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Abstract

A computationally efficient flow reconstruction technique is proposed, exploiting homo-
geneity in a given direction, to recreate three dimensional instantaneous turbulent velocity
fields from snapshots of two dimension planar fields. This methodology, termed as ‘snap-
shot optimisation’ or SO, can help provide 3D data-sets for studies which are currently
restricted by the limitations of experimental measurement techniques. The SO method
aims at optimising the error between an inlet plane with a homogeneous direction and
snapshots, obtained over a sufficient period of time, on the observation plane. The ob-
servations are carried out on a plane perpendicular to the inlet plane with a shared edge
normal to the homogeneity direction. The method is applicable to all flows which display
a direction of homogeneity such as cylinder wake flows, channel flow, mixing layer, and jet
(axi-symmetric). The ability of the method is assessed with two synthetic data-sets, and
three experimental PIV data-sets. A good reconstruction of the large-scale structures are
observed for all cases. The small-scale reconstruction ability is partially limited especially
for higher-dimensional observation systems. POD based SO method and averaging SO vari-
ations of the method are shown to reduce discontinuities created due to temporal mismatch
in the homogenous direction providing a smooth velocity reconstruction. The volumetric
reconstruction is seen to capture large-scale structures for synthetic and experimental case-
studies. The algorithm run-time is found to be in the order of a minute providing results
comparable with the reference. Such a reconstruction methodology can provide important
information for data assimilation in the form of initial condition, background condition,
and 3D observations.

1 Introduction
With the advent of particle image velocimetry (PIV) in the 1980’s (Adrian, 1984), the field
of experimental fluid dynamics grew exponentially with the ability now to measure data over
large 2D domains. Further improvements saw the measurement of velocity fields in 3D albeit
at limited spatial resolutions using tomographic-PIV (tomo-PIV) techniques (Scarano, 2012)
or more recently using 3D+time Particle Tracking Velocimetry (4D-PTV) techniques (Schanz
et al., 2016). However, these methods are still quite restricted in terms of their spatial and
temporal resolutions as well as the ability to observe the full state-space vectors. To improve
3D spatiotemporal PTV measurements data Navier-Stokes constraints have been proposed in
an optimisation framework. Schneiders & Scarano (2016) use the vortex in cell plus (VIC+)
technique to reconstruct instantaneous fields from time-resolved measurements using the ve-
locities and the material derivatives. In a similar approach, Gesemann et al. (2016) proposed
FlowFit, a similar approach to interpolate Lagrangian measured velocities to a regular grid.
The aim of all these methods has been to reconstruct 3D full-scale observations from sparse
partial data-sets.
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An upcoming methodology to complete this partial state-space vector obtained from an exper-
iment is to perform Data Assimilation (DA), wherein a combination of computational methods
(CFD) and experimental data (EFD) is used to complete the missing data. However, DA is
limited in performance by the numerical methods employed and more importantly, the quality
of the experimental data used to guide the numerical simulation.

PIV data-sets provide a good spatial and temporal resolution of data in 2D. Many studies exist
in literature that use this data to perform 2D DA to estimate an improved field of interest (see
the works of Gronskis et al. (2013), Fujisawa et al. (2005), and D’adamo et al. (2007)). Until
recently, the extent of DA studies have been limited to 2D due to inhibitive costs of performing
DA - both the variational and the sequential approach to DA are computationally expensive.
The variational approach, formulated as an optimal control problem, seeks to minimise the
error between the simulation and the observation data by estimating an optimal trajectory
bounded by physical laws. Such a minimisation procedure relies on the adjoint formulation
of the associated dynamics for calculating the gradient based on the works of Lions (1971),
and Le Dimet & Talagrand (1986). To formulate, implement and use this adjoint formulation
can be tedious and numerically difficult. In the sequential approach, based on stochastic
filtering techniques, multiple realisations of the state vector are propagated in time taking into
account available measurements at each time. Such a formulations suffers from the ‘curse of
dimensionality’ (Yang et al., 2015) as the few samples considered are unlikely to represent
the large state-space. In addition, the ease of adaptability of many sequential approaches to
high-dimensional, non-linear problems is questionable (Mons et al., 2016).

In the field of variational DA in fluid dynamics, due to the use of turbulence modelling such as
Large Eddy Simulations (LES), and Reynolds-averaged Navier-Stokes (RANS) models, an ex-
pansion into three dimensional assimilation studies have recently been achieved (Chandramouli
et al., 2017). A DNS based 3D DA study was performed by Robinson (2015) at a very low
Reynolds number (Re) of 300 for flow around circular cylinder. As we expand into higher
Re flows, the need for 3D data-sets describing the flow becomes imperative. Existing 3D DA
studies either rely on non-physical mirror-imaging technique, or interpolation/extrapolation
techniques to obtain 3D observation data from existing 2D PIV data or involve complex time-
consuming methodologies such as the ‘Empty Box’ technique of (Robinson, 2015). Tomo-PIV
and PTV techniques are capable of producing 3D flow fields but are still limited in their spatial
temporal extent to sparse observations. Thus, a quick and effective method to reconstruct the
velocity field over a volume could be very useful for 3D DA studies until advances in experi-
mental techniques become capable of capturing spatially well-resolved observations in a large
3D domain.

Simple methods for 3D complex flow reconstruction from 2D PIV data have been proposed
in literature. The scanning PIV technique proposed by Brücker (1995) for the analysis of 3D
effects in a cylinder wake flow involves classical PIV technique with the scanning of a volume
via a light sheet. Since then this approach has been carried out for single (Zhang et al., 2008;
Brücker et al., 2012) or stereo (Casey et al., 2013) camera arrangements. The technique as-
sumes a frozen velocity field during the scanning process that thus need to be sufficiently quick.
With the assumption of frozen turbulence via Taylor hypothesis, Ganapathisubramani et al.
(2008) used cinematographic stereoscopic PIV to transform time into space and reconstruct a
quasi-instantaneous volume of data in a turbulent jet. The PIV plane was perpendicular to
the streamwise flow direction. Steinberg et al. (2009) developed an orthogonal-plane cinemato-
graphic stereoscopic PIV to study turbulence -flame interactions. The plane perpendicular
to the streamwise flow was used for the 3D reconstruction of the flow and the plane parallel
to the streamwise flow direction to observe the interactions between the turbulent structures
and the flame. In order to obtain simultaneous spatiotemporal velocity information for 3D
flow structure investigation, Kähler & Kompenhans (2000) studied multiple plane stereo PIV.
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Braud et al. (2004) carried out such an approach in a dual plane stereo PIV configuration com-
bined with 3D POD to reconstruct and analyse the flow structures of the circular cylinder near
wake-mixing layer interaction. Kit et al. (2005) proposed another approach coupling hot-wire
measurements, to obtain detailed time-series, and a limited number of phase-locked stereo PIV
measurements to reconstruct time variations of large coherent structures in a forced mixing
layer. More recently in the same spirit, Hamdi et al. (2018) synchronised with a trigger signal
parallel planes stereo PIV and POD to reconstruct a volume of an impinging jet. Foucaut
et al. (2011) focused on computing the 3D correlation tensor from stereoscopic PIV data by
exploiting homogeneity along two principle directions.

