =
X̄ − µ

sn/
√
n

=
X̄ − µ

σ√
n

1
sn
σ

= U
1
sn
σ

=
√
n− 1

U√∑
(Xi−X̄)2

σ2

=
√
n− 1

U

V
(38)

In the above expression, it is well know that if X ∼ N(µ, σ), then the

renormalized variable U = (X̄−µ)
σ/
√
n
∼ N(0, 1) and V =

√∑
(Xi−X̄)2

σ2 ∼ χ2
(n−1)

as well as U and V are independent. Hence, we need to prove that the distribu-

tion of T = U/
√
V/k is a Student distribution with U ∼ N(0, 1), and V ∼ χ2

k

mutually independent, and k is the degree of freedom of the chi squared dis-

tribution.

The core of the proof relies on two steps that can be proved by various

means.

Step 1 is to prove that the distribution of T is given by

fT (t) =
1

Γ(k
2
)2

k+1
2

√
πk

∫ ∞
0

e−w( t
2

2k
+ 1

2
)w

k−1
2 dw (39)

Step 2 is to compute explicitly the integral in equation 39

Step 1 can be done by transformation theory using the Jacobian of the inverse

transformation or the property of the ratio distribution. Step 2 can be done by

Gamma function, Gamma distribution properties, Mellin transform or Laplace

transform.

A.2 Proving step 1

A.2.1 Using transformation theory

The joint density of U and V is:

fU,V (u, v) =
1

(2π)1/2
e−u

2/2︸ ︷︷ ︸
pdf N(0,1)

1

Γ(k
2
) 2k/2

v(k/2)−1 e−v/2︸ ︷︷ ︸
pdf χ2

k

(40)
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with the distribution support given by −∞ < u <∞ and 0 < v <∞.

Making the transformation t = u√
v/k

and w = v, we can compute the

inverse: u = t
(
w
k

)1/2
and v = w. The Jacobian 1 is given by

J(t, w) =

∣∣∣∣∣
(
w
k

)1/2 t

2(kw)1/2

0 1

∣∣∣∣∣ (41)

whose value is (w/k)1/2. The marginal pdf is therefore given by:

fT (t) =

∫ ∞
0

fU,V

(
t (
w

k
)1/2, w

)
J(t, w) dw (42)

=

∫ ∞
0

1

(2π)1/2
e−(t2 w

k
)/2 1

Γ(k
2
) 2k/2

w(k/2)−1 e−w/2(w/k)1/2 dw (43)

=
1

Γ(k
2
)2

k+1
2

√
πk

∫ ∞
0

e−w( t
2

2k
+ 1

2
)w

k−1
2 dw (44)

which proves the result

A.2.2 Using ratio distribution

The square-root of V ,
√
V ≡ V̂ is distributed as a chi-distribution with k

degrees of freedom, which has density

fV̂ (v̂) =
21− k

2

Γ
(
k
2

) v̂k−1 exp
{
− v̂

2

2

}
(45)

Define X ≡ V̂√
k
. Then by change-of-variable, we can compute the density of

X:

fX(x) = fV̂ (
√
kx)
∣∣∣∂V̂
∂X

∣∣∣ (46)

=
21− k

2

Γ
(
k
2

)k k2xk−1 exp
{
−k x

2

2

}
(47)

The student’s t random variable defined as T = Z
X

has a distribution given

by the ratio distribution:

fT (t) =

∫ ∞
−∞
|x|fU(xt)fX(x)dx (48)

1determinant of the Jacobian matrix of the transformation



12

We can notice that fX(x) = 0 over the interval [−∞, 0] since X is a non-

negative random variable. We are therefore entitled to eliminate the absolute

value. This means that the integral reduces to

fT (t) =

∫ ∞
0

xfU(xt)fX(x)dx (49)

=

∫ ∞
0

x
1√
2π

exp
{
−(xt)2

2

} 21− k
2

Γ
(
k
2

)k k2xk−1 exp
{
−k

2
x2
}
dx (50)

=
1√
2π

21− k
2

Γ
(
k
2

)k k2 ∫ ∞
0

xk exp
{
− 1

2
(k + t2)x2

}
dx (51)

To conclude, we make the following change of variable x =
√

w
k

that leads

to

fT (t) =
1

Γ(k
2
)2

k+1
2

√
πk

∫ ∞
0

e−w( t
2

2k
+ 1

2
)w

k−1
2 dw (52)

A.3 Proving step 2

The first step is quite relevant as it proves that the integral to compute takes

various form depending on the change of variable done.

