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Boolean algebras by length recognizability

Didier Caucal and Chloé Rispall

1 CNRS, LIGM, University Paris-East, France
caucal@u-pem.fr and rispal@u-pem.fr

—— Abstract

We present a simple approach to define Boolean algebras on languages. We proceed by inverse
deterministic and length-preserving morphisms on automata whose vertices are words. We give
applications for context-free languages and context-sensitive languages.

1 Introduction

The family of regular languages is closed under many operations. Those closure prop-
erties give an easy way to work with this family and specially the closure under Boolean
operations. Some of these Boolean closure properties are not satisfied at the next level of
the Chomsky hierarchy: the family of context-free languages is not closed under comple-
mentation and intersection, and the subfamily of deterministic context-free languages is not
closed under union and intersection. A standard way to get Boolean algebras is by recog-
nizability by inverse morphism. This notion has been extended to many finite structures
(see [9] among others) and also to infinite automata [4].

An automaton is a set of labeled edges with some initial and final vertices. A morphism
f from an automaton G into an automaton H is a mapping from the vertices of G to the
vertices of H such that for any edge s - t of G, f(s) - f(t) is an edge of H and
for s initial/final in G, f(s) is initial/final in H. The recognizability by an automaton
H according to an automata family F is defined as the set of languages accepted by the
automata of F that can be mapped by morphism into H.

A good way to obtain Boolean algebras of context-free languages is by structural recog-
nizability [4]. Considering a family of automata such that each labeled transition - is a
binary relation on a set R, the morphism has to be a relation of R. This structural notion,
together with a natural notion of determinism on morphisms defines Boolean subalgebras
of many language families. Nevertheless, those Boolean algebras can be too restrictive.
For instance, the set of visibly pushdown languages [1] can not be obtained by structural
recognizability.

In this paper, we consider the length recognizability for automata whose vertices are
words: the morphisms are still deterministic but we replace the structural condition by
the length-preserving property. We define natural conditions on automata families such
that this length recognizability defines Boolean subalgebras. The closure under intersection
is given by the length synchronization, a natural and usual parallelization operation on
word automata. To get the closure under difference, we introduce a new operation: the
length superposition. When an automata family is closed under these two operations and
under simple conditions, we get a Boolean algebra of languages accepted by automata which
are deterministically length recognized by an unambiguous automaton (see Theorems 16
and 17). We give applications for sub-families of context-free languages and of context-
sensitive languages. In particular, the family of visibly pushdown languages can be defined
by length recognizability.
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2 Word automata

We consider finite and infinite automata having words as vertices. In this section, we give
basic notations and definitions, and recall the notions of determinism and unambiguity.

Let N,T be countable sets of symbols called respectively non-terminals and terminals.
We take a set C' = {t,0} of two colors.
A word automaton G is a subset of N*xT'xN* U CxN* of vertex set
Vo ={u|Tav(uav)eGV (via,u) G U{u|TcelC (c,u) €G}
such that the following sets are finite:
Neg = {zeN|Juve N uzve Vg } the set of non-terminals of G,
Te = {aeT|3Ju,v (u,a,v)€G} the set of terminals or labels of G.
We denote by I = { s|(t,8) € G} the set of initial verticesand by Fg = {s|(0,s) € G}
the set of final vertices of G. Any triple (s,a,t) € G is an edge labeled by a from source s
to goal t; it is also denoted by s —=g t ie. g = { (5,t) | s —=g t } is the a-transition
of G. Any couple (c¢,s) € G is a vertex s colored by ¢ € C; it is denoted by c¢s € G and
—a = {(s,8) | cs € G} is the c-transition of G.
Taking symbols |, &, and a triple (T_1,Tp,T31) of disjoint finite subsets of T', we define the
input-driven automaton :
Inp(T-1,T0, 1) = {|"s -5 |""k|i€{-1,0,1} Aa€Ti Ann+i>0}
U {tk} U{o"s|n>0}.
The automaton Inp({b},{c},{a}) is represented below.
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Let —¢ be the unlabeled edge relation i.e. s —sg t if s —g t for some a € T. The
accessibility relation — ¢, is the reflexive and transitive closure under composition of —¢ .
A graph G is accessible (resp. co-accessible) from P C Vi if for any s € Vi, thereis r € P
such that r —% s (resp. s —¢ 7). An automaton G is trimmed if it is accessible from
Ig and co-accessible from Fg . The previous automaton is trimmed. The restriction G|p
of an automaton G to a vertex subset P is the automaton induced by P:

Gp = {(wav)eGluveP}U{(cu)ecGluecP}
The trimmed automaton of G is

Gio = G\{s | 3iclg 3f€Fe (i —5 s — & )}
the restriction of G to the vertices accessible from Is and co-accessible from Fg . Thus
G, is trimmed and L(G,,) = L(G). Similarly, the accessible automaton of G is

G, = G\{s | Jicla (i —g )}
Recall that a path is a sequence sy —% §1...Sn_1 — s, of consecutive transitions; this
path leads from the source sg to the goal s, and is labeled by uw = a;...a,, € T* and we
write sg —q Sn. We also write ¢ —»¢ 8, s —>@ 0, L —¢ o if there exists i € I¢ and
f € Fg such that we have respectively i —g s, s —q f, i —q f. A path is accepting
if its source is initial and its goal is final. The language accepted by an automaton G is
the set L(G) = {ueT* |t -%¢ o} of labels of its accepting paths. For instance, the
previous automaton Inp({b}, {c},{a}) accepts the language

L(Inp({0}, {¢}, {a})) = {we{a,bc} [Vo<u, |vla > vy }

of prefixes of well-parenthesed words (a the open parenthesis and b the close one).
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An automaton G is deterministic if it has at most one initial vertex: s, 1t € G = s =1,
and if for any vertex r and any label a € T, there exists at most one transition starting
from r and labeled by a: (r g sAr -“5gt) = s=t. More generally, an automaton
G is unambiguous, if any two accepting paths have distinct labels:
S0 LN S1. - 8n_1 =2 5, A Lo &t1...tn71 2t A LSo, tlo, 08y, 0ty € G
= Sso=1to N...N\ Sp =1,.