In this work, we aim to utilising homogeneity along one principle direction in order to re-
construct the 3D flow field from 2D data-sets obtained on two perpendicular planes, easily
available from established experimental methods such as stereo PIV. Towards this, we propose
a quick and effective algorithm called the snapshot optimisation (SO) methodology which is
formulated in the next section. This is followed by a section analysing the performance of the
algorithm using varied sets of observational data - both synthetic and experimental. A final
section of concluding remarks follows.

2 Snapshot optimisation method
The concept of the SO method and the algorithm inputs are explained in section 2.1. The
mathematical formulation of the optimisation problem is provided in section 2.2. A reduced
order version of the model using proper orthogonal decomposition (POD) is discussed in section
2.3. An averaging variant of the model is proposed in section 2.4.

2.1 SO model concept
Consider a flow exhibiting a direction of homogeneity, for example, wake flow around a circular
cylinder. Figure 1 depicts the geometry for this flow with the two planes of measurements. The
plane in red, parallel to the cylinder axis, is referred to as the inlet plane (IP) while the plane
in green, perpendicular to the cylinder, is referred to as the observation plane (OP). While the
OP has been depicted in the middle of the domain, this is not a necessary condition of the
reconstruction - any plane perpendicular to the spanwise z-direction can be utilised as the OP.
The objective is to reconstruct the 3D domain encompassing the IP and the OP, from only one
3C vector field in the IP and an ensemble of 3C vectors fields in the OP.

Figure 1: Geometry for wake flow around a circular cylinder with planes of measurement

This 3D domain can be considered to be made up of a set of 2D parallel planes (a sample
decomposition containing three such planes is shown in figure 2a). Each parallel plane is
assumed to begin at the IP thus sharing a common edge (along y) with the inlet plane. Now,
we make the critical assumption: considering the turbulence homogeneity of the flow along the
spanwise z-direction, a sufficiently long time-sequence of snapshots of the observation plane
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(in green in figure 1) contains at some point within that time-sequence a representation of
each of the 2D parallel planes of figure 2a. This is graphically shown in figure 2b. In other
words, it is assumed that one event constituted by one planar velocity field on a given plane, is
observed at a given time of the observations sequence. Such a reconstruction is along the lines
of the“pouring time in to space” techniques of Schneiders & Scarano (2016).

(a) 3D domain split in to multiple parallel 2D
plane observations

(b) 2D planes represented within the time-
sequence of the observation plane measure-
ments.

Figure 2: 3D domain of interest shown within the original volume and within the observation
measurements

Thus, to reconstruct the 3D domain of interest from the 2D measurements, we need to identify
the snapshots within the OP time-sequence which correspond to each of the parallel planes
comprising the volume. Since all of these planes share an edge with the inlet plane where
measurements are available, an optimisation algorithm can be formulated minimising the error
between the OP and the IP measurements along the intersecting edge for each plane. The inputs
needed for such a reconstruction is the inlet plane velocity field at a given time instance at
which the volumetric measurement is required and sufficiently long time-sequence of snapshots
of the OP. These, upon reconstruction, would then provide us with the much needed volumetric
measurements from easily obtainable planar measurements. The minimisation algorithm for
identifying the optimal snapshot time instance is formulated in the next section.

2.2 Mathematical formulation
Let the velocity field in 3D be defined as U(x, y, z, t), where in U is a vector incorporating
the three components of velocity at each point in space defined by (x, y, z) and t defines the
instant in time of the flow field. The velocity field in the OP can be expressed in this format as
U(x, y, z0, t), where z0 stands for the point of intersection between the OP and the IP. Similarly,
the velocity field in the IP can be expressed as U(x0, y, z, t0), where x0 stands for the first point
in the OP and t0 stands for the time instance at which the volumetric measurement is required.
For ease of understanding, the velocity on the OP common with the IP (i.e. at x0, y, z0) is
expressed as UOP (y, t) and the velocity on the IP at time of reconstruction is referred to as
UIP (y, z). In order to find the optimal instance of match between the OP observations in the
plane z = z0 and the IP observation in the plane x = x0, a simple least square based cost
function can be formed for each vertical line (along y) in the IP as a function of the spanwise
direction z:

J(z) =
∑
y

(UOP (y, tz)−UIP (y, z))2, (1)
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where J(z) is the cost function for a given z, and tz, which is the parameter to optimise, is the
time of observation, as a function of z, that matches best with the IP measurements for a given
z. The optimisation function here accumulates the error of all three velocity components. In
practice, individual optimisation procedures may be carried out for each velocity component
and the results can be collated to provide the volumetric field.

The gradient of the cost function J(z) along the variable of interest tz is then given as:

∂tzJ(z) =
∑
y

2[UOP (y, tz)−UIP (y, z)]∂tzUOP (y, tz), (2)

where the velocity derivative is calculated using a first order forward finite difference scheme.

A simple time stepping gradient descent method can then be envisaged as:

tn+1
z = tnz − ε∂tzJ(z), (3)

where ε is a suitable weight.

In order to perform a gradient descent (GD) optimisation, an appropriate starting guess tst for
tz needs to be provided. While a random tst can be provided, better methods can be envisaged.
Two methods were implemented to identify a good tst. The first method identifies a fixed t
such that the summation of the total square error between OP at time t and IP for all z was
minimal:

tst = min(
∑
z

(
∑
y

(UOP (y, t)−UIP (y, z))2)) (4)

Such a method could help in reducing computational cost by providing a starting guess closer
to the optimal solution - for an observation dataset ranging over a long period of time, such a
method could reduce computational cost considerably.

The above defined method provides a good estimate as a starting guess however, for a large
spatial domain, the cost of computing this would be of the order of ny × nz × nt, where ni is
the number of points along the i spatial or temporal direction. The second method, which is
computationally less expensive, involves an averaging along the spanwise z direction of the IP
(ŪIP (y)) and minimising the error of the OP measurements with this averaged lateral profile
of the IP:

tst = min(
∑
y

(UOP (y, t)− ŪIP (y))2)). (5)

The cost for such a computation is only of the order of (ny × nz + ny × nt).
It is important to note that the use of a GD methodology could result in a fractional t(z) for
which observations are not available. For such cases, an interpolation of the velocity profile is
performed to obtain the field at the fractional tz - linear interpolation has been used in this
manuscript when required.

