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Abstract

We present a new methodology of computing incremental contribution

for performance ratios for portfolio like Sharpe, Treynor, Calmar or

Sterling ratios. Using Euler’s homogeneous function theorem, we are

able to decompose these performance ratios as a linear combination of

individual modified performance ratios. This allows understanding the

drivers of these performance ratios as well as deriving a condition for

a new asset to provide incremental performance for the portfolio. We

provide various numerical examples of this performance ratio decompo-

sition.

JEL classification: C12, G11.

Keywords : Sharpe, Treynor, recovery, incremental Sharpe ratio, portfolio

diversification

1 Introduction

When facing choices to invest in various funds (whether mutual or hedge

funds), it is quite common to compare their Sharpe ratio, or other performance
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ratios like Treynor or recovery ratio in order to rank funds. These ratios aim

at measuring performance for a given risk. They achieve two important things:

they measure performance taking into account risk. They allow constructing

the optimal performance as the result of an optimization program.

The usual performance metric is the eponymous Sharpe ratio established

in [?]. It is a simple number easy to derive and intuitive to understand as it

computes the ratio of the excess return over the strategy standard deviation.

It has various limitations that have been widely emphasized by various authors

([?], [?], [?]) leading to other performance ratios like Treynor ratio (see [?]),

but also Calmar (see [?]), Sterling (see [?]) or Burke rqtio (see [?]). Other

authors have also tried to provide additional constraints to the Sharpe as in

[?] or more recently in [?] or to use option implied volatility and skewness as

in [?]. There have been also numerous empirical work on Sharpe ratio as for

the most recent ones in [?], [?]

An important feature that has been noted in [?] or [?] but only for the

Sharpe ratio is the fact that most of the performance ratios are so called 0

Euler homogeneous with respect to the portfolio weights. In financial terms,

there are not sensitive to the leverage of the portfolio.

The contribution of our paper is to exploit this mathematical property and

re-derive well known results on the Sharpe ratio in a new manner. As a conse-

quence, we obtain the condition for a new asset to increase the overall Sharpe

of a portfolio. We also extend the incremental performance marginal sensi-

tivity to all performance ratios that are 0 Euler homogeneous with respect to

the portfolio weights. This allows in particular to understand the performance

ratios drivers. We finally show how to decompose performance ratios between

a benchmark and the individual portfolio constituents.

2 Euler homogeneous functions and its appli-

cation to performance ratios

2.1 Euler’s theorem

In mathematics, one call a homogeneous function one that has a multiplicative

scaling behaviour. If we multiply all its arguments by a constant factor, then

its value is multiplied by some power of this factor. If we denote by f : Rn → R
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a multidimensional function from Rn to R, then the function f is said to be

homogeneous of degree k if the following holds:

f(αv) = αkf(v) (1)

for all positive α > 0 and v ∈ Rn. If the function is continuously differen-

tiable ( and this generalized also to almost surely continuously differentiable

function), the Euler’s homogeneous function theorem 3 states that the function

is homogeneous if and only if

x · ∇f(x) = kf(x) (2)

where ∇f(x) stands for the gradient of f . This theorem (shown in various

book like for instance [?]) gives in particular a nice decomposition of any

homogeneous function provided we can compute the gradient function as it

says that the function is a linear combination of partial derivatives as follows:

f(x) =
1

k

∑
i=1..n

xi
∂f

∂xi

2.2 Intuition with Sharpe ratio

Let us see how this can be applied to any homogeneous performance ratio.

In order to build our intuition, we will start by the Sharpe ratio as this is a

simple and well know ratio. We assume we have a portfolio of n assets with

weights wi. We denote by Rf the risk free rate and Rp the portfolio return.

The Sharpe ratio is defined as the fraction of the portfolio excess return rp

over the portfolio volatility σp and given by

Sp =
Rp −Rf

σp
=
rp
σp

(3)

If we decompose the portfolio excess return rp as the convex combination

of its assets excess returns with percentage weights wi, we get that the Sharpe

ratio is a convex combination of the modified Sharpe

Sp =

∑n
i=1wiri
σp

=
n∑
i=1

wi
ri
σp

(4)

3This theorem is trivially proved by differentiating f(αv) = αkf(v) with respect to α for

the implication condition and by integrating the differential equation x · ∇f(x) = kf(x) for

the reverse condition
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This says that if we were looking at a modified Sharpe ratio of each portfolio

constituent where the volatility of the constituent is modified into the one

of the portfolio, then the Sharpe ratio of the portfolio is simply the convex

combination of these modified Sharpe ratio. This is nice from a theoretical

point of view but not very useful as this forces us to compute the volatility

of the portfolio and does not give any hindsight about asset i volatility. This

is where Euler homogeneous formula comes at the rescue. The Sharpe ratio

like many other performance ratio has the particularity that it is the fraction

of two homogeneous function of degree 1. The decomposition for the excess

return in terms of a linear combination of the portfolio weight is obvious.