The previous automaton Inp(7_1,7p,71) is deterministic. Any deterministic automaton is
unambiguous. Here is an unambiguous automaton Un which is not deterministic.

3 Recognizability

In order to get Boolean subalgebras of many language families, the recognizability by inverse
morphism [5] has been extended to infinite automata [4]. We recall this notion as well as
the definition of a deterministic morphism.

A morphism f from an automaton G into an automaton H is a mapping f: Vg — Vg
such that for any s,t € Vg, a € T and c € C,

s Lot = f(s) Sy f(t) and cs€G = cf(s)e H

we write G s H or G — H and we say that G is reducible into H.
Any word accepted by an automaton is by morphism accepted by the image automaton.

» Lemma 1. Let G — H. We have
L(G)CL(H) and G — H' forany G’ CG and HC H'.

Let us give uniqueness conditions of a morphism between automata.

» Lemma 2. There is at most one morphism from a trimmed automaton into an unam-
biguous automaton.

Proof.

Let G % H and G 5 H with G trimmed and H unambiguous.

Let s be any vertex of G.

As G is trimmed, there exists u,v € T* such that + —¢ s —sc 0. As ¢ and h are
morphisms, we have

t 5 g(s) Sgo and Sy h(s) Spgo.

As H is unambiguous, g(s) = h(s). <

For families F of automata, we want to get Boolean subalgebras of
LF) = {LG)|GeF}.
Recall that a language family £ is a Boolean algebra relative to a language L € L if
PCL and L—-P, PNQ € L forany P,Q € L.

A first approach is to take an automata family F and a recognizer H € F to define the set
of languages accepted by all possible automata of F which are reducible to H :

Recr(H) = {L(G) |Ge FANG—H }.
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For any finite subset A C T', we define the trimmed and deterministic automaton Loop 4
with a unique vertex s and the loops labeled by each letter of A:
Loopy = {rx S klaceA} U {tk, ok}
For any family F of automata labeled in A, each automaton is reducible to Loop, hence
Recr(Loop,) = L(F).
Thus for the family Fin of finite automata, Recz;,(Loop,) is the set Reg(A*) of regular

languages over A which is a Boolean algebra. This can be extended replacing Loop, by
any finite automaton.

» Proposition 3. For any finite automaton H, Recry,(H) = {L CL(H) | L regular }
is a Boolean algebra relative to L(H).

However L(F) is not in general a Boolean algebra. To get Boolean algebras by recogniz-
ability, we introduce simple conditions on the morphisms.
In order to preserve by inverse the determinism, we say that a morphism G Iy Hoisa
deterministic morphism and we write G Ld H if
s, Lt €GA f(s)=f(t) = s=t
r-SasAr-SgtAf(s)=ft) = s=t
Note that any morphism from a deterministic automaton is a deterministic morphism:

G L H A G deterministic = G g H. (1)
Any deterministic morphism preserves by inverse determinism and unambiguity.

> Lemma 4. Let G Lsq H with H unambiguous (resp. deterministic).
Then G is unambiguous (resp. deterministic) and
(it SgsAueL(G)Aof(s)eH) = o0s€QG.

Proof.
Let G i>d H with H unambiguous.

i) Let us check that G is unambiguous.
Let S~ 81+ .. Spe1 —2q spand tg —Sa by ... tno1 —q by, Withesg, tto, 0Sn, 0ty € G.
As f is a morphism, f(so) “5g f(s1)-.. f(sn_1) 2 g f(sn) with ¢ f(so) o f(s,) € H.
And f(to) 5 f(t1) ... f(tn—1) =g f(tn) with ¢ f(to), o f(tn) € H.
As H is unambiguous, we have f(sg) = f(to),..., [(sn) = f(tn).
As f is a deterministic morphism, we get s; = t; by induction on 0 <1i < n.
ii) Assume that H is deterministic. Let us check that G is deterministic.
Case 1:let vs, 1t € G.
As f is a morphism, ¢ f(s), ¢ f(t) € H. As H is deterministic, f(s) = f(¢).
As f is a deterministic morphism, s = ¢.
Case 2: let r -5 s and 7 - t.
As f is a morphism, f(r) g f(s) and f(r) ¢ f(t).
As H is deterministic, f(s) = f(t). As f is a deterministic morphism, s = t.
iii) Let so “5g s1... ¢ s, with 159 € G, 0 f(s,) € H and ay...a, € L(Q).
Let us check that os, € G.
As ai...a, € L(G), there exists tyg —g t;...—g t, with ttg, ot, € G.
Thus f(so) = f(s1)... == f(ss) and f(to) “m f(t1)... “5m f(ta)
with ¢ f(s0), ¢ f(to), 0 f(sn), o f(tn) € H.
As H is unambiguous, we have f(s;) = f(t;) for every 0 <i < n.
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As f is deterministic, we get s; =t; for every 0 <i <n. Thus os, = ot, € G. <

When restricting to deterministic morphisms in Recxz(H), we get the subfamily
dRecr(H) = {L(G) |GEF NG —q H }.