2.3 Reduced order formulation
A full scale 3D reconstruction of a flow field can be computationally expensive while inducing
strong discontinuities and introducing divergence within the flow field. A Proper Orthogonal
Decomposition (POD) based reconstruction would be computationally inexpensive while pro-
viding a smoothed flow field. Here, a POD method of reconstruction is constructed similar
to the full scale reconstruction explained in the previous section. Two different POD can be
envisaged on the given flow field. One is along the 1D vertical (y) direction for identifying the
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best match - this would reduce the computational cost of optimisation. The second is a 2D
POD of the OP velocity facilitating a large scale reconstruction resulting in a smoothed flow
field. The two POD formulations are described further in the following sections.

2.3.1 1D-3C POD - matching

Let the flow field along x0 in the OP be decomposed as:

U ′OP (y, t) =

N∑
i=1

φ1D
i (y)a1Di (t) (6)

where U ′OP (y, t) = UOP (y, t) − ŪOP (y), with ŪOP (y) being the time averaged quantity, N is
the total number of modes, φ1D

i is the POD spatial modes, and a1Di are the time coefficients
for a given t.

Considering the turbulence homogeneity assumption along the spanwise direction, the IP flow
field can also be expressed on the same spatial modes obtained from the OP decomposition.

U ′IP (y, z) =

n∑
i=1

φ1D
i (y)a′1Di (z), (7)

where a′1Di (z) represents the time coefficients for the flow field along the lateral direction for each
spanwise z coordinate and thus is expressed as a function of z rather than time t. With the two
sets of time coefficients, based on the same set of spatial modes, a GD minimisation algorithm
can be formulated, similar to the full scale reconstruction, comparing the time coefficients
instead of the flow field:

J(z) =

n∑
i=1

(a1Di (tz)− a′1Di (z))2, (8)

where J(z) is the cost function, and n stands for the subset of modes considered from the N
modes global set. A gradient of this cost function is then given as:

∂tzJ(z) =

n∑
i=1

2[a1Di (tz)− a′1Di (z)] ∂tza
1D
i (tz). (9)

Similar methods can be used for the starting guess tz as enumerated in the full scale reconstruc-
tion. Such a decomposition will provide a decrease in computation cost of the minimisation
algorithm, however, it would still lead to a full scale reconstruction of the flow field. This recon-
struction could have strong discontinuities as well as non-negligible divergence. To attenuate
this, a large-scale reconstruction of the flow can be done by performing a POD on the 2D OP
measurements and using only the high-energy modes.

2.3.2 2D-3C Planar POD - reconstruction

With the optimal time toptz obtained from the 1D POD matching algorithm or from the full
scale algorithm, the reconstruction of the 3D domain can be done using 2D POD. Let the 2D
OP flow field be decomposed as:

U ′OP (x, y, t) =

N∑
i=1

φ2D
i (x, y)a2Di (t), (10)
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where U ′OP (x, y, t) = UOP (x, y, t)− ŪOP (x, y), and ŪOP (x, y) is the average along time.

The reconstruction of the 3D velocity (Urec) can then be obtained used the time coefficients of
the snapshot at the optimal time in the sequence.

Urec(x, y, z, t0) = ŪOP (x, y) +
n∑
i=1

φ2D
i (x, y)a2Di (toptz ) ∀z (11)

Depending on the number of modes considered (n), a smooth field or a full scale representation
can be obtained for U .

2.4 Averaging SO method
For a given line on the IP, there may be multiple optimal time-instances of OP snapshots whose
corresponding error varies only marginally from one another. By performing the optimisation
as described above, we identify only one such optimal time-instance which is used to recreate
the 3D velocity field. Such a reconstruction will realistically provide a velocity field that
has minimal error but with significant noise/discontinuities due to the violation of continuity
between subsequent velocity fields in the spanwise direction. This could be possibly redressed by
identifying and averaging multiple time-instances depending on a user-defined error threshold
as a percentage of the minimal error obtained from the optimisation procedure. For such
a methodology (termed as ‘Averaging SO method’), the reconstructed velocity field can be
expressed as,

Urec(x, y, z, t0) =

∑nz
i=1UOP (x, y, tiz)

nz
∀z, (12)

where nz is the number of optimal snapshots identified by the algorithm for each z within the
user-defined tolerance, and tiz is the time of each optimal snapshot from 1 - nz for each z.

3 Application and Results
The full-scale reconstruction algorithm is applied first to two synthetic cases at moderate Re:
(i) Wake flow around a cylinder at Re 3900 (section 3.1.1), and (ii) channel flow at friction
velocity based Re of 590 (section 3.1.2). This is followed by an application to three experimental
data sets: (i) Wake flow around a cylinder at Re 300 (section 3.3.1), (ii) Wake flow around
a cylinder at Re 3900 (section 3.3.2), and (iii) mixing layer with λ of 0.33 (section 3.3.3).
This section concludes with an analysis of variations of the SO algorithm and post-processing
techniques on the reconstructed volumetric data. Details of the five cases are provided in table
2.

3.1 Synthetic Case-studies
3.1.1 Wake flow around a circular cylinder at Re 3900

For the synthetic case of wake flow around a circular cylinder at Re 3900, the input data are
obtained from an LES simulation of the flow using the flow solver Incompact3d (Laizet & Li,
2011; Chandramouli et al., 2018). A domain measuring 20D × 20D × πD, where D stands for
the diameter of the cylinder, is simulated with 241× 241× 48 mesh points with a time-step of
0.003 non-dimensional time. The mesh along the y-direction is stretched with more points near
the centre of the domain. A total of 2 500 3D velocity snapshots are stored every 50 time-steps
corresponding to ∼ 75 vortex sheddings after an initialisation period of 15 vortex sheddings
with no data-collection.

The 3D snapshots are pre-processed to extract the 2D information on the IP and the OP shown
in figure 1. The IP, measuring Ly×Lz = 4D×πD, is located 1.66D behind the trailing edge of

7



Table 1: Summary of synthetic and real configurations.

