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Abstract 

Environmental mercury (Hg) contamination is an urgent global health threat. The complexity of 

Hg in the environment can hinder accurate determination of ecological and human health risks, 

particularly within the context of the rapid global changes that are altering many ecological 

processes, socioeconomic patterns, and other factors like infectious disease incidence, that can 

affect Hg exposures and health outcomes. However, the success of global Hg reduction efforts 

depends on accurate assessments of their effectiveness in reducing health risks. In this paper, we 

examine the role that key extrinsic and intrinsic drivers play on several aspects of Hg risk to 

humans and organisms in the environment. We do so within three key domains of ecological and 

human health risk. First, we examine how extrinsic global change drivers influence pathways of 

Hg bioaccumulation and biomagnification through food webs. Next, we describe how extrinsic 

socioeconomic drivers at a global scale, and intrinsic individual-level drivers influence human Hg 

exposure. Finally, we address how the adverse health effects of Hg in humans and wildlife are 

modulated by a range of extrinsic and intrinsic drivers within the context of rapid global change. 

Incorporating components of these three domains into research and monitoring will facilitate a 

more holistic understanding of how ecological and societal drivers interact to influence Hg health 

risks. 
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1.0 Introduction 

The health effects of mercury (Hg) exposure represent a significant threat to ecosystems 

and human welfare worldwide (Driscoll et al. 2013), but understanding the risks associated with 

Hg exposure is complicated by this element’s varied environmental fate and the overarching 

influences of environmental, biological, and socioeconomic drivers. In its various forms, Hg 

causes immunotoxicity (Hawley et al. 2009, Lewis et al. 2013, Hui et al. 2016, Zhang et al. 2016, 

Crowe et al. 2017) and nephrotoxicity (Tchounwou et al. 2003), diminishes neurological capacity 

and neurobehavioral function (Steuerwald et al. 2000, Basu et al. 2005, Clarkson and Magos 2006, 

Mergler et al. 2007a, Scheuhammer and Sandheinrich 2008, Depew et al. 2012a, Bridges et al. 

2016, Landler et al. 2017), alters functioning of three major endocrine axes (Wada et al. 2009, 

Meyer et al. 2014), and impairs reproduction and alters offspring quality (Klaper et al. 2006, 

Burgess and Meyer 2008, Bergeron et al. 2011, Hopkins et al. 2013, Tartu et al. 2013, Thompson 

et al. in press). The numerous adverse health effects of Hg, coupled with the diverse environmental 

sources, propensity for long-range transport, complex biogeochemical cycling, and various 

exposure pathways through food webs and from industrial activities present significant challenges 

to characterizing and managing the risk of Hg exposure to ecological and public health. 

Nonetheless, substantial progress has been made over the past several decades, resulting in 

improved inventories of Hg sources and releases (Streets et al. 2017), and a more robust scientific 

understanding of the factors influencing Hg fate and transport (see companion paper by Obrist et 

al. (2017), the processes driving methylmercury (MeHg) production (see companion paper by Hsu-

Kim et al. (2017), and the manifestations and mechanisms of many of the toxic effects of Hg in 

biota. This progress has supported global efforts to reduce Hg loading to the environment to protect 
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human and ecological health, such as those put forth at the Minamata Convention (see companion 

paper by Selin et al. (2017). 

 

Ecological and public health risks posed by Hg rarely follow a simple linear relationship 

from Hg releases, to uptake and exposure, to adverse health outcomes. Instead, a diverse suite of 

extrinsic ecological and socioeconomic factors (herein called “extrinsic drivers,” e.g., invasive 

species, culture) and intrinsic biological factors (herein called “intrinsic drivers,” e.g., genetics, 

microbiome) alter the availability of Hg for biological uptake, and modify Hg toxicity to humans 

and other animals. Some of these drivers – e.g., climate change, land use changes – are occurring 

at unprecedented global rates and challenge the development of effective Hg control actions, alter 

recovery trajectories, and confound interpretations of monitoring outcomes. The growing extent 

and intensity of some drivers will continue to influence key processes associated with Hg exposure 

and bioaccumulation in humans and other animals; thus, there is a critical need to understand how 

these drivers alter mechanisms of Hg bioavailability in order to better predict changes in Hg 

exposure trajectories and mitigate adverse health effects. 

 

Exposure to MeHg mainly occurs via the diet for most organisms (Mergler et al. 2007b, 

Wiener 2013), whereas inorganic Hg (elemental (Hg0) and ionic Hg (HgII)) exposure (particularly 

in humans) largely occurs through inhalation, dermal, or oral routes (Clarkson and Magos 2006), 

which are primarily associated with industrial processes, such as ASGM (Steckling et al. 2011, 

Basu et al. 2015b) and medical uses (Clarkson and Magos 2006). Exposures to both organic and 

inorganic Hg species are influenced by the environmental alterations and societal shifts associated 

with extrinsic drivers (such as hydrologic and land use alterations, invasive species, climate 
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change, and macroeconomic change), but through very different mechanisms. For example, 

extrinsic drivers that alter trophic processes, e.g., food web structure, foraging ecology, and 

ecosystem energetics (i.e., energy flow through food webs), influence the magnitude of MeHg 

bioaccumulation and biomagnification through food webs (Vander Zanden and Rasmussen 1996, 

Lavoie et al. 2013, Karimi et al. 2016a, Polito et al. 2016). Conversely, other extrinsic drivers, 

such as shifts in global socioeconomic trends, cultural patterns, and development trajectories, 

affect inorganic Hg exposure risks in human populations (Swain et al. 2007). It is important to also 

recognize the critical roles of abiotic Hg fate and transport and MeHg production to the Hg cycle, 

as well as their contributions to Hg exposure and health risks. Although we do not address those 

processes here, as they are reviewed in detail in companion papers (Hsu-Kim et al. 2017, Obrist et 

al. 2017), their exclusion should be interpreted not as diminished importance, but as an alternate 

focus. Instead, we examine extrinsic and intrinsic drivers that influence the routes of Hg exposure, 

and subsequently alter risks of Hg to human health and the health of organisms in the environment. 

The growing extent and intensity of some drivers will continue to influence key mechanisms 

associated with Hg exposure and bioaccumulation in both humans and other animals, thus there is 

a critical need to understand these interactions to better predict changes in exposure trajectories, 

and realized adverse health effects.  

 

In this paper, we examine how specific extrinsic and intrinsic drivers that operate across 

multiple scales of organization (global, individual, molecular) modulate mechanisms of Hg 

bioaccumulation in organisms and biomagnification through food webs, Hg exposure in humans, 

and Hg toxicity and health outcomes. Our goal is to integrate across disciplines that commonly are 

not linked, but nevertheless can exert cumulative influence on Hg health risks, in order to 
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encourage scientific development of a more unified strategy for quantifying Hg risk during a time 

of rapid global change. As such, our objectives are to (1) examine the relationship between global 

change drivers and Hg bioaccumulation and biomagnification through ecosystems, (2) discuss key 

factors that influence human exposure to MeHg and inorganic Hg, and (3) summarize interactive 

factors that can modulate toxic responses to Hg in wildlife and humans. This approach explicitly 

incorporates ecological, socioeconomic, and physiological factors to assist with quantifying the 

effectiveness of Hg reduction efforts on health outcomes and ecological risk. We address these 

objectives within a conceptual framework based upon pathways of Hg cycling through the 

ecosphere (Figure 1), and within three key domains of ecological and human health risk. Domain 

1 represents the extrinsic global change drivers that influence MeHg bioaccumulation and 

biomagnification through food webs. Domain 2 describes the global extrinsic, and individual- and 

molecular-level intrinsic drivers that influence human exposure to both MeHg and inorganic Hg, 

as well as how these drivers interact with those of Domain 1 to modulate Hg exposure through the 

human consumption of Hg-contaminated foods. Domain 3 comprises the extrinsic and intrinsic 

drivers across a range of scales that influence the adverse effects of both MeHg and inorganic Hg 

in human and ecological health endpoints, and how they interact with the global change drivers 

described in Domains 1 and 2.  
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Figure 1. Conceptual model of mercury (Hg) pathways through the ecosphere and the domains of 

drivers that influence the risk of Hg exposure and related adverse health effects. The grey arrows 

represent the combined physical, chemical, and biological processes that influence movement from 

one category to another, and the Domains represent key drivers that interact with those processes 

to influence outcomes in the receiving categories. Global extrinsic drivers affecting methylmercury 

(MeHg) bioaccumulation in Domain 1 include hydrologic alteration, land use change, invasive 

species, and climate change (see Figure 2). Global extrinsic drivers that influence human exposure 

to inorganic Hg and MeHg in Domain 2 include changes in socio-economics of subsistence and 
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luxury fish consumption and ASGM, whereas individual- and molecular-level intrinsic drivers 

include genetic variability and gastrointestinal assimilation (see Figure 3). Extrinsic and intrinsic 

drivers modulating adverse health outcomes of MeHg and inorganic Hg exposure in humans and 

other animals in Domain 3 include exposure to pathogens and infectious disease, and variations 

in nutrients and co-contaminants, the microbiome, and genetics. 

2.0 Domain 1 – Extrinsic Global Change Drivers that Influence MeHg Bioaccumulation and 

Biomagnification in Food Webs. 

The unprecedented rate of human-induced changes in hydrology, land use, invasive 

species, and climate is altering ecosystem processes on a global scale, including the distributions 

and interactions of species across terrestrial, freshwater, and marine habitats (Vitousek 1994, 

Hooper et al. 2012). Ecosystems respond to these extrinsic drivers in many ways, including 

through changes in food web structure and ecosystem energetics (Petchey et al. 1999, Baxter et al. 

2004, Woodward et al. 2010), which influence MeHg bioaccumulation in food webs and 

subsequent dietary exposure to humans.  