Let Faet = {G € F | G deterministic } and Fina = {G € F | G unambiguous }.

By (1) and Lemma 4, we have

dRecr(H) = Recr, (H) forany H € Fiet
dRecr(H) C Recg,.(H) forany H € Funa-
Thus dRecr(Loop,) = L(Fiet) is not in general a Boolean algebra. We now specialize

the previous notions by vertex length restriction.

4 Recognizability by length

To get Boolean algebras, the recognizability for infinite automata has been used with a struc-
tural condition [4]. In the following, we replace it by a length-preserving condition. When
the morphisms are deterministic and under simple conditions on the automata family, this
gives less restrictive Boolean subalgebras.

A word automaton G is length-deterministic if it satisfies the following two conditions:
ts,iteG AN s|=1t| = s=t
r—sgs AT gt Als|=t|] = s=t

For instance, the structure (N,0, <) is described by the length-deterministic automaton:

.
€ I I 1l

More generally any automaton without two vertices of the same length is length-deterministic.
Similarly a word automaton is length-unambiguous if it satisfies the following condition:

(505 s1...8n1 S sn A to Dt tn1 — by A LS0, Lto, 08n, Oty €G
Alsol = [to] AN fsnl =1tal) = so=to A...A sp=tn.
We have the following implications:

G length-deterministic

G deterministic G length-unambiguous.

N\ 7

G unambiguous

Finally a length-morphism G Ty Hisa morphism which is length-preserving: |f(u)| = |u]
for any u € Vg ; we write G i)z H and we say that G is length-reducible to H.
Let us restrict Lemma 2 to length-morphisms.

» Lemma 5. There is at most one length-morphism from a trimmed automaton into a
length-unambiguous automaton.

Any deterministic length-morphism preserves by inverse the length-determinism and the
length-nonambiguity.

» Lemma 6. Let G —pq H with H length-unambiguous (resp. length-deterministic).
Then G is length-unambiguous (resp. length-deterministic).

XX:5
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Let us particularize the subfamilies Recr(H) and dRecr(H) by restriction to length-
morphisms: for any automata family F and any H € F, we define

(Recr(H) = {LG)|GeEFANG—,H}
tdRecr(H) = {L(G)|GEFAG —su H}.
We have the following inclusions:
dRecr(H)
& <
{dRecr(H) Recr(H)
e &
Y (Recr(H)

As ) —pq H and H —q H, we have 0, L(H) € ¢dRecr(H).

We prove that ¢dRecx(H) is a Boolean algebra relative to L(H) for H unambiguous and
F closed under two simple operations that we introduce now, namely the synchronization
by length for the closure under intersection and the superposition by length for the closure
under difference.

5 Synchronization by length

We define a binary parallelization operation || on word automata according to the vertex
length. We show that ¢(Recz(H) is closed under intersection when H is unambiguous and
F is closed under | (cf. Proposition 9). To get the closure of ¢dRecr(H) under inter-
section, F has to be closed under restriction by accessibility from the initial vertices and
co-accessibility from the final vertices (cf. Proposition 11).

Let Ay = { (u,v) € N* | |[u| = |v| } be the set of couples of words over N of same length.
The length synchronization is the bijection || : Ay — (NxN)* defined by
ai...ap || b1...b, = (a1,b1)...(apn,b,) forany n>0 and ay,bq,...,an,b, € N.
We also consider the first projection m; and the second projection m as the surjective
mappings (NxN)* — N* defined for any u,v € N* by m(u,v) = u and ma(u,v) = v.
Given word automata G and G’ with an injection ¢ : NgxNg — N, we define their
length synchronization G |, G’ as the following word automaton:
Glle " = {gullv) = ¢@|v)|u-"cvAu =g v}
U {copulv)|cueGAcu G}
Since the coding ¢ is not essential, it will usually be omitted. Note that
G,G" deterministic = G || G’ deterministic
Vg, Vgr regular = Vg || Vo regular.

As an example, consider the following respective two graphs G and G’:

b, c b, c b, c a,c a,c a,c

L@ a Y a @ L@ b @ b @
P — - — — @ — [ Y — S
P |p [lp q la Ilq

Their length synchronization G || G’ is the following graph:

c c (&
A
(P, q) 0 Dwa) (D% a)

The length synchronization gives the closure under intersection.
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» Lemma 7. For any automata G,G’, H, we have the following properties:
a)G |G 5, G and G| G 2, &,
b) L(G | &) € L(G) N L(G'),

c)if G—¢ H and G' —¢ H and H unambiguous then L(G | G’') = L(G) N L(G).

Proof.

i) Let us check that G || G' ™5, G.

Let ul|u' g v][v'. Thus m(uv) = u g v = m(v][v)).
Let c¢(u||v') € G||G'. Thus em(ul|v') = cu € G.

Finally |u||v/| = |u|. Similarly we check that G || G' "2, G'.

ii) Let us check that L(G || G') C L(G) N L(G).

Let ay...a, € L(G || G') for some n >0 and ay,...,a, € T.