A.3.1 Using Gamma function

Using the change of variable w = 2ku
t2+k

and knowing that Γ(n) =
∫∞

0
e−uun−1 du,

we can easily conclude as follows:

fT (t) =
1

Γ(k
2
)2

k+1
2

√
πk

∫ ∞
0

e−w( t
2

2k
+ 1

2
)w

k−1
2 dw (53)

=
1

Γ(k
2
)2

k+1
2

√
πk

(
2k

t2 + k

) k+1
2
∫ ∞

0

e−uu
k+1
2
−1 du (54)

=
1

Γ(k
2
)2

k+1
2

√
πk

(
2k

t2 + k

) k+1
2

Γ
(k + 1

2

)
(55)

=
Γ(k+1

2
)

Γ(k
2
)

1√
πk

(
k

t2 + k

) k+1
2

(56)
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A.3.2 Using Gamma distribution properties

Another way to conclude is to notice the kernel of a gamma distribution pdf

given by xα−1 exλ in the integral of 39 with parameters α = (k + 1)/2, λ =

(1/2)(1 + t2/k). The generic pdf for the gamma distribution is λα

Γ(α)
xα−1 exλ

and it sums to one over [0,∞], hence

fT (t) =
1

Γ(k
2
)2

k+1
2

√
πk

∫ ∞
0

e−w( t
2

2k
+ 1

2
)w

k−1
2 dw (57)

=
1

Γ(k
2
)2

k+1
2

√
πk

Γ(k+1
2

)

( t
2+k
2k

)
k+1
2

(58)

=
Γ(k+1

2
)

Γ(k
2
)

1√
πk

(
k

t2 + k

) k+1
2

(59)

A.3.3 Using Mellin transform

The integral of equation 39 can be seen as a Mellin transform for the function

g(x) = e−w( t
2

2k
+ 1

2
), whose solution is well known and given by

Mg(
k + 1

2
) ≡

∫ ∞
0

x
k+1
2
−1g(x)dx =

Γ(k+1
2

)

( t
2+k
2k

)
k+1
2

(60)

Like previously, this concludes the proof.

A.3.4 Using Laplace transform

We can use a result of Laplace transform for the function f(u) = uα as folllows:

Lf (s) =

∫ ∞
0

e−usuαdu =
Γ(α + 1)

sα+1
(61)

Hence the integral
∫∞

0
e−uu

k+1
2
−1 du is simply the the value of the Laplace

transform of the polynomial function taken for s = 1, whose value is Γ
(
k+1

2

)
.

Making the change of variable w = 2ku
t2+k

in equation 39 enables to conclude

similarly to the proof for the Gamma function
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A.3.5 Using other transforms

Indeed, as the Laplace transform is related to other transform, we could also

prove the result with Laplace–Stieltjes, Fourier, Z or Borel transform.

A.4 Sum of independent normals

We want to prove that if Xi ∼ N(0, 1) then 1
n−1

∑n
i=1(Xi − X̄n)2 ∼ χ2

n−1.

There are multiple proofs for this results:

• Recursive derivation

• Cochran’s theorem

A.4.1 Recursive derivation

Lemma A.1. Let us remind a simple lemma:

• If Z is a N(0, 1) random variable, then Z2 ∼ χ2
1; which states that the

square of a standard normal random variable is a chi-squared random

variable.

• If X1, . . . , Xn are independent and Xi ∼ χ2
pi

then X1 + . . . + Xn ∼
χ2
p1+...+pn, which states that independent chi-squared variables add to a

chi-squared variable with its degree of freedom equal to the sum of indi-

vidual degree of freedom.

The proof of this simple lemma can be established with variable transfor-

mations for the fist part and by moment generating function for the second

part. We can now prove the following proposition

Proposition A.1. If X1, . . . , Xn is a random sample from a N(µ, σ2) dis-

tribution, then

• X̄n and s2
n are independent random variables.

• X̄n has a N(µ, σ2/n) distribution where N denotes the normal distribu-

tion.

