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This paper presents the results of a small scale experimental study of BLEVE overpressure effects. Testing
consisted of a sealed aluminum tube (0.6 L) filled with either water or propane, being heated by a flame
until the internal pressure led to catastrophic failure and explosion. Three parameters were controlled
during the experiments: the failing pressure, the weakened length on the tube and the fill level. BLEVEs
were obtained with tests involving water and propane. Blast gages and optical techniques were used to
characterize the shock wave escaping from the failing tube. The results obtained suggest that the lead
shock was primarily generated by the vapor space. Overpressure results obtained were compared with
the predictions of existing models and found to be in reasonable agreement except for overpressures
measured vertically above the cylinder where the overpressures were highest. A prediction model based
on only vapor space characteristics was developed. Images show that the shock was fully formed at some
distance away from the vessel opening and this was due to the non-ideal opening of the vessel. The model
developed was based on the characteristics of the shock when fully formed away from the tube. These
characteristics were defined using a combination of imaging, pressure measurements, and predictions
from shock tube theory.
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ng Liquid Expanding Vapor Explosion, or BLEVE, is a major
the industrial landscape where storage tanks of Pressure
Gas are common. Pressure vessels are subject to vari-
of aggressive conditions that can weaken them and can
s lead to failure, e.g. corrosion, the impact of a projectile,
re to fire (Heymes et al., 2013).The case of fire engulf-
vessel is investigated in this study because it is the most
source of BLEVEs according to the literature (Abbasi and

007; Hemmatian, 2016). In such a case the liquefied gas in
l is heated, increasing the pressure significantly. Pressures
an the normal functioning pressure may be the result and
f the vessel is severely weakened at the top by the tem-

increase due to the poor cooling properties of the vapor.
tant characteristic of BLEVE accidents is that the fluid in
l is usually at a temperature much higher than its atmo-
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nds violently, leading to a fast drop in pressure within the
ere the liquid is in a superheated state and boils explo-
some scenarios, the vessel opens fully, releasing all of its
and leading to a BLEVE.
nsequences of such an event are blast overpressure, pro-

f vessel fragments, as well as possible fire and/or toxic
epending on the stored gas properties. A fireball, though,
ecessary consequence of a BLEVE. It should be noted that
is the mechanical explosion due to liquefied gas release.
y is focused on the overpressure consequences of such a
non.
ressure prediction is a major factor in predicting BLEVE
he impact on the surroundings of a BLEVE generated blast
be understood in order to better prevent chain reaction
d casualties. Various parameters are required to describe

ffects of overpressure: the peak overpressure of the blast,
ve overpressure impulse and its duration, the drag loading
dynamic pressure exerted on a structure. The wide range

tion models currently available in the literature focus on
mum first peak overpressure. These models also focus on
ld effects.

s overpressure prediction models with different
es to the BLEVE phenomenon are available. The TNT-
t method (Baker et al., 1977; Van den Berg and Lannoy,
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widely used for far-field overpressure prediction. It
the calculation of the energy contained in the vessel and
in the blast. Several models are available that consider
e isentropic expansion energy (Prugh, 1991), or irre-
xpansion energy (Planas-Cuchi et al., 2004), or the excess
t energy (Casal and Salla, 2006; Genova et al., 2008). This
oach is easy to implement and well validated for far-field
ure prediction.

ver, the complex opening mechanism and phase change
ions cause the TNT-equivalent model to be an overpre-
proach to near-field BLEVE blasts. Van den Berg (van den
., 2004) proposed a model based on Computational Fluid
s (CFD) by calculating the evaporation rate of a vessel full
This model predicts the overpressure caused by the sud-
nsion of the vessel contents. It is in better agreement with
raints of the physical evaporation phenomenon, especially
he vessel. Some conservative hypotheses (no vapor in the
stantaneous vessel disintegration and evaporation) do not
w key problems of the near-field BLEVE overpressure cal-
such as the contribution of the vapor expansion and the

iling. Van den Berg assumes that the flash evaporation is
eous and that the shock is produced by the expansion
por. A more recent approach (Yakush, 2016) provides a
le physical description of the BLEVE phenomenon with
elling of the expansion wave propagation in the liquid,
instant equilibrium boiling when the thermodynamic

