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Density based graph denoising for manifold
learning

Yves Michels, Étienne Baudrier, Loı̈c Mazo, Mohamed Tajine

Abstract—Processing high dimension data often makes use of a dimension reduction step. Indeed, high dimension data generally rely
on a low dimension underlying structure. When the data are noisy, dimension reduction may fail because of shortcuts appearing on the
graph catching the underlying structure. Our paper presents a method to suppress shortcuts in the underlying structure graph. The
method is based on a skeleton graph that approximates the data and that is built using a data probability density estimation. This
approximating graph is then used to select the edges of the underlying structure graph used in the dimension reduction. The proposed
algorithm is tested on the capacity to suppress shortcuts and to conserve the underlying structure geodesic distance. Our method
outperforms the state-of-the-art methods in the experiments on six 3D synthetic dataset and one tomographic dataset with different
noise levels.

Index Terms—Shortcut detection, manifold learning, unsupervised learning, structure learning, neighborhood graph

F

1 INTRODUCTION

P ROCESSING high dimensional datasets is a significant
challenge in machine learning, data visualization and

parameter estimation. In many applications, the data lies
on a low dimensional smooth subset embedded in high
dimensional space. Dimension reduction can be used as
a preliminary step to make subsequent algorithms more
efficient [1]. When data lie in an affine subset, a linear
dimension reduction can be used. For instance, Principal
Component Analysis reduces the dimensionality by project-
ing the data onto the maximum variance linear subspace.
This paper focuses on the case where the data are not
in a linear subspace. Then, one has to turn to non-linear
dimension reduction also known as manifold learning.

Manifold learning methods aim to extract the intrinsic
low dimensional geometry of the data. These methods can
be classified in two categories: Methods based on an a priori
low dimensional map embedded in the high dimension
space to match the dataset [2], [3], [4], [5]. Setting the low
dimensional map implies to know a minima the topology
of the manifold. When only the data point set is known,
manifold learning methods based on the conservation of
local information can reduce dimensionality without a priori
on the topology of the manifold. This local information can
be similarities as in Laplacian Eigenmap [6], the local linear
structure as in Locally Linear Embedding [7] and Local Tan-
gent Space Alignment [8], or distances as in Isomap [9], [10].
Local information is embedded in a neighborhood graph
connecting only points that are close in the high dimension
space [11]. When the dataset is too sparse or too noisy,
the neighborhood graph connects points geodesically far
on the manifold. If there are such shortcuts, the dimension
reduction is biased and generally fails to reveal the low
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dimension manifold.
This shortcut issue is studied in the literature. In [12],

[13], [14], the authors propose to construct the graph in two
steps: first they construct a neighborhood graph and then
they detect and remove shortcuts from a nearest neighbor
graph. The simplest approach to detect shortcuts is to com-
pute local statistics as the Jaccard index [15]. Given an edge,
the Jaccard index measures the similarity of the neighbor-
hood of its two vertices. Cukierski and Foran [12] propose
to use the Edges Betweenness Centrality (EBC) to detect
shortcuts. The EBC of an edge is the number of shortest
paths connecting each pair of vertices that contain the given
edge. By definition, shortcuts connect geodesically distant
vertices, thus the EBC of the shortcuts tends to be higher
than the EBC of the other edges. Glasher and Martinez [14]
propose to remove a minimal set of edges to cut all the
atomic cycles larger than a given threshold. Indeed, they
show that a graph with shortcut connections necessarily
contains large cycles. However, this method is not adapted
to manifolds with holes and does not detect shortcuts when
they are dispersed in the manifold. Detecting shortcuts is
a challenging problem and our experiments, described in
Section 4, show that existing methods generally fail when
the noise level is high.

The scope of this paper is to construct a shortcut free,
though highly connected, neighborhood graph on a noisy
dataset of points from a low dimensional smooth manifold
embedded in a high dimensional Euclidean space. At this
aim, we present a method called Density based Graph De-
noising (DGD). Our method is based on the construction of
a graph that reveals the manifold. This graph is constructed
regarding to the estimated density of the data point set.