 

Herein we identify four key ecological mechanisms that underlie changes in MeHg 

bioaccumulation through their effects on MeHg entry at the base of the food web, trophic transfer 

and biomagnification of MeHg through food webs, and toxicokinetics of MeHg within organisms. 

These mechanisms include: (1) primary productivity, (2) habitat use, (3) bioenergetics, and (4) 

food web structure. Although there is some inherent overlap among these mechanisms (e.g., 

hydrology dictates the available habitat, which can alter food web structure, etc.), their unique 

influences on MeHg bioaccumulation, biomagnification, and exposure warrant separate 

discussions. We then examine how each of these mechanisms can modulate (confound, moderate, 
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or mediate) MeHg bioaccumulation and biomagnification when influenced by widespread global 

change drivers (Figure 2). The extrinsic drivers considered in this domain are: (1) hydrologic 

alteration, (2) land use change (and associated changes to nitrogen cycling), and (3) invasive 

species. Additionally, each of these extrinsic drivers occur within the context of (4) climate change, 

which modulates many aspects of the other drivers of global change. For each extrinsic driver 

presented below, we discussion its influences on one of the four mechanisms of bioaccumulation 

using support from the literature. 

 

  

 

 

Figure 2. Major extrinsic drivers of global change (hydrologic alteration, land use change, 

invasive species, and climate change) indirectly (dashed arrow) influence methylmercury (MeHg) 
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bioaccumulation and biomagnification through their direct effects (solid arrow) on key ecological 

mechanisms of MeHg bioaccumulation (primary productivity, habitat use, bioenergetics, and food 

web structure).  

2.1 Hydrologic Alteration 

Hydrologic alteration is a defining characteristic of the Anthropocene and a major 

component of global change (Rosenberg et al. 2000). Dam, levee, and canal construction, wetland 

draining, and restriction of tidal exchange have fundamentally transformed the global water cycle, 

altering the ecology of freshwater ecosystems (Sahagian 2000), adjacent terrestrial riparian 

habitats (Poff et al. 2007), and receiving estuaries (Herbert et al. 2015). Globally, approximately 

800,000 dams regulate over half of the world’s river systems (Friedl and Wuest 2002, Nilsson 

2005). These dams obstruct an estimated two-thirds of freshwater flowing to the oceans (Nilsson 

and Berggren 2000), and redirect approximately 50% of the planet’s accessible freshwater runoff 

for human use (Postel et al. 1996). Although dam construction has slowed since the 1970s, human 

population growth and economic development continue to drive a nearly exponential increase in 

global water use (Vorosmarty and Sahagian 2000). As a result, ongoing management of hydrology 

through reservoir operations, wetland restoration and management, and agricultural use maintains 

the global extent of continued hydrologic alteration, particularly in developing regions of the world 

(Janse et al. 2015). In particular, recent inventories suggest that small ponds created for agriculture 

and livestock purposes represent a substantial, previously unappreciated, and growing component 

of freshwater habitats (Downing et al. 2006), and they are disproportionately important for 

biogeochemical processes and as aquatic habitats for diverse organisms (Downing 2010).   
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Aquatic ecosystem functions are profoundly influenced by hydrologic alteration, resulting 

in changes to habitat connectivity and quality, community composition, and energy flow through 

ecosystems (Vorosmarty et al. 2000). Dams fragment riverine habitats (Rosenberg et al. 2000), 

alter water temperatures, and homogenize variation in discharge (Sabo et al. 2010). These physical 

and chemical changes manifest as ecological outcomes such as enhanced invasion of non-native 

species (Havel et al. 2005), community shifts from fluvial specialists to habitat generalists (Haxton 

and Findlay, 2008), and increased food chain length (Sabo et al. 2010). The impacts of wetland 

loss on biodiversity and ecological function have been thoroughly described (Zedler and Kercher 

2005), but even restored wetlands that are hydrologically managed to mirror pre-disturbance 

features exhibit both structural and functional biological degradation (Moreno-Mateos et al. 2012). 

Thus, many of the effects of hydrologic alteration are directly tied to the four key mechanisms of 

Hg bioaccumulation: primary productivity, habitat use, bioenergetics, and food web structure. The 

extent and magnitude of hydrologic alteration suggests that it may have an potentially significant 

impact on Hg bioaccumulation biomagnification through food webs.  

 

Fish and wildlife exposure to MeHg inherently differs among waterbody and habitat types 

(Ackerman et al. 2016, Eagles-Smith et al. 2016a) because hydrology influences the 

biogeochemical processes associated with MeHg production, as well as habitat availability and 

use, food web structure, and bioenergetics. As a result, hydrologic alteration is arguably among 

the most well-studied global change drivers of altered MeHg bioaccumulation in aquatic food 

webs. Reservoirs in particular have been associated with elevated MeHg bioaccumulation. 

Methylmercury concentrations in reservoir fish are between 1.4 to several fold higher than 

concentrations in fish from natural lakes (Kamman et al. 2005, Bodaly et al. 2007, Monson et al. 
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2011, Willacker et al. 2016), and the differences are particularly apparent in newly inundated 

reservoirs where rapid post-impoundment increases in MeHg concentrations occur through aquatic 

food webs. Studies in Scandinavia (Porvari 1998), North America (Willacker et al. 2016), Europe 

(Kruzikova et al. 2011), South America (Hylander et al. 2006), and Asia (Li et al. 2013) have all 

shown that total Hg and MeHg concentrations in aquatic food web components increased 3- to 30-

fold within a few years after reservoir creation, with the magnitude of increases tied to amount of 

flooded area relative to reservoir surface area (Bodaly et al. 2007). Fish MeHg concentrations 

reached their maximum levels 2-14 years after impoundment across 8 hydroelectric reservoirs in 

Canada (Bodaly et al. 2007), and an average of 3 years after impoundment across dozens of 

reservoirs throughout western North America (Willacker et al. 2016). Because MeHg 

concentrations and reproductive risk in piscivorous birds is highly correlated with MeHg 

concentrations in potential prey fish (Evers et al. 2008, Ackerman et al. 2015), waterbird species 

attracted to reservoirs or their discharge waters may be at particularly high risk to MeHg exposure 

in the years following reservoir creation. Reservoir creation can also enhance the magnitude of 

aquatic invertebrate emergence, increasing the available biomass of Hg-contaminated prey and 

associated Hg exposure in insectivorous birds (Gerrard and St Louis 2001), providing biologically 

mediated subsidies to adjacent terrestrial habitats. The pulse in MeHg bioaccumulation through 

food webs does not occur in all newly impounded reservoirs however (Li et al. 2015), and though 

the mechanisms are not well understood, evidence suggests that food chain length in reservoirs 

may be an important regulating factor (Razavi et al. 2014, Ouedraogo et al. 2015).  

 

Mercury concentrations in reservoir fish (and likely other taxa) eventually return to near 

pre-impoundment levels, though it can take several decades (French et al. 1998, Bodaly et al. 2007, 
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Willacker et al. 2016) with rates of decline ranging between 0.5% and 3.9% per year (Green et al. 

2016). However, both reservoir management and hydrologic structure can confound any return to 

background concentrations. Water level management, specifically the magnitude of between-year 

changes in maximum water levels, is linearly correlated with fish Hg concentrations in subsequent 

years (Sorensen et al. 2005, Larson et al. 2014, Willacker et al. 2016) and has been associated with 

up to a three-fold difference in fish Hg concentrations from reservoirs with low versus high 

proportional changes in maximum water levels (Willacker et al. 2016). Water column stratification 

also influences food web Hg bioaccumulation, both within reservoirs (Slotton et al. 1995, Perron 

et al. 2014), as well as downstream environments. Elevated Hg concentrations in food webs can 

extend up to 200 km below dams (Kasper et al. 2014). Thus, the influence of hydrologic alteration 

on Hg dynamics within food webs extends to other water bodies. For example, fish Hg 

concentrations have been shown to be highest in wetlands with the greatest degree of water level 

fluctuation (Snodgrass et al. 2000, Eagles-Smith and Ackerman 2014), and white ibis chick Hg 

concentrations were directly tied to water level fluctuation rates in the Florida Everglades (Herring 

et al. 2013). Highly managed, small agricultural ponds, represent and important habitat in semi-

arid regions with limited aquatic habitat availability (Chumchal and Drenner 2015), where 

invertebrate MeHg flux to terrestrial environments differed among ponds with varying water 

management and presence or absence of fish (Henderson et al. 2012, Tweedy et al. 2013). Further, 

river geomorphology can influence aquatic-terrestrial Hg transfer through the collective effects on 

emergent insect body burdens and aquatic insect community composition (Sullivan et al. 2016).  
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2.2 Land Use Change 

Rapid and irreversible conversion of lands for the production of food, extraction of 

resources, and urbanization is occurring globally. These alterations have disturbed natural 

hydrological, geochemical, and biological processes due to the production and discharge of wastes, 

impervious surfaces of cities, conversion of forests to pastures for livestock and crop 

monocultures, and addition of fertilizers and pesticides to increase food production (Tilman et al. 

2001). Widespread changes to terrestrial systems and unsustainable resource consumption by a 

rapidly growing population has resulted in global shifts in the nitrogen cycle (Vitousek 1994), 

unprecedented losses in biodiversity (Phalan et al. 2011), pervasive eutrophication of aquatic 

ecosystems (Carpenter and Bennett 2011), and impacts on regional and global climate (Vitousek 

1994, IPCC 2014).   

 

These broad-scale changes to the landscape are also altering the fate of Hg through their 

effects on the structure and function of terrestrial and aquatic systems and the four key mechanisms 

governing MeHg bioaccumulation (primary productivity, habitat use, bioenergetics, and food web 

structure). For example, direct toxicity, changes in nutrient flow, and habitat loss, can each result 

in losses of sensitive species and biodiversity, which affects food web structure (e.g., urban 

effluents, (Wenger et al. 2009, Holeton et al. 2011); agricultural pesticides and fertilizers; forestry, 

(Richardson and Beraud 2014)). The growth rates and bioenergetics of species shift as a result of 

changes in food supply, competition, and predation (Brinkmann and Rasmussen 2010). Losses in 

forest cover and permeable lands alter the timing and magnitude of water flow from terrestrial to 

aquatic systems (Sampaio da Silva et al. 2009, Wenger et al. 2009). Finally, the primary 
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productivity of ecosystems from heavy reliance on fertilizers is increasing the availability of 

limiting nutrients to terrestrial and aquatic vegetation (Vitousek et al. 1997, Carpenter et al. 1998).  

