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A few properties of sample variance

Eric Benhamou ∗, †, ‡

Abstract

A basic result is that the sample variance for i.i.d. observations is an unbiased
estimator of the variance of the underlying distribution (see for instance Casella and
Berger (2002)). Another result is that the sample variance ’s variance is minimum
compared to any other unbiased estimators (see Halmos (1946)). But what happens
if the observations are neither independent nor identically distributed. What can we
say? Can we in particular compute explicitly the first two moments of the sample
mean and hence generalize formulae provided in Tukey (1957a), Tukey (1957b) for the
first two moments of the sample variance? We also know that the sample mean and
variance are independent if they are computed on an i.i.d. normal distribution. This is
one of the underlying assumption to derive the Student distribution Student alias W.
S. Gosset (1908). But does this result hold for any other underlying distribution? Can
we still have independent sample mean and variance if the distribution is not normal?
This paper precisely answers these questions and extends previous work of Cho, Cho,
and Eltinge (2004). We are able to derive a general formula for the first two moments
and variance of the sample variance under no specific assumptions. We also provide a
faster proof of a seminal result of Lukacs (1942) by using the log characteristic function
of the unbiased sample variance estimator.
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1. Introduction

Let X1, . . . , Xn be a random sample and define the sample variance statistic as:

X̄n =
1

n

n∑
i=1

Xi, s2
n =

1

n− 1

n∑
i=1

(Xi − X̄n)2, Xn = (X1, . . . , Xn)T (1)

where X̄n is the empirical mean, s2
n the empirical Bessel corrected empirical variance also

called sample variance, and Xn the vector of the full history of this random sample.

We are interested in the first two moments of the sample variance as well as its relationship

with the sample mean. A basic result is that the sample variance for i.i.d. observations is

an unbiased estimator of the variance of the underlying distribution. But what happens if

the observations are neither independent nor identically distributed. What can we say?

Can we in particular compute explicitly the first two moments of the sample variance

without any particular assumptions on the sample? Can we generalize standard formula for

the first two moments of the sample variance as provided in Tukey (1957a), Tukey (1957b).

We also know that the sample mean and variance are independent if they are computed

from an i.i.d. normal distribution. But what about any other underlying distribution? Can

we still have independent sample mean and variance if the distribution is not normal for

an i.i.d. sample? These are the motivations of this paper. This paper extends classical

statistical results found in Cho et al. (2004) but also Tukey (1950), Tukey (1956), Tukey

(1957a), Tukey (1957b). It is organized as follows. First we derive the fist two moments

for the sample variance. We then examine the condition for the sample mean and variance

to be independent. We show that it is only in the specific case of an underlying normal

distribution that they are independent. We conclude on possible extensions.

2. Moment properties

2.1. symmetrical form of the sample variance

A first property that will be useful in the rest of th paper is the writing of the sample

variance as a ”U-statistic” (or symmetric) form as given by the following lemma

Lemma 2.1. The sample variance can be defined as the average of the kernel h(x1, x2) =

(x1 − x2)2/2 over all n(n− 1) pairs of observations (Xi, Xj) for i 6= j:

s2
n =

1

n(n− 1)

n∑
i,j=1

(Xi −Xj)
2

2
=

1

n(n− 1)

∑
i 6=j

(Xi −Xj)
2

2
(2)
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Proof. See proof A

This symmetric form for the sample variance helps us computing the various moments

of the sample variance. Denoting by µk = E
[
Xk
]

the various moment of the variable X and

assuming that (Xi)i=1,...,n are n observations of the variable X (not necessarily independent),

we can start computing the sample variance moments.

2.2. First moment of sample variance

Lemma 2.2. The expectation of the sample variance is given by:

E
[
s2
n

]
=

∑n
i=1 E [X2

i ]

n
−
∑

i 6=j E [XiXj]

n(n− 1)
(3)

Hence if (Xi)i=1,...,n is independent and identically distributed, we get that s2
n is an unbiased

estimator of the variance :

E
[
s2
n

]
= µ2 − µ2

1 = Var[X] (4)

where µ2 = E [X2] and µ1 = E [X].

Proof. See proof B.1

This lemma calls various remarks. First of all, the fact that for iid sample, the sample

variance is unbiased is very well know (see for instance Casella and Berger (2002)). Secondly,

the cross term E [XiXj] implies that this estimator will not be unbiased for correlated sample

as the expectation can rewite as

E
[
s2
n

]
=

∑n
i=1 E [X2

i ]

n
−
∑

i 6=j E [Xi]E [Xj]

n(n− 1)
−
∑

i 6=j (E [XiXj]− E [Xi]E [Xj])

n(n− 1)
(5)

Hence for a non independent sample the term E [XiXj]−E [Xi]E [Xj] does not cancel, while

the first and second terms can be interpreted as estimator of the second and first moment

of the sample. More generally, the interest of this general lemma is its application to non

independent and non identically distributed samples.