The organization of the paper is as follows. In Section 2,
a formal definition of a shortcut is given. Section 3 exposes
the steps of the proposed algorithm. Then, Section 4 presents
our experiments and the results. A conclusion and some
perspectives end this paper in Section 5.
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2 NOTION OF SHORTCUT

2.1 Geodesic semi-metric

Let m be a positive integer. In the whole paper, the topology
on the space Rm is the usual topology associated with the
Euclidean distance dE. Recall that a semi-metric is a sym-
metric function d : (Rm)2 7→ R+ such that ∀x, y, d(x, y) =
0 =⇒ x = y. A semi-metric d is a distance if it respects the
triangle inequality: ∀ x, y, z d(x, z) ≤ d(x, y) + d(y, z).

Let d be a semi-metric on Rm and S be a subset of Rm.
On the set S we consider two families of nested symmetric
and irreflexive binary relations N d

S,ε and N d
S,k. The parame-

ter ε is continuous, i.e. ε ∈ (0,+∞), and, two points x, y of
S are adjacent relatively to the relation N d

S,ε if d(x, y) ≤ ε.
The parameter k is discrete, i.e. k ∈ N, and two points x,
y of S are adjacent relatively to the relation N d

S,k if y is
among the k nearest points of x and/or x is among the k
nearest points of y. In the following, if there is no ambiguity
in the context, we use the same notation N d

α for both N d
S,ε

and N d
S,k without referring to the set S and letting α be a

positive real number ε in the continuous case or a positive
integer k in the discrete case. Then, the graph of the relation
N d
α is denoted by Gdα.

LetM be a Riemannian manifold of Rm whose geodesic
distance is dM and whose intrinsic dimension is l > 0 (for
more detail concerning Riemannian manifold see [16]). The
geodesic distance inM is extended to Rm × Rm by a semi-
metric as follows.

Definition 1 (Geodesic semi-metric). Let M ⊂ Rm be a
Riemannian manifold. For any (x, y) ∈ Rm × Rm, we set

d̃M(x, y) = min
(

dE(x, x∗) + dM(x∗, y∗) + dE(y∗, y) |

x∗ ∈ argmin
xM∈M

(
dE(x, xM)

)
,

y∗ ∈ argmin
yM∈M

(
dE(y, yM)

))
.

The geodesic semi-metric, d̃M is not a distance in Rm be-
cause it does not necessarily respect the triangle inequality.
The defined semi-metric is illustrated in Figure 1.

R
m

d̃M(x, y)

M = f(I)

dE(x, y)

x

y

x∗

y∗

Fig. 1: Illustration of the geodesic measure.

2.2 Manifold shortcut
Let a finite subset Π of Rm be considered as a sampling ofM
with or without noise. The graphs of the relations N dE

Π,α and

N d̃M
Π,α are weighted by the corresponding distances: wx,y =

dE(x, y) if (x, y) ∈ N dE
α and wx,y = d̃M(x, y) if (x, y) ∈

N d̃M
α .

The graph GdE
α may contain “shortcuts” which are edges

that connect points that are not neighbors for the geodesic
semi-metric.

Definition 2 (Shortcut relative to a manifold). Let β > 0. An
edge of GdE

α is a β-shortcut relative to the manifoldM if it is
not an edge of Gd̃M

β .

Figure 2 illustrates Definition 2. Observe that a β1-
shortcut of GdE

α is a β2-shortcut of GdE
α whenever β2 < β1.

Unfortunately, the previous definition is not much use-
ful since in practice the manifold, and therefore the semi-
metric, is unknown. That is why we give thereafter another
definition that will be used in the algorithm we propose.

Definition 3 (Shortcut relative to a semi-metric). Let d be
a semi-metric on Rm. Let β > 0. An edge (x, y) of GdE

α is a
β-shortcut relative to the semi-metric d if d(x, y) > β.

Obviously, a β-shortcut relative to d̃M is a β-shortcut
relative to M, provided the ε-neighborhoods are used to
define the graph Gd̃M

β . Nevertheless, the latter definition
will allow us to use a semi-metric computed to be close to
the unknown geodesic semi-metric.
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Fig. 2: A 300 sample point set on a 1-dimensional manifold
M of R3. The M-shortcuts are computed taking the union
of nearest neighborhoods with α = 6, β = 15. The blue
edges involve small geodesic distance errors and the red
ones involve large errors (color online).