 

Of the four key mechanisms, alterations in primary productivity and its effects on MeHg 

in consumers is arguably one of the better studied, but controversies remain over the resultant net 

effects on Hg uptake in biota. Increases in the biomass of primary producers may dilute MeHg 

concentrations in the base of the food web [algae, (Pickhardt et al. 2002, Perron et al. 2014)] and 

subsequently in predators (e.g., zooplankton (Chen and Folt 2005), fish (Larsson et al. 1992, Kidd 

et al. 1999, Essington and Houser 2003)). Alternatively, MeHg production may be enhanced due 

to a greater abundance of primary producers (Lepak et al. 2015), thereby facilitating in situ Hg 

methylation (Mauro et al. 2002, Paranjape and Hall 2017). Increases in the primary productivity 

of artificial streams by several orders of magnitude led to comparable declines in MeHg 

concentrations of both algae and algal consumers, supporting the biodilution hypothesis (Walters 

et al. 2015), whereas other experimental evidence showed either no effect or increased MeHg 

concentrations resulting from enhanced primary production ((Rudd and Turner 1983, Jones et al. 

2013). In addition, a review of several case studies examining fish Hg concentrations across a 

gradient of nutrient loading to coastal waters found examples that both supported and challenged 

the biodilution hypothesis (Driscoll et al. 2012). Although contradictory, the experimental and 

field evidence clearly shows that primary productivity can both reduce and enhance MeHg 

bioaccumulation, and it is important to resolve the contexts in which each of these responses are 

more likely to occur. Agricultural runoff and municipal wastewaters are the largest contributors to 

eutrophication of freshwater and marine coastal systems, yet there are surprisingly few studies of 
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their impacts on Hg cycling in aquatic ecosystems and in the terrestrial landscape upon which 

pesticides, wastewater biosolids, fertilizers, and manures are applied.  

 

2.3 Invasive and Introduced Species 

Long distance transportation and globalization have resulted in the intentional and 

unintentional transport of microbes, flora, and fauna around the world (Pimentel et al. 2000, 

Richardson et al. 2000). Non-native species that become established in new localities can 

outcompete or prey upon native species, introduce diseases, alter critical ecosystem functions, 

influence water and food supplies for humans, and cause extraordinary economic losses (Mack et 

al. 2000, Pimentel et al. 2000, Richardson et al. 2000, Pimentel et al. 2001, Pimentel et al. 2005).  

As a result, invasive species are now widely recognized as one of the greatest anthropogenic 

challenges facing the planet (Mack et al. 2000, Pimentel et al. 2005). 

 

Invasive invertebrates, plants, and animals can upend ecosystem-level processes, alter food 

web composition, and influence the health and survival of native organisms in the receiving 

ecosystem. For example, invasive plants can differ from native plants in their physiology and 

phenology, sometimes producing striking differences in biomass, primary productivity, 

rhizosphere activity, and fundamental alterations to nutrient and water cycles (Ehrenfeld 2003, 

Gentes et al. 2013). Invasive invertebrates such as zebra mussels can overwhelm aquatic systems 

and cause wholesale changes in phytoplankton and zooplankton community structure, driving 

cascading effects on the diets and growth of fish and other aquatic animals (McNickle et al. 2006). 

Invasive vertebrates, such as Burmese pythons, brown tree snakes, cane toads, and fish, can alter 

the growth rates and population densities of native vertebrates, and in extreme cases can eliminate 
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native species altogether through predation, pathogen transmission, resource competition, toxicity, 

and/or competitive exclusion (Vander Zanden et al. 1999, Phillips et al. 2003, Wiles et al. 2003, 

Dorcas et al. 2012, Willson 2017). Importantly, the effects of invasive species on ecosystem 

processes and food web structure can vary based on the characteristics of the recipient ecosystem, 

suggesting that a variety of site-specific factors influence the ecological outcomes of species 

introductions (Ehrenfeld 2003, Occhipinti-Ambrogi and Savini 2003, Vander Zanden et al. 2003, 

Swanson et al. 2006). 

 

Despite the profound impacts that invasive species have on ecological systems, 

surprisingly little is known about how they influence the dynamics of co-occurring anthropogenic 

pollutants such as MeHg. One mechanism by which invasive species may influence movement of 

MeHg through food webs is by altering hydrology, biogeochemistry, and microbial processes that 

control site-specific MeHg production, facilitating subsequent bioaccumulation. For example, 

saltcedar (Tamarix spp.) introductions across the western U.S. may have modified the hydrology 

of reservoirs, streams, and floodplains due to evapotranspiration (reviewed in Shafroth et al. 

(2005)). Likewise, the highly invasive common reed (Phragmites australis) forms dense 

monocultures in both freshwater and brackish systems, excluding other plant and animal species, 

reducing light penetration, and modifying decomposition rates and nutrient cycling (Meyerson et 

al. 2000). Similarly, introduced aquatic macrophytes can overwhelm aquatic habitats, particularly 

under eutrophic conditions. The macrophytic rhizosphere is critical to Hg methylation, and thus 

has the potential to increase bioavailability to local fauna (Gentes et al. 2013). Although the impact 

of these nonnative plant introductions on Hg accumulation in resident food webs have not been 
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considered, these examples illustrate the broad ecological changes that invasive species can cause, 

and the high probability that these alterations could influence MeHg dynamics.   

 

Relatively few studies have directly considered how invasive species influence 

bioaccumulation of Hg in receiving ecosystems, and most of these have focused on changes in 

feeding ecology and trophic structure due to invasions or introductions. Because where an 

organism feeds can influence MeHg exposure and subsequent MeHg bioaccumulation (Power et 

al. 2002, Karimi et al. 2016a), one process that invasive species could affect, that would in turn 

modify MeHg fate, is changes to the foraging habitat. Indeed, threadfin shad (Dorosoma 

petenense) introduced to a lake in California, USA outcompeted native planktivorous species for 

zooplankton, causing native fishes to shift from pelagic to benthic prey. The dietary shift resulted 

in a 50% increase in Hg concentrations of resident planktivorous fish (Eagles-Smith et al. 2008). 

Alternatively, introduced species can alter the length of trophic pathways and thus influence Hg 

dynamics within food webs. For example, introduced rainbow smelt (Osmerus mordax) in 

Canadian lakes feed at slightly higher trophic positions than native forage fish and could thus 

theoretically expose predatory fish to higher concentrations of dietary Hg.  However, support for 

this hypothesis is mixed (Evans and Loftus 1987, Franzin et al. 1994, Vander Zanden and 

Rasmussen 1996, Hrabik et al. 1998, Johnston et al. 2003), possibly because localized water 

chemistry and rapid growth rates of fish (i.e., growth dilution of Hg) may offset relatively fine-

scale changes in trophic position (Swanson et al. 2006).  

 

In light of the diverse effects that introduced species can have on ecological systems and 

their widespread and growing presence, considerable research is needed to understand how 
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invasive species influence MeHg bioaccumulation. The examples above suggest this area 

continues to emerge key aspect of the overlap between invasive species and MeHg 

bioaccumulation through food webs. More data are needed to understand the conditions under 

which invasive species are most likely to influence MeHg bioaccumulation in ecosystems by 

altering methylation processes, food web structure, feeding ecology, hydrology, and bioenergetics 

of resident communities. Baseline tissue Hg concentrations will be essential to elucidate pre- and 

post-invasion changes to MeHg dynamics, and studies will need to consider site-specific 

ecological factors that may influence MeHg bioaccumulation resulting from invasions. 

 

2.4 Climate Change 

Whereas hydrologic alteration, land use change, and invasive species are examples of localized 

drivers with a global extent, climate change is a global phenomenon with both global and localized 

impacts. As a result, it both directly and indirectly influences the four key mechanisms of MeHg 

bioaccumulation (primary productivity, habitat use, bioenergetics, and food web structure). It 

directly influences each mechanism by changing the physical and chemical properties of the 

environment, which triggers ecological responses. It also indirectly influences each mechanism of 

MeHg bioaccumulation because climate change motivates adaptation in land use (Dale 1997, Gao 

and Liu 2011) and water storage and conveyance (Christensen et al. 2004, Olden and Naiman 

2010), while also creating expanded opportunities for non-native species invasions (Rahel and 

Olden 2008). Thus, climate change indirectly influences MeHg bioaccumulation and 

biomagnification through alterations in primary productivity, and food web structure, as well as 

bioenergetics.  