s are reached. This model shows that the vapor gener-
ock while the velocity of the boiling wave through the
tricts shock formation due to liquid expansion. Finally, the
n model of Laboureur (Laboureur et al., 2015) introduced
deal opening of a vessel into the prediction. This model
the starting shock position and overpressure and extrap-

through distance with hemispherical decay. The starting
f the shock was assumed to be some factor times the ves-
ter which determines the overall scale of the release. The
ns were empirical, experiment based, and validated with
ns (van den Berg et al., 2004).
sue raised by these prediction models is the definition of
ibution of each phase. Most of the energy based models
expansion energy from the vapor space added to expan-
gy from the vapor generated by the flashing fraction of
order to calculate the maximum overpressure. However,
hors (Baker, 1985; Birk et al., 2007) state that only the
tributes to the maximum first peak overpressure. More-

itional phenomena such as directionality need to be taken
unt in the overpressure prediction models. Empirical fac-
ng the effect of this phenomenon are used, based on
vessel bursts experiments (CCPS − American Institute of
Engineers, 1994). But none have been validated for BLEVE

aper first presents results of tests involving a small scale
ntal apparatus with overpressure data and high speed
These results are compared to existing prediction mod-
lidation. Finally, a physical approach to the shock start
non is presented with a modelling method that does not
valuation of the expansion energy.

ial and methods

iments involving small scale BLEVEs were undertaken
l., 2016). The apparatus used consisted of 6061T6 alu-
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bes, 5 cm in diameter, 30 cm long, with a wall thickness

m and an inner volume of 0.6L. The tubes were annealed
aluminum was removed through machining, to produce

weakened length and reduced burst pressure (Fig. 1).This

Table 1,
sensor of

The in
overpres
d length is referred to as a slot. The ends of the tubes
led with Swagelok fittings. The BLEVE case studied here
re through exposure to fire. During testing, the tube was
otely with water or commercial propane (roughly 80%

20% other hydrocarbons), up to a known quantity. It was
surized to failure through a slow heating process using a
ner placed below the tube (Fig. 2). The controlled variables
ests were the burst pressure, and the weakened length on

e conditions were monitored with pressure sensors
n the filling and venting pipes, and two type K thermo-
ounted inside the tube (one in liquid and one in vapor).

itoring sensors are sampled at 10 Hz. Blast gages (PCB
iezoelectric with a sample rate of 200 kHz) were set at

eights and angles to the slot in the tube. Three pencil type
es were mounted on a vertical axis above the experimen-
t distances of 0.3m, 0.4 m and 0.9 min order to observe

y above the tube. Except in the case of the small scale
aboureur, 2012), previous mid-scale and large scale BLEVE
nts did not measure the overpressure above the vessel,
ured it only from the sides.
gages were located at 45◦ (down from tube top on side)
ontal (tube side) to the tube to observe the directional
of the opening process on the overpressure at distances

rom 0.25 m to 0.4 m.
peed imaging was used to capture the rupture mechanism
etroreflective shadowgraphy of the shock propagation

er and Settles, 2009).Observation of the phenomenon
e tube was done through a 38 mm quartz window con-
at one end of the tube. The imaging was carried out using
tom V711 high speed video cameras. The lenses used were
05 mm (f/8) for PILS and a Tamron 300 mm (f/5.6) for the
ow imaging.
ells were mounted under the experimental tube to mea-
oad on the ground generated by the BLEVE.

imental results

mary of experiments

y tests were performed with tubes filled with an average
00 g of water resulting in eleven BLEVEs and nine par-
es. Over all the tests performed with water, the failure
ranges from 9 to 50 bar, thus the liquid volume frac-
es from 62 to 70%, assuming equilibrium before rupture.
sts were performed on tubes filled with propane result-
BLEVEs. Over all the tests performed with propane, the

ropane used per test ranges from 140 g to 156 g, the fail-
ure ranges from 8 to 40 bar, thus the volume fraction of
ges from 50 to 66%. The failure conditions, evaluated from
ure sensor and thermocouple in the liquid phase for all of
, are summarized in the P-T diagrams shown in Fig. 3. The
nditions for most of the tests were near equilibrium at

n conditions. A slight offset with respect to the saturation
isible. It is due to fast heating and the presence of tem-

stratification in the tube leading to a faster pressurization
or space but a weaker explosive boiling.

ure peaks data

rements from all of the blast gages are summarized in

where R is the distance from the top of the tube to the
the blast gage.
fluence of the direction of measurement on the maximum
sure is clearly shown by these results. The ratio between



Fig. 1. Small scale BLEVE apparatus (a) global view, (b) machined slot on the tube for controlled failure.