3 SHORTCUT PRUNING ALGORITHM

LetM be a l-dimensional manifold of Rm. Let Π be a finite
subset of Rm sampled from M and noised by an additive
noise. We assume that the probability density function of
the noise is centered and varies inversely with the distance
to the origin.
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Let α, β > 0. The aim of the algorithm exposed in this
section is to remove from the neighborhood graph GdE

α

built on Π the β-shortcuts relative to the manifold M. As
M is unknown, we propose to replace the semi-metric
d̃M by another semi-metric that varies directly with d̃M,
and to remove the β-shortcuts relative to this semi-metric.
The new metric is build from a so called skeleton-graph,
noted SkG, whose vertices and edges lie in the data high
relative density areas (the vertices need not to be included
in Π). Indeed, thanks to the assumptions on the probability
density function of the noise, points lying in the higher
density areas are close to the manifold M in probability.
Then, a Voronoı̈ diagramm allows to bind the data points
to the vertices of the skeleton and to use the skeleton-graph
geodesic distance as an approximation of the unknown d̃M.
The construction of SkG is detailed hereafter and illustrated
in Figure 3.

Firstly, the density of the noisy manifoldM is estimated
from the sample Π (Subsection 3.1).

Then, the vertices of SkG are computed with the objec-
tive to sample as uniformly as possible the high density
areas. For computational efficiency, the sample size, nsk,
is set to a small fraction of the data set Π. The sampling
start from the output of a k-mean on Π and is then driven
towards high density areas by minimizing a cost function
which also favors spreading (Subsection 3.2).

Eventually, a connected neighborhood graph is con-
structed on the nsk vertices by selecting the pairs of vertices
that are close for the Euclidean distance and that can be
linked by a straight segment lying in a relative high density
region (Subsection 3.3). The reason to consider a relative
density rather than an absolute density is to get a well-
balanced set of edges linking the vertices, especially since
we do not assume a uniform probability measure on the
manifold (see Section 3.1).

Once, the graph SkG is built, a new metric dSkG is
defined on the graphGdE

α such that dSkG(x, y) is equal to the
geodesic distance on SkG between the vertices of SkG clos-
est to x and y. Finally, the β-shortcuts relative to this new
metric are removed from the graph GdE

α (Subsection 3.4).

3.1 Density estimation
We assume that the l-dimensional manifoldM is the image
of a compact and connected set of parameters I ⊂ Rl
by a smooth injective function f from I to Rm. We also
assume a probability measure µ on I — which models the
sampling process — together with an additive noise in Rm.
Then the distribution of the dataset in Rm is driven by the
convolution ν of the image measure f ∗ µ and the noise
probability measure. Note that in absence of noise, ν = f ∗µ
and it has no density but one can estimate the measure on
tiles of Rm (which amounts to an obvious count [17]).

The goal of the density estimation is to estimate ν from
Π without a priori about the distribution. The estimated den-
sity is noted DΠ. The existing density estimation methods
can be separated in two main approaches; parametric esti-
mation and non-parametric estimation [18]. The parametric
approach is based on a parametric function gΦ : Rm → R+,
where Φ is a finite set of parameters. In the general case,
where no a priori on the function gΦ is known, we have to
turn on non-parametric density estimation.

Fig. 3: Illustration of the proposed-method steps on a 2D
1500 point dataset from a spiral manifold perturbed with an
additive white Gaussian noise whose standard deviation is
σ = 0.2. The upper sub-figures represent from left to right
the dataset and SkG points with the estimated density. The
two middle sub-figures represent respectively the neighbor-
hood graph where the detected shortcuts are marked in red
and the SkG. The data graph denoised by DGD is shown in
the lower sub-figure (color online).

Non-parametric density estimation can be gathered in
two families [19]: histogram based estimations and Kernel
Density Estimation (KDE). Histograms are used in the liter-
ature as a visualization tool and their use is limited to one
or two dimensions. The second non-parametric approach is
KDE described in the following paragraph.