 



 20 

Because diet is the primary MeHg exposure route, MeHg follows energetic pathways 

through food webs and is tied to an organism’s energy expenditure, acquisition, and storage. The 

link between MeHg bioaccumulation and bioenergetics is most commonly exhibited through 

growth dilution, whereby Hg concentrations are lower in faster growing individuals with higher 

growth efficiency than those that grow more slowly and have lower growth efficiency. This 

process has been demonstrated in both fish (Ward et al. 2010) and birds (Ackerman et al. 2011), 

and is commonly visible in the negative relationship between Hg concentrations and body 

condition (Eagles-Smith et al. 2016b, Baumann et al. 2017). Growth efficiency and associated 

bioenergetics can be influenced by either changes in basal metabolic rate (Dijkstra et al. 2013), 

activity costs, or food quality (Lepak et al. 2012, Johnson et al. 2015, Karimi et al. 2016a). Thus, 

environmental conditionsthat influence these factors, such as temperature, can also modulate 

MeHg bioaccumulation and biomagnification. For example, global average sea surface 

temperature has increased by 0.11C per decade between 1971 and 2010, and is projected to further 

increase by 1-3C over the next 50 years (IPCC 2014). Many freshwater systems may endure even 

higher temperature increases (Magnuson et al. 1997). Microcosm and experimental laboratory 

studies have shown that MeHg concentrations in killifish increased substantially over a 3C and 

7C temperature gradient, respectively, and changes in concentrations were largely due to 

increased food consumption to maintain the higher basal metabolic rate associated with warmer 

water temperatures (Dijkstra et al. 2013). Metabolic allometric scaling theory predicts that higher 

temperatures and associated metabolic rates will also induce community shifts toward smaller 

body sizes, which has further trickle-down ramifications for ecosystem metabolic processes 

(Woodward et al. 2010). Among those relevant to MeHg bioaccumulation are changes in food 

quality and energy density (Ficke et al. 2007, Atcheson et al. 2012). Lower energy content in food 
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requires higher consumption rates to meet metabolic needs. Thus, even if MeHg concentrations in 

prey remain unchanged, MeHg exposure in consumers would increase as they attempt to meet 

basal energy requirements. These processes have important implications for evaluating the 

effectiveness of global Hg reductions because changes in Hg concentrations of sentinel species 

may respond to both changes in Hg releases as well as extrinsic drivers such as climate change. 

As a result, strategies need to be developed that incorporate the role of these extrinsic drivers into 

models of MeHg bioaccumulation.  

Cumulatively, the four extrinsic global change drivers described above (hydrologic 

alteration, land use change, invasive species, and climate change) will continue to change patterns 

of MeHg bioaccumulation and biomagnification in complex ways. The contexts in which these 

drivers act is important to define in order to begin incorporating their effects into risk 

determination, because their influence on MeHg bioaccumulation patterns will ultimate influence 

MeHg concentrations in fish, which is the primary source of MeHg to most humans. 

 

3.0 Domain 2 – Global Extrinsic and Individual/Molecular-level Intrinsic Drivers of Hg 

Exposure in Humans 

Most human populations are exposed to Hg through the consumption of MeHg-

contaminated fish, shellfish, and marine mammals (Sheehan et al. 2014), though rice has also 

emerged as a major MeHg vector in some populations (Zhang et al. 2010, Hsu-Kim et al. 2017). 

Human exposure to elemental or inorganic Hg can occur from sources present in certain 

occupational settings and contaminated sites as well as from Hg-containing products. As a result, 

approaches to minimize Hg exposure in humans encounter inherent conflicts because many of 

these Hg sources also have great value for public health, such as seafood consumption and the use 
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of dental amalgams. Limiting exposure to these and other potential Hg sources can thus have 

negative health implications. Although alternatives to these Hg sources exist (e.g., Hg-free dental 

restoration options and low-Hg fish choices), they are often limited to more economically 

developed nations or would result in the elimination of culturally important food items. Thus, 

predicting the health risks associated with MeHg and inorganic Hg exposure in human populations 

is not only complicated by the global change drivers discussed in Domain 1 that influence Hg 

concentrations in food items that humans consume, but also by global economic and societal 

drivers.  

 

Intrinsic drivers such as genetic variability also influence human exposure to Hg, as well 

as the relationship between actual Hg exposure and the commonly accepted biomarkers that are 

used to estimate exposure in humans (i.e., blood Hg concentration reflects exposures to both 

organic and inorganic Hg, whereas Hg concentrations in hair and urine reflect exposures to organic 

and inorganic Hg, respectively). This is an important aspect of understanding human exposure to 

Hg because standard risk assessments often assume a constant and linear relationship between Hg 

exposure and different biomarker levels, despite evidence of tremendous variability in those 

relationships (Canuel et al. 2006). The potential lack of predictable concordance between MeHg 

or inorganic Hg exposure in humans and common biomarkers of exposure can have significant 

implications for the use of these surveillance and monitoring tools in risk assessments of Hg 

exposure, as well as epidemiological studies of the potential health effects of Hg exposure. 

 

In this section, we examine the key drivers associated with Hg exposure in humans that 

scale from individual- and molecular-level drivers, such as genetic variability, to global drivers, 
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such as socioeconomics. Specifically, we describe key socioeconomic factors that that influence 

Hg exposure patterns in different cultures and populations as well as extrinsic and intrinsic 

individual-level drivers that may confound, moderate, or mediate Hg exposure and assimilation in 

humans. 

 

 

 

Figure 3. Domain 2 represents extrinsic and intrinsic drivers that influence mercury (Hg) 

exposure in human populations. Domain 2 is influenced by the extrinsic drivers discussed in 

Domain 1 as they relate to human exposure to methylmercury through the consumption of Hg-

contaminated fish. 
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3.1.0 Global Socioeconomic Drivers - Extrinsic 

3.1.1 Subsistence fishing, high-end economic fish, and rice consumption 

Socioeconomic status is a common factor that drives disparities in Hg exposure among 

communities (Nriagu et al. 2012). The relationships between socioeconomic status and MeHg 

exposure in humans is nonlinear and is complicated by the numerous pathways of exposure. Both 

poverty and wealth portend Hg exposure risk for many communities, creating challenges to the 

development of policies to reduce risk, and to predict how risks will change with shifts in global 

trade and economic development. In industrialized nations, lower income urban anglers, especially 

minority and immigrant populations, can be at particularly high risk of Hg exposure because they 

are more likely to consume self-caught rather than store-bought fish, and often these anglers target 

predatory species with the highest Hg concentrations (Nriagu et al. 2012, Lauber et al. 2017). Risks 

of exposure to Hg and other environmental contaminants are also elevated for these populations 

because they are less likely to trust and/or adhere to fish consumption advisories (Perez et al. 2012, 

Niederdeppe et al. 2015). At the other end of the spectrum, individuals who more frequently 

consume tuna steak or swordfish, typically those in higher socioeconomic populations, are also at 

increased risk of elevated Hg exposures (Hightower and Moore 2003, Mahaffey et al. 2009, Karimi 

et al. 2014, Goodrich et al. 2016). A third group includes Indigenous populations and rural 

subsistence fishing communities in resource-limited regions (Chan et al. 2003). Coastal Indigenous 

groups represent approximately 0.4% of the global human population, but they consume an amount 

of fish equal to 2% of the global commercial catch (Cisneros-Montemayor et al. 2016), and their 

average per-capita consumption of seafood is 15 times higher than national averages (Cisneros-

Montemayor et al. 2016). One of the most impacted coastal groups are circumpolar Inuit 
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populations, who have among the world’s highest MeHg exposures due to their particularly high 

reliance on marine mammals and fish consumption, though rapid changes in climate, food 

availability, and dietary choices are complicating risk assessments (AMAP 2015). Often, fish 

consumption in many of these communities not only serves as a critical source of protein, but also 

has a strong cultural connection, thus presenting unique social justice and risk communication 

complications. Encouraging these communities to consume alternative fish species with lower Hg 

concentrations may benefit their health, but jeopardize key aspects of their heritage, whereas 

maintaining traditional practices may preserve heritage, but have negative health consequences. 

Additionally, recent evidence suggests that the majority of MeHg exposure in some rural Asian 

populations occurs through rice consumption (Zhang et al. 2010). The magnitude and extent of 

MeHg exposure risk through rice is not yet clear, but appears particularly acute in rural areas with 

Hg-contaminated soils (Feng et al. 2008).  

 

As industrial development continues and economies of different countries shift in response 

to globalization, population growth, and resource availability, the relative Hg exposure risk in 

distinctive populations is likely to change in response.  Similarly, continued exploitation of 

fisheries and “fishing down” marine food webs (Pauly et al. 1998, Essington et al. 2006, Baum 

and Worm 2009) is expected to influence MeHg concentrations in common market fish, thereby 

changing the exposure risk of the regions to which those species are commonly sold (see Box 1).  

 

3.1.2 Artisanal small-scale gold mining (ASGM) and mercury mining 

Socioeconomic trends can also influence human exposure to inorganic Hg, particularly from 

sources associated with ASGM. This mining is carried out in over 70 countries (mainly those with 
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low- and middle-income economies) by approximately 10-15 million miners, including 

approximately 4-5 million women and children (UNEP 2013, WHO 2016). Within ASGM 

communities, Hg0 is used to amalgamate gold from processed ore, then the amalgam is 

subsequently heated to burn off the Hg as a vapor, leaving a concentrated gold ore. Annual Hg 

emissions from ASGM are estimated at 727 tonnes, making this the largest sector of Hg emissions, 

accounting for more than 35% of total global anthropogenic emissions of Hg (UNEP 2013). It has 

been argued that ASGM is a poverty-driven activity with pertinent micro- and macro-economic 

drivers as well as push-pull factors (Hilson and Garforth 2012, Wilson et al. 2015). Biomonitoring 

surveys of ASGM workers and community members show that they have among the highest Hg 

exposures of any group worldwide (Gibb and O'Leary 2014, Basu et al. 2015b). This is not 

surprising considering the high amounts of Hg used in the practice, the limited use of personal 

protective equipment or Hg-free or reduction techniques, and the overall rudimentary nature of 

most ASGM sites. The Hg exposure risks are further exacerbated by the fact that most ASGM 

operations are informal (and illegal in many countries) and thus sit outside regulatory and public 

health support programs (see Box 2). 

 

3.1.3 Medical, personal care, and cultural use 

Although fish consumption and ASGM are the dominant drivers of Hg exposure to most 

humans, other sources such as medical and personal care products can be important contributors 

for specific subsets of individuals. Historically, Hg was used for therapeutic medical purposes such 

as treatment for syphilis and as a component in teething powders (Clarkson and Magos 2006). 