2.3. application to AR(1)

Let us apply our result to a non independent sample. For instance, assume that the

sample (Xi)i=1,...,n is generated by an auto regressive process of order 1 (AR(1)). We impose

that the process is stationary with mean 0, variance σ2

1−ρ2 where σ is the variance of the

underlying noise and ρ is the first order correlation. In this specific case, our general formula
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provides the expectation of the sample variance. We find that the sample variance is biased

and given by

E
[
s2
n

]
=

σ2

1− ρ2

(
1− 2ρ

(1− ρ)(n− 1)
+

2ρ(1− ρn)

n(n− 1)(1− ρ2)

)
(6)

Proof. See proof B.2

2.4. Second moment of sample variance

Lemma 2.3. The second moment of the sample variance is given by:

E
[
s4
n

]
=

E[µ̂4]

n
−4E[µ̂1µ̂3]

n
+

(n2 − 2n+ 3)E[µ̂2
2]

n(n− 1)
−2(n− 2)(n− 3)E[µ̂2

1µ̂2]

n(n− 1)
+

(n− 2)(n− 3)E[µ̂4
1]

n(n− 1)
(7)

where we have adopted the following notation:

µ̂4 =

∑n
i=1X

4
i

n
µ̂3µ̂1 =

∑
i 6=j X

3
iXj

n(n− 1)
µ̂2

2 =

∑
i 6=j X

2
iX

2
j

n(n− 1)

µ̂2
1µ̂2 =

∑
i 6=j 6=kX

2
iXjXk

n(n− 1)(n− 2)
µ̂4

1 =

∑
i 6=j 6=k 6=lXiXjXkXl

n(n− 1)(n− 2)(n− 3)
(8)

Proof. See proof B.3

Like previously, the expression for the second moment of the sample mean is very general

and an extension of previous results. Its interest is precisely to apply without any restriction

on the underlying observation. This generalizes in particular Cho et al. (2004), but also

Tukey (1950), Tukey (1956), Tukey (1957a), and Tukey (1957b).

2.5. Variance of sample variance

Lemma 2.4. The variance of the sample variance is given by:

Var
[
s2
n

]
=

E[µ̂4]

n
− 4E[µ̂1µ̂3]

n
+

(n2 − 2n+ 3)E[µ̂2
2]

n(n− 1)
− (E[µ̃2])2

−2(n− 2)(n− 3)E[µ̂2
1µ̂2]

n(n− 1)
+ 2E[µ̃2

1]E[µ̃2]

+
(n− 2)(n− 3)E[µ̂4

1]

n(n− 1)
− (E[µ̃2

1])2 (9)
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where µ̃2 =

∑
iX

2
i

n
and µ̃2

1 =

∑
i 6=j XiXj

n(n− 1)
. If the observations (Xi)i=1,...,n are independent

and identically distributed and if we denote by µci the central moments of the population, this

simplifies into:

Var
[
s2
n

]
=
µc4
n
− (n− 3)(µc2)2

n(n− 1)
(10)

If the observations are from an i.i.d. normal distribution, this results in the traditional result

Var
[
s2
n

]
=

2σ4

n− 1
(11)

Proof. See proof B.4

Like previous results, equation (9) is the most general one and encompasses cases where

observations are not necessarily independent nor identically distributed. To our knowledge,

these results are new and give as a byproduct all standard results about the first, second and

variance of the sample mean that can be found in textbook like Casella and Berger (2002).

3. Relationship between sample mean and variance

We finally tackle the question of the condition for the sample mean and variance to be

independent. This is a strong result that for instance enables us to derive the Student dis-

tribution as in the normal case of iid variables, the sample mean and variance are clearly

independent. We are interested in the opposite. What is the condition to impose on our dis-

tribution for iid variable to make our sample mean and variance independent? We shall prove

that it is only in the case of normal distribution that these two estimators are independent

as the following proposal states

Proposition 1. The sample mean and variance are independent if and only if the underlying

(parent) distribution is normal.

Proof. This result was first proved by Geary (1936) and later by Lukacs (1942). We provide

in C a proof that uses modern notations. It is an adaptation of the proof in Lukacs (1942)

but with a simpler approach as we work with the log characteristic function and the unbiased

sample variance. This makes the resulting differential equation trivial to solve as this is just

a constant second order derivative constraint.