• (n−1)s2
n/σ

2 has a chi-squared distribution with n−1 degrees of freedom.
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Proof. Without loss of generality, we assume that µ = 0 and σ = 1. We first

show that sn can be written only in terms of
(
Xi − X̄n

)
i=2,...,n

. This comes

from:

s2
n =

1

n− 1

n∑
i=1

(Xi − X̄n)2 =
1

n− 1

[
(X1 − X̄n)2 +

n∑
i=2

(Xi − X̄n)2

]
(62)

=
1

n− 1

[
(
n∑
i=2

(Xi − X̄n))2 +
n∑
i=2

(Xi − X̄n)2

]
(63)

where we have use the fact that
∑n

i=1(Xi − X̄n) = 0, hence X1 − X̄n =

−
∑n

i=2(Xi − X̄n).

We now show that s2
n and X̄n are independent as follows: The joint pdf of

the sample X1, . . . , Xn is given by

f(x1, . . . , xn) =
1

(2π)n/2
e−

1
2

∑n
i=1 x

2
i , −∞ < xi <∞. (64)

We make the

y1 = x̄ (65)

y2 = x2 − x̄ (66)
... (67)

yn = xn − x̄ (68)

The Jacobian of the transformation is equal to 1/n. Hence

f(y1, , . . . , yn) =
n

(2π)n/2
e−

1
2

(y1−
∑n
i=2 yi)

2

e−
1
2

∑n
i=2(yi+y1)2 , −∞ < xi <∞(69)

= [(
n

2π
)1/2e−

n
2
y21 ][

n1/2

(2π)(n−1)/2
e−

1
2

[
∑n
i=2 y

2
i+(

∑n
i=2 yi)

2]] (70)

which proves that Y1 = X̄n is independent of Y2, . . . , Yn, or equivalently,

X̄n is independent of s2
n. To finalize the proof, we need to derive a recursive

equation for s2
n as follows: We first notice that there is a relationship between

x̄n and x̄n+1 as follows:

x̄n+1 =

∑n+1
i=1 xi
n+ 1

=
xn+1 + nx̄n
n+ 1

= x̄n +
1

n+ 1
(xn+1 − x̄n), (71)
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We have therefore:

ns2
n+1 =

n+1∑
i=1

(xi − x̄n+1)2 =
n+1∑
i=1

[(xi − x̄n)− 1

n+ 1
(xn+1 − x̄n)]2 (72)

=
n+1∑
i=1

[(xi − x̄n)2 − 2(xi − x̄n)(
xn+1 − x̄n
n+ 1

) +
1

(n+ 1)2
(xn+1 − x̄n)2] (73)

=
n+1∑
i=1

(xi − x̄n)2 + (xn+1 − x̄n)2 − 2
(xn+1 − x̄n)2

n+ 1
+

(n+ 1)

(n+ 1)2
(xn+1 − x̄n)2(74)

= (n− 1)s2
n +

n

n+ 1
(xn+1 − x̄n)2 (75)

We can now get the result by induction. The result is true for n = 2 since

s2
2 = (x2−x1)2

2
with x2−x1√

2
∼ N(0, 1), hence s2

2 ∼ χ2
1. Suppose it is true for n,

that is (n − 1)s2
n ∼ χ2

n−1, then since ns2
n+1 = (n − 1)s2

n + n
n+1

(xn+1 − x̄n)2,

s2
n+1 is the sum of a χ2

n−1 and n
n+1

(xn+1− x̄n)2 which is independent of sn and

distributed as χ2
1 since xn+1 − x̄n ∼ N(0, n+1

n
. Using our lemma, this means

that ns2
n+1 ∼ χ2

n. This concludes the proof.

A.4.2 Cochran’s theorem

Proof. We define the sub vectorial space F spanned by the vector 1n =

(1, . . . , 1)2 which is one for each coordinate. Its projection matrix is given

by PF = 1n(1Tn1n)−1
1
T
n = 1

n
1n1

T
n . The orthogonal sub vectorial space of Rn,

denoted by F⊥, has its projection matrix given by PF⊥ = Idn − PF . The

projection of the (xi)i=1,...,n over F (respectively F⊥) is given by (x̂n, . . . , x̂n)T

(respectively) (x1−x̂n, . . . , xn−x̂n)T . The Cochran’s theorem states that these

two vectors are independent and that ||PF⊥X||2 = (n− 1)s2
n ∼ χ2(n− 1)