Case Re Snapshots ∆tU/L1 (Ly × Lz)/L (Lx × Ly)/L ny × nz nx × ny trec [s]

1 – LES wake 3900 2 500 0.003 4× π 5× 4 130× 48 60× 130 14.96
2 – DNS channel 590 1 000 0.00125 2× π 2π × 2 257× 384 384× 257 257.12
3 – PIV wake 300 300 4 000 0.12 4.3× 6.4 8.4× 4.3 72× 108 145× 72 4.85
4 – PIV wake 3900 3900 20 540 0.258 7× 5.6 4.3× 7 93× 72 64× 93 9.16
5 – PIV mixing layer 1540 4 000 0.015 2.4× 2.7 2.4× 2.4 100× 115 100× 100 6.85

1L stands for the cylinder diameter D, for the channel height H or for the mixing layer
vorticity thickness δω.

the cylinder. The OP, measuring Lx×Ly = 5D× 4D, intersects the IP at the mid-point of the
spanwise direction (z = 1.57D). The IP is obtained corresponding to the first instance in the
OP time-sequence. A sample streamwise velocity field on the IP and OP is shown in figure 3.

Figure 3: Instantaneous streamwise velocity fields extracted on the IP and the OP from the
LES of wake flow.

The IP reconstruction from the algorithm is shown in figure 4. The contour maps of a given
velocity component for a given flow are on the same colour bar and thus, the colour bar has
been omitted from the comparative figures (see figure 4, for example) for compactness. The
biggest advantage of such a reconstruction algorithm is the time taken for the reconstruction
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Figure 4: LES wake flow instantaneous velocity fields extracted on the IP. From top to bottom:
streamwise, vertical and spanwise velocity components. From the left to the right: reference
and reconstruction.

(trec) which for this case was trec = 14.96 s. This time is independent of the number of OP
snapshots considered or the type of flow. It is only dependant on the discretisation of the
intersection line between the OP and the IP. A finer discretisation of this line would increase
the computational cost of the algorithm and vice-versa. The ability of the algorithm to capture
the main structures of the flow is seen in figure 4. Just from a single plane observation time-
sequence, the IP has been reconstructed capturing all large scale structures of the flow in
all three velocity directions. The small scale structures are also captured, however, this is
attenuated by a noise and discontinuities in the reconstruction. Such a reconstruction provides
a much better estimate of the 3D flow domain as compared to simplistic techniques such as
mirror-imaging or interpolation.

The availability of 3D reference velocity field allows us to study the 3D reconstruction efficiency
of the algorithm by comparing the velocity iso-contours (see figure 5). The reconstructed 3D
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Figure 5: LES wake flow instantaneous velocity iso-contours extracted on the 3D domain. From
top to bottom: reference, SO reconstruction and averaging SO reconstruction. From the left
to the right: streamwise, vertical and spanwise velocity components.

velocity accurately captures the large-scale motions of the flow. The location of the vortex
street is captured well in the reconstruction iso-contours. There is significant introduction of
noise especially in the spanwise velocity component but the large scale-correlation of vortex
structures is efficiently represented. Considering the computational efficiency and simplicity
of the algorithm, the results obtained advocate towards the efficacy and applicability of the
algorithm as a preliminary reconstruction tool to obtain 3D motion fields from cross-plane
observations. The case study corresponding to the averaging SO reconstruction method is
explained in §3.2.2. The iso-contours are presented here for ease of comparison and to avoid
repetition.

3.1.2 Channel flow at Reτ 590

A direct numerical simulation (DNS) is performed for channel flow at Reτ 590 using Incom-
pact3d from which the observations are extracted for the reconstruction algorithm. The DNS
is performed on a domain measuring 12.56H×2H×πH discretised into 768×257×384 mesh-
points with a time-step of 0.00125 non-dimensional time. Considering the computational cost
and memory requirements of the DNS, only a limited set of 1 000 snapshots could be obtained
spaced 50 time-steps apart. The collection of the snapshots begins after the flow is converged.
This case-study is a good example to analyse the performance of the algorithm under limited
observation snapshots. However, considering the availability of 3D data-set, multiple OP can
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be defined and velocity fields from parallel OPs can be extracted. This alleviates the issue of
insufficient snapshots and provides an opportunity to study the performance of the algorithm
with respect to the size of the OP snapshots. Three sub-cases are studied with OP data ex-
tracted from 1(1p), 5(5p), and 10(10p) parallel planes - 10 planes consist of only 2.5% of the
total spanwise set of planes.

The IP is placed in the centre of the channel measuring Ly × Lz = 2H × πH discretised
with the same number of points as the DNS, i.e. 257 × 384. The OP begins at the IP
and extends to the end of the channel with the intersection at z = [1.57H] for 1p, z =
[0.52H, 1.04H, 1.57H, 2.09H, 2.62H] for 5p, and for 10p z = [0.26H, 0.52H, 0.78H, 1.04H, 1.3H, 1.57H, 1.83H,
2.09H, 2.35H, 2.62H]. The OP is discretised into Nx ×Ny = 384× 257 mesh-points. The ref-
erence inlet streamwise velocity and a sample OP measurement for the streamwise velocity is
shown in figure 6.

Figure 6: Instantaneous streamwise velocity fields extracted on the IP and the OP from the
DNS of channel flow.

The reconstructed velocity fields on the IP are shown in figure 7. The reconstruction time for
1p case, as shown in table 2, is trec = 257.12s - the higher time is due to the finer resolution
of the DNS. From the reconstructed images, it is clear that small scale structures of the DNS
are not entirely reconstructed by the algorithm for the vertical (v) and spanwise (w) velocity
profiles. However, for all velocity components, near the wall where important turbulent phe-
nomena occur, the algorithm reconstructs with good accuracy the flow features. A significant
improvement in the reconstructed velocity fields can be seen with 5p reconstruction as com-
pared to the 1p. A further increase to 10p does not provide a drastic improvement but better
representation of the small scale structures can be observed, mainly near the wall. This sug-
gests that a minimum set of OP snapshots are required in order to obtain a good reconstruction
and any further increase tends to improve the output further albeit at a reduced rate.

3.2 Algorithm Enhancement Techniques
This section explores the capabilities of the POD and averaging variants of the SO technique
towards obtaining a smooth reconstruction. In addition, the ability of the algorithm to deal
with noisy synthetic observations is also analysed while a simulation-based technique is analysed
for removing divergence from the reconstructed volume. All these techniques are applied to
the case study of synthetic wake flow at Re 3900 and the results are presented on this flow.