This result implies consequently that it will not easy to derive the underlying distribution

of the t-statistic for a non normal distribution. Indeed the t-statistic is defined as the ratio

of the sample mean over the sample variance. If the sample mean and sample variance are

4



not independent, the computation of the underlying distribution does not decouple. This

makes the problem of the computation of the underlying distribution an integration problem

that has no closed form. This kills in particular our hope to derive other distribution that

generalizes the case of the Student distribution to non normal underlying assumptions.

4. Conclusion

In this paper, we have derived the most general formula for the fist, second moment and

variance of the sample variance. Our formula does not assume that the underlying sample

is independent neither identically distributed. We also show that for an i.i.d. sample,

the independence between the sample mean and variance is characteristic of the normal

distribution. Possible extensions are to computer higher moments for the sample variance.
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Appendix A. Symmetry for the sample variance

Let us first prove equation

1

n− 1

n∑
i=1

(Xi − X̄n)2 =
1

n− 1

(
n∑
i=1

X2
i − nX̄2

n

)
(12)

with X̄n defined by equation (1). Expanding the left hand side (LHS) leads to

LHS =
1

n− 1

n∑
i=1

(X2
i + X̄2

n − 2XiX̄n) (13)

=
1

n− 1

(
n∑
i=1

X2
i + nX̄2

n − 2X̄n

n∑
i=1

Xi

)
(14)

=
1

n− 1

(
n∑
i=1

X2
i − nX̄2

n

)
(15)

We want to prove equation (2):

1

n− 1

n∑
i=1

(Xi − X̄n)2 =
1

n(n− 1)

n∑
i,j=1

(Xi −Xj)
2

2
=

1

n(n− 1)

∑
i 6=j

(Xi −Xj)
2

2
, (16)

Note that the forms where we sum over all pairs of i, j and where we sum over all pairs

that are different i 6= j are equal (middle and right hand side) as the missing terms between

the two sides are equal to zero. Some routine algebraic reduction on the middle hand side

(MHS) gives:

MHS =
1

n(n− 1)

n∑
i,j=1

X2
i +X2

j − 2XiXj

2
(17)

=
1

n(n− 1)

2n
∑n

i=1X
2
i

2
− 1

n(n− 1)

n∑
i,j=1

XiXj (18)

=
1

n− 1

n∑
i=1

X2
i −

1

n(n− 1)
(nX̄n)2 (19)

=
1

n− 1

(
n∑
i=1

X2
i − nX̄2

n

)
(20)

We can easily conclude using equation (12)
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Appendix B. Moment of sample variance

B.1. First moment of sample variance

The result of lemma 2.2 is immediate expanding lemma 2.1 equality:

s2
n =

1

n(n− 1)

∑
i 6=j

(Xi −Xj)
2

2
(21)

=
1

n(n− 1)

(
(n− 1)

n∑
i=1

X2
i −

∑
i 6=j

XiXj

)
, (22)

and taking the expectation. The case of i.i.d. variables is also trivial as independence

implies

E [XiXj] = E [Xi]E [Xj]

The identically distributed assumption implies E [X2
i ] = µ2 and E [Xi] = µ1. Finally, we

have
n∑
i=1

E
[
X2
i

]
= nµ2, and

∑
i 6=j

E [Xi]E [Xj] = n(n− 1)µ2
1

.

B.2. Application to AR(1)

Lemma 2.2 can be rewritten as

E
[
s2
n

]
=

∑n
i=1 E [X2

i ]

n
−
∑

i 6=j E [Xi]E [Xj]

n(n− 1)
− 1

n(n− 1)

∑
i 6=j

(E [XiXj]− E [Xi]E [Xj]) (23)

In the case of an AR(1) process, we have

E [XiXj]− E [Xi]E [Xj] =
σ2

1− ρ2
ρ|i−j| (24)

Hence, the term due to non independent is computed as follows:

1

n(n− 1)

∑
i 6=j

(E [XiXj]− E [Xi]E [Xj]) =
σ2

1− ρ2

∑
i 6=j ρ

|i−j|

n(n− 1)
(25)
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To conclude, one can use that

n∑
i=1

(n− i)ρi = ρ
n(1− ρ)− (1− ρn)

(1− ρ)2
(26)

.

