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Nomenclature

Cx drag coefficient of projectile
Cxj drag coefficient of liquid jet
dj liquid jet diameter (m)
dp projectile diameter (m)
dv average liquid fragment diameter (m)
�Ecp kinetic projectile dissipation in the target (J)
Ec0j liquid ejection initial kinetic energy (J)
Ecbreach breach growth energy (J)
Ecoverpressure liquid overpressure energy (J)
Fj liquid ejection force (N)
ϕ1 analytical function relating drag force and physico-

chemical parameters
ϕ2 analytical function relating liquid ejection force and

physico-chemical parameters
K cavitation parameter
I impact parameter
lj liquid jet length (m)
mp mass of the projectile (kg)
�l fluid viscosity (Pa s)
P0 initial static pressure at axis level of the projectile

(Pa)
�i dimensionless parameter
Re Reynolds number
Rp Drag force on projectile (N)
�air air density (kgm−3)
�l fluid density (kgm−3)
�p projectile density (kgm−3)
�l liquid surface tension (Nm−1)
t time (s)
u0j initial liquid ejection velocity (ms−1)
up0 projectile velocity before impact (ms−1)
up projectile velocity after impact (ms−1)
Vj liquid jet volume (m3), depending on liquid jet

Vp
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Table 1
Experimental
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927

978
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963
Fig. 2. Fluid ejection and instabilities

setup and trials.

Solution Device

Water + rhodamine 6 weighing devices
6 thermocouples
1 ultrasonic anemometer
1 anemometer
1 immersed piezoelectric pressur
9.2.1

Water + rhodamine+NH4 +OH 24 electrochemical sensors
6 weighing devices
6 thermocouples
1 ultrasonic anemometer
1 anemometer
1 immersed piezoelectric pressur

Water + rhodamine+NH4 +OH 24 electrochemical sensors
6 weighing devices
6 thermocouples
1 ultrasonic anemometer
1 anemometer
1 immersed piezoelectric pressur
9.2.3

Water + rhodamine 6 weighing devices
6 thermocouples
1 ultrasonic anemometer
1 anemometer
1 immersed piezoelectric pressur
9.2.4

Water(2) 41 electrochemical sensors

Water +10% NH4 +OH (2) 1 ultrasonic anemometer
1 immersed piezoelectric pressur

Water(2)

Water +10% NH4 +OH+40% PEG 400(2)

Water+ 10% NH4

Water +10% NH4 +74% PEG 400(2)

Water(2)

Water(2)

Water(2)

Water +40% PEG 400(2)

Water +40% PEG 400(2)

Water 2 immersed piezoelectric pressur

Water 2 immersed piezoelectric pressur
9.2.7

Water +74% PEG 2 immersed piezoelectric pressur
9.2.8
[2].

Camera/resolution (pix) Comments

APX RS 1024*512 Tests series 2005
Steel tank 60l

APX NB 5000 1024*512

e sensor APX Color 1024*512

APX RS 1024*512

APX NB 5000 1024*512

APX Color 1024*512
e sensor

APX RS 1024*512

APX NB 5000 1024*512

APX Color 1024*512
e sensor

APX RS 1024*512

APX NB 5000 1024*512

e sensor APX Color 1024*512

APX 250k/1024*512 Tests series 2006

9.2.5 Steel tank 60l
e sensor 9.2.6

e sensors APX 250k/64*256 Tests series 2007
PC Tank(1)

APX 250k/256*128 Cylindrical 166l
APX 250k/256*128

e sensors APX 250k/64*256 Tests series 2007
PC Tank(1)

APX 250k/256*128 Cubic 181l
APX 250k/256*128
APX 250k/256*128

e sensors APX 250k/256*64 Tests series 2007
PC Tank(1)

APX 250k/256*128 Cylindrical 166l
APX 250k/128*128



Table 1(Continued )

up0
a (ms−1) Solution Device Camera/resolution (pix) Comments

1255 Water(2) 1 immersed piezoelectric pressure sensor APX 120k/1024*512 Tests series 2007
9.2.9 Steel tank 60l

APX 120k/1024*512 9.2.10
APX 250k/1024*512

1273 Water +40% PEG 400(2) APX 120k/1024*512
APX 120k/1024*512
APX 250k/1024*512

963 Water +74% PEG 400(2) APX 120k/1024*512
APX 120k/1024*512
APX 250k/1024*512

1273 Water +40% PEG 400(2) APX 120k/1024*512
APX 120k/1024*512

9.2.12 9.2.13
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Fig. 3. Experimental setup.
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Fig. 5. Liquid ejection phases after impact.

Fig. 6. Liquid jet 2D displacement field method.

Fig. 7. Image thresholding.
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