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On Markovian random networks

We investigate the relation to random configurations and combinatorial maps of the Eulerian networks defined by Poissonian emsembles of Markov loops

Introduction

The purpose of this note is to show that random networks, which can be defined as images of Poissonian Markov loop ensembles (also known as "loop soups"), are naturally associated to random configurations and combinatorial maps. The relation with configurations, defined as families of entering and exiting half edges attached to each vertex and coupled to form edges, follows easily from the distribution of the edge occupation field, given in [START_REF] Le | Markov loops, free field and Eulerian networks[END_REF]. The relation with random combinatorial maps is more novel and should be investigated further. In the last section, we collect a few properties of these random maps which can be deduced from [START_REF] Le | Markov paths, loops and fields[END_REF].

We first present briefly the framework of our study, described in [START_REF] Le | Markov paths, loops and fields[END_REF], and recall a few useful results. Consider a graph G, i.e. a set of vertices X together with a set of non oriented edges E. We assume it is connected, and that there is no loop-edges nor multiple edges. The set of oriented edges, denoted E o , is viewed as a subset of X 2 . An oriented edge px, yq is defined by the choice of an ordering in an edge tx, yu.

Given a graph G " pX, Eq, a set of non negative conductances C x,y " C y,x indexed by the set of edges E (C x,y vanishes if tx, yu is not an edge), and a 1 non negative killing measure κ on the set of vertices X, we can associate to them an energy (or Dirichlet form) E, we will assume to be positive definite, which is a transience assumption. For any function f on X, we have:

Epf, f q " 1 2 ÿ x,y C x,y pf pxq ´f pyqq 2 `ÿ x κ x f pxq 2 .
There is a duality measure λ defined by λ x " ř y C x,y `κx . Let G x,y denote the symmetric Green's function associated with E. Its inverse equals M λ ´C with M λ denoting the diagonal matrix defined by λ. The associated λ-symmetric Markov chain is defined by the transition matrix P x y " Cx,y λy . We denote by µ the discrete loop measure associated with this Markov chain. µ is first defined on based loops by µprx 0 , x 1 , ...x n´1 , x 0 sq "

1 n P x 0 x 1 P x 1 x 2 ...P x n´1 x 0 .
A loop is an equivalence class of based loops under time shift. Given any oriented edge px, yq of the graph, we denote by N x,y plq the total number of jumps made from x to y by the loop l and set N x plq " ř y N x,y plq.

We have µptl, N x plq " nq " p1´pxq n n and therefore µptl, N x ą 0uq " ´lnpp x q, with p x " 1 λxG x,x . We refer to chapter 2 of [START_REF] Le | Markov paths, loops and fields[END_REF] for the proof. Note however that in [START_REF] Le | Markov paths, loops and fields[END_REF] we considered mostly loops in continuous time, including one-point loops. From proposition 7 and formula 2-11 in [START_REF] Le | Markov paths, loops and fields[END_REF], we get that µp1 ´e´t lx q " logp1 `tG x,x q ´logp1 `t λx q " log ´λx`tλxG x,x λx`t ¯, lx being the sum of N x plq independent exponential variables of mean λ x . We check that this equals ř 8

1 p n x n
´λx λx`t ¯n . The Poissonian loop ensemble L is defined to be the Poisson process of loops of intensity µ. We refer to [START_REF] Le | Markov paths, loops and fields[END_REF] for more details. Notations here are slightly different. Given any oriented edge px, yq of the graph, we denote by N x,y pLq or simply N x,y the total number of jumps made from x to y by the loops of L and set again N x " ř y N x,y .. We define a network to be a N-valued function defined on oriented edges of the graph. It is given by a matrix k with N-valued coefficients which vanishes on the diagonal and on entries px, yq such that tx, yu is not an edge of the graph. We say that k is Eulerian if

ÿ y k x,y " ÿ y k y,x .
For any Eulerian network k, we define k x to be ř y k x,y " ř y k y,x . It is obvious that the field N defines a random network which verifies the Eulerian property.