B Various proof around Normal

B.1 Linear combination of Correlated Normal

For any d-dimensional multivariate normal distribution X ∼ Nd(µ,Σ) where

Nd stands for the multi dimensional normal distribution, µ = (µ1, . . . , µd)
T
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and Σjk = cov(Xj, Xk) j, k = 1, . . . , d, the characteristic function is given by:

ϕX(t) = E
[
exp(itTX)

]
= exp

(
itTµ− 1

2
tTΣt

)
(76)

= exp

(
i

d∑
j=1

tjµj −
1

2

d∑
j=1

d∑
k=1

tjtkΣjk

)
(77)

For a new random variable Z = aTX =
∑d

j=1 ajXj, the characteristic

function for Z writes:

ϕZ(t) = E [exp(itZ)] = E
[
exp(itaTX)

]
= ϕX(ta) (78)

= exp

(
it

d∑
j=1

ajµj −
1

2
t2

d∑
j=1

d∑
k=1

ajakΣjk

)
(79)

This proves that Z is normally distributed with mean given by µZ =∑d
j=1 ajµj and variance given by σ2

Z =
∑d

j=1

∑d
k=1 ajakΣjk. We can simplify

the expression for the variance since Σjk = Σkj get:

σ2
Z =

d∑
j=1

a2
jΣjj + 2

d∑
j=2

j−1∑
k=1

ajakΣjk (80)

B.2 Variance of the sample mean in AR(1) process

The computation is given as follows

Var(
√
n(X̄n − µ)) =

1

n
Var(

n∑
i=1

(Xi − µ)) =
1

n
E

[
(
n∑
i=1

(Xi − µ))2

]
(81)

=
1

n
E

[
n∑
i=1

(Xi − µ)2 + 2
∑

i=1..n,j=1...i−1

(Xi − µ)(Xj − µ)

]
(82)

We have

E

[
n∑
i=1

(Xi − µ)2

]
=

nσ2

(1− ρ2)
(83)

and E

[ ∑
i=1..n,j=1...i−1

(Xi − µ)(Xj − µ)

]
=

σ2

(1− ρ2)

∑
i=1..n

j=1...i−1

ρi−j (84)

=
σ2

(1− ρ2)

∑
i=1..n

(n− i)ρi(85)
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At this stage, we can use rules about geometric series. We have

n∑
i=1

ρi = ρ
n−1∑
i=0

ρi
n∑
i=1

iρi = ρ
∂

∂ρ

n∑
i=0

ρi (86)

= ρ
1− ρn

1− ρ
= ρ

1− (n+ 1)ρn + nρn+1

(1− ρ)2
(87)

This leads in particular to

n∑
i=1

(n− i)ρi = ρ
n(1− ρ)− (1− ρn)

(1− ρ)2
(88)

Hence,

Var(
√
n(X̄n − µ)) =

σ2

(1− ρ2)n

[
n+ 2

(
nρ

1− ρn

1− ρ
− ρ1− (n+ 1)ρn + nρn+1

(1− ρ)2

)]
(89)

=
σ2

(1− ρ2)n

[
n+ 2

(
nρ(1− ρ)− ρ(1− ρn)

(1− ρ)2

)]
(90)

=
σ2

1− ρ2

[
1 + ρ

1− ρ
− 2ρ(1− ρn)

n(1− ρ)2

]
(91)

=
σ2

(1− ρ)2

[
1− 2ρ(1− ρn)

n(1− ρ)(1 + ρ)

]
(92)

B.3 Variance of the sample mean in AR(1) process

The computation of 23 is easy and given by

Cov(Ȳn, Yj) =
1

n
E

[
n∑
i=1

YiYj

]
(93)

=
σ2

n(1− ρ2)

[
n∑
i=1

ρ|i−j|

]
(94)

=
σ2

n(1− ρ2)

[
n−j∑
i=0

ρi +

j−1∑
i=0

ρi − 1

]
(95)

=
σ2

n(1− ρ2)

[
1− ρn+1−j

1− ρ
+

1− ρj

1− ρ
− 1

]
(96)

=
σ2

n(1− ρ2)

[
1 + ρ− ρn+1−j − ρj

1− ρ

]
(97)
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The second equation 24 is trivial as

Ȳn =

∑n
i=1 Yi
n

.