Kernel Density Estimation: Given the finite dataset
Π = {πi}i∈[[1,np]], the probability density is estimated by a
convolution of the data modeled by a mixture of weighted
Dirac’s functions centered on each point and a fixed kernel
function. The general form, DΠ, of the KDE is given below.

∀x ∈ Rm, DΠ(x) =

np∑
i=1

ωi
δ(x, πi)m

K

(
πi − x
δ(x, πi)

)
,

where K(.) is the kernel function, {ωi} are weights sum-
ming to 1, and δ is the window width. Several kernels
have been proposed in the literature. Nevertheless, the
kernel shape has a limited impact on the Integrated Mean
Square Error (IMSE) regarding to the window width [18].
The kernel used in our experiment is the Gaussian kernel.
However, proper selection of the kernel window width is
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a critical step for KDE [20]. Therefore, three functions have
been implemented and evaluated (see Appendix ??), which
leads us to choose the sample point estimator [21] for our
experiment.

3.2 Skeleton-graph vertices computation
Initialization: A set S of nsk points is computed

from the data set Π with an adaptively constrained k-means
algorithm [22] to ensure to start the optimization from a
good summary of the data set (low intra-class variance and
well-balanced class sizes).

Optimization: The objective function C is defined as
follows:

C :
(
Rm
)nsk −→ R

(x1, · · · , xnsk
) 7−→

nsk∑
i=1

(
λ1

dE(si, xi)
2

∆2

+λ2

(
− DΠ(xi)

DΠ(si)

)
+λ3

∑
j 6=i

∆2

dE(sj , xi)2

)
,

where si ∈ S, the constants λ1, λ2, λ3 are positive
weights summing to 1, ∆ is a geometric scale factor added
in order to homogenize the formula.

This cost function breaks down into the sum of three
terms:

•
dE(si,xi)

2

∆2 is a penalization for a high distance to the
initial center of the cluster;

• −DΠ(xi)
DΠ(si)

is a reward for high density;

•
∑
j 6=i

∆2

dE(sj ,xi)2 is a penalization for SkG vertices
clustering.

The output of the optimization, V , which is the point set that
minimizes the objective function C , is taken as the vertex set
of SkG.

Once vertices computed, we construct the edges of SkG
as described below.

3.3 Skeleton-graph edges determination
SkG is aimed to only connect close vertices for the Euclidean
distance while being a connected graph. Moreover, the
edges must pass through relative high density areas. The
construction of SkG edges is made in several steps.

Step 1 The first step deals with the Euclidean distance
dE: the complete graph built upon the vertex
set V is weighted by the Euclidean distance
between its vertices. Then, a minimum spanning
tree is computed and enriched with the intersec-
tion of the nv nearest neighbors (nv-NN), with
nv a parameter discussed in Section 4. At the
end of this first step,G0 = (V,E0) is a connected
graph where vertices are connected iff they are
close for dE.

Step 2 The second step deals with the estimated den-
sity DΠ. In order to avoid edges passing far
from the manifold, a density coefficient es,t is
assigned to each edge {s, t} ∈ E0 so as to give

priority to edges passing through high relative
density regions. Ideally, we should compute the
minimum density along the edge. To keep low
computation times, in our implementation we
simply calculate the density at the center of the
edge and compare it to the mean of the densities
at extremities of the edge:

es,t = DΠ

(
s+ t

2

)
× 2

DΠ(s) +DΠ(t)
.

Then, the graphG0 is equipped with the weights
1/es,t and we perform the same operations as
in Step 1: a minimum spanning tree and a k-
NN. The choice of k is a trade-off between the
graph connectivity and the shortcut probability
(note that necessarily k < nv). At the end of
the second step, we obtain a connected graph
G1 = (V,E1) where vertices are connected by
an edge iff they are close for dE and the edge
does not pass through a low density area.