There exists sg, ..., s, such that s i>G”G/ S1...8n_1 %G”G/ Sp with 189, 08, € G| G'.
There exists ug, ug, - - ., Un, u, € N* such that s; = ;|| u; for every 0 <i <n.

Thus wy 255G Uy Up1 ~G up and u) “Sor uf ... vl e ul, with tug, ou, € G
and tuy, ou,, € G'. Hence ay...a, € L(G) N L(G").

iii) Let G Ly, H and ¢' L5, H with H unambiguous.
Let ay...a, € L(G) N L(G) for some n >0 and ay,...,a, € T.

. a a .

There exists ug...,u, € N* such that ug —>g u1,...,Un—1 —>g U, with tug, ou, € G.
. a a .

There exists uf ..., u, € N* such that uf, —>¢gr ul,...,ul,_; —>¢ ul, with cuf, oul, € G'.

Thus f(ug) g flur),--os f(un—1) g f(u,) with ¢ f(ug), o f(u,) € H.
Furthermore f/(uf) g f/(uh), ..., f/(ul_y) “pg f/(ul,) with ¢ f'(uh), o f'(u)) € H.
As H is unambiguous, f(ug) = f'(up), ..., flun) = f'(ul,).

n
As f, f’ are length-preserving, |ug| = |ug), - .., |un| = |ul,].
So ug || uy ﬂ)gngl up || uy o up— ||l %GHG' Up || ur, with cug ||ug, ouy, ||u, € G || G'.

Finally a;...a, € L(G | G). <
Let us give basic properties on the vertices of length synchronized automata.

» Lemma 8. Let G im H and G’ im H. We have
a) (u||v wvertex of (G| G'), and H length-deterministic)y =— f(u)= f'(v/
b) (u||v vertex of (G| G'), 0o and H length-unambiguous) = f(u) = f'(u').

Proof.

i) Let u || v/ be a vertex of (G || G'), with H length-deterministic.

Let us show that f(u) = f'(u').

There exists (uo || uf) —Saer (w1 | uh) ... “See (uy || ul,) suchthat ¢ (uo || up) € G || G’
and (u,u’) = (up,ul,).

So up g ur ... e up and uh) o uf ... 2o ul, such that tug € G and cuf € G
with |uo| = |ugl, ..., Jun| = |ul,].

Thus f(ug) ~5g f(ur)... g f(u,) and ¢ f(uo) € H.

Furthermore f/(ub) “5g f'(u))... 25y f/(ul,) and ¢ f'(u)) € H.

For any 0 <i <n, we have |f(u;)| = |u;| = |ui| = |f/(u})].

As H is length-deterministic and by induction on 0 < i < n, we get that f(u;) = f'(u}).
In particular f(u) = f(un) = f'(u),) = f'(u).

ii) Let u || v’ be a vertex of (G || G'),,, with H length-unambiguous.

Let us show that f(u) = f'(u').

There exists (uo || uy) “Saiar (w1 || ¥h) ... “Sgjer (un || u,) and 0 < p < n such that
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t(ug || ug), o(up [|uy,) € G| G" and u || u' = uy || u .
So up S up... e u, and uf o ul .. o u
Lup, our, € G with |ug| = |ugl, . .., |un| = |ul

/

» such that tug, ou, € G and

nl-

Thus f(uo) =»a f(w1)...~u f(u,) and bf(uo) ;o f(un) € H.
Furthermore f'(ufb) 5 f'(u))... 25y f/(ul,) and ¢ f'(u)), o f'(u) € H

For any 0 <i <n, we have |f(u;)| = |u;| = |ui| = |f/(u})].
As H is length-unambiguous, we get f(ug) = f/(ug), ..., f(u,) = f'(ul).
In particular f(u) = f(up) = f'(u;,) = f(u'). <

Let us apply Lemma 7 (c) to the intersection closure by length recognizability.

» Proposition 9. The language family (Recy(H) is closed under intersection when H s
unambiguous and F is closed under ||.

This proposition is not suitable for the family ¢dRecr(H) because Lemma 7 (a) cannot be
extended to deterministic reductions: G = {¢ % 0,¢e 1,1 - 10,te, 00,010} isa
trimmed and unambiguous automaton but G || G -/+q G since

GG = {e-%(0,0),e % (0,1), e 2 (1,0), e = (1,1),
(1,1) % (1,1)(0,0), te, 0(0,0), 0(1,1)(0,0) }.

Nevertheless (G || G), o —>¢a G. This property can be generalized.

» Lemma 10. We have G—HVG—H = G|G —H
G —wa H AN G' —pa H N H length-unambiguous =— (G| G')v0 —>ea H.

Proof.
IfGimchenbyLemma7() G|G& 7”2@i>2H.
If G =, H then by Lemma 7 (a ) GG = 2, G i)g H.

Suppose that G —>gd H and ¢’ —md H with H length-unambiguous.
Let K = (G| G'),0. Let us prove that K —pq H. We define

App = {ullu’ | f(u) = f'(u) }

and the mapping

P87 Bgg = Ny () = S0 forany ull € B
By Lemma 8 (b), we get K L, H. Let us check that K *)d H.
Case 1: Let v(ulju'), t(v]|v') € K with (fxf)(ul|v) = (fxf)(v]| ).
Thus tu, tv € G and f(u) = f(v). As G Ld H, we get u =wv.
Furthermore cu', tv' € H and f'(v') = f(u) = f(v) = f'(V').
As G’ —f;d H, we get v/ =v'. So ul|uv = vl
Case 2: Let (ul|u') Sk (v]v') and (ul|u') 5k (w | w') such that

(fxf)llv) = (Fxf)(w ] w).