Hence

n∑
j=1

Cov(Ȳn, Yj) = nVar(Ȳn) =
σ2

(1− ρ)2

[
1− 2ρ(1− ρn)

n(1− ρ)(1 + ρ)

]
(98)

For the last equation, we can compute and get the result as follows

n∑
j=1

(
Cov(Ȳn, Yj)

)2
=

n∑
j=1

σ4

n2(1− ρ2)2

[
1 + ρ− ρn+1−j − ρj

1− ρ

]2

(99)

=
σ4

n2(1− ρ2)2(1− ρ)2

n∑
j=1

[
1 + ρ− ρn+1−j − ρj

]2
(100)

Expanding the square leads to

n∑
j=1

[
1 + ρ− ρn+1−j − ρj

]2
=

n∑
j=1

(1+ρ)2+(ρ2)n+1−j+(ρ2)j−2(1+ρ)ρn+1−j−2(1+ρ)ρj+2ρn+1

(101)

Denoting by S the summation, computing the different terms and summing

them up leads to

S = n
(
(1 + ρ)2 + 2ρn+1

)
+ 2ρ2 1− ρ2n

1− ρ2
− 4(1 + ρ)ρ

1− ρn

1− ρ
(102)

since
n∑
j=1

ρj + ρn+1−j = 2ρ
1− ρ2

1− ρ
(103)

Regrouping all the terms leads to

n∑
j=1

(
Cov(Ȳn, Yj)

)2
=

σ4

(1− ρ2)2

[
(1 + ρ)2 + 2ρn+1

(1− ρ)2

1

n
− 4(1 + ρ)2ρ(1− ρn)− 2ρ2(1− ρ2n)

(1− ρ)2(1− ρ2)

1

n2

]
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B.4 Expectation of denominator

Lemma 3.1) states that

E
[
nȲ 2

n

]
=

σ2

1− ρ2

(
1 + ρ

1− ρ
− 2ρ(1− ρn)

n(1− ρ)2

)
(104)

We can compute as follows:

Es2
n =

1

n− 1
E

[
n∑
i=1

Y 2
i − nȲ 2

n

]
(105)

=
σ2

(n− 1)(1− ρ2)

[
n−

(
1 + ρ

1− ρ
− 2ρ(1− ρn)

n(1− ρ)2

)]
(106)

=
σ2

(n− 1)(1− ρ2)

[
(n− 1)−

(
2ρ

1− ρ
− 2ρ(1− ρn)

n(1− ρ)2

)]
(107)

=
σ2

1− ρ2

(
1− 2ρ

(1− ρ)(n− 1)
(1− 1− ρn

n(1− ρ)

)
(108)

=
σ2

1− ρ2

(
1− 2ρ

(1− ρ)(n− 1)
+

2ρ(1− ρn)

n(n− 1)(1− ρ)2

)
(109)

B.5 Second moment of denominator

We have

Es4
n =

1

(n− 1)2
E

[
(
n∑
i=1

Y 2
i − nȲ 2

n )2

]
(110)

=
1

(n− 1)2
E

[
(
n∑
i=1

Y 2
i )2 + n2Ȳ 4

n − 2nȲ 2
n (

n∑
i=1

Y 2
i )

]
(111)

=
1

(n− 1)2
E

[
n∑
i=1

Y 4
i + 2

n∑
i=1,k=i+1

Y 2
i Y

2
k + n2Ȳ 4

n − 2nȲ 2
n (

n∑
i=1

Y 2
i )

]
(112)

We can compute the fourth moment successively. Since both Yi and Ȳn are

two normal, their fourth moment is three times the squared variance. This
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gives:

E

[
n∑
i=1

Y 4
i

]
= 3n× σ4

(1− ρ2)2
(113)

E
[
n2Ȳ 4

n

]
= 3× σ4

(1− ρ2)2

[
1 + ρ

1− ρ
− 2ρ(1− ρn)

n(1− ρ)2

]2

(114)

The cross terms between Yi Yk is more involved and is computed as follows:

E
[ n∑

i=1
k=i+1

Y 2
i Y

2
k

]
= E

[ n∑
i=1

k=i+1

ρ2(k−i)Y 4
i + (1− ρ2(k−i))Y 2

i (Y ⊥i )2

]
(115)

=
σ4

(1− ρ2)2

[ n∑
i=1

k=i+1

2ρ2(k−i) + 1

]
(116)

=
σ4

(1− ρ2)2

[
2

n∑
i=1

(n− i)ρ2i +
n(n− 1)