Step 3 When testing the proposed method, our experi-
ments showed that the connectivity of the graph
G1 is not sufficient. Nevertheless, it is unsafe
to increase the parameter k in Step 2 since this
can create high shortcut edges in the graph as
shown in Figure 4(b) where the k-NN graph
constructed with the best parameter – k = 10
– contains a cut and a shortcut. So, noting that
the probability that d̃M(s, t) is greater than a
threshold β on the one hand increases as the
number of edges between s and t inG1 increases
and, on the other hand, decreases as the density
coefficient es,t increases, we define the following
predicate.

P (s, t) =
(
Ds,t <

(
nv − r(s, t)

)
/2
)
∨(

Dt,s <
(
nv − r(t, s)

)
/2
)
,

where Ds,t is the number of edges between the
vertices s and t, r(s, t) is the rank of the vertex
t in the neighborhood of the vertex s ranked by
edge weight and ∨ is the logic operator “or”.
The edges set E of SkG is the union of the set E1
and the edges of E0 that satisfy the predicate P .
The result is SkG = (V,E).

The SkG construction is illustrated in Figure 5.

3.4 Removing shortcuts in the data graph GdE
α

Let s1, · · · , snsk
be the vertices of SkG. They induce a

partition of the data space whose cells Ri are given by:

Ri = {x ∈ Rm | ∀j > i, dE(x, si) < dE(x, sj) and
∀j < i, dE(x, si) ≤ dE(x, sj)} .

Each point π in the dataset Π belongs to exactly one cell. The
assignment function σ : |[1, np]| → |[1, nsk]| is defined such
that πi ∈ Rσ(i). Then, we define the distance dSkG on Π by
dSkG(πi, πj) = dG(sσ(i), sσ(j))) where dG is the unweighted
graph distance on SkG. Then, according to Definition 3, an
edge (πi, πj) of GdE

α is detected as a β-shortcut relatively
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(a) Skeleton graph:
2845 edges

(b) 10-NN with weight 1/es,t:
2426 edges

Fig. 4: SkG computed from 5000 points uniformly sampled
from the Swiss Roll manifold, noised with white Gaussian
noise with σ = 0, 28. (a) SkG obtained by the three steps
described in Section 3.3 with nv = 25 and k = 4, (b) SkG
without the third step but using a higher parameter k: nv =
25 and k = 10.

SkG

Vertices

Complete

Edge set

Step 1
Distance

nv-NN

Distance

MST

∪

E0

Step 2
Density

k-NN

Density

MST

∪

E1

Step 3 Complement

SkG

Edges

Fig. 5: SkG edge construction algorithm.

to dSkG —and therefore pruned— if dSkG(πi, πj) > β .
Algorithm 1 describes the detection process.

Up to the boundary, the subsets R1, . . . Rnsk
can be seen

as the Voronoi cells of the SkG vertex set V . Assuming that
the frontier between two cells is weighted by their dSkG

distance, an edge is considered as a shortcut (and removed)
when it crosses a frontier whose weight is higher than the

Algorithm 1 Shortcut pruning
Input Data:

Π; . data point set
SkG; . skeleton graph

Input Parameters:
nv ; . maximum number of neighbor
β; . threshold for the shortcut detection

A = nv-nearest neighbor graph(Π); . Construct the
neighborhood graph
Compute the assignment function σ;
D = graph distance matrix(SkG); . graph distances used
for the detection
for {πi, πj} ∈ A do

if Dσ(i),σ(j) > β then
remove {πi, πj} from A . remove detected

shortcuts
end if

end for
return A

fixed threshold β (see Figure 6 for an illustration).

Fig. 6: Voronoi diagram on SkG vertices constructed on 5000
points uniformly sampled from a 2D spiral manifold, noised
with white Gaussian noise with σ = 0, 28. The frontiers
whose weights (see text) are higher than 4 are marked in
red.

4 EXPERIMENTS

Our method is tested and compared on synthetic manifolds
with a simple geometry (few curvature variations) and
real world datasets. We evaluate the ability of the shortcut
removal to recover the underlying structure geodesic dis-
tances and to cut as few edges as possible.
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4.1 Graph pruning
The meta-parameters of the proposed method have been
chosen experimentally. The same set of parameters is used
for all the experiments.