For a finite graph, the distribution of the random network defined by L was given in [START_REF] Le | Markov loops, free field and Eulerian networks[END_REF]. See also [START_REF] Werner | On the spatial Markov property of soups of unoriented and oriented loops[END_REF] for related Markov properties.

Theorem 1.1 For any Eulerian network k, P pN " kq " detpI ´P q ś

x k x ! ś

x,y k x,y ! ź

x,y P kx,y x,y .

Networks and configurations

The distribution of N on Eulerian networks can be obtained differently when G is finite. We introduce a specific type of configuration model. Let C be the space of configurations c defined as follows: attach to each vertex x c x entering half edges and c x exiting half edges, numbered from 1 to c x . Then provide a coupling between entering and exiting half-edges in such a way that they define an oriented edge of G.

For each oriented edge px, yq, there are c x,y half edges exiting from x coupled with c x,y half edges entering in y. For each vertex x, ř y c x,y " ř y c y,x is equal to c x and we see that such a configuration c defines a Eulerian network c. Moreover each Eulerian network k is the image by this projection map c ÝÑ c of ś

x pkx!q 2 ś px,yqPE o kx,y! different configurations. Indeed, there are

ś x kx! ś y kx,y!
way of partitioning exiting half edges and ś

x kx! ś y ky,x! ways of partitioning entering half edges according to the oriented edge of G they define, and then ś px,yqPE o k x,y ! ways to couple them.

We can now conclude easily that:

Theorem 2.1 The probability Q defined on C by Qpcq " detpI ´P q 1 ś x c x ! ź x,y P cx,y
x,y is such that, for any Eulerian network k, Qpc " kq " P pN " kq.

We say two configurations are opposite if they are exchanged by reversing the orientation of all half edges. We say they are equivalent if they can be exchanged by a circular permutation at each vertex, acting simultaneously on entering and exiting half-edges. We can deduce from this result an expression for counting configurations with given vertex degrees:

Corollary 2.1 Denote C pix,xPXq the set of configurations with vertex degrees i x : C pix,xPXq " tc P C, @x P X, c x " i x u Then the joint exponential generating function of the cardinalities of these sets,

ř pix,xPXq |C pix,xPXq | ś x s ix x ix! , defined for 0 ď s x ă 1
dx , is given by the inverse of the determinant of the matrix δ x,y ´sx A x,y , A being the adjacency matrix of G.

Proof. Taking unit unit conductances and killing rates 1 ´dx s x , we rewrite ř c Qpcq " 1 in terms of cardinalities.

Remark: A similar construction can be made with the even networks defined by the edge occupation field N p 1 2 q of a loop ensemble L p 1 2 q of intensity

1 2 µ (Cf [5]). N p 1 2 q
tx,yu is the total number of jumps from x to y or from y to x made by the loops of L p 1 2 q . The space of configurations is now the set C ev of numbered G-maps with an even number of incident edges at each vertex. At each vertex x there are 2kx! ś y k tx,yu ! way of partitioning the 2k x incident edges and there are ś tx,yuPE k tx,yu ! ways to couple the numbers assigned to the edges between x and y. Each even network k is the image of

ś x p2kx!q ś tx,yuPE k tx,yu !
different configurations and the distribution of these configurations is uniform conditionally to the network.

Configurations and Wilson algorithm

Let us recall the relation given in section 8-2 of [START_REF] Le | Markov paths, loops and fields[END_REF] between loop ensembles and Wilson algorithm (cf [START_REF] Bruce | Generating random spanning trees more quickly than the cover time[END_REF]), for a finite graph. The choice of an arbitrary order on the vertices x 1 , x 2 ... allows to construct from a finite sequence of random walks a random spanning tree together with an independent set of loops l i , based at x i and included in the complement of tx 1 , ... , x i´1 u. Note that l i can be empty as we are here in discrete time. The random network defined by this set of loops has the same distribution as N. Moreover, all such sets of loops defining the same network have equal probability. In order to construct not only the network N but the Poissonian ensemble L, these based loops l i have to be randomly divided at their base points x i . This partition is defined by a Poisson-Dirichlet distribution if we consider loops indexed by continuous time, with exponential holding time: see remark 21 in section 8-2 of [START_REF] Le | Markov paths, loops and fields[END_REF]. As mentioned in [START_REF] Le | Markov loops topology[END_REF] there is a discrete version of this splitting method: If l i visits x i n x i times, we can view each based loop l i as a set of n x i excursions out of x i and partition it randomly according to the exchangeable partition probability function (EPPF)