Souimvandui)gwwithf() flw). A GimH we get v = w.
Furthermore v ¢ v' and v’ %o w' with f’(v’) = f(v) = f(w) = f'(w').
AsG’—)dH,Wegetv:w.SovHv = wlw. <

We say that an automata family F is closed under to-restriction if G,, € F for any
G € F. Let us apply Lemmas 7 and 10.

» Proposition 11. The language family ¢dRecx(H) is closed under intersection when H
is unambiguous and F is closed under || and o -restriction.
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Now we study the closure of ¢dRecr(H) under the difference operation.

6 Superposition by length

We define a binary superposition operation // on word automata according to vertex lengths.
When F is an automata family closed under //, we obtain simple conditions for ¢/dRecr(H)
to be closed under difference (cf. Proposition 15). Then we obtain two general ways to get
¢dRecr(H) as a Boolean algebra relative to L(H) (Theorems 16 and 17).

We say that a word automaton G is e-free if ¢ is not a vertex of G: ¢ &€ V.
For L C N*, we write v < L if w is prefix of a word of L: 3 v (uv € L). Given e-free
automata G and H with an injection ¢ : Ngx Ny — N and a non-terminal # € N — Ng,
we define the length superposition G /4, H of G on H as the following word automaton:
GlonH

= {oullr) == o(vlly) lu ——cv Az —ny}
{itol|z) | tue GANrzeH} U {odullz) |[ueVe Noud GANoxeH}
{ o(ullz) = (v#lly) o ——ny AueVe A=3w(u " wA |w=ly)) Av<us™}
{o(us#"[o) = ¢(w#lly) |z —Suy An>0Au<Vo Av<u#'}

U {opu#™|z) [ n>0Au<VegAhoxeH} U {1p#|z)|tec HAV iueG, |ul#|z| }.
Since the coding ¢ is not essential, it will usually be omitted. Moreover, we will assume

c C C

that # is always a new non-terminal.

The definition of G/H is done in order to follow in parallel and by length the paths of G
and H. When a transition of H can not be length synchronized by G, a transition of G/H
leads to a copy of H by marking the vertices by #. Note that

G,H deterministic == G/H deterministic.

As an example, we have G Lmd H for the following e-free deterministic automaton G:

c K d

b || 4 b |]d

N A A
abk bbr
for the morphism f(ux) = |“Ix for any u € {a,b}* and for the following automaton H :
o ab a,b a,b
Le . . * —_— — —
K c,d |k c,d e e, d |k

We represent below (G/H),, where any vertex u stands for the word wu || |I“I=1x.
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AN,

a# aban ab# abQH # ba2k ba# babm b#2 bQEH
/ \
/ \

In order to avoid crossing edges, one can also represent this automaton by the following
fractal picture:

The length superposition gives the closure under difference.

» Lemma 12. For any e-free automata G, H, (G/H) =, H and L(H)-L(G) C L(G/H).
If G —y H and (G/H) =4 H with H unambiguous then L(G/H) C L(H) - L(G).

Proof.

i) Let us check that (G/H) "% H. Let s —q/p t.

So s = ullz and t = v|y with x % y. Thus m(s) = v g y = m(t).
Let cs € G/H. So s = u||xz with cx € H. In particular cma(s) = cx € H.
ii) Let a;...a, € L(H) — L(G) for some n >0 and ay,...,a, € T.

Let us show that a;...a, € L(G/H).

There exists ©o —S g T1 ...~y x, with txg, oz, € H.

Let z; = (#‘”"‘,xi) for any 0 <i < n.

By definition of G/H, zy £>G/H 21...%G/H z, with oz, € G/H.
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We distinguish the two complementary cases below.
Case 1: = F ug (tug € G A Jugl = |xol). So tz9 € G/H hence a;...a, € L(G/H).
Case 2: Fug (tug € G A |ug| = |xo]). Let 0 <m <n maximal such that
up g up - I G Uy, with |ug| = |21, [t = T
By definition of G/H, uo ||zo “Sq/m ur |1 ... ¢/ Un || 2m and ¢ (ug || z0) € G/H.
Case 2.1: m=n. As a;...a, € L(G),0u, € G.
Thus o(uy, || z,) € G/H hence a;...a, € L(G/H).
Case 2.2: m < n.
Thus Uy, || Zm am_+>1G/H U1 # || Tt - Gy Wn# || @, for some ul, ...l
As oz, € H, we have o (u,# | x,) € G/H hence a;...a, € L(G/H).

iii) Assume that G S, H and (G/H) %4 H with H unambiguous.

Let w € L(G/H). Let us check that w € L(H) — L(G).

By Lemma 1, w € L(H). Assume that w € L(G).

There is a path u —»¢ v with tu,0v € G. Thus f(u) =g f(v) with ¢ f(u), o f(v) € H.
As f is length-preserving, w|| f(u) —=¢m v f(v) with ¢ (u]| f(u)), o(v] f(v)) € G| H.
Thus u | f(u) a/m o]l f(0) with ¢ (u] f(u) € G/H.

Furthermore ome(v| f(v)) = o f(v) € H.