3.2.1 POD based SO method

The mathematical formulation for the POD based SO method, provided in section 2.3, is
applied here to wake flow around a circular cylinder at Re 3900 (case-study 1 in table 2). Both
a 1D POD based matching algorithm and a 2D POD based reconstruction is performed and
the reconstructed volume is presented in figure 8. The first 72 modes are used for the POD
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Figure 7: DNS channel flow instantaneous velocity fields extracted on the IP. From top to
bottom: reference, reconstruction with 1 plane, reconstruction with 5 planes, and reconstruc-
tion with 10 planes. From the left to the right: streamwise, vertical and spanwise velocity
components.
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Figure 8: Reconstructed velocity fields using POD based SO method and averaging SO method.
From top to bottom: streamwise, vertical, and spanwise velocity component. From left to right:
reference, SO reconstruction, POD based SO reconstruction, averaging SO reconstruction.

matching while only the first 20 modes are used in the reconstruction phase - the reconstruction
process is faster taking only trec = 1.6s for the reconstruction. The POD based reconstructed
provides a smooth representation of the velocity fields thus reducing discontinuities seen in
the full reconstruction. However, this is associated to a reduced recovery of the small-scale
structures in the POD reconstruction. Such a reconstructed field could be used as a reference,
so called background initial condition, in variational data-assimilation procedures as it provides
a smooth 3D velocity field based on the observations from which the optimisation procedure
for the DA can begin.

3.2.2 Averaging SO method

A closer look at POD reconstruction results (in figure 8) suggests that there maybe not be just
one optimal time for a given z plane. The time instances obtained from the full-scale recon-
struction and the POD based reconstructed vary slightly for certain z planes. The availability
of multiple optimal time-instances led to the concept of averaging SO method. In this method,
for each spanwise plane, all time-instances below a certain error threshold are averaged to pro-
vide the final velocity reconstruction. The utility of this method lies in reduction of spurious
oscillations and removal of spanwise discontinuities due to averaging procedures similar to the
POD. The error threshold for each plane is set as optimal error for the corresponding plus a
10% bias. The results of the averaging SO method is shown in figure 8. The averaging method
performs similar to the POD based SO method, however, a higher recovery of the small scale
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structures are obtained with the averaging method compared to POD as well as a significant
improvement in spanwise continuity. The reconstruction of the averaging SO method is better
than the full-scale reconstruction with improved recovery of turbulent structures and minimal
spatial discontinuities.

Both the averaging SO method and the POD based SO method help reduce discontinuities
within the reconstruction. The POD method is an ideal alternative for fast computations (∼
1.6 seconds) as the optimisation is done on a smaller set of modes as compared to the full-scale
reconstruction. The averaging SO method, however, appears to give better results compared to
the POD at the cost of higher computational time (∼ 8.1 seconds) as well as needing, ideally,
more number of OP snapshots to find multiple optimal snapshots. While for this specific case
the additional time taken may not be high, for larger dimensional systems searching over a
larger time-sequence of data, the difference between the two method may be high.

A 3D comparison is performed with the velocity iso-contours of the averaging SO method, and
the simple SO method from section 3.1.1 with the reference field in figure 5. The reduction
of noise can be seen with the use of the averaging procedure as compared to the simple SO
algorithm. In addition, a better correlation between structures is also seen with the averaging
method. However, coherent small-scale structures are lost with the application of the averaging
method that are seen in the reference - this is clearly seen in the streamwise velocity iso-contours
where the rising vortex structure of the reference is seen in the simple reconstruction but not
the averaged.

3.2.3 Noisy data-sets

The algorithm is capable of reconstructing the volumetric domain provided perfect synthetic
data-sets. However, the main application of the algorithm is towards experimental data-sets
which, in general, tend to be noisy. Before applying the algorithm to PIV data-sets in section
3.3 with unquantified noise, we test the algorithm with the synthetic data-set with artificially
added noise. A 10% white noise, parametrised by Umax for each component, is added to the IP
and OP snapshots while maintaining all other parameters for the flow. With this noisy data-
set, the reconstruction is performed using both the SO and the averaging SO methodology on
the volume. The corresponding reference, and reconstructed velocity fields are shown in figure
9.

The modulation of the reference field due to the noise can be clearly seen in figure 9. The
amount of noise added (10%) is comparatively higher than the noise level as obtained from
modern experimental techniques such as PIV. Despite the noisy IP and OP, both variants of
the algorithm are capable of reconstructing the major physical structures in the flow. With
the SO algorithm, the noise is propagated onto the reconstructed volume (as can be visibly
seen in the streamwise component). However, a significant reduction is noise is observed when
the averaging SO algorithm is used to reconstruct the volume. The average performed over
multiple snapshots tends to reduce the noise-level providing a smooth representation of the
flow field.

3.2.4 Divergence-free reconstruction

The flows considered in this work are incompressible fluid flows and thus are divergence free.
However, the process of reconstruction provides a final volumetric data-set which is clearly
not divergence free. In this sub-section a few possible methods for producing divergence free
data-sets by post-processing are discussed.
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Figure 9: Reconstructed velocity fields using SO method and averaging SO method with noisy
synthetic data-sets for wake flow around a cylinder at 3900. From top to bottom: streamwise,
vertical, and spanwise velocity component. From left to right: reference with added noise, SO
reconstruction, averaging SO reconstruction.
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An incompressible fluid flow solver, such as incompact3d, maintains a divergence free flow by
the action of the pressure-poisson equation where the divergence present in the flow is used to
modify the pressure which successively modifies the velocity field to be divergence free using
a fractional step method (Laizet & Lamballais, 2009). Thus, performing a simulation, using
such a flow solver with the reconstructed velocity field as the initial condition, for a single
time-step would provide a divergence free velocity field with an associated pressure containing
the divergence.

The reconstruction for the synthetic wake flow at Re 3900 has been simulated with incompact3d
to produce such a divergence-free field - the final divergence of the flow was of the order of 10−14

i.e. numerical accuracy. The divergence field before and after simulation with Incompact3d is
shown in figure 10. The stability of the reconstruction was also analysed by simulating further
the flow for a limited number of time-steps and the flow was indeed stable when initialised
with the reconstructed velocity fields. This is necessary in order to use the results of the SO
method in variational DA as the background state.

Figure 10: Divergence of the flow field before and after simulation with Incompact3d.