More subtle is the fact that the volatility of the portfolio can also be de-

composed as the convex sum of individual volatility contributions. Indeed, the

volatility is an homogeneous function of degree 1 of the portfolio weights as

scaling the weights by a factor increases the portfolio by the same factor. In

the sequel, we will denote for asset i, ρi,p its correlation with portfolio P , σi

its volatility and Si its Sharpe ratio. Thanks to Euler’s homogeneous function

theorem, we know that the portfolio volatility can be written as follows

Proposition 2.1. The weighted marginal contributions to volatility sum up

to portfolio volatility as follows:

σp =
n∑
i=1

wi
∂σp
∂wi

=
n∑
i=1

wiρi,pσi (5)

Proof. trivial consequence of Euler’s homogeneous function theorem and given

in ??.

This results was first derived in [?] but in the case of equally weighted

portfolio and was also noted in [?]. Using this first property, it is now easy to

derive a convex combination for the portfolio Sharpe ratio as follows.

Proposition 2.2. The portfolio Sharpe ratio is a convex combination of

individual Sharpe ratios weighted by the inverse of the asset i correlation with

portfolio P , ρi,p:

Sp =
n∑
i=1

θi
1

ρi,p
Si (6)
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The risk weights (θi)i=1..n sums to one and are given by

θi =
wiρi,pσi
σp

(7)

The coefficient 1/ρi,p measures the diversification effect. It increases Sharpe

ratio for low correlation.

Proof. given in ??.

As a byproduct, we get the condition for a new asset to improve the overall

portfolio Sharpe summarized below

Proposition 2.3. It is optimal to include an asset i in a portfolio if and

only if

Si ≥ ρi,pSp (8)

Proof. See ??.

This result is complementary from the standard mean variance approach

as presented in [?] and generalized in [?], which investigates about the optimal

weights in a mean variance framework and states that the optimal weights are

the result of a normal equation.

2.3 General case

A large number of performance ratios like Sharpe, Treynor, Sortino, Calmar,

Sterling, information ratios or M2 write as the fraction of an excess return or

a return or a return over a benchmark over some risk measure. The numerator

and the denominator are homogeneous functions of degree 1. This leads to a

performance ratio that is an homogeneous function of degree 0. In financial

terms, the performance ratio is insensitive to leverage.

We will write therefore any portfolio leverage-insensitive ratio PR(p) as the

fraction of an portfolio homogeneous return Rp over an homogeneous function

of degree 1, f(p) as follows:

PR(p) =
Rp

f(p)
(9)
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We will also denote for the asset i by f(i) its denominator function and PR(i)

its coresponding performance ratio. Since the general return is an homoge-

neous functions of degree 1, it can be written as the convex combination of

individual asset general returns:

Rp =
n∑
i=1

wiRi (10)

Since the denominator is an homogeneous functions of degree 1, it can be

written as a convex combination of individual asset contribution thanks to the

Euler’s homogeneous function theorem:

f(p) =
n∑
i=1

wi
∂f

∂wi
(11)

Combining equations ?? and ?? leads to a decomposition of the leverage-

insensitive ratio PR into individual or incremental performance ratio for each

asset i

PR(p) =
n∑
i=1

wi
∂f
∂wi

f(p)
× f(i)

∂f
∂wi

× Ri

f(i)
=

n∑
i=1

θi ×Di × PR(i) (12)

The risk factor θi and the diversification factor Di are given respectively

by

θi =
wi

∂f
∂wi

f(p)
, Di =

f(i)
∂f
∂wi

(13)

As in the case of the Sharpe, it is then easy to derive a condition for a new

asset to improve the overall portfolio performance ratio summarized below

Proposition 2.4. It is optimal to include an asset i in a portfolio in order

to maximize the performance ratio PR(p) if and only if

PR(i) ≥ PR(p)

Di

⇔ PR(i) ≥
∂f
∂wi

f(i)
× PR(p) (14)

Proof. See ??.