Fig. 2. Experimental tube (a) front view, (b) end view.



Fig. 3. Summary of test results (a) Water tests, (b) Propane tests.

Table 1
Experimental data from small scale BLEVE with propane: measurements from blast gages above and to the sides of the vessel.

# Failure conditions Vertical overpressure 45◦ overpressure Horizontal
overpressure

Mass (g) % liqa Pfail (bar) Tfail (K) R (m) �P (kPa) R (m) �P (kPa) R (m) �P (kPa)

1 150 66% 40 367 0.29/0.39 65.4/53.6 0.41 29.25 0.29 40.7
2 150 66% 40 375 0.26/0.36 88/59.1 0.39 29.87 0.29 41.16
3 140 51% 30 351 0.28/0.38 71.8/38.8 0.34 29.99 0.29 30.53
4 150 56% 28 347 0.28/0.38/0.92 48.76/25.90/7.58 0.28/0.30 /0.31 18.59/29.05/26.39 0.29 20.25
5 156 50% 8 297 0.28/0.38/0.92 28.30/11.60/3.84 0.25/0.26 /0.31 3.27/9.12 /6.08 0.295 2.21
6 150 61% 37 374 0.28/0.38/0.92 60.00/49.00/16.95 0.25/0.26 /0.32 42.26/37.43/39.25 0.3 40.36
7 155 60% 31 349 0.28/0.38/0.92 76.80/47.50/13.79 0.25/0.26 /0.32 33.11/26.36/31.36 0.295 26.07
8 153 58% 29 357 0.28/0.38 44.2/34.5 0.26/0.32 23.79/27.55 0.29 23.53
9 152 53% 17 350 0.28/0.38 24.5/17.9 0.26/0.32 17.83/15.92 0.29 7.06
10 1
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pressures and top overpressures is calculated between
ced at similar distances (0.3m) for each case and averaged
uccessful BLEVE experiments. Between the 45◦ direction
rement and the vertical, the ratio is 0.45. Between the
l and vertical measurements, the ratio is 0.35. There is a

endence on the opening dynamics of the vessel on how the
first peak overpressure is distributed around the tube.

ample of pressure measurement is given in Fig. 4*a. A
istic strong first overpressure is observed, followed by a
phase and a second peak. These are known to be charac-
ressure peaks for a vapor explosion(Baker, 1985). A third
n pressure then follows. A study by Birk(Birk et al., 2007)
similar results from a larger scale BLEVE. The origin of the
k is yet unknown but it is hypothesized that the liquid boil-
ibutes to this overpressure. The pressure signal observed
ults of the present work satisfies this hypothesis. How-
oscillating behavior following the third rise may suggest
al measurement aberration.

e change dynamics

the tube opens, the first thing visible to bare eye is a white
aping through the opening (Fig. 5). Due to the white aspect
ud, it is assumed to be a 2-phase mixture, representing
space expanding from the high-pressure tube and con-
hen exposed to ambient pressure, thus a condensation

bserved.
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coupling the imaging from both sides of the tube (the
ection of the shadowgraph, see Fig. 6, and the axial win-
alization, see Fig. 7), the following sequence of events is
vestigate the hypothesis that vapor is the sole contributor