An alternative to produce a divergence free reconstruction is to use the Helmholtz decomposi-
tion (Van Bladel, 1958). Helmholtz theorem states that “A continuous vector field, a, can be
decomposed into the sum of a gradient and a curl term”, i.e. a velocity field can be split as:

Ū = −∇φ+∇× ψ (13)

where ū is the velocity field, φ is the scalar potential and ψ is the vector potential. The
solenoidal Usol and irrotational Uirr part of velocity can hence be expressed as:

Usol = ∇× ψ; Uirr = −∇φ (14)

Using simple algebraic manipulations, the scalar potential can be calculated following which
the irrotational field, which contains the divergence, can be calculated and removed from the
true field. Such a manipulation can be easily done in the Fourier space. The resultant vector
field would contain minimal divergence as compared to the original field. However, as a part
of the original field was removed, the energy of the resultant field would be lower than the
original and this difference needs to be compensated for.
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An alternative methodology towards reconstructing a divergence-free flow is to use the diver-
gence correction scheme (DCS) as developed by de Silva et al. (2013). This method uses a
constraint-based non-linear optimisation technique to reduce the divergence of a given velocity
field to near zero. An improvement to this technique was provided by Wang et al. (2016) called
the divergence-free smoothing (DFS) method which reduces divergence while also smoothing
the velocity field to remove outliers and missing vectors. A more comprehensive approach
would be to use the modified pressure correction scheme (PIV-PCS) of Wang et al. (2018)
where in the PIV data are combined with the incompressible Navier-Stokes equations to im-
prove the data-set. The DCS and DFS family of methods provide an interesting approach
towards obtaining divergence free flow fields. A combination of the SO methodology with such
divergence-reducing schemes provides an avenue of interesting future work.

It is to be noted that the main application of this algorithm is towards experimental stereoscopic
PIV data-sets. These data-sets tend to be a large-scale representation of the flow due to the use
of interrogation windows i.e. similar to the LES case-study presented and the algorithm could
be expected to reconstruct accurately the large-scale volumetric data from such data-sets. The
performance of the algorithm with such experimental data-sets is the focus of the next section.

3.3 Experimental Case-studies
The experiments were conducted in two wind tunnels located at the Irstea regional center in
Rennes, France. One open wind tunnel was used to simulate both a wake flows and mixing
layers (case 3 and 5 respectively in table 2) in a test section measuring 3 m× 1 m× 1 m. The
other closed-loop wind tunnel was used to simulate a wake flow (case 4 in table 2) in a test
section measuring 2.4 m× 0.28 m× 0.28 m.

Two perpendicular plane 2D3C PIV measurements are taken in the test sections as shown in
figure 1. The origin of the coordinate system is defined at the intersection between the cross
planes, with x, y and z directed towards the streamwise, transverse and spanwise direction,
respectively. A stereo PIV system was carried out to measure the three velocity components
in both planes with a Litron laser system (Energy pulse of 15 mJ at 3, 000 kHz) and two high
speed cameras Phantom M310 (CMOS size of 800×1280 px). The flows were seeded by smoke
generated from oil. The resulting image pairs were analysed by Davis software from LaVision.
The specifics of the setup for each case-study is explained further in the corresponding sections.

3.3.1 Wake flow around a circular cylinder at Re 300

A cylinder of diameter D = 10 mm and length 300 mm was placed in the air flow. Two thin
end-plates were used with specifications provided by Stansby (1974) to avoid the boundary
layer effects of the walls of the test-sections. The end plates were separated by a distance of
300 mm with the clearance between the plates and the walls of the wind tunnel kept at 350 mm.
The free stream velocity was set at U = 0.48 m/s corresponding to a Re of 300. On both the
IP and the OP, 4 000 image pairs were acquired at a frequency of 500 Hz. The IP was placed
19D (190 mm) downstream of the cylinder. The OP intersects the IP through the middle with
a 10 mm protrusion behind the IP. The IP is discretised into Ny×Nz = 349× 268 mesh-points
while the OP is discretised into Nx × Ny = 280 × 347 mesh-points. Due to the presence of
end-plates as well as the divergent nature of the OP, the data measured on the borders of the
planes can be erroneous. In addition, the presence of extensive laminar regions in a snapshot
reduces the effectiveness of the algorithm as it reduces the weight of the turbulent region. Thus
only a sub-set of the original snapshot was considered for the optimisation procedure. The IP
sub-set measures Ly×Lz = 4.3D× 6.4D containing Ny×Nz = 72× 108 mesh-points. The OP
sub-set measures Lx×Ly = 8.4D×4.3D discretised into Nx×Ny = 145×72 points. A sample
streamwise velocity field on the IP and the OP is shown in figure 11
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Figure 11: Instantaneous streamwise velocity fields extracted on the IP and the OP from PIV
data-set of wake flow around a cylinder at Re of 300.

Figure 12: PIV wake flow instantaneous velocity fields extracted on the IP for Re of 300. From
top to bottom: reference and reconstruction. From the left to the right: streamwise, vertical
and spanwise velocity components.

The reconstructed velocity fields on the IP are shown in figure 12 along with the reference IP
velocity fields. A run-time of trec = 4.85 s was clocked by the algorithm for this case-study.
Contrary to the synthetic data-sets, the experimental observations provide a noisy velocity
field. However, the main structures of the flow are still captured well by the algorithm in all
three principal directions. The main large scale structures in the vortex wake are recovered
by the algorithm. Significant discontinuities are observed along the spanwise direction due to
the temporal discontinuity of snapshots between each neighbouring spanwise plane - methods
to smoothen the spanwise spurious variations are presented in the section on post-processing
techniques. This case-study clearly shows the ability of the algorithm to reconstruct the 3D
domain and these results are an improvement on the mirror-imaging technique used by Robin-
son (2015) for the same data-set in 3D variational data-assimilation. It is also an improvement
on the ‘empty box’ technique where the a numerical simulation, with a superimposed inlet
condition at every time-step, is used to create a background condition. Such a methodology is
time-consuming and requires high temporal resolution of the data. The SO method is extremely
quick (∼ 8 s) and requires only a long sequence with no limit on the temporal resolution.
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3.3.2 Wake flow around a circular cylinder at Re 3900

The PIV experiment was expanded to a more turbulent wake flow in the transitional Reynolds
regime at Re of 3900. A similar schematic to the previous experimental setup was used for data
generation. A cylinder of diameter D = 12 mm and length 260 mm was placed in the air flow.
Rectangular end-plates (100 mm×85 mm) are fixed 15 mm from the ends of the cylinder. The
free stream velocity U was increased to 5 m/s in order to obtained a Reynolds in the range
of 3900. On the IP 4108 image pairs are recorded and processed by Davis 10 software from
LaVision. In order to account for increased turbulence combined with the noise levels generally
associated with PIV data-sets, significantly higher number of snapshots (20 540) were recorded
on the OP. The time-difference between two frames for one correlation field was set at 20 µs for
the IP and at 30 µs for the OP. All images were recorded at the highest frequency supported
by the camera at 1.617 kHz. The OP intersects the IP in the middle at 6.5D from the centre
of the cylinder.