• The maximum number of neighbors has been chosen
to minimize the pairwise estimated geodesic distance
error in noise free datasets. For sets of 5000 points
from our synthetic manifolds, it has been fixed to
nv = 25.

• mputation times. The chosen number of vertices is
nsk = 400.

• The window parameter used in the kernel density
estimation is λl = 0.7. It has been chosen to mini-
mize the average integral mean square error of the
estimated density of the noisy synthetic datasets.

• The parameters used for the computation of SkG
points are λ1 = λ2 = 1/3 to gives the same weight
to the 3 normalized terms of the cost function. It has
been shown experimentally that these values gives
good performances to move SkG vertices near to the
manifold without creating clusters.

• The scale factor is given by

∆ =

√√√√√ 1

np

np∑
i=1

1

nv

∑
π∈NdE

nv (πi)

dE(πi, π)2 .

Moreover, in order to observe shortcuts at comparable
scales, we sized the tested synthetic manifolds such that the
critical length — the radius of the smallest ball B whose
centre is in the smooth manifold M and such that M∩ B
has at least two connected components — has value 1. An
illustration of the critical length is given in Figure 7.

Lε

y

x

J x
x,ε

J y
x,ε

ε

M

Fig. 7: Illustration of the critical length Lε. The smallest balls
with at least two connected components – here J xx,ε and J yx,ε
– are centered in x or y and with radius ε = Lε.

The shortcut detection methods are evaluated on the
accuracy of the pairwise geodesic distances estimation. In-
deed, the shortest-path based geodesic-distance estimation
is highly impacted by the presence of shortcuts in the used
graph. To measure the accuracy of the geodesic distance
estimation, the matrix of pairwise geodesic distances is
compared to reference distances. These reference distances
are computed by a shortest path algorithm on the graph
obtained by the N d̃M

S,k neighborhood, with k = 25, on
the noise-free dataset. To be less sensitive to the distance
fluctuations due to the noise, which is independent of the

graph quality, the sets of geodesic distances are centered
and normalized. The error is then given by the Frobenius
distance between the computed and the reference normal-
ized geodesic distance matrices:

err =
1

np

√√√√ np∑
i=1

np∑
j=1

e2
i,j

where ei,j = DG(i,j)−E(DG)
σ(DG) − DG0

(i,j)−E(DG0
)

σ(DG0
) and DG is the

matrix of the pairwise geodesic distances computed on the
tested graph, DG0

is the matrix of the pairwise reference
geodesic distances, E(X) is the mean of X and σ(X) is the
standard deviation of X .

The datasets used for the experiments are composed of
5000 points uniformly distributed in the parameter space
with additive white Gaussian noise. The evaluation is done
on 6 synthetic manifolds and a tomographic dataset with 4
levels of noise. Each experiment is repeated 100 times with
different data samplings and noise realizations.

Synthetic manifolds
The shortcut detection methods have been tested on 6 syn-
thetic non-linear manifolds in the three-dimensional space
with intrinsic dimension 1 or 2. The manifolds are defined in
Appendix ?? and shown in Figure 8. The synthetic manifold
sizes have been chosen to have the manifold critical lengths
around 1, and the noise standard deviation belongs to
{0, 0.15, 0.2, 0.25}.
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Fig. 8: The 6 synthetic manifolds (without noise).

The critical length quantifies the difficulty of the shortcut
detection. Our experiments on synthetic manifolds show
that detecting shortcuts for a noise standard deviation over
a quarter of the critical length is a difficult task. Moreover, it
is plain that for a Gaussian noise, the density cannot reveal
the manifold for a noise standard deviation above half of
the critical length. The main reason is that for such a noise
level, the areas on the manifold far for the geodesic distance
and close for the Euclidean distance, have a higher density
between the two distinct parts of the manifold than near
each part. This implies that locally, the average number of
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vertices and edges is higher between the distinct parts of the
manifold than near each part. Therefore methods based on
max flow/min cuts, on Jaccard index, on EBC or on density
fail to detect shortcuts. Theoretical density and estimated
density on 5000 points from the SwissRoll manifold noised
with σ = 0.4, just lower than half of the critical length, are
given in Figure 9. Note that the SwissRoll critical length is
equal to 1.