B.3. Second moment of sample variance

Let us do some routine algebraic computation. We have

s4
n =

1

n2(n− 1)2

(
(n− 1)

n∑
i=1

X2
i −

∑
i 6=j

XiXj

)2

(27)

=
1

n2(n− 1)2

(
(n− 1)2(

n∑
i=1

X2
i )2 + (

∑
i 6=j

XiXj)
2 − 2(n− 1)(

n∑
i=1

X2
i )(
∑
k 6=l

XkXl)

)

Let us expand. The first expansion (
∑n

i=1 X
2
i )2 is easy and immediate:

(
n∑
i=1

X2
i )2 =

n∑
i=1

X4
i +

∑
i 6=j

X2
iX

2
j (28)

In the expansion of (
∑

i 6=j XiXj)
2 we have that the squared terms are with same indexes

((i 6= j) = (k 6= l)). The cross terms are (i 6= j), (k 6= l) with the constraint that they

are different ((i, j) 6= (k, l)). There are three possibilities for these cross terms. These cross

terms can either be only two real indexes (i 6= j) and (j 6= i) or vice versa leading to two

times the squared terms, or we have that (i, j, k, l) are in fact only three numbers and this

can happen 4 times as it is either j, j, k or l that coincides with the other indexes or there

all different, and this can happen only once. Hence, we have:

(
∑
i 6=j

XiXj)
2 = 3

∑
i 6=j

X2
iX

2
j + 4

∑
i 6=j 6=k

X2
iXjXk +

∑
i 6=j 6=k 6=l

XiXjXkXl (29)

To expand (
∑n

i=1X
2
i )(
∑

k 6=lXkXl), we can notice that either there is no intersection of

indexes between i, j and k, or i coincides with either k or l. And this can happen 4 times.

So the expansion is given by

(
n∑
i=1

X2
i )(
∑
k 6=l

XkXl) =
∑
i 6=j 6=k

X2
iXjXk + 4

∑
i 6=j

X3
iXj (30)

8



Regrouping terms leads to

s4
n =

∑n
i=1X

4
i

n

n
−

4
∑

i 6=j X
3
i Xj

n(n−1)

n
+

(3+(n−1)2)
∑

i6=j X
2
i X

2
j

n(n−1)

n(n− 1)

−
(2(n−1)(n−2)−4(n−2))

∑
i 6=j 6=kX

2
i XjXk

n(n−1)(n−2)

n(n− 1)
+

(n−2)(n−3)
∑

i 6=j 6=k 6=lXiXjXkXl

n(n−1)(n−2)(n−3)

n(n− 1)
(31)

We can conclude by using the notation given in 8 and taking the expectation

B.4. Variance of sample variance

The variance of the sample variance writes

Var[s2
n] = E[s4

n]− (E[s2
n])2. (32)

Using lemma 2.2, the square of the expectation of s2
n writes:

(E
[
s2
n

]
)2 =

(
E
[∑n

i=1X
2
i

n

]
− E

[∑
i 6=j XiXj

n(n− 1)

])2

(33)

=

(
E
[∑n

i=1X
2
i

n

])2

− 2E
[∑

i 6=j XiXj

n(n− 1)

]
E
[∑n

i=1X
2
i

n

]
+

(
E
[∑

i 6=j XiXj

n(n− 1)

])2

(34)

Combining this result with 2.3, leads to equation (9). To use central moment, it is

equivalent to impose that observations have null odd moments. Adding the condition of i.i.d

observations implies that the following equalities:

µ̂4 = µc4 µ̂3µ̂1 = 0 µ̂2
2 = (µc2)2 (35)

µ̃2 = µc2 µ̃2
1 = 0 µ̂2

1µ̂2 = 0 µ̂4
1 = 0 (36)

Hence, we get

Var
[
s2
n

]
=
µc4
n
− (n− 3)(µc2)2

n(n− 1)
(37)

If the observations are from an i.i.d. normal distribution with zero mean and a variance

σ2, we have µc4 = 3σ4 and µc2 = σ2 which leads to the result .
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Appendix C. Proof of the condition for sample mean

and variance to be independent

The assumption of i.i.d. sample for (x1, . . . , cn) implies that the joint distribution of

(x1, . . . , xn) denoted by fX1,...,Xn(x1, . . . , xn) is equal to
∏n

i=1 fX(xi), which we will write∏n
i=1 f(xi) dropping the .X to make notation lighter.