These uses have been phased out, but modern medical applications still exist. In particular, Hg 

continues to be used as a component of dental amalgams and vaccines. These uses have generated 
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controversy because of the known toxicity of Hg. The public health weight of evidence is 

somewhat equivocal, but generally has not pointed to adverse health outcomes associated with 

amalgams (Clarkson and Magos 2006) or vaccines (Stratton et al. 2001). However, developing 

biomarkers of Hg sensitivity and subtle adverse effects of Hg exposure (see Domain 3) may further 

inform this topic (Branco et al. 2017, Crowe et al. 2017, Dorea 2017, Modabbernia et al. 2017). 

Voluntary steps to reduce uses of Hg in medical applications have been taken by many producers 

and in many countries, but it still represents a significant source of Hg to many populations and 

thus should to be considered in cumulative exposure assessments.  

 

Cultural norms, traditions, and religious ceremonies are additional extrinsic drivers that 

can influence Hg exposure (particularly to Hg0 and HgII) in certain human populations. Application 

of Hg-containing skin lightening creams to achieve desired physical appearances is a common 

practice in some populations, with prevalence rates as high as 50% in some countries (Dlova et al. 

2015, Gbetoh and Amyot 2016, Lartey et al. 2017). Unregulated products often contain either Hg 

or calomel, or Hg is intentionally added by the user (Copan et al. 2015). Mercury exposure also 

occurs through certain ethno-medical and religious practices such as sprinkling elemental Hg on 

the floor of the home or burning it in candles to ward off evil spirits (Zayas and Ozuah 1996, Masur 

2011). In 2005, a population-based study in New York, found that women from Dominican and 

Caribbean cultures had higher urine Hg levels than those from other cultural groups (McKelvey et 

al. 2011), and the increased concentrations correlated with both the use of Hg-containing skin-

lightening creams (as mentioned previously) and the use of elemental Hg in religious and ethnic 

practices. Similarly, another study of prenatal exposures to Hg in a U.S. population of 

predominately Caribbean immigrants found that high maternal urine Hg levels were associated 
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with religious use of Hg during pregnancy, including candle burning and religious charms, while 

elevated cord blood Hg was associated with fish consumption during pregnancy (Geer et al. 2012). 

Of note, these studies of individual from cultures with specific religious uses of Hg were conducted 

in the U.S.; while public health resources are available to these U.S. immigrants in order to reduce 

risks from Hg exposure, the founder populations in other countries may not have the same level of 

access to those types of resources. Thus, these published Hg exposure risks may be significantly 

higher in other countries (Johnson 1999, Riley et al. 2001, Newby et al. 2006). 

 

Box 1: Global change and Hg exposure through fish consumption 

Worldwide the most important MeHg source to human populations is the consumption of 

contaminated seafood. The amount of Hg that ends up in commercially available seafood depends 

on a range of environmental factors such as atmospheric loading rates, ecosystem-specific 

biogeochemical properties, and food web structure (Selin et al. 2010, Sunderland and Selin 2013), 

as well as socioeconomic factors such as market supply and demand. Of all seafood, Hg from tuna 

from the commercial market is often the most dominant source for human consumption in the U.S. 

(Sunderland 2007, Karimi et al. 2012), Japan (Nakagawa et al. 1997, Yamashita et al. 2005), and 

Mexico (Cantoral et al. 2017). Over the past few decades, the consumption of tuna sashimi has 

expanded from the Japanese market to a global one, contemporaneous with new distribution 

systems in which large supermarket and retailors are being favored over fish markets and auctions. 

Canned tuna production and demand continues to rise, with key markets being the U.S., the 

European Union, and Japan. However, as wealth increases elsewhere, these regions are also 

declining as a percentage of the world market.  
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The global demand and preferences for specific fish species has also had substantial effects 

on the composition and structure of marine food webs (Pauly et al. 2005, Daskalov et al. 2007). In 

particular, global markets for upper trophic level species has reduced the mean trophic level and 

average size of fish harvested over the past several decades (Pauly et al. 1998, Pauly et al. 2005). 

Simultaneously, global demand to support the growing market for fish oil and fishmeal has resulted 

in substantial increases for harvest of “forage fish” species that occupy lower trophic positions 

(Essington et al. 2006, McClanahan et al. 2015). These harvest-induced changes to marine food 

webs certainly have implications for MeHg concentrations in market fish and associated human 

MeHg exposure, but these relationships have not been thoroughly investigated. Finally, 

aquaculture production has increased dramatically over the past three decades, particularly in Asia 

(Jennings et al. 2016), and currently represents 44% of the total global seafood production (Lopes 

et al. 2017). Farmed seafood has been shown to contain substantially lower Hg concentrations than 

taxonomically related wild-caught seafood (Karimi et al. 2012), providing a mechanism for 

reducing Hg exposure in some consumers. However, the context-dependent implications of these 

trends are uncertain for future trajectories of MeHg exposure to different human populations. 

Additionally, responses of fisheries to global change drivers, as discussed in Domain 1, represents 

a key area of uncertainty that is likely to be extremely consequential for reducing human exposure 

to Hg. 

End Box 1 

 

Box 2: ASGM as an example of an extrinsic global driver of human Hg exposure 

The prevalence and extent of ASGM is largely driven by local, community, and cultural factors, 

but global-scale drivers, such as economic market trends, are also important determinants. For 
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example, sudden changes in the global price of gold correlated with the importation of Hg and the 

expansion of ASGM areas in Peru between 2003 and 2008 (Swenson et al. 2011). Over this period, 

which included the global economic crash, the price of gold rose markedly and reported Hg imports 

into Peru increased by 42%. Satellite imagery showed that rates of forest conversion to mining 

increased six-fold during this time period. Combining all these data, the authors reported strong 

correlations among these covariates as shown in Figure 4, providing a striking illustration of 

the importance of global economics as a driver of Hg use and ecological degradation in ASGM 

regions. 

 

 

 

Figure 4. Relationships between international gold prices, Peruvian Hg imports, and extent of 

ASGM mining area. Reprinted from Swenson et al. 2011 

Similarly, ASGM gold production in Ghana increased 15-fold between 1995 and 2014 in response 

to a roughly 6-fold increase in the price of gold. During that time frame, the number of ASGM 

miners in Ghana rose 33-fold, from approximately 30,000 in 1995 to 1 million in 2010, and forest 
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cover decreased from 32.7% to 21.7%. Although estimates of Hg imports are difficult to obtain, 

limited estimates indicate that they increased from 272 kg Hg in 2010, when approximately 21,000 

kg of gold was produced, to 2015 kg of Hg imported in 2013 when more than 41,000 kg of gold 

was produced.  

End Box 2 

 

 

3.2.0 Individual- and molecular-level drivers – Intrinsic 

3.2.1 Genetics 

Exposure biomarkers (e.g., blood, hair, or urine Hg concentrations) are important tools for 

monitoring and estimating Hg exposure in human populations. However, discrepancies exist in the 

relationships between actual exposure as measured through dietary intake or inhalation estimates 

and realized exposure as measured through biomarkers (Christensen et al. 2016, Awata et al. 2017, 

Branco et al. 2017), suggesting that there are other drivers modify the pathway from actual to 

realized Hg exposure. Over the past decade research has shown that genetic and epigenetic factors 

may influence realized Hg exposure (reviewed by (Basu et al. 2014, Llop et al. 2015). For example, 

using data from a group of 469 dental professionals, Basu et al. (2014) estimated Hg intake through 

self-reported seafood consumption surveys, measured hair Hg levels, and genotyped all 

participants to try and better understand whether genetic information could improve exposure 

assessments. As expected, estimated Hg intake and hair Hg levels were positively correlated, but 

there was an interaction between Hg intake and genotype such that the intake-biomarker 

relationships differed among genotypes. Specifically, among avid fish consumers (i.e., those who 

ate six cans of tuna per week), there was an eight-fold difference in average hair Hg levels (0.7- 
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6.2 μg/g) among those with different polymorphisms in the SEPP1 (rs7579) gene. Cross-sectional 

studies from across the world are also showing that polymorphisms in certain environmentally 

responsive genes (e.g., glutathione, metallothionein, and selenoenzyme families) are associated 

with the main effect (i.e., carriers of wildtype and variant genes have different Hg biomarker 

levels) and gene-environment interactions (i.e., exposure-biomarker relationships are different 

between carriers of the wildtype and variant genes). Similar observations linking genotype and 

realized Hg exposure have been made in studies of various populations, including dentists (Wang 

et al. 2011, Parajuli et al. 2016), students (Gundacker et al. 2007, Gundacker et al. 2009), 

indigenous riverine populations (Barcelos et al. 2013, Barcelos et al. 2015), and gold miners 

(Custodio et al. 2005, Harari et al. 2012, Engstrom et al. 2013). Despite the expanding breadth of 

information on this topic, research to date has largely focused on adults and much less is known 

about the impact of genomic drivers on early-life Hg exposure situations or changes in Hg 

exposure across the life course. Further, most of the studies have focused on populations that are 

mainly exposed to elevated inorganic Hg sources, with MeHg exposures generally within 

background levels. Finally, there remain inconsistent findings across studies (see reviews by Basu 

et al. (2014) and Llop et al. 2015) which has limited the adoption of genetic factors into Hg risk 

assessment. If genetics plays a role in pharmacodynamic Hg routing and tissue distribution, then 

similar exposure profiles among individuals of different genotypes could result in large differences 

in biomarker concentrations. This not only influences the utility of biomarkers for estimating Hg 

risk, but may also be important for determining the sensitivity of individuals to Hg exposure. In 

addition to genetics, there is some emerging evidence from both animals (Pilsner et al. 2010, Basu 

et al. 2013) and humans (Hanna et al. 2012, Goodrich et al. 2013) to suggest that Hg is 

epigenetically active, and that Hg-induced methylation of certain genes is associated with either a 
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main effect of Hg exposure or a gene-environment interaction. 

 

3.2.2 Gastrointestinal Factors 

Despite the common assumption that most (>95%) ingested MeHg is bioavailable, substantial 

evidence exists suggesting that this may not be valid. In particular, a review by Bradley et al. 