The real work at this stage is to compute the derivative function of the

denominator with respect to its weight ∂f
∂wi

. We provide results for various

performance ratios in the table below
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performance definition performance diversification

ratio = Rp

f(p)
marginal sensitivity = ∂f

∂wi
factor= f(i)/ ∂f

∂wi

Sharpe Sp =
rp−rf
σp

ρi,pσi 1/ρi,p

Sortino Sorp =
rp−rf
TSDp

ρi,pTSDi 1/ρi,p

Information IRp = rp−rb
σp−b

ρi,p−bσi 1/ρi,p−b × σi−b/σi
Treynor Tp =

rp−rf
βp

βi 1

Recovery Recp =
rp−rf
MDDp

M̃DDi MDDi/M̃DDi

Calmar Calp =
rp−rf

MDD36m
p

M̃DD
36m

i MDD36m
i /M̃DD

36m

i

Sterling Sterp =
rp−rf
ALDp

ÃLDi ALDi/ÃLDi

Table 1: We provide here above the results for the most common performance

ratios

In table ??, we have used the following notations:

• TSD stands for target semi deviation(standard deviation of return below

target).

• rb is the benchmark return.

• σp−b is the standard deviation of the difference between the portfolio and

benchmark returns.

• MDD (respectively MDD36m, ALD ) stands for the maximum draw-

down, the maximum drawdown over 36 months and the annual average

maximum drawdown over the entire historical period.

Proof. See ??.

3 Numerical application

3.1 Sharpe ratio

Let us apply the above formulas to a portfolio consisting of three assets with

the characteristics described in table ??. The portfolio weights are the opti-

mal ones in terms of the highest Sharpe ratio with the constraints of weights

between 0 to 100% (no short selling allowed neither extra leverage). We also
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provide in the characteristics the correlation between the asset i and the port-

folio as this is useful for risk decomposition.

Asset I II III Total

Weight 34.87% 28.07% 37.06% 100.00%

Expected Return 3.20% 3.50% 4.50%

Volatility 4.87% 5.63% 5.12%

Correlation with portfolio 49.87% 37.55% 65.87%

Table 2: Portfolio characteristics

Once the characteristics established, we can easily compute the portfolio

performance ratio as provided in table ??. We compute the portfolio return as

the convex combination of the assets returns as well as the portfolio volatility.

For the latter, we use the volatility reconstruction formula ??. The portfolio

Sharpe is then the fraction of the latter two. We can notice that the resulting

portfolio Sharpe (1.4000) is substantially higher than the best asset Sharpe

(0.8789). We are benefiting fully from the diversification effect.

Portfolio

Expected Return 3.77%

Volatility 2.69%

Sharpe Ratio 1.4000

Table 3: Portfolio resulting Sharpe ratio: all these numbers are computed from

table ??

The table ?? gives us a nice view of the Portfolio Sharpe decomposition.

The asset III has the highest Sharpe ratio (0.8789) but the lowest Sharpe di-

versification. This results in particular in a the highest risk (46.46%), which

is a strong indication that asset III contributes more to the overall portfo-

lio Sharpe ratio. Its risk weight (46.46%) is higher than its portfolio weight

(37.06%) indicating that the Sharpe contribution will be over-weighted. In

contrast, risk weights for asset I and II (31.48% and 22.06%) are smaller than

their corresponding portfolio weights ( 34.87% and 28.07%). They will con-

tribute less and will be under-weighted in the overall portfolio Sharpe ratio.

Thanks to the strong asset III contribution and the diversification, as noted

above, the overall portfolio achieved a significant increase in its Sharpe ratio
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(1.4000). In table ??, the Sharpe ratio relative contribution is defined as the

Sharpe ratio contribution divided by the portfolio Sharpe ratio. It sums to

100 %.

Asset I II III Total

Asset Sharpe Ratio 0.6571 0.6217 0.8789

Sharpe Diversification 2.0054 2.6632 1.5182

Component Sharpe Ratio 1.3177 1.6557 1.3344

Risk Weight 31.48% 22.06% 46.46% 100.00%

Sharpe Ratio Contribution 0.4148 0.3652 0.6200 1.4000

Sharpe Ratio Relative Contribution 29.63% 26.09% 44.29% 100.00 %

Table 4: Portfolio Sharpe decomposition: all these numbers are computed from

table ??