The IP is discretised into Ny × Nz = 110 × 92 mesh-points while the OP is discretised into
Nx×Ny = 69×108 mesh-points. The issue related to erroneous data at the border of the planes
persists and thus the boundary points are excluded in the reconstruction. Thus, only a sub-set
of the original snapshot measuring Ly × Lz = 7D × 5.6D on the IP and Lx × Ly = 4.3D × 7D
on the OP are extracted. These are discretised into Ny ×Nz = 93× 72 mesh-points for the IP
and Nx × Ny = 64 × 93 points for the OP. A sample streamwise velocity field on the IP and
the OP is shown in figure 13

Figure 13: Instantaneous streamwise velocity fields extracted on the IP and the OP from PIV
data-set of wake flow around a cylinder at Re of 3900.

The reconstruction capabilities of the SO method and the averaging SO method are analysed
with this flow configuration. The two-way reconstructed velocity fields on the IP are shown in
figure 14 along with the reference IP velocity fields. A run-time of trec = 9.16 s was clocked by
the SO algorithm and trec = 12.14 s by the averaging SO algorithm. Since the experimental
data-set is noisy, the SO reconstructed velocity field also contains comparable noise. Thus,
spanwise discontinuities, which were clearly visible for all previous cases reconstructed with the
SO method, appear attenuated in the reconstruction. Such an attenuation is more a result of
the data-deterioration from perfect synthetic or low turbulence data to noisy, highly turbulent
data-set than an algorithm improvement. For the averaging SO reconstruction, a dilution of
the noise is observed with minimal discontinuities - a slight attenuation of the kinetic energy
can be observed with this reconstruction. Both the algorithms manage to reconstruct all the
main turbulent structures in the flow as well as capturing significant small-scale structures.

The availability of a long sequence of OP snapshots allows for the study of reconstruction
efficiency as a function of OP snapshots. Table 2 tabulates the relative error percentage (in 2D)
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Table 2: Relative error percentage with respect to maximum OP snapshot case (20480) as
a function of number of OP snapshots for the experimental data-set of wake flow around a
cylinder at Re 3900

OP snapshots Error %(u) Error %(v) Error %(w)

2048 9.34% 16.26% 57.86%
4096 5.42% 6.50% 12.38%
6144 3.17% 5.58% 9.47%
8192 3.17% 5.12% 8.09%
10240 3.17% 3.98% 5.48%
12288 2.00% 3.38% 4.97%
14336 0.00% 2.43% 4.55%
16384 0.00% 1.87% 3.72%
18432 0.00% 0.18% 1.11%
20480 0.00% 0.00% 0.00%

between the reconstructed IP and the reference IP as a function of the number of OP snapshots
used for the reconstruction. The case associated with maximum OP snapshots of 20480 is used
as the base for relative error calculation. The improvement by using 20480 snapshots instead
of 2048 is best highlighted in the spanwise component where we obtain a significant 57.86%
improvement. A drastic error reduction is seen for all components by doubling the number
of snapshots from 2048 to 4096. An inverse exponential like curve is overall observed with
further increase in OP snapshots producing smaller and smaller improvements. By using 14336
snapshots, a 17% improvement is observed as compared to 2048 snapshots. However, a further
increase from 14336 to 20480 produces only 1.5% improvement on the reconstruction.

These results are promising but in order to adapt the reconstruction methodology to data
assimilation studies for creation of 3D backgrounds and/or 3D observations, the volumetric
data-set needs to be analysed. Figure 15 plots the 3D volumetric iso-contours for each velocity
component reconstructed from the SO and the averaging SO reconstruction techniques. Due
to the 2D restriction of the experimental data-set, a comparison is not possible, however,
large-scale structures can be observed in the iso-contours especially in the averaging SO case.
Significant noise reduction in the averaging SO reconstruction is also seen in the iso-contours
especially for the spanwise velocity in comparison with the simple case. Figures 14 and 15 are
a good indication that meaningful volumetric reconstruction can indeed be obtained using the
SO methods for use in data assimilation studies.

3.3.3 Mixing layer at λ of 0.33

Another stereoscopic PIV experiment was performed in the a plane mixing layer with a modified
velocity ratio λ of 0.33 where λ = (1 − r)/(1 + r) with r = Umin/Umax. A λ approaching 0
implies a stable mixing layer while a λ approaching 1 implies an unstable mixing layer. The
modified velocity ratio was maintained with Umax = 1 m/s and Umin = 0.5 m/s. Both air flows
were maintained at the same temperature. The vorticity thickness δω of the mixing layer at the
intersection between IP and OP was estimated to be egual to 51 mm. The Reynolds based on
this vorticity thickness and on the velocity difference was equal to 1540. With a similar imaging
setup as the wake flow case 3, 4 000 image pairs were acquired at a frequency of 600 Hz. The
domain size for the measurement planes were identical to the previous case-study. The OP
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Figure 14: PIV wake flow instantaneous velocity fields extracted on the IP at Re of 3900. From
top to bottom: streamwise, vertical and spanwise velocity components. From the left to the
right: reference, SO reconstruction, and averaging SO reconstruction.

intersects the IP in the middle and protrudes for 10 mm behind the IP. The image pairs were
analysed by the Davis 7.2 software from LaVision providing 4 000 vector fields for both OP
and IP. This PIV data-set was consistant with hot-wire measurements carried out by Sodjavi
& Carlier (2013) in the same wind tunnel.

The IP is discretised into Ny×Nz = 175×134 mesh-points and the OP into Nx×Ny = 140×174
mesh-points. Ignoring the borders and the region far away from the mixing layer, a subset of
the IP measuring Ly×Lz = 120 mm×138 mm and Lx×Ly = 122 mm×120 mm for the OP was
extracted. This sub-set contains Nx×Ny = 100×100 points in the OP and Ny×Nz = 100×115
points in the IP. The sample streamwise velocity field on this sub-set is provided in figure 16

Figure 17 depicts the original and reconstructed velocity fields on the inlet. The SO method
required trec = 6.85s to recover the velocity field for this case-study. All three components
are reconstructed quite well by the algorithm. One can see that the interface between the
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Figure 15: PIV wake flow instantaneous velocity iso-contours extracted on the 3D domain.
From top to bottom: SO reconstruction and averaging SO reconstruction. From the left to the
right: streamwise, vertical and spanwise velocity components.