1ow high

(a) Theoretical density (b) Estimated density from
5000 points

Fig. 9: Density of the 2D SwissRoll manifold perturbed by
a white Gaussian noise with σ = 0.4. Even if the manifold
can be approximated by the maximums of the true density
(a), it is not possible to find the manifold from the estimated
density (b).

Tomographic manifold
We consider the problem of the parameter estimation from
a dataset of random tomographic projections acquired from
a 2D object. The set of projections lies in a closed smooth 1D
manifold parametrized by the orientation, θ ∈ [0, 2π]. The
function f is the Radon transform of the planar object. It has
been shown in [23] that non-linear dimension reduction can
revealed the orientation of each projection. Generally the
geometry of the data is embedded in the first principal com-
ponents. As graph based non-linear dimension reduction
relies on distance computation and as the distances are sen-
sitive to the curse of dimensionality, a first linear dimension
reduction is applied. For independent noise, the conserved
signal variance can be controlled without additional a priori.
In our example, 90% of the variance of the signal lies on
the 5 principal components. Therefore, our experiments are
led on the 5 principal components of our dataset. The noise
levels are set to σ ∈ {0, 0.15, 0.25, 0.3}, where 0.3 is around
a quarter of the critical length. Figure 10 shows a realization
of a noisy tomographic dataset.

Results
Figures 11 and 12 give a comparison of the error obtained for
each 25-Intersection of the Nearest Neighbors graph (IkNN)
with different shortcut detection methods:

• Jaccard index thresholding with a threshold fixed to
0.4.

• EBC with the stopping criterion
(
e
(
DG(n)−DG(n+

1)
)
< 0.3

)
∨ (n = 15).

• Our method with the parameters given previously.
• IkNN which stands for undenoised graph.
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Fig. 10: First three principal components of a planar tomo-
graphic dataset composed of 5000 noisy 1D projections in
dimension 125 (σ = 0.3).

The ground truth has been obtained by removing edges
connecting vertices where the geodesic measure is higher
than 20% of the highest geodesic measure in the dataset.
As the experiment is composed of 9600 graph constructions,
the results in Figures 11 and 12 are presented as smoothed
histograms of the estimated geodesic distance errors. The
peaks correspond to sets of constructed graphs with similar
geodesic distances estimation error.

Let us give some general comments. For each manifold,
in the noise free case (σ = 0), there is just one peak on the
left, close to zero (no error). Therefore, the different meth-
ods do not introduced bias in the construction, except the
Jaccard index that may cut the graph in the one dimensional
manifolds (Tennis and Spring). In presence of noise (σ > 0),
high error value peaks appear on the right, corresponding
to the presence of large graph shortcuts and/or graph cuts.
Indeed, the presence of large shortcuts and/or cuts — even a
few of them — may introduce biases in a large proportion of
estimated geodesic distances. Therefore, the higher the peak
close to zero, the better the method. All the tested methods
improve the estimated geodesic distances as their peaks are
on the left of the IkNN ones (the average errors are smaller
after using a denoising method than before).

Now, we give a detailed analysis. It can be seen in Figure
11 that DGD is the most appropriate to detect large shortcuts
for the SwissRool, the Tennis and the Spring manifold, and
gives similar results as EBC for the Squashed circle and the
Omega manifold. Because of the high curvature of the S
manifold, EBC denoising obtained better results than DGD
on the geodesic distances estimation.

For the noise level σ = 0.3 in the tomographic datasets,
presented in Figure 12, our method clearly detects the large
shortcuts in 77% of cases. In comparison, EBC detects the
large shortcuts in 64% of cases (given by the number of
graph construction error in the left peak). In addition, it can
be seen in Table 1 that DGD is more selective than the other
tested methods in the sense that the number of removed
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Fig. 11: Graph construction error for the 6 synthetic mani-
folds with 4 levels of noise, σ ∈ {0, 0.15, 0.2, 0.25}.

err

σ =0.3

err

σ =0.25

err

σ =0.15

err

σ =0

0
0.97

 

 

DGD

Jaccard

IkNN

EBC

Fig. 12: Graph construction error for the tomographic
dataset with 4 levels of noise, σ ∈ {0, 0.15, 0.25, 0.3}.

edges is smaller than the number of edges removed by the
other denoising methods for all the 100 experiments.