2

]
(117)

=
σ4

(1− ρ2)2

[
2ρ2n(1− ρ2)− (1− ρ2n)

(1− ρ2)2
+
n(n− 1)

2

]
(118)

For the cross term between Ȳ 2
n and

∑n
i=1 Y

2
i , we wan use the fact that

Ȳn and Yi are two correlated Gaussians. Remember that for two Gaussians,

E[U2V 2] = E[U2]E[V 2] + 2(Cov(U, V ))2. We apply this trick to get:

E

[
Ȳ 2
n (

n∑
i=1

Y 2
i )

]
=

n∑
i=1

E
[
Ȳ 2
n Y

2
i

]
(119)

=
n∑
i=1

E
[
Ȳ 2
n

]
E
[
Y 2
i

]
+ 2(Cov(Ȳn, Yi))

2 (120)

= E
[
Ȳ 2
n

] n∑
i=1

E
[
Y 2
i

]
+ 2

n∑
i=1

(Cov(Ȳn, Yi))
2 (121)

The first term is given by

E
[
Ȳ 2
n

] n∑
i=1

E
[
Y 2
i

]
=

σ4

(1− ρ2)2

[
1 + ρ

1− ρ
− 2ρ(1− ρn)

n(1− ρ)2

]
(122)

The second term is given by

2
n∑
i=1

(Cov(Ȳn, Yi))
2 =

2σ4

(1− ρ2)2

[
(1 + ρ)2 + 2ρn+1

(1− ρ)2

1

n
− 4(1 + ρ)2ρ(1− ρn)− 2ρ2(1− ρ2n)

(1− ρ)2(1− ρ2)

1

n2

]
(123)
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Summing up all quantities leads to

(n− 1)2Es4
n =

σ4

(1− ρ2)2

[
3n+ n(n− 1) + 4ρ2n(1− ρ2)− (1− ρ2n)

(1− ρ2)2
+ 3

[
1 + ρ

1− ρ
− 2ρ(1− ρn)

n(1− ρ)2

]2

(124)

− 2n

[
1 + ρ

1− ρ
− 2ρ(1− ρn)

n(1− ρ)2
+

(1 + ρ)2 + 2ρn+1

(1− ρ)2

2

n
− (1 + ρ)2ρ(1− ρn)− 2ρ2(1− ρ2n)

(1− ρ)2(1− ρ2)

8

n2

] ]
(125)

Regrouping all the terms leads to

E[s4
n] =

σ4

(1− ρ2)2

1

(n− 1)2

[
n2 − 1 + ρ

(
nA1 + A2 +

1

n
A3 +

1

n2
A4

)]
(126)

with

A1 =
−4

1− ρ2
(127)

A2 =
−2 (3 + 9ρ+ 11ρ2 + 3ρ3 + 6ρn + 12ρn+1 + 6ρn+2 − 2ρ2n+2)

(1− ρ2)2
(128)

A3 =
4(1− ρn)(1− 3ρ+ 4ρ2 − 8ρn+1)

(1− r)3(1 + r)
(129)

A4 =
12ρ(1− ρn)2

(1− ρ)4
(130)

B.6 Variance of denominator

The result is obtained from meticulously computing the variance knowing that

Var[s4
n] = E[s4

n]− (E[s2
n])2 (131)

The terms for the part E[s4
n] have already been computed in proposition

3.2. As for the term coming from the square of the expectation, they write as:

(E[s2
n])2 =

σ4

(1− ρ2)2

(
1− 2ρ

(1− ρ)(n− 1)
+

2ρ(1− ρn)

n(n− 1)(1− ρ)2

)2

(132)

=
σ4

(n− 1)2(1− ρ2)2

(
(n− 1)− 2ρ

1− ρ
+

2ρ(1− ρn)

n(1− ρ)2

)2

(133)
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Let us write the square as E1 =
(

(n− 1)− 2ρ
1−ρ + 2ρ(1−ρn)

n(1−ρ)2

)2

. We can

expand the square as follows

E1 = (n− 1)2 +
4(n− 1)ρ(1− ρn)

n(1− ρ)
− 4ρ(n− 1)

1− ρ
+

2ρ

(1− ρ)2

(
1− ρn

n(1− ρ)
− 1

)2

(134)

Rearranging the terms leads then to the final result.