By Lemma 4, o (v | f(v)) € G/H. Thus ov ¢ G which is a contradiction. <

Let us apply Lemma 12 restricted to deterministic automata with Proposition 9.

» Proposition 13. The language family ¢dRecy(H) = (Recr,  (H) is closed under differ-
ence when H is deterministic and e-free, and F is closed under || and /.

In general, the condition (G/H) 24 H is necessary in Lemma 12. For instance, let us
consider the following e-free unambigous automaton H :

o a 2 a a o
L L . .
10 1 11 110

Here is the length superposition (H/H), where any vertex wu,v represents Lu | Lv.

a o
e

. . .
0,0 a a 0,1 0#,10
L
.
e, €
a a a
— e
1,1 10,10

e o

1,

Thus H/H is not deterministically reducible into H and L(H/H) = L(H) = {a,aa}. In
order to accept L(H)—L(G) by length superposition when G —¢q H, we have to restrict
to vertices of the trimmed automaton G || H and to vertices of the copies of H. We define
the restricted length superposition G//H by

G//H = (G/H)p for P = Vig|m),, Y{ugll= ||z ||z| > [ul Au< Ve Az eVy ).

Ly

For the previous automaton H, the automaton (H//H), is the following:

a L a a

3 . .

.
0,0 €, € 1,1 10,10

We get that L(H//H) = ) = L(H) — L(H). Such an example can be generalized.

» Lemma 14. For any e-free automata G, H such that G —s4q H, we have
a) H length-unambiguous = (G//H) —q H
b) H unambiguous — L(GJ/H) C L(H)—L(G)

XX:11
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c) G trimmed and H length-deterministic — L(H)—-L(G) C L(G//H).

Proof.
Let G imd H with H length-unambiguous.

i) Let ul||z be a vertex of G//H with u a vertex of G.
By definition of G//H, u| x is a vertex of (G| H),, -
Note that H ~%,q H for the identity mapping id on Vi .
By Lemma 8 (b), we have f(u) = id(x) = .
ii) Let us prove that (G//H) "% H. By Lemma 12, we have (G//H) =%, H.
It remains to show that the morphism 75 is deterministic.
Let vs,tt € G/H with ma(s) = ma(t). We have to check that s = 1.
Note that s,t can not be of the formu#" ||z for € #u < Vi and n > 0.
It remains the complementary cases below.
Case 1: s,t are vertices of (G| H),,.-
By (i), we have s = u|| f(u) and t = v| f(v) for some tu, tv € G.
Furthermore f(u) = ma(s) = m(t) = f(v).
As f is deterministic, we get u = v hence s =1.
Case 2: s is a vertex of (G| H),, and t = (#/*| x) for some vertex = of H.
By (i), we have s = wu || f(u) for some tu € G.
Furthermore f(u) = ma(s) = m2(t) = z. In particular |u| = |f(u)| = |z|.
By definition of G//H, vt ¢ H which is a contradiction, hence Case 2 is impossible.
Case 3: t is a vertex of (G || H),, and s = (#/*|,z) for some vertex = of H.
By symmetry of s,t and by Case 2, this case is also impossible
Case 4: s = (#*1 2) and t = (#¥],y) for some vertices z,y of H.
Thus z = ma(s) = ma(t) = y hence s =1t.
Let r —gyu s and © S/ t with ma(s) = m2(t). We have to check that s =t¢.
We have the complementary cases below knowing that the remaining cases are not possible.
Case 1: s,t are vertices of (G| H),,-
By (i), we have r = u|| f(u), s = v|| f(v), t = w| f(w) for u 5 v and u ¢ w.
Furthermore f(v) = ma(s) = ma(t) = f(w).
As f is deterministic, we get v = w hence s =t.
Case 2: s = v# ||y and t = w#]| z.
So v <u#* and w < u#* for some u < Vg.
Furthermore y = ma(s) = ma(t) = z. So |v#| = |y| = |z| = |w#|.
Thus v = w hence s =t.
iii) Suppose that H is unambiguous. Let us prove that L(G//H) C L(H) — L(G).
Let w € L(G//H). By Lemma 12 (a) and 1, w € L(H).
Assume that w € L(G). There exists u —¢ v with tu, ov € G.
So | f(u) g vl £(v) with o (u]l f(u) € G/ 1.
Furthermore oms(v || f(v)) = o f(v) € H.
By (ii) and Lemma 4, o (v || f(v)) € G//H which is a contradiction.

iv) Suppose that G is trimmed and H is length-deterministic.
Let us prove that L(H) — L(G) C L(G//H).

Let ay...an, € L(H) — L(G) for some n >0 and ay,...,a, €T.
Let us show that as...a, € L(G//H).

There exists ©o —S g T1 ...y x, with txg, oz, € H.

Let z; = (#1%l ;) for any 0 <i < n.
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By definition of G//H, zg £>G//H 21 %G//H 2z, with oz, € G//H.
We distinguish the two complementary cases below.
Case 1: =J ug (tug € G A |ug| = |zo|). So tz9 € G//H hence ay...a, € L(G//H).
Case 2: Fug (tug € G A |ug| = |xo]). Let 0 <m <n maximal such that
up G Ut .. I uy with |ug| = |21, [um| = 2w

Thus o || zo “Sam ui || 21 56| 1 tm || Tm and ¢ (ug ||z0) € G| H.
As H is length-deterministic and by Lemma 8 (a), f(u;) = id(x;) = z; for any 0 <i < m.
As @ is trimmed, there exists a path w,, —¢ v’ with ou’ € G.
Thus (upm | 2m) = (Um || f(um)) —G)u @ [1f(W)) with o(u'| f(u')) € G|| H.
It follows that wy, ||z, is a vertex of (G| H),, hence a vertex of G//H.
Case 2.1: m=n. As a;...a, € L(G),0u, ¢ G.