ś k 1 pn j ´1q! nx i !
occurring in the so-called "chinese restaurant process" ([8], sections 2-1 and 3-1). The EPPF

ś k 1 pn j ´1q! nx i !
is the probability of a partition into a set of size n 1 , a set of size n 2 etc . The distribution of the block sizes, presented in exchangeable random order is

1 k! ś k 1 n j (cf section 2-1 in [8]
). The proof is based on the fact that for any partition tm 1 , m 2 , ...m k u of m, the probability that the k-tuple m 1 , ... m k is equal to the set tN x plq, l P Lu in random order equals P p|tl P L, N x plq ą 0qu| " kq

ś k j"1 µpNxplq"m j q µpNxplqą0q " px k! ś k j"1 p1´pxq m j m j
. As P pN x pLq " mq " p x p1´p x q m , conditionally to N x pLq " m, this probability equals

1 k! ś k 1 m j
. By exchangeability, performing the partitition in tm 1 , m 2 , ...m k u based loops according to the original order in the excursion set yields the same distribution. We then concatenate the excursions in each part according to their original order and define L to be the associated set of (unbased) discrete time loops. Its distribution is uniform conditionally on the network.

Note that his construction can be related to random configurations. Let us call exit configuration a class of configurations with the same partition of exiting half edges. More precisely, an exit configuration is determined by assigning to each exiting half edge the vertex to which the oriented edge will lead, without specifying the entering half edge of that vertex. All configurations c in such a class c ex have equal probability and the image of Q on the set of exit configurations C ex is Qpc ex q " detpI ´P q ś x,y P cx,y

x,y . All exit configurations inducing the same network have equal probability. Such an exit configuration c ex , with the choice of an order on X, allows to construct a sample of the family of based loops l i considered above. The first loop is based at the first vertex x 1 and visits it c ex x 1 times. It starts with the first exiting half-edge, continues to the vertex to which it is associated, then with the first half edge exiting this vertex and so on, using and taking at each vertex exiting half edges in increasing order until all have been used at x 1 . Then iterate this procedure with the remaining configuration, starting at the first vertex it contains, according to the order initially defined on X. This correspondence is a bijection, and if we start with a random exit configuration, the distribution obtained on the sequence of based loops is the same as in Wilson's algorithm. Note for the following that we get the same distribution if exiting half edges are used in random order. Partitioning these based loops as above yields a set of unbased loops L ex distributed as L. An entrance configuration c in is defined in an analogous way, in terms of entering half edges, assigning to each of them the vertex from which the oriented edge starts. Similarly, we can define L in and we get in that way two sets of loops which are clearly independent conditionally on the network c.

Networks and combinatorial maps

The relations between configurations and Poissonian loop ensembles appears to be deeper, as shown in the following.

-Recall that a combinatorial map can be defined as a graph, with possibly multiple edges between vertices, equipped with a combinatorial embedding, i.e. a cyclic ordering of edges around each vertex (see [START_REF] Mohar | Graphs on Surfaces[END_REF], [START_REF] Lando | Graphs on Surfaces and their Applications[END_REF]). This ordering allows to define combinatorial faces (termed as facial walks in section 4-1 of [START_REF] Mohar | Graphs on Surfaces[END_REF]) as cycles of the permutation φ on oriented edges obtained by composing the edge orientation reversal ρ by the shift defined by the cyclic order. Note that the facial walks may visit a vertex several times. The map can be drawn on a surface with possibly several connected components (see [START_REF] Mohar | Graphs on Surfaces[END_REF], p.85). Let us say it is a G-map if its vertex set is contained in X and if its edges are multiple copies of elements of E (if G is complete, the second condition is redundant). Let us say a map is numbered if a first edge is chosen at every vertex.