3.2 Recovery ratio

Recovery ratio is an important performance ratio in the funds’ world as it

provides the expected return divided by the maximum drawdown. Maximum

drawdown is closely monitored by professional investors as it gives an hint

about the maximum potential loss should they invest and dis-invest at the

worst time. For the sake of comparison with the previous study in section ??,

we will first start with the same portfolio with the same percentage weights.

For each asset, we provide in table ?? its maximum drawdown as well its

performance marginal sensitivity (whose formula is ∂f
∂wi

) as provided in ??.

Asset I II III Total

Weight 34.87% 28.07% 37.06% 100.00%

Asset MDD 5.71% 6.34% 4.53%

Performance marginal sensitivity 3.14% 1.90% 4.07%

Table 5: Portfolio characteristics for recovery ratio

Like for the Sharpe ratio, we can compute the portfolio resulting charac-

teristics in table ??. Expected return is like before computed as the convex

combination of the asset returns (and is the same as in table ??). The recovery

ratio is then simply the fraction of the latter two.
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Portfolio

Expected Return 3.77%

Portfolio Drawdown 3.14%

Portfolio recovery ratio 1.1999

Table 6: Portfolio resulting recovery ratio

More interestingly is to analyze portfolio recovery decomposition as pro-

vided in table ??. Again, thanks to portfolio diversification, we achieve a

higher performance ratio (recovery of 1.1999) compared to the highest asset

performance ratio (obtained for asset III 0.9939). Like for the Sharpe ratio,

the risk weight of asset III (48.12%) is over-weighted compared to its portfo-

lio weight (37.06%). The opposite situation arises for asset II (risk weight of

17.02% compared to a 28.07%). By complete chance, risk and portfolio weight

for asset I are equal up to the fourth decimal (risk weight of 34.865% compared

to portfolio weight of 34.872% ). As in the case of the Sharpe ratio, we can

check that the sum of the risk weights are equal to 100%. In table ??, the

recovery ratio relative contribution is defined as the recovery ratio contribution

divided by the portfolio recovery ratio. It sums to 100 %.

Asset I II III Total

Asset Recovery ratio 0.5609 0.5518 0.9939

Recovery Diversification 1.8182 3.3333 1.1111

Component Recovery 1.0198 1.8393 1.1043

Risk Weight 34.87% 17.02% 48.12% 100.00%

Recovery Contribution 0.3556 0.3130 0.5314 1.1999

Recovery Relative Contribution 29.63% 26.08% 44.28% 100.00%

Table 7: Portfolio recovery decomposition

A natural question that arises when looking at the recovery ratio for the

portfolio is to determine if the optimal weights for the Sharpe ratio are also

optimal for the recovery ratio. The answer is no in general. Recovery ratio

is substantially different from Sharpe ratio. Hence the optimal portfolio for

the recovery ratio has no reason to have the same weights as for the optimal

portfolio for the Sharpe ratio. Because the recovery ratio implies a non convex

function, namely the maximum drawdown, there is no closed form solution for
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the optimal portfolio as opposed to the Sharpe ratio settings. Using the CRG

(that stands for Generalized Reduced Gradient) method (as presented in [?]),

we can determine the optimal weights for this portfolio as provided in table ??.

For this new portfolio, Asset performance marginal sensitivity changes slightly

as the portfolio drawdown times are different.

Asset I II III Total

Weight 5.99% 24.78% 69.24%

Asset MDD 5.71% 6.34% 4.53%

Asset performance marginal sensitivity 3.74% 1.95% 3.49%

Table 8: Optimal Portfolio characteristics for maximum drawdown

We can recompute the new portfolio characteristics as provided in table

??. We achieve a substantially higher portfolio recovery ratio (1.3379 versus

1.1999). This is due both to a higher expected return (4.17% versus 3.77%)

and a lower portfolio maximum drawdown (3.12% versus 3.14%).