(2017) identified a range of MeHg bioavailability in seafood, between 12% and 79%, across 20 

different studies. Factors such as type of seafood, cooking method, and the presence of certain 

nutrients all affected Hg bioavailability. More recently, because microbiota in the gut can affect 

the speciation of Hg prior to elimination, the impact of the gut microbiome has received attention 

for its role in the excretion of MeHg (Rothenberg et al, 2016; Rand et al, 2016). Thus, inaccuracies 

likely exist in estimates of exposure and risk that assume constant assimilation efficiencies of 

ingested MeHg.  

 

 

4.0 Domain 3 – Interacting Extrinsic and Intrinsic Drivers that Influence the Adverse Health 

Effects of Hg in Humans and Wildlife 

Mercury exposure can affect multiple organ systems, and manifests as diverse adverse health 

outcomes in humans, fish, and wildlife. The devastating neurological impacts of acute, high-level 

MeHg and elemental Hg exposure are well documented, but chronic, low-level exposure also has 

important health impacts that are less well understood. A number of recent reviews have 

summarized the range of outcomes, known mechanisms, and toxicity benchmarks associated with 

different levels of Hg exposure or in situ Hg concentrations in humans (Karagas et al. 2012, 

Sheehan et al. 2014, Ha et al. 2017), fish (Depew et al. 2012a, Wiener et al. 2012), and in wildlife 
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(Scheuhammer and Sandheinrich 2008, Depew et al. 2012b). Together, this comprehensive 

collection of reviews highlights both the pervasive occurrence of deleterious health effects 

associated with environmentally relevant Hg exposures, as well as the tremendous variability in 

the range of exposures that induce those effects. The variability in Hg sensitivity suggests that the 

onset of Hg toxicity is likely mediated by various interacting extrinsic and intrinsic factors. In this 

section, we examine potential interactions between Hg and other drivers that affect the processes, 

mechanisms, and health outcomes of Hg toxicity. These drivers represent a range of scales and, 

where applicable, we relate the drivers that modulate the health effects of Hg with the extrinsic 

drivers of Hg bioaccumulation and exposure described in Domains 1 and 2. Because toxicity of 

Hg is ultimately a physiological process, we do not separate human health outcomes from those 

wildlife or other animals, but instead integrate examples from across taxa where relevant.  
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Figure 5. Conceptual model for Domain 3, evaluating interactions between Hg exposure and key 

extrinsic and intrinsic drivers on adverse health outcomes in humans and wildlife. 

 

We examine the interactions of Hg exposure with various drivers that modulate organism health, 

such as the microbiome, infectious disease, co-exposures to other toxicants, diet and nutrition, and 

genetics. These interactions are not exclusive to one another, but for simplicity, we evaluate each 

one independently. The true interactions are likely much more complex as multiple drivers are 

acting simultaneously. These drivers may: (1) chemically modify Hg, as discussed section 4.1 on 

microbiological factors; (2) modify associations between Hg exposure and disease, covered in 

section 4.2 on infectious disease; (3) affect the risk of adverse health effects, outline in section 4.3 
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on diet and co-contaminants; or (4) independently increase the risks of Hg-associated health 

outcomes, discussed in section 4.4 on genetics. 

 

4.1 Microbiological Factors - the Microbiome and Antibiotic Resistance 

The microorganisms living commensally in and on humans and other animals exceed the number 

of somatic cells by a factor of 10 or more (Turnbaugh et al. 2007), and contain a number of genes 

that code for functions that support host physiology (Huttenhower et al. 2012). The aggregate 

genetic information encoded by these microbial communities is defined as the microbiome, and 

its recognition over the past decade has produced a paradigm shift regarding the role it plays in 

human and animal health (Kau et al. 2011, Muegge et al. 2011). The gut microbiome, in particular, 

is critical for immune function (Thaiss et al. 2016), nutrition (David et al. 2014), and xenobiotic 

metabolism (Dietert and Silbergeld 2015). Much is still unknown about the interactions between 

the microbiome and the health effects of Hg exposure, but emerging evidence suggests the 

presence of complex interactions that result in both positive and negative health outcomes for the 

host organism. For example, the gut microbiome can act as a co-factor that alters the toxicity of 

Hg by changing its speciation or sequestering Hg prior to absorption through biosorption and 

intracellular accumulation (Gadd 2010). The microbial genes responsible for Hg methylation have 

recently been found in both the vertebrate and invertebrate gut microbiome (Gilmour et al. 2013), 

and experimental studies have documented substantial Hg methylation within the digestive tracts 

of vertebrates (Rowland et al. 1975, Wang et al. 2013, Martin-Doimeadios et al. 2017). Moreover, 

emerging empirical evidence suggests that the gut microbiome also may demethylate Hg (Rowland 

et al. 1984, Wang et al. 2017), potentially reducing its toxicity.  
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The relationship between Hg, the gut microbiome, and host organisms extends beyond 

alterations of Hg toxicity in the host. Mercury sensitivity is common among microorganisms, and 

relatively low exposures may be lethal to many strains. Thus, Hg exposure can alter the gut 

microbiome itself, potentially affecting organism health (Madan et al. 2012). Mercury-induced 

changes to the microbiome can alter certain functional groups that are important for host 

physiology and health (Li et al. 2008). However, the scientific evidence regarding the extent and 

importance of these outcomes is only starting to be generated and significant research is still 

needed. Some of the risk of Hg toxicity to the microbiome is ameliorated by Hg resistance genes 

that have evolved in many bacterial strains (Pal et al. 2015), and these genes can be exchanged 

among bacteria through horizontal gene transfer. Importantly, Hg resistance genes are commonly 

associated and co-located with genes that also confer antibiotic resistance (Skurnik et al. 2010). 

Thus, Hg exposure can co-select for microbial communities in the gut that are resistant to both Hg 

and multiple antimicrobials (Li et al. 2017). The interaction between Hg and antimicrobial 

resistance may be a particularly significant impact of Hg on the health of biota.   

 

Antibiotic resistance is among the most pressing public health threats (Levy and Marshall 

2004), and progress managing it remains a significant challenge. The potential contribution of Hg 

exposure to this expanding crisis could have important implications for the role of Hg in global 

health. However, only limited evidence exists regarding the magnitude of Hg’s contribution to 

global antibiotic resistance. The correlation between Hg exposure and antibiotic resistance 

emerged in the 1990s with the observation that use of dental amalgams led to shifts in fecal 

bacterial communities, with a higher proportion of Hg resistance genes present after amalgam use 

(Summers et al. 1993, Wireman et al. 1997). Resistance to antibiotics was substantially more 
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prevalent in Hg-resistant strains of bacteria than those that were Hg-sensitive (Summers et al. 

1993, Wireman et al. 1997). More recently, it was shown that the Wayampi Amerindians from 

French Guyana, who have high level of Hg exposure but limited access to antibiotics and little 

contact with the outside world, had a higher prevalence of antibiotic-resistant E. coli in fecal 

samples than Europeans with low Hg exposure and ready access to modern antibiotics (Skurnik et 

al. 2010). Another study of 2,522 fully sequenced bacterial genomes and 4,582 plasmids from a 

range of environments found substantial co-occurrence patterns between Hg-resistance and 

antibiotic-resistance genes (Pal et al. 2015). Moreover, antibiotic resistance was 2.5 to 10 times 

more prevalent in strains with varying expression og Hg resistance genes than those without Hg 

resistance genes (Pal et al. 2015). That study also found that humans and domestic animals were 

among the host environments with the most prevalent co-occurrence of strains for both Hg 

resistance and antibiotic resistance. Additionally, many of the strains that exhibited co-occurrence 

were of pathogenic clinical significance, such as Escherichia, Staphylococcus, Salmonella, and 

Klebsiella. Still, little is known about the prevalence of Hg- and antibiotic-resistance co-selection 

across different types of host taxa and its ubiquity in the environment. Recent work does suggest 

that co-selection extends to fish, where Hg exposure selected for gut microbiomes with up to eight-

fold higher abundance of Hg-resistance genes, and resistance to multiple antibiotics was more 

common in Hg-resistant, as opposed to Hg-sensitive, bacterial colonies (Meredith et al. 2012, 

Lloyd et al. 2016).  

 

Much more research is needed on the significance of this co-selection, but given the threat 

posed by antibacterial resistance to the health of humans and the environment, as well food 

security, it may have substantial, and as yet unquantified, implications regarding the health impacts 



 39 

of Hg exposure. Finally, the antibiotic resistance connection to Hg exposure may include important 

feedback loops leading to adverse effects of Hg toxicity, as both inorganic Hg and MeHg exposure 

can suppress immune function, increasing the likelihood of pathogenic infection (see section 4.2).  

 

4.2 Immunotoxic Effects of Mercury and Interactions with Pathogens 

One of the major health threats associated with global change drivers such as invasive species and 

shifting climates is the potential emergence, resurgence, and redistribution of infectious disease 

(Wu et al. 2016). Because Hg also affects immune function (Sweet and Zelikoff 2001, Crowe et 

al. 2017) changes in infectious disease patterns may have a significant effent on human health 

outcomes. The immunotoxic effects of low level exposures to various Hg species are not well 

known, but within the last decade, a growing body of evidence in animal models (Nyland et al. 

2012), wild animals (Fallacara et al. 2011, Lewis et al. 2013, Desforges et al. 2016, Becker et al. 