-An element c of C defines a numbered G-map Mpcq with an even number of incident edges at each vertex. The first edge at each vertex is determined by the first exiting half edge and the half edge it is coupled to, the second by the first entering half edge and the half-edge it is coupled to, the third by the second exiting half edge and the half-edge it is coupled to, and so on, alternating entering and exiting half edges according to their original cyclic order. We actually get in this way, an orientation on the edges of the map. At each vertex, the cyclic order on edges alternates exiting and entering edges. The number of oriented edges carried by px, yq is equal to cx,y . Two equivalent configurations define the same G-map.

-An equivalent class of configurations defines also alternating signs on the faces of its associated map. The positive faces F `are defined by the cycles of the permutation on edges obtained by mapping each exiting half-edge with the exiting half-edge following, (in the above defined cyclic order at each vertex), the entering half-edge coupled to it. Oriented face contours are defined by the orientation of their as explained at the end of the previous section (the exiting half edges here are used in random order). Conditionally on these based loops, the random ordered partitions of them we have obtained at each vertex are exactly the size-biased presentation of the random partition defined by the "chinese restaurant process' (see section 2-1 in [START_REF] Pitman | Combinatorial Stochastic Processes. 32th St Flour Summer School[END_REF]). This observation completes the proof of the theorem as the case of L ´can be treated in the same way.

Expectations calculations

The study of the geometrical properties of the random combinatorial maps defined by random configurations should be pushed further. In this last section, we present a few results in this direction. Using the results of [START_REF] Le | Markov paths, loops and fields[END_REF], expressions for the expected number of vertices, edges and faces of Mpcq can be given. These are respectively: Ep|tx P X, c x ą 0u|q " ř x p1 ´1 λxG x,x q (as N x follows a geometric distribution of parameter 1 λxG x,x (see the remark following formula 4-3 in [START_REF] Le | Markov paths, loops and fields[END_REF]), Ep ř x,y cx,y q " ř x,y C x,y G x,y (see formula 2-10 in [START_REF] Le | Markov paths, loops and fields[END_REF]) and Ep|L `pcq|`|L ´pcqq " ´2 ln detpI ´P q (see formula 2-5 in [START_REF] Le | Markov paths, loops and fields[END_REF]) . Similar expressions can be given for the variances of the vertices and edges numbers. Much more intricate expressions can also be given for the number and the sizes of the connected components of the map (see [START_REF] Le | Markovian loop clusters on graphs[END_REF]).

All these results apply in particular to the case of complete graphs, which is of special interest in relation with the theory of combinatorial maps. For d vertices and constant killing rate κ, λ " d ´1 `κ and G " 1 d`κ pI `1 κ Jq, J denoting the pd, dq matrix with all entries equal to 1. Setting p " 1 d´1`κ , detpI ´P q " p1 ´pd ´1qpqp1 `pq d´1 . Inserting this in the expressions recalled hereinabove, it appears that if we let d and κ increase to infinity, with κ d converging to zero, the expected number of vertices and the expected number of edges are both equivalent to d κ . More precisely, they are respectively equal to d pκ`1q `1 `op1q and d κ ´1 `op1q. The expected number of faces is 2 lnpd{κq ´2 `op1q.

Following section 4-1 in [START_REF] Mohar | Graphs on Surfaces[END_REF], the Euler characteristic χpcq of the combinatorial map Mpcq is defined as the number of vertices + the number of faces -the number of edges, i.e |tx P X, c x ą 0u| `|L `pcq| `|L ´pcq| ´Npcq with Npcq " ř x,y cx,y .

Its expectation can be expressed as

Epχq " ÿ x p1 ´1 λ x G x,x q ´2 ln detpI ´P q ´ÿ x,y C x,y G x,y .