Cuchi et
energy as
abatic pr
presents
0.26/0.32 12.47/11.48 0.29 3.81

t shock. A shock is formed ahead of the condensation cloud
before (see arrow in Fig. 6b). While the tube opens more
d Fig. 7c), the condensation cloud grows, and the shock
es. It is important to note that the shock is always ahead
ud observed. At 0.88 ms after the opening of the vessel, the
between the liquid and the vapor starts thickening show-
oint at which the boiling wave reaches the window end
e (see Fig. 7d). This suggests that the boiling occurs after
space expanded out of the tube, allowing the pressure to

he tube and the liquid to enter the superheated state. It
en that the shock occurs ahead of the condensation cloud,
curs ahead of the boiling wave. Thus, the boiling liquid
ntribute to the first shock.

ressure prediction models

s section, available overpressure prediction models are
d with the present new blast data. The shock start model
esented and discussed.

els based on global expansion energy

imental results are compared to prediction models that
the expansion energy converted into overpressure, to

uce the overpressure from literature data such as the TNT-
ker et al., 1977).
odels of Prugh (Prugh, 1991) and Planas-Cuchi (Planas-

al., 2004) are based on the calculation of the expansion
suming respectively an isentropic and an irreversible adi-
ocess. Another model by Casal (Casal and Salla, 2006)
a model based on estimation of superheat energy, defined



Fig. 4. Overpressure measurement: a) Case 4, top R = 0.28 m; b) Birk 2007, side R = 10 m (Laboureur et al., 2015).

Fig. 5. Direct High Speed imaging of the tube opening (4000 fps) (case 4, a) 0.25 ms b) 0.5 ms c) 0.75 ms after start of the opening).
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after expansion. Lastly, Birk (Birk et al., 2007) presents a
sed on the sole evaluation of vapor expansion, calculat-
fference of internal energy before and after failure in the
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f the points with regards to the TNT-curve, one can gage
sen prediction model estimate well the prediction energy
in the explosion, based on the assumption that TNT has a
havior than a BLEVE in converting energy to overpressure.
and Planas-Cuchi models present similar tendencies of

ns, particularly noticeable for the sensors located furthest
tube (series of points on the far right both graphs Fig. 8).
dencies do not follow the decay described by the TNT-

is can imply 2 things: the TNT-curve do not describe well
l scale BLEVE behavior in the far-field, or these two do
der part of the physics involved in modelling the energy
ion. It is worth noticing that predictions through Prugh’s
ns are more conservative than Planas-Cuchi’s, validating
hesis of each model. It underestimates some overpressure
ents in the near-field, which is a problem if used as a pre-

ol for safety. Planas-Cuchi’s predictions are more accurate
pared to TNT prediction. The predictions of experimen-
ith Casal models do not show the trend noticed earlier

nce again, the isentropic approach is more conservative
irreversible one. Moreover the predictions made with the
le approach, less conservative of all, are more concen-

ound the TNT-curve than the ones from Planas-Cuchi’s
(Fig. 10). This implies that Casal irreversible model seem
s the physics closest to a TNT explosion behavior, with
rameters. Finally, the vapor expansion model from Birk
seems to show the best tendency between experimental
n and the TNT prediction.
experimental results, overpressure varies depending on
tion of propagation from the vessel. It is stronger above
l, gets weaker at 45◦ angle, and weaker on the horizontal
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uchi Fig. 8b, Casal irreversible Fig. 9b). It also shows that
needs to be considered for further modelling.

nsion-controlled model (van den Berg et al., 2004)

er model mentioned in the literature is the expansion-
d model of Van den Berg (van den Berg et al., 2004), from
arts for various substances, particularly propane, were
d (Van den Berg, 2008). In this model, the experimental
scaled based solely on the initial mass of propane (liquid

r) in the tube. The scaling parameter m
1
3 varies much less

all the experimental tests compared to the scaling param-
sen with previous models. Predictions from Van den Berg
o experimental are conservative for all tests. Experimen-
s follow a decay similar to the results from Van den Berg
n, over a full order of magnitude along the x-axis (Fig. 11).