σ Ground Truth DGD EBC Jaccard
0 0 0 1.1 .10−2 8.15

0.15 1.3 .10−2 1.5 .10−2 1.5 17.8
0.2 0.136 0.153 4.04 21.1
0.25 0.459 0.468 8.1 24.2

TABLE 1: Percentage of suppressed edges regarding the
number of edges in the original k-INN graph with k = 25.

As a conclusion of these tests, it can be said that DGD
gives results at least as good as the other tested methods
while suppressing less edges than them.

4.2 Clustering
Our method can also be used for the classification. In
this case, the steps for keeping the connectivity should be
removed. Graph based clustering methods can be composed
on a neighborhood-graph dimension reduction followed
by a clustering. Dimension reduction based on the graph
denoised by our method can improve the clustering. To
illustrate this assertion, we compare the dimension reduc-
tion obtained by Isomap after performing our shortcut
detection algorithm, the original Isomap algorithm and a
linear dimension reduction (PCA) taken as a reference. The
comparison is performed on the US postal dataset which
is composed of 3906 gray level images with a resolution of
16 by 16 pixels, each image containing one hand written
digit. To avoid issues due to a high density variation on the
manifold, the experiment was done on the digits ’2’ to ’7’.
The reduction to two dimensions by the tested methods is
given in Figure 13. It can be seen that the different digits
(representing by different colors) are more separated when
our shortcut detection step is done.
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Fig. 13: Comparison of 2 dimension reductions on the digits
’2’ to ’7’ from the US postal dataset (color online).

4.3 Complexity
The asymptotic number of operations of the proposed algo-
rithm is in O(n2

sk.nv) due to the Djikstra’s shortest path al-
gorithm that is used twice. When the number of SkG points
in the dataset is under 1000, the more time-consuming
steps are the k-means and the gradient optimization with
O(nsk.np.d.i) operations. The number of iterations for both
k-mean and the gradient descent is in the order of hundreds.

A comparison of calculation times is presented in Table 2.
The two measurements are the time spent to construct and
to denoise the graph and the time spent to reduce the
dimension, including graph construction, graph denoising,
and dimension reduction. The dimension reduction is done
by the Isomap method, using Djikstra’s shortest path al-
gorithm. The algorithms are implemented in Matlab and
compared on a quad core i7-3770 @ 3.40GHz.

The Jaccard index based detection has the best time per-
formance (it increases the graph computation time by 23%).
However it has a poor detection performance regarding to
EBC and our proposed method. The state-of-the-art EBC is
slower than the proposed method to detect the shortcuts. In
addition, EBC time performance is highly dependent on the
noise level while our method is not.
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Method IkNN Jaccard EBC DGD
Graph (s) 9.3 ±0.4 11.1 ±0.4 984 ±726 83.6 ±5.9

DR (s) 163.4 ±9.6 162.1 ±10.2 987 ±727 247.3 ±13.7

TABLE 2: Calculation times spent to construct the graph and
to reduce dimensionality. The dataset used contained 5000
points from our synthetic manifolds.

5 CONCLUSION

A new method, so called Density based Graph Denoising
(DGD), is introduced in this paper to detect shortcuts in the
dataset neighborhood graph. The data underlying structure
geometry is revealed by a skeleton graph that lies in high
density areas. The use of a skeleton graph allows us to
remove a minimal set of edges that does not follow the
geodesic structure of the data. Our experiments show that
DGD makes graph based non-linear dimension-reduction
algorithms more robust to noise. The calculation time is
several times lower than the state-of-the-art shortcut de-
tection methods and does not depend on the noise level.
Even if the data does not lie in a smooth manifold as in
clustering problems, DGD can be used as a first processing
step since it is not time consuming regarding to the complex
high dimensional processing.

The density estimation is a key point of the method and
future works will focus on the use of a priori information
on the manifold so as to make the density estimation more
robust in the case of high noise.
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