2017), and humans (Sweet and Zelikoff 2001, Silbergeld et al. 2010) points to a range of immune 

system interactions with elemental, inorganic and MeHg exposures. Different Hg species induce 

different types of immunotoxic responses (Gardner et al. 2010a), and the mechanisms of 

immunotoxicity depend upon the magnitude of Hg exposure. Higher Hg exposures can affect the 

abundance of cells responsible for mounting an immune response (dendritic, B, and T cells), 

thereby impacting the majority of the production of cytokine signals. Conversely, lower-level Hg 

exposures only affect the production of cytokine signals, without changing immune cell counts 

(Silva et al. 2005b). This means that at lower Hg exposures, immune response can recover if 

cytokine-producing cells can return to basal function, whereas the death of immune cells at higher 

Hg exposures substantially inhibits immune response recovery. As in the nervous system, the 

immune system in many species, including humans, undergoes extensive pre- and post-natal 
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development. Early exposures to Hg that are limited to in utero and early postnatal stages appear 

to reprogram the immune system, causing changes that persist into adulthood, long after exposure 

ceases (Silva et al. 2005a). Thus, Hg exposure can have long-lasting impacts on the ability of the 

immune system to respond stimulating events appropriately. The basic immune response is 

modified by these early exposures differently in males and females, and those changes affect the 

response to stimuli even into adulthood. Thus, males and females exposed to Hg early in life may 

have different risks in adulthood for autoimmunity and different responses to infection (Silva et 

al. 2005a). 

 

The complexities of the interactions between immune function, disease, and Hg exposure 

are exemplified in experimental studies of the interactions between Hg and Coxsackievirus B3 

infections. Early evidence indicated that viral infections altered the concentrations of Hg in target 

organs (Ilback et al. 2008), and the interaction between Hg exposure and disease response was 

dependent upon the relative timing of pathogen and Hg exposure. The virus alone could cause 

autoimmune myocarditis, whereas Hg alone had no myocarditic effect. However, when Hg 

exposure occurred prior to viral infection, the severity of autoimmune myocarditis was 

substantially increased, despite no changes in viral infectivity (Nyland et al. 2012). Conversely, 

Hg exposure after viral infection did not alter the severity of myocarditis compared to individuals 

who were not exposed to Hg (Nyland et al. 2012).  

 

Despite experimental, correlational, and epidemiological evidence of Hg immunotoxicity, 

inconsistencies among studies, particularly those in human populations, have prevented rigorous 

risk assessments of the effects of Hg on immunological health. Some of these inconsistencies may 
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be related to failure to account for interacting cofactors modulate the Hg-immunotoxicology link. 

For example, in a sample population of 692 children from the U.S., there was limited evidence of 

a relationship between blood Hg concentrations and either measles or rubella antibodies, but after 

stratifying based upon key nutritional status indicators, the population with specific nutritional 

deficiencies (high methylmalonic acid (MMA), low folate, high homocysteine) exhibited a 

positive relationship between blood Hg concentrations and antibody titers for the two viruses 

(Gallagher et al. 2011, Gallagher et al. 2013). Other inconsistencies exist between indices of 

autoimmunity and Hg exposure. Specifically, increased risks for autoimmune dysfunction, as 

determined by elevated serum titers of autoantibodies such as anti-nuclear autoantibodies (ANA), 

have been demonstrated for certain Hg-exposed populations in South America compared to 

unexposed groups (Silva et al. 2004, Gardner et al. 2010b, Nyland et al. 2011). However, no 

evidence for such an association was found in Hg-exposed European and U.S. populations (Crowe 

et al. 2015, Monastero et al. 2017). Some work suggests that an interaction between Hg and malaria 

exposure may be trigger Hg-induced autoimmunity in some populations but not others (see Box 

3).  

 

Box 3. Mercury and Malaria 

The relationship between Hg and malaria represents a complex interaction between Hg and the 

immune system. Malaria acts as a global driver that may influence Hg toxicity, and Hg can 

influence the immune response to malaria infection. The human response to malaria infection 

involves several layers of immediate and chronic events in the life cycle of the parasite, as well as 

interactions between activation and suppression of immune response, all of which may be affected 

by Hg. Specifically, Hg exposure interacts with the human immune system to impair host 
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resistance to the parasite (Silbergeld et al. 2000), increasing the likelihood of infection. Mercury 

also compromises the development of acquired immunity to malaria and may result in increased 

severity of the symptoms of infection (Silbergeld et al. 2000). Additionally, Hg exposure that 

occurs subsequent to malaria infection induces autoimmune dysfunction. Epidemiological studies 

in areas with endemic malaria, coupled with exposures to Hg through ASGM and contaminated 

fish consumption found increased malaria infection rates compared to other populations (Dorea et 

al. 2003, Dorea et al. 2005). Additionally, biomarkers of autoimmune dysfunction were found to 

be common in Hg-exposed populations with a history of malaria contraction, whereas biomarkers 

were not detected in Hg-exposed populations with limited malaria exposure (Motts et al. 2014). 

 

Malaria-endemic areas of the world exhibit a substantial geographic overlap with major 

regions of ASGM. This creates a nexus for potential interactions between Hg and malaria exposure 

that can exacerbate the deleterious effects associated with these individual stressors. Evidence of 

these interactions exist from studies in Brazil (Duarte and Fontes 2002). Increases in gold prices 

stimulated expansion of ASGM activities throughout Amazonia, and physical activities associated 

with mining, coupled with an increase in human occupancy, resulted in a rapid increase in the 

incidence of malaria infections. Specifically, the alteration of stream habitats created new breeding 

habitats for Anopheles mosquito vectors of malaria (de Oliveira et al. 2013). Additionally, much 

of the population attracted to gold mining in remote areas for work and economic gain were 

immunologically naïve in terms of exposure to malaria and thus potentially more likely to contract 

malaria (Doolan et al. 2009). As the workers moved back and forth between the mining areas and 

their places of origin, they transported malaria with them, increasing rates of infection outside 

Amazonia (Silbergeld et al. 2002). Thus, global socioeconomic drivers (gold prices) influenced 
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human exposure to Hg in this region, which may have indirectly contributed to the spread of 

malaria to more populated regions. Additionally, given the documented interactions between Hg 

and malaria exposure , it is likely that human health was additionally compromised.   

 

Cumulatively, this series of findings has significant public health implications and suggests 

that interactions between Hg and infectious diseases may be an understudied but highly relevant 

aspect of the risks to human and ecological health posed by Hg exposure. Additionally, the 

distribution of many pathogens is currently being altered by climate change, which is facilitating 

the spread of their intermediate hosts (Wu et al. 2016). Indeed, models predict that under a range 

of forecasted climate scenarios, the distribution of malaria is likely to expand, particularly into 

higher elevations of tropical latitudes (Caminade et al. 2014). Further quantification of the health 

implications of the malaria-Hg interaction will facilitate estimates of future risks.  

End Box 3 

 

4.3: Nutrients and co-contaminants 

Nutrients and other contaminants can have substantial ameliorative or exacerbating influences on 

Hg toxicity, complicating estimates of the health risks associated with Hg exposure (Rice 2008). 

Although there are potentially limitless combinations of co-exposure mixtures that may influence 

health outcomes associated with Hg exposure, the most common include selenium (Se; (Cuvin-

Aralar and Furness 1991, Hu et al. 2017), other biomagnifying contaminants such as 

polychlorinated biphenyls (PCBs) and other halogenated organic compounds (Braune et al. 2005, 

Burgess et al. 2005), co-occurring contaminants in point-source situations such as lead and arsenic 

in mining areas (Basu et al. 2011, Basu et al. 2015a), and dietary nutrients like omega-3 fatty acids 
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(Gribble et al. 2016). Of these, Se is arguably the most compelling because of the extreme 

complexity and magnitude of its antagonistic interaction with Hg, which has evoked the greatest 

discussion and debate with no clear consensus. The antagonistic relationship between Hg and Se 

has generated a broad body of literature including numerous review articles (Cuvin-Aralar and 

Furness 1991, Luque-Garcia et al. 2013, Bjorklund et al. 2017). Both in vitro and in situ studies 

from field and laboratory settings have demonstrated reduced severity of inorganic Hg and MeHg 

toxicity in response to Se exposure, but the degree of amelioration is at least partially dependent 

upon the Se species used and its exposure route. Selenite and organic Se compounds 

(selenocysteine and selenomethionine) tend to be more protective than species such as selenate 

(Cuvin-Aralar and Furness 1991, Khan and Wang 2009, Dang and Wang 2011). Although a 

consensus is still lacking, the ameliorative effects of Se on Hg toxicity have been postulated to 

occur through a range of mechanisms, including reducing assimilation and facilitating elimination 

of MeHg (Bjerregaard et al. 2011, Bjerregaard and Christensen 2012, Li et al. 2012, Huang et al. 

2013), rendering Hg biologically unavailable through covalent bonding between Hg and Se (Yang 

et al. 2008), demethylation of MeHg in the liver or other organs (Eagles-Smith et al. 2009, Khan 

and Wang 2009), or through supporting the glutathione antioxidant pathway (Sormo et al. 2011). 

Various degrees of empirical support exist for each of these mechanisms, highlighting both the 

complexity of the Hg-Se interaction as well as its ubiquity across physiological processes. One 

commonly referenced concept emerging from the body of work on Hg-Se interactions is the 

contention that Se:Hg molar ratios greater than 1 confer protection from manifestations of Hg 

toxicity, whereas molar ratios less than 1 indicate a lack of protection from Se. This hypothesis 

served as a foundational concept for a more recently posited mechanism for Hg toxicity: that Hg 

irreversibly binds with Se, thereby interrupting the synthesis of critical selenoenzymes, creating a 
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Se deficiency syndrome that disrupts many aspects of an organism’s physiology (Ralston and 

Raymond 2010). According to this proposed mechanism, the amount of Se would need to exceed 

a Se:Hg molar ratio of 1 in either diet or tissues to would confer a protective effect against MeHg 

toxicity. Though intriguing, some studies challenge the validity of this hypothesis, as discussed 

below.  