Portfolio

Expected Return 4.17%

Portfolio Drawdown 3.12%

Portfolio recovery ratio 1.3379

Table 9: Optimal Portfolio resulting recovery ratio

As for previous studies, we can look at maximum drawdown decomposition

as provided in table ??. Compared to the previous portfolio with same weights

as the optimal ones for the Sharpe ratio, the risk weight for asset III increases

even more (77.38% versus 48.12%). This is quite logical as this optimal port-

folio for the maximum drawdown is indeed very much geared towards asset III

(asset weight of 69.24% versus 37.06%). Interestingly, thanks to diversifica-

tion, the recovery contribution for asset III (0.9986) is even higher to the asset

recovery ratio (0.9939 ).
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Asset I II III Total

Asset Recovery ratio 0.5609 0.5518 0.9939

Recovery Diversification 1.5268 3.2606 1.2984

Component Recovery 0.8563 1.7991 1.2905

Risk Weight 7.17% 15.45% 77.38% 100.00%

Recovery Contribution 0.0614 0.2779 0.9986 1.3379

Table 10: Optimal Portfolio maximum drawdown decomposition

4 Concluding Remarks

We have introduced in this paper a unified framework for deriving asset con-

tribution for performance ratios that are homogeneous function. This allows

us finding easily previous results on incremental Sharpe ratio contribution of a

new asset as well as extend this to new performance ratios like Sortino, Infor-

mation, Treynor, Recovery, Calmar or Sterling ratios where this did not exist.

We also compare the impact of a new asset to a portfolio performance thanks

to these incremental performance marginal sensitivity and show a methodology

to analyse asset contribution to a portfolio.
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A Various Proofs

A.0.1 Proof of Proposition ??

Denoting by ρi,j the correlation between asset i andj, we can decompose the

porfolio variance as a combination of assets’ volatility as follows:

σ2
p =

∑
i=1...n

w2
i σ

2
i + 2

∑
i,j=1...n,i 6=j

wiwjρi,jσiσj (15)

Differentiating the above equation ?? with respect to wi, we have

2σp
∂σp
∂wi

= 2wiσ
2
i + 2

∑
j=1...n,j 6=i

wjρi,jσiσj (16)

We can notice that the correlation between asset i and the portfolio p is

given by

ρi,p =
wiσ

2
i +

∑
j=1...n,j 6=iwjρi,jσiσj

σiσp
(17)

which shows that

∂σp
∂wi

= ρi,pσi (18)

Since the portfolio volatility is homogeneous of degree 1, the Euler’s homo-

geneous function theorem states that

σp =
∑
i=1...n

wi
∂σp
wi

=
∑
i=1...n

wiρi,pσi (19)

A.0.2 Proof of Proposition ??

Dividing and multiplying by ρi,pσi in the formula of the portfolio Sharpe ratio

and regrouping the terms leads to the final results as follows:

Sp =
n∑
i=1

wi
ri
σp

=
n∑
i=1

wiρi,pσi
σp

1

ρi,p

ri
σi

=
n∑
i=1

θi
1

ρi,p
Si (20)
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A.0.3 Proof of Proposition ??

Let us denote by P (wi, i = 1..n) the portfolio composed of n assets with

percentage weights wi and n the new asset. The portfolio percentage weights

sum to 1:
∑

i=1..nwi = 1. The optimization program writes as follows:

maximize Sharpe Ratio(P (wi, i = 1..n)), (21)

subject to
∑
i=1..n

wi = 1 (22)

Using proposition ?? and multiplying and dividing by 1 − θn (with the

additional constraint that θn 6= 1 4), the optimal solution is also the solution

of this program

maximize (1− θn)
∑

i=1..n−1

θi
1− θn

1

ρi,P
Si + θn

1

ρn,P
Sn (23)

subject to
∑
i=1..n

θi = 1, θn 6= 1 (24)

Fixing θn and noticing that the weights θi
1−θn for i = 1..n− 1 sum to 1, the

optimization program is indeed a two steps program where we can optimize

first in terms of the weights θi
1−θn and then in terms of θn. As the n− 1 terms

are indeed the percentage weights of an n−1 portfolio composed of n−1 assets,

the first optimization is exactly the same as the optimization of the optimal

portfolio with n−1 assets in terms of its Sharpe ratio. The first step therefore

leads to the optimal portfolio without asset n for the Sharpe ratio. We will

denote this portfolio by P̃ . The maximization program is then equivalent to

maximize (1− θn)SP̃ + θn
1

ρn,P
Sn (25)

subject to 0 ≤ θn ≤ 1 (26)

This optimization program is a linear function whose optimal solution θn

is not equal to zero if and only if the slope coefficient is positive (which proves

the result):

1

ρn,P
Sn − SP̃ ≥ 0⇔ Sn ≥ ρn,PSP̃ (27)

4the particular case of θn = 1 can be handled easily by taking the left limit for θn ↑ 1
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A.0.4 Proof of Proposition ??