predictive model: the shock start model

portant assumption made by all models considered is that
fraction of boiling liquid during the BLEVE contributes to
ressure of the first peak, either partly (energy models)

expansion controlled model with full liquid simulation).
, this point of view is not shared unanimously. Indeed,
(Birk et al., 2007) and Laboureur (Laboureur et al., 2015)

d overpressure signals with 3 peaks of overpressure as
eristic pressure signal from a BLEVE. Both assume that

first peaks originate from the vapor space and hypothe-
the last peak, which is less sharp but potentially longer

ould originate from boiling liquid (see Fig. 4b). The exper-

onducted in the present study include pressure signals
ser to the failing tube, allowing a greater distinction to be
ween these phenomena. Three peaks are again observed
a).
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rediction of shock overpressure from a gas expansion
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se studies assume that the shock forms at the interface
the high pressure initial condition and the low pressure
ric condition. This phenomenon is validated in the ideal
tion of a sudden release, assuming the interface between
low pressure chamber disappears instantaneously. But the
of this shock must be considered in order to understand
ressure in the near field with a slower opening process.

imental imaging results of a bursting glass sphere con-
ompressed air clearly illustrate this shock build-up
m. In these images a shock appears at a given distance
the sphere fragments, and can be seen to be getting

in the successive images. (Glass, 1974). An explanation
enomenon is that the compressed air acts as a piston by
he atmosphere with successive compression waves that
to form a shock. The progressive aspect of this shock for-
due to the non-ideal high-pressure chamber rupture. The
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Fig. 9
ment
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ugh for all of the energy to escape. Then, because of the
t of the experiment, the shock will expand and decay. The
at which the shock is fully-formed is the shock start dis-

Fig. 10. Comparison of Birk isentropic vapor expansion prediction of experimental
results on TNT-curve.
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shock start position. This overpressure is expected to be
the overpressure predicted by the shock tube equation

f and Low, 1976).
the shock reaches the fully-formed state, it will begin
with distance. The assumption of far-field decay based on

ade here, considering n = 1.12 (Laboureur et al., 2015). dP
rpressure prediction, dPs0 the overpressure at the fully-
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ect estimation of the overpressure dP, after the shock for-
quires knowledge of the shock start position RS0 and the
ure dPs0.

erimental determination of the shock start position
release details captured by the imaging instruments allow

ent of the parameter Rs0 which can be compared with the
ns of the model. Three successive shadowgraph frames
e opening illustrate the failure process of the vessel. As
previously, these images show a growing condensation

he crack opening followed by the progressive formation
k wave ahead of the cloud. In these images, shock start
ined to have occurred when the shock is considered to
rongest (see the example in Fig. 12d), and the measure-
shock start position is taken from that particular image.
der of magnitude of the Rs0 found with this apparatus is
61 mm and 88 mm. It corresponds to 1.2Dvessel to 1.8Dvessel.
ers of magnitude are smaller than the Rs0 = 2.5Dvessel esti-
Laboureur (Laboureur et al., 2015).

Rs0 is determined, the evaluation of dPs0 and dP is done
ntally from blast data obtained above the tube. dPs0 is
using the decay equation and the closest experimental
ents from the tube (Rexp, dPexp) using:
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T = dPST
Pa

. The subscript ST stands for Shock Tube.
this shock tube initial overpressure, a near-field decay
be fitted to match the experimental prediction of Rs0, with
nent different from that for the far field decay:

∗
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)n
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presents the model predictions of several propane tests.
test, Rs0 is evaluated with high speed imaging. The

ntal data points “above 28 cm” (Fig. 13) are the closest
ents obtained in these experiments. Based on Eqs. (1)

Ps0 was calculated thus allowing the scaling of the other
ntal measurements to this data. Based on the initial con-
he shock tube overpressure dPST, at the tube surface is
d and plotted (RT = 2.5 cm).
, to fit the theoretical shock tube overpressure estima-
function of length scale of the type 1

R˛ with � constant
experimental far-field behavior, the near-field exponent
cay must be estimated. This estimation is run for all
opane tests where Rs0 evaluation was possible. Fig. 13
erimental data points for all of these cases, with x-axis
g the distance from vessel to sensor scaled by the value
rresponding to its test, and the y-axis presenting the
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ween each frame, this induces an error of 20 mm for Rs0:
Dvessel.



Fig. 12. Shadowgraph of the vessel opening used for shock start detection (20 000fps, resolution 752 × 400). The shock is starting to be visible from c) and grows stronger
on d) and e).
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