The log of the characteristic function of the joint variable (X̄n, s
2
n) writes

ln(φ(X̄n,s2n)(t1, t2)) = ln

(∫∫∫
eit1x̄n+it2s2n

n∏
i=1

f(xi)dxi

)
. (38)

Similarly, the log of the characteristic function for the sample mean X̄n writes

ln(φX̄n
(t1)) = ln

(∫∫∫
eit1x̄n

n∏
i=1

f(xi)dxi

)
, (39)

and similarly for the sample variance

ln(φs2n(t2)) = ln

(∫∫∫
eit2s

2
n

n∏
i=1

f(xi)dxi

)
. (40)

The assumption of independence between sample mean X̄n and variance s2
n is equiv-

alent to the fact that the characteristic function of the couple decouples, or that the log

characteristic functions sum up.

ln(φ(X̄n,s2n)(t1, t2)) = ln(φX̄n
(t1)) + ln(φs2n(t2)). (41)

Differentiating condition 41 with respect to t2 in t2 = 0 leads to

1

φ(X̄n,s2n)(t1, t2)

∂φ(X̄n,s2n)(t1, t2)

∂t2

∣∣∣∣
t2=0

=
1

φs2n(t2)

∂φs2n(t2)

∂t2

∣∣∣∣
t2=0

. (42)

Noticing that φs2n(0) = 1 and φ(X̄n,s2n)(t1, 0) = φX̄n
(t1), the condition 41 writes

1

φX̄n
(t1)

φ(X̄n,s2n)(t1, t2)

∂t2

∣∣∣∣
t2=0

=
∂φs2n(t2)

∂t2

∣∣∣∣
t2=0

. (43)

Using the fact that X̄n =
∑n

i=1Xi

n
, it is easy to see that

10



φX̄n
(t1) =

n∏
i=1

∫
eit1xi/nf(xi)dxi = [φX(t1/n)]n (44)

For the sample variance, we can use the ”U-statistic” (or symmetric) form as shown in

lemma 2.1, to see that

s2
n =

∑n
i=1X

2
i

n
−
∑

i 6=j XiXj

n(n− 1)
(45)

Hence, the derivative of the characteristic function of the couple (X̄n, s
2
n) writes

∂φ(X̄n,s2n)(t1, t2)

∂t2

∣∣∣∣
t2=0

=

∫∫∫
is2
n

n∏
i=1

eit1xi/nf(xi)dxi (46)

= i

∫∫∫ (∑n
i=1 x

2
i

n
−
∑

i 6=j xixj

n(n− 1)

) n∏
i=1

eit1xi/nf(xi)dxi (47)

= i[φX(
t1
n

)]n−2

(
φX(

t1
n

)

∫
x2e

it1x
n f(x)dx− (

∫
x2e

it1x
n f(x)dx)2

)
(48)

In the latter equation, if we set t1 = 0, we get in particular that

∂φs2n(t1, t2)

∂t2

∣∣∣∣
t2=0

=
∂φ(X̄n,s2n)(0, t2)

∂t2

∣∣∣∣
t2=0

= iσ2 (49)

Hence, condition (43) writes

φX( t1
n

)
∫
x2e

it1x
n f(x)dx− (

∫
x2e

it1x
n f(x)dx)2

[φX( t1
n

)]2
= σ2 (50)

We also have that the derivative of the characteristic function φX( t1
n

) with respect to

u = t1/n gives

∂φX(u)

∂u
=

∫
ixeixuf(x)dx (51)

To simplify notation, we drop the index in φX and writes this function φ. Using equation

(51), condition (50) writes

−φ(u)∂
2φ(u)
∂u2

+
(
∂φ(u)
∂u

)2

φ(u)2
= σ2 (52)

The log of the characteristic function of φ(u) = E[eiuX ], denoted by Ψ(u) = lnφ(u), first

11



and second derivatives with respect to u are given by:

∂Ψ(u)

∂u
=
∂ lnφ(u)

∂u
=

1

φ(u)

∂φ(u)

∂u
(53)

∂2Ψ(u)

∂2u
=

∂

∂u

∂Ψ(u)

∂u
=

1

φ(u)

∂2φ(u)

∂u2
− 1

φ(u)2

(
∂φ(u)

∂u

)2

(54)

Hence, condition (52) writes

∂2Ψ(u)

∂2u
= −σ2 (55)

Using the boundary conditions Ψ(0) = 0 and Ψ
′
(0) = iE[X] = iµ, it is easy to integrate

condition 55 which is a constant second order derivative to get

Ψ(u) = iµu− σ2u2

2
(56)

Condition 56 states that a necessary and sufficient condition for the sample mean and

variance to be independent is that the log characteristic function of X is a quadratic form.

But a quadratic form for the log characteristic function of X is a characterization of a normal

distribution, which concludes the proof.
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