The proof is exactly the same as in ?? and leads at the end to solve the

following linear maximization program where like in ?? , we denote by P̃ the

optimal portfolio with n− 1 assets in terms of the performance ratio.

maximize (1− θn)PR(P̃ ) + θnDnPR(n) (28)

subject to 0 ≤ θn ≤ 1 (29)

This optimization program is a linear function whose optimal solution θn

is not equal to zero if and only if the slope coefficient is positive (which proves

the result):

DnPR(n)− PR(P̃ ) ≥ 0⇔ PR(n) ≥ PR(P̃ )
Dn

(30)

A.0.5 Proof of Table ?? results

Results for Sharpe are already proved in ??.

Denoting by rM the return of the market asset, the beta in the Treynor

ratio is given by

βp =
Cov(rp, rM)

σ2
M

=
Cov(

∑n
i=1wiri, rM)

σ2
M

=
n∑
i=1

Cov(ri, rM)

σ2
M

(31)

A straight derivation leads to the results ∂f
∂wi

= βi

The target semi deviation is quite similar to the standard deviation with

the additional constraint that we only use returns that are below its mean.

The proof is therefore similar to the one of the portfolio in the Sharpe ratio

with the additional constraint to use only down returns, leading to a target

standard deviation for the assets’ performance marginal sensitivity:

∂f

∂wi
= ρi,pTSDi (32)

The proof for the recovery, Calmar and Sterling ratio are similar and we

will detail only the first one as the other derivation are just an averaging or
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windowing of the first proof. The maximum drawdown measures the largest

peak-to-trough decline in the value of a portfolio. Denoting by 0 to T the his-

torical times at which we observe the portfolio return and by crjp the cumulative

return of the portfolio from time 0 to j with the convention that the return at

time 0 is null, the maximum drawdown can be written mathematically as the

maximum of the following discrete optimization program

MDD ≡ min
j=0..T, k=j..T

1 + crkp

1 + crjp
− 1 (33)

The portfolio contains n assets with percentage weights wi. Assuming no re-

balancing, the portfolio cumulative returns writes as the convex combination

of the cumulative asset i return, leading to the following definition of the

maximum drawdown

MDD = min
j=0..T, k=j..T

∑n
i=1wi(1 + crki )∑n
i=1wi(1 + crji )

− 1 (34)

As this is a discrete optimization program, the optimum is attained for j∗

and k∗. Deriving the maximum drawdown leads therefore to

∂

∂wi
MDD =

(
1 + crk∗i
1 + crj∗p

− 1

)
−

 1+crj∗i
1+crj∗p

× (1 + crk∗p )

1 + crj∗p
− 1

 ≡ M̃DDi (35)

Hence the sensitivity of the maximum drawdown is given by the difference

of

• the drawdown between between the portfolio cumulative return at time

j∗ and the asset at time k∗

• the drawdown between between the portfolio cumulative return at time

j∗ and the portfolio return at time k∗ augmented by the difference of

cumulative return between the asset i and portfolio at time j∗

For the Calmar and Sterling ratio, similar formulae exist where the sensi-

tivity of the maximum drawdown is taken over 36 months, respectively as the

annual average.
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A.0.6 Correlation matrix for the three assets

For the sake of completeness, we provide below the correlation matrix. This

matrix is consistent with asset correlation with portfolio coefficients.

Asset I II III

I 1.00 - 0.20 0.40

II - 0.20 1.00 0.30

III 0.40 0.30 1.00

Table 11: Asset correlation matrix

From this correlation matrix denoted by Σ and for asset i with the cor-

responding Kronecker delta vector defined by δi = (0...1...0)T with one at

the ith row and zero elsewhere, it is then straightforward to compute for

any asset its correlation with portfolio (whose weight vector is defined as

W = (w1, ..wj, .., wn)T as follows:

ρi,p =
δiΣW√

δiΣδi
√
WΣW

(36)
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