Thus o(uy, || x,) € G//H hence a;...a, € L(G//H).
Case 2.2: m < n.

Thus Uy, || Tm am_,+>1g//H W1 # || Tog1 - G o UL || @, for some ul, ..l
As oz, € H, we have o (u,# | x,) € GJ/H hence a...a, € L(G//H). <

Let us apply Lemma 14 with Proposition 11.

» Proposition 15. The language family ¢dRecy(H) is closed under difference when H s
unambiguous, e-free and length-deterministic, and F is closed under to-restriction, || and

/-

Propositions 11 and 15 give Boolean algebras by length-preserving deterministic recogniz-
ability.

» Theorem 16. The language family ¢dRecx(H) is a Boolean algebra relative to L(H) for
any automata family F closed under the operations || and // and ro-restriction, and for
any automaton H in F which is unambiguous, e-free and length-deterministic.

The closure under to-restriction is not satisfied for general automata families because the
closure under accessibility and co-accessibility is required. This can then be avoided by
restricting to deterministic automata through Propositions 9 and 13.

» Theorem 17. The language family (dRecr(H) = (Recr,. (H) is a Boolean algebra
relative to L(H) for any automata family F closed under the operations || and /, and for
any automaton H in F which is deterministic and e-free.

We apply these two theorems for general automata families.

7 Boolean algebras of context-free languages

A general way of accepting context-free languages is through suffix automata. We prove
that this automaton family is closed under previous operations to get Boolean algebras of
context-free languages by Theorem 16.

An elementary suffiz automaton is an automaton of the form:

Wu-%5v) = {wu - wo|weW } where W € Reg(N*), u,v € N*, a € T U{s,0}.
A suffiz automaton is a finite union of elementary suffix automata. The family Stack of
suffix automata defines the family £(Stack) of context-free languages.

For instance, the previous ’fractal’ automaton Fr isin Stack: Denoting (k, k) by &, (#, k)

by #,, and (x,|) by x for any = € {a,b,#}, Fr is the union of the following elementary
suffix automata:



XX:14

Boolean algebras

{a,b}* (v - ar) {a,b}* (v —2 br) {a,b}* (ar —% &) {a,b}* (brx —% &)
{a,b}"(ax = #,) {a.b}" (br = #,) {a, 0} (att, =5 #,)  {a,b) (bt =5 #,)
{0, b} # (#e =5 ##,) {a, b} # G, =5 #) {ehs = ) {3 (# = #)

This general form of suffix automata allows to get their closure under the previous opera-

tions.

» Lemma 18. The family Stack is closed under vo-restriction, ||, / and /.

Proof.

i) Stack is closed under regular restriction which is distributive over union and satisfies
Wu-5v)p = {wu-"w|weW Awy,woe P} = (WNPu'NPvt)(u-v)
where Pu~! = { v |vu € P} is the right residual of P C N* by u € N*.

Given an automaton G in Stack and a letter  in T, the graph { v == v | u —% v } is
in Stack (Proposition 3.18 in [2]). In particular —¢; is a rational relation: it is recognized
by a finite transducer. Thus, the set of vertices deriving from or to a regular vertex subset
remains regular. Hence Stack is closed under to-restriction.

ii) Stack is closed under || since this operation is distributive over union, and we have
Wu 2 v) || Z(z -2 y)
= {(wulzz) = (wulzy) |l weW A z€Z A (Jwu| = |zz| A|wo| = |2y]) }

{ (wul22) == (wvllzy) [w e W A ze€Z A (Jul —|z| = |2 —|w| = |o] —|y]) }.
So W(u %) | Z(z LN y) = 0 if a#b or |ul—|v] # |z|—|y|, and otherwise is equal to
UseNm—m(Ws_l | Z)((SU [2) < (sv ZU)) for |u| < ||
Usentu-ial (W | Zs71).((ull s7) = (v sy)) for [u] > |a].
Furthermore for G,G" € Stack, Iger = Ig || Ie remains regular and is described by the
rule (I || Igr).(e == ¢). It is the same for Ogjer = O¢ || Ogr .
iii) Let us show that Stack is closed under /. As G/(HUH') = G/H U G/H', it remains
to consider G/ Z(z - y) for G = J;_, Wi(u; =% v;). Let us define the language
L=U{Wiu |1<i<nAa;=aA |u|—l|v| = |z|— |yl }.
Let us check that
(Ve—L) || Zz = {s|zx|s€VagANzeZ Als|=|zx| A =T t(s gt At]=]|2y]) }.
Let s € Vg and z € Z such that |s| = |zx|. We have to show that
sel < Jt(s LgtAltl=]2y)).
=—: Assume that s € L.
There exists 1 <i <n and w € W; such that s = wu; and a; = a and |u;|—|v;| = |z|—]y|.
Hence s = wv; with |wvi| = |w| + |us| + [y — |2 = |s| + |y| — || = [zyl.
<= Suppose there exists ¢ such that s ¢ t and |t| = |zy|.
Hence there exists 1 <7 <n and w € W; such that a; = a, s = wu; and t = wv; .
As |zz| = |s] and |zy| = |wv;|, we get |wv;| — |y| = |z| = [s] — |z|.
Thus |wvz| = |sy| = |Jwuy| ie. |uyl = |v;z|. So s =wu; € L.
Thus the following subgraph of G/H :
{ulls % vty |r SgyAueVg A=Fwlu -SgwA jw=y) Ao<ups}
corresponding to the ‘stall’ of G w.r.t. H, is equal to the following suffix automaton:
(Vo = L).(e = #1710 || Z.(a = y) for |z] < |y]
otherwise |z| > |y| and by union on 1 <i<n with W =W; and u € {u;,v;},
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if |ul > |z| — |y| we take the suffix automaton:
(W —Lu™Y).(u % v#) || Z.(x 2 y) for v <u and |u| — [v#| = |z| — |y
and if |u| < |z| — |y|, having |u| = |x| we get y =& and we take the suffix automaton:
(W — LuYs™L(su - #) || Z.(x % €) for any suffix letter s of W.
Similarly denoting by P the set of prefixes of Vi, the following subgraph of G/H :
{uple = v#tlly |z SryAn>0Au<Vg Av<u#}
is equal to the following suffix automaton:
Pa#t.(e = #VI7) || Z. (@ 25 y) for 2] <[yl
otherwise |z| > |y| and the automaton is equal to the unions of the following automata:
(Pe# M) u™t(u - #) || Z(z > y) for ue NE#T and |u| = |z| — |y| + 1.
Finally, the other subgraphs of G/H are described as before.
With (i), it follows that Stack is also closed under //. <