Figure 16: Instantaneous streamwise velocity fields extracted on the IP and the OP from PIVs
data-set of the mixing layer.

two fields is very accurately reconstructed by the SO method. For the vertical and spanwise
components, a noisy but well-represented reconstruction is obtained. It is interesting to note
here that the amount of discontinuities is quite less as compared to previous reconstructions
due to smoothness of the reference velocity.

These case studies clearly indicate the ability of the SO algorithm to reconstruct the flow using
2D planar data. An important advantage of this reconstruction method is the time taken which
is in the order of seconds. Most DA methods and other complex reconstruction algorithms take
much longer to provide results.
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Figure 17: PIV mixing layer instantaneous velocity fields extracted on the IP. From top to
bottom: reference and reconstruction. From the left to the right: streamwise, vertical and
spanwise velocity components.

3.4 Error characterisation
This final section on error characteristics analyses quantitatively the performance of the SO
reconstruction algorithm with respect each of the cases considered above. The accuracy of the
reconstruction is quantified through a root mean square error (RMSE) comparison between
the reconstruction and the true reference for each of the three velocity components. For the
synthetic case of wake flow around a circular cylinder (case1) and channel flow (case2) the
RMSE is calculated over the whole volumetric domain on which we have the reference readily
available. For the experimental case studies: wake flow at Re 300 (case3), at Re 3900 (case4),
and mixing layer (case5), the RMSE is calculated only on the IP on which we have the reference
data. The corresponding RMSE errors are plotted in figure 18.

The error plot provides some valuable insights in to the performance of the model:

• For case3 with the wake flow at Re 300, the error is least due to the organised laminar
nature of the flow. Clearly, the algorithm is able to better represent the flow when the
level of turbulence is low.

• Considering the RMSE for case2 - channel flow synthetic DNS, the low error in comparison
to the other flows reiterates the previous point where in homogenous turbulence, as in
channel flow, is more easily and better reconstructed using the SO algorithm. In addition,
for the case of homogenous turbulence with high resolution data, using additional OP
data-set (as with the 1 plane (1p), 5 planes (5p), and 10 planes (10p) cases) does not
provide a significant improvement of the reconstruction. This is due to the limitation
of the algorithm towards optimising the small scales of turbulence which predominate in
channel flow especially with high resolution data-sets.

• The averaging SO methods (ASO) provides, in all considered cases, an improvement on
the simple SO method.
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Figure 18: Root mean square error for each velocity component between the reconstruction and
the reference for all case studies. For cases where the averaging SO method (ASO) has been
analysed, the corresponding error is also provided. For cases with 3D reference, the RMSE
is calculated in the volume while for the rest it is calculated on the 2D IP. Legend: Case1 -
synthetic wake flow at Re 3900; Case2 - synthetic channel flow at Reτ 590; Case3 - PIV wake
flow at Re 300; Case4 - PIV wake flow at Re 3900; Case5 - PIV mixing layer.

• The comparatively large RMSE obtained for case1 is due to the calculation performed
over the volume where in the error is expected to be higher than on the IP.

4 Conclusion
This present study investigated a novel flow reconstruction method to obtain 3D volumetric
velocity measurements using 2D planar measurements. The reconstruction algorithm is based
on the assumption that considering the periodicity of the flow perpendicular to the OP, a
sufficiently long time-sequence of snapshots on the OP contains at some instance within that
time-sequence a representation of each of the parallel 2D planes comprising the 3D volumetric
domain encompassed by the OP and the IP. Three versions of the minimisation algorithm were
formulated and tested on two synthetic case studies and three experimental case studies. The
algorithm is shown to reconstruct the main turbulent structures of the flow for all cases. Good
performance is shown for the three wake flow studies while for the mixing layer, small scale
structures are absent in the reconstruction. For a higher-dimension system such as the channel
DNS data-set, the algorithm shows significant discontinuities while marginal oscillations are
found in the other cases. Methods for addressing these issues are also analysed, and applied
to the synthetic wake flow, showing significant reduction when POD based SO method or
Averaging SO methods are employed - the 3D turbulent structures are shown to match well
with the reference field. The averaging SO method, which provided the best reconstruction
for the synthetic case, was also applied to the experimental data-set on wake flow at Re of
3900. The method was shown to reduce noise and smooth the reconstructed velocity. The
volumetric iso-contours showed meaningful large-scale structures are reconstructed using this
algorithm. Techniques to ensure a divergence free reconstruction are also explored. Given the
successful application of the SO methodology, especially with PIV sparse data-sets, it could
be an useful tool for performing variational DA studies where in an accurate background,
constructed using the SO method, can help converge to the optimal solution with less iterations
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and thus lower cost. In addition, the use of the POD based SO can help calculate the so called
background covariance matrix for variational DA which is an important weighting factor in the
cost functional. The algorithm can also be expanded to reconstruct axisymmetric flows such
as flow through a pipe or jet flows.
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Brücker, C. 1995 Digital-particle-image-velocimetry (DPIV) in a scanning light-sheet: 3d start-
ing flow around a short cylinder. Experiments in Fluids 19 (4), 255–263.
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Schanz, D., Gesemann, S. & Schröder, A. 2016 Shake-The-Box: Lagrangian particle tracking
at high particle image densities. Experiments in Fluids 57 (5).

Schneiders, J. F. G. & Scarano, F. 2016 Dense velocity reconstruction from tomographic PTV
with material derivatives. Exp. Fluids 57 (9).

de Silva, C. M., Philip, J. & Marusic, I. 2013 Minimization of divergence error in volumet-
ric velocity measurements and implications for turbulence statistics. Experiments in Fluids
54 (7).

Sodjavi, K. & Carlier, J. 2013 Experimental study of thermal mixing layer using variable
temperature hot-wire anemometry. Exp. Fluids 54 (10).

Stansby, P. K. 1974 The effects of end plates on the base pressure coefficient of a circular
cylinder. Aeronaut. J. 78 (757), 36–37.

Steinberg, A. M., Driscoll, J. F. & Ceccio, S. L. 2009 Three-dimensional temporally resolved
measurements of turbulenceflame interactions using orthogonal-plane cinema-stereoscopic
PIV. Experiments in fluids 47 (3), 527–547.

Van Bladel, J. 1958 On Helmholtz’s Theorem in Finite Regions. IRE Transaction on Antennas
and Propagation .

26



Wang, C., Gao, Q., Wang, H., Wei, R., Li, T. & Wang, J. 2016 Divergence-free smoothing for
volumetric PIV data. Experiments in Fluids 57 (1).

Wang, H., Gao, Q., Wang, S., Li, Y., Wang, Z. & Wang, J. 2018 Error reduction for time-
resolved PIV data based on NavierStokes equations. Experiments in Fluids 59 (10).
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