 

Contemporary research continues to demonstrate a lack of clarity regarding whether Se 

provides universal protection for MeHg exposure, or is specific to only some mechanisms of 

action, such as neurotoxicity. For example, dietary selenocysteine did not reduce MeHg uptake, 

nor enhance Hg elimination in captive mink (Evans et al. 2016). Additionally, MeHg toxicity in 

harbor seal lymphocytes was not ameliorated by Se, even at Se:Hg molar ratios of up to 10:1 (Das 

et al. 2016), whereas similar studies in Beluga whales indicated only limited protection from Se at 

the highest MeHg doses (Frouin et al. 2012). Perhaps most important in terms of deviations from 

the idea of Hg-Se antagonism is their interaction with respect to reproduction. Recent studies have 

documented deleterious synergistic relationships between Hg and Se to both bird (Heinz et al. 

2012) and fish (Penglase et al. 2014) reproduction. Specifically, at elevated Se exposures, Hg 

appears to exacerbate Se-induced reproductive toxicity. Few studies have experimentally tested 

this relative to other Hg-Se outcomes, and it is unclear if these interactions are constrained to only 

egg-laying species, or if viviparous placental reproduction is subject to a similar synergism. 

Regardless, these experimental findings highlight the need to continue developing a quantitative 

understanding of the mechanistic role of Se across Hg toxicity endpoints, and suggest that 

application of the Se:Hg molar ratio hypothesis may not be a panacea for reducing Hg-associated 

health risks in humans and wildlife.  
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Other dietary nutrients may also offset the deleterious effects of MeHg exposure, though 

not as directly as occurs with Se. Interactions with omega-3 fatty acids, such as eicopentaenoic 

acid (EPA) and docosahexaenoic acid (DHA), are of particular interest because of their known 

health benefits and co-occurrence at high concentrations with Hg in many marine fish species 

(Mozaffarian and Rimm 2006, Gribble et al. 2016). The potential interactions with Hg have largely 

focused on neurodevelopmental and cardiovascular outcomes. In general, limited evidence exists 

for substantial antagonism of Hg by omega-3 fatty acids, though some studies have found that 

accounting for omega-3 fatty acid or fish intake can improve estimates of Hg impairment for 

certain populations, suggesting that these fatty acids might have an ameliorating effect (Oken et 

al. 2008, Choi et al. 2014). Others have found that when populations are stratified by their levels 

of omega-3 fatty acids, relationships between Hg exposure and adverse outcome biomarkers such 

as oxidative stress tend to be enhanced in those with low omega-3 levels, and weakened in those 

with high omega-3 levels (Karimi et al. 2016b). The specific mechanisms underlying any potential 

protective effects of nutrients on MeHg toxicity has not been fully elucidated (Ha et al. 2017). 

Since MeHg and these nutrients are often present in the same exposure sources and affect the same 

toxicity endpoints, quantifying their individual effects and interactions is challenging. Despite this, 

the benefits of fish consumption on health parameters is well known, and developing quantitative 

tools to better determine the risk–benefit coefficient is needed to facilitate recommendations for 

balancing potential health concerns about MeHg exposure against the benefits afforded by key 

nutrients found in seafood (Chapman and Chan 2000).    
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Whereas nutrients such as Se and omega-3 fatty acids can help offset the negative 

consequences of Hg exposure, co-exposure to other contaminants can have the opposite effect. Of 

particular concern are other biomagnifying contaminants, such as PCBs and other 

organohalogenated compounds that may co-accumulate with MeHg and affect the same 

physiological systems impaired by Hg. Similar to omega-3 fatty acids, many other 

bioaccumulative contaminants in the environment exhibit collinearity with MeHg exposure, which 

can confound the determination of the interactive effects on organism health. In vitro and in vivo 

laboratory studies testing responses to Hg and co-contaminant exposures alone and in combination 

suggest that PCBs in particular interact with MeHg exposure to elicit neurological effects when 

isolated exposures do not (Bemis and Seegal 1999, Roegge et al. 2004, Fischer et al. 2008, Cauli 

et al. 2013). Similarly, epidemiological studies with individuals stratified by Hg or PCB exposure 

indicate potential interactive effects, such as PCB-associated neurological deficits only in the 

highest tertile of Hg exposure (Grandjean et al. 2001), or negative associations between prenatal 

MeHg exposure and cognitive abilities only in those with elevated prenatal PCB exposure (Stewart 

et al. 2003). Although limited, recent field studies with wildlife suggest that MeHg exposure may 

also interact with other endocrine-disrupting compounds to influence hormone expression, 

disturbance response, and reproduction (Goutte et al. 2015, Tartu et al. 2015a, Tartu et al. 2015b). 

Similarly, there is emerging evidence that many ASGM sites are co-contaminated with lead, 

arsenic and cadmium (Basu et al. 2015b, Tirima et al. 2016) and more work is needed to better 

understand the toxicological implications of these co-exposures. Given the abundance of studies 

measuring co-exposure of other contaminants with Hg, it is surprising that so few have 

quantitatively tested for interactive effects. This is clearly a major data gap and more accurate 
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determinations of risk from Hg co-exposure with nutrients and other contaminants, in both 

epidemiological and field-based studies on humans and wildlife are needed. 

 

4.5 Genetics 

Although external environmental factors can influence individual sensitivity to Hg exposure, 

genetic and epigenetic factors may influence Hg exposure-outcome associations through 

alterations in toxicokinetics and toxicodynamics. In section 3.2.1 we outlined how carriers of 

certain genetic polymorphisms can have altered Hg exposure biomarkers. Other researchers have 

shown that neurodevelopmental disorders (Mitchell 2011) and cardiovascular disease (Ehret et al. 

2011), both of which are relevant in terms of Hg-associated health risks, have genetic 

underpinnings and more importantly, are driven by complex gene-environment interactions. There 

is a limited, though slowly growing body of evidence demonstrating that Hg gene-environment 

interactions are an important feature to be considered. For example, several studies have reported 

that Hg-associated effects on atypical urinary porphyrin excretion, neurobehavioral tests, and 

visual-motor performance were modified by genetic polymorphisms (reviewed by Basu et al. 

(2014)). Another study reported that the offspring of mothers with GSTM1 and GSTT1 deletions 

(genes involved in glutathione function) and higher blood Hg levels had increased risk for low 

birth weight (Lee et al. 2010). Variation in responses to MeHg exposure among families suggests 

that susceptibility to Hg exposure may be heritable (Varian-Ramos et al. 2013). Importantly, recent 

work with zebrafish demonstrated transgenerational abnormalities in the neurobehavior of 

unexposed F2 generation fish, and that the proximate cause was sperm epimutations in Hg-exposed 

parents (Carvan et al. 2017). These findings suggest Hg exposure in wild populations could have 

multi-generational effects on fitness, even after exposure is reduced. The prevalence of heritable 
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neurodeficits due to Hg exposure in previous generations is unknown, but these findings indicated 

that germ line genes appear to be targets for MeHg genotoxicity. 

 

5.0 Summary and Research Needs 

Persistent knowledge gaps that can exist between Hg releases, bioaccumulation and exposure, and 

the risks of deleterious health impacts to humans and other animals can create substantial 

uncertainty regarding the efficacy of Hg reduction and mitigation actions. Intrinsic biological 

factors and extrinsic ecological and socioeconomic factors are important modulators of the realized 

exposures to MeHg and inorganic Hg, as well as health impacts on Hg-exposed organisms. 

Therefore, as Hg reduction and mitigation efforts proceed, a quantitative understanding is needed 

of how these extrinsic and intrinsic drivers interact on the global, individual, and molecular scale 

to influence the risk of Hg exposure, toxicity, and associated health effects. Incorporating 

additional metrics represent these factors into monitoring programs would facilitate tractable 

approaches to statistically account for their interactive effects on Hg-related risks. Specifically, 

understanding the global extrinsic drivers that affect the four mechanisms of MeHg 

bioaccumulation and biomagnification (primary productivity, habitat use, bioenergetics, and food 

web structure) will help partition out their influence on Hg concentrations in ecosystems. To do so 

requires refining the quantitative understanding of how each of the four mechanisms MeHg 

bioaccumulation act, and in what contexts they are altered by global extrinsic drivers. 

Development of data application tools that facilitate incorporating these metrics into monitoring 

programs with a standardized approach is an important need, and would enable more robust 

comparisons of analogous temporal trends of Hg bioaccumulation among geographically diverse 

locations.  
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The emergence of high-throughput genetic tools has opened new avenues for 

understanding: (1) how intrinsic genetic factors influence assimilation of and sensitivity to Hg; (2) 

epigenetic responses to Hg exposure that can reveal specific mechanisms of action; and (3) 

interactions between the gut microbiome and Hg. These emerging areas represent potentially 

important contributions to the field for refining risk estimates based on genetic variation among 

populations, and for developing more effective biomarkers of Hg exposure. Substantial research 

in these areas is still needed for them to be applicable to public health and ecological conservation. 

Similarly, not enough is known about the interactions between Hg exposure, immunotoxicity, and 

infectious disease. Clearly the immune system is highly sensitive to both inorganic Hg and MeHg 

exposure, but extrapolating that sensitivity to the toxicological implications at the whole organism 

scale is an important next step, particularly as it relates to infectious disease interactions. Finally, 

despite nearly five decades of research, and evidence from hundreds of scientific articles 

supporting Se as strong antagonist to Hg toxicity, there is still no consensus regarding the efficacy 

of Se in ameliorating different manifestations of Hg toxicity, nor have widely accepted tools been 

implemented that incorporate Se into health risk assessments for Hg exposure. New criteria are 

emerging that take into account some of the mechanisms of the Hg-Se antagonism (Zhang et al. 

2014, Ralston et al. 2016); however, extensive epidemiologic research is still needed to validate 

their safety for health risk assessments and their applicability to wildlife health. This is an 

important research direction that deserves continued focus. This paper demonstrates that the 

context within which Hg exposure occurs in the environment is a critical aspect that influences 

risk of exposure and adverse health outcomes. Future efforts to develop context-dependent 

assessments will facilitate improved risk estimates for humans and wildlife. 
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