Let us apply Theorem 16 with Lemma 18.

» Proposition 19. The family (dRecsiack(H) is a Boolean algebra relative to L(H)
for any unambiguous, e-free and length-deterministic automaton H.

In particular, we obtain again that ¢dRecstack,.(H) for H deterministic, is a relative

Boolean algebra [7].

A well-known relative Boolean algebra is the family ¢dRecstack(Inp(T-1,70,771)) of input-

driven languages according to the triple (71,7, T3) of finite disjoint subsets of T [6].

Adding the loops labeled in T_; on the initial vertex x of Inp(7-1,Ty,T1), we get the

visibly automaton Vis(T_1,Ty, T1) = Inp(T_1,T0,T1) U { k % k| a € T_; } accepting

L(Vis(T-1,T0,T1)) = (T-1 U To U T1)*, and ¢dRecsack(Vis(T-1,To,T1)) is the Boolean

algebra of visibly pushdown languages according to (T-1, Ty, T1) [1].

Note that we can enhance the visibility of pushdown automata by taking a mapping || ||

from a finite subset 7|, C T to Z, by taking |,x € N, and by defining the automaton
Visy = { ["w 5 [poxOntll) | n>0AaeT) }U{tn} U{o|"s|n>0}

In particular Vis(T-q,To,Th) = Visy, for T, = T-1 U Ty U T1 with |a| = 7 for

any a € T; and i € {—1,0,1}. For any | [|, L(Vis; ) = T, and ldRecstack(Vis;) =

(Recstack,,, (Vis) ) is a Boolean algebra.

We further increase the pushdown visibility by taking |, f,x € N and the recognizer
2Vis;, = {|"s S "l jnezZAnaeT), }U{tk}U{o|"k|ne€Z}

where |7 = 1" for any n > 0. Thus ¢dRecsgack(Visy ) is still a Boolean algebra.

Note that Proposition 19 also applies to non-deterministic recognizers like the previous

unambiguous automaton Un which is also e-free and length-deterministic.

Proposition 19 may also be restricted to the family of counter automata.

8 Boolean algebras of context-sensitive languages

A simple way to define context-sensitive languages is through the synchronized relations of
bounded length difference.
An elementary bounded synchronized automaton is an automaton of the form:

Rlu-%v) = {zu %S yv| (z,y) €ER} for R € Reg((NxN)*), u,v € N*, a € TU{s,0}.
A bounded synchronized automaton is a finite union of elementary bounded synchonized
automata. The family Sync of bounded synchronized automata accepts the family £(Sync)
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of context-sensitive languages [8].

Similarly to the proof of Lemma 18, we get that Sync is closed under || and /. However,
Sync is not closed under to-restriction, nor closed under // because the set of vertices
accessible from a given vertex for a bounded synchronized automaton is not necessarily
regular (and also not effective). Nevertheless and by restricting to deterministic recognizers,
we can apply Theorem 17.

» Proposition 20. The family ¢{dRecsync(H) = (Recsync,,, (H) is a Boolean algebra rela-
tive to L(H) for any deterministic and e-free automaton H.

Thus ¢dRecsync(Inp(T-1, Ty, T1)) defines the Boolean algebra relative to L(Inp(7-1, Ty, T1))
of bounded synchronized input-driven languages w.r.t. to (T-1,To,T1). Likewise we have
the Boolean algebra ¢dRecsync(Vis, ) of bounded synchronized visibly languages w.r.t. || ||.
Theorem 17 can be applied to many other automata families, as for example the family of
vector addition systems (or Petri nets) with regular contexts.

In conclusion, the deterministic length recognizability allows to obtain Boolean algebras us-
ing automata families and recognizers. We have applied it to suffix automata and bounded
synchronized automata but one can use it on any automata family closed under length syn-
chronization, length superposition and trimmed restriction.
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