In particular, for the complete graph, Epχq " dp1 ´p1 ´1 κ`1 qp1 `1 d´1`κ qq dpd´1q

κpd`κq ´2 lnp κ d´1`κ q ´2pd ´1q lnp1 `1 d´1`κ q. The expectation of the characteristic χ can converge to any value v by taking κpd, vq " c d upd, vq with upd, vq ą 1 defined as the unique solution of the equation upd, vq ĺnpupd, vqq " lnpdq ´v. Note that upd, vq is equivalent to lnpdq as d increases to infinity. If we take κpdq " c d lnpdq , the expectation of χ is equivalent to lnplnpdqq as d increases to infinity. Note however that the number of faces in the 2-cell embedding in surfaces defined by the combinatorial map is larger than the number of facial walks. Hence the sum of the Euler characteristics of the surfaces is smaller or equal to χpcq (see proof of 3-4-1 in [START_REF] Mohar | Graphs on Surfaces[END_REF]). The average number of vertices visited by a facial walk is

ř x µpNxą0q µp1q
" ´řx lnpP pNx"0qq ´ln detpI´P q " ř x lnpλxG x,x q ´ln detpI´P q It is smaller from the average length of the walk which is ř

x µpNxq µp1q " ř x pλxG x,x ´1q ´ln detpI´P q . The difference is the average number of multiple points on the loop, counted with their multiplicities minus 1. For the complete graph, with d and κ increasing to infinity, with κ d converging to zero, we get that the is the average number of multiple points is equivalent to d 2κ 2 lnp d κ q which converges to 1 2 if we take κpdq " c d lnpdq .

Consider finally essential vertices, i.e. such that N x ą 1. Their expected number in general is ř x p1 ´1 λxG x,x q 2 which equals dpd`2κ´1q 2 pκ`1q 2 pd´1`κq 2 in the complete graph case. If we take κpdq " 

  faces and the expected number of essential vertices are both equivalent to lnpdq as d increases to infinity.
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edges. The negative faces F ´are defined by the cycles of the permutation on edges obtained by mapping an entering half-edge with the entering half-edge following the exiting half-edge coupled to it. Oriented face contours are defined by reversing the orientation of their edges. Taking the opposite configuration exchanges F `and F ´. Each edge of the map is in this way adjacent to two faces of opposite signs, and giving it opposite orientations as part of a face contour.. Note that F determines the configuration, up to equivalence. The same holds for F ´. The image on G of the sets of oriented face contours of F `and F ´are multisets of loops denoted pL `and L ´q.

-We can now state our main result: Theorem 4.1 The loop ensembles L `and L ´defined by a random configuration under the probability Q have both the same distribution as L .

Proof. Note first that (in contrast with the original version of the algorithm presented in the previous section), this construction does not require additional independent partitions. We can again choose an arbitrary order on the vertices to run a different version of Wilson algorithm to construct L `. This algorithm can be viewed as a way, starting from c ex (i.e. the partition of exiting half edges) to sample the random coupling with entering edges progressively. This determines a configuration c sampled uniformly in c ex . We start a based loop at the first vertex with the first exiting half edge, then move to the vertex attached to it by the partition, and choose an entering half edge to couple it. Then follow the exiting half edge following this entering edge in the alternating cyclic order, and so on until we reach again the base point. Then, a based loop is created if the first exiting half-edge follows the last entering one, in the cyclic order. We iterate the process until this happens, and create a based loop by concatenating the excursions we constructed. Note that conditioning on the initially given partition of exiting half edges and on the partial coupling with entering half edges done until a return time (this includes the excursions out of x 1 up to this return time), the creation of a based loop occurs with probability one over the number of unused entering half edges at the base point. Then restart at the same vertex with the next free exiting half-edge. Iterate until all half edges at the first vertex have been used.

-We can then restart the algorithm at the next vertex with unused exiting half-edge, starting with the first one. Iterate until all half edges of all vertices have been used. If we start with a random initial exit configuration, the concatenation of the excursions obtained at each vertex has the same distribution as the family of based loops tl i u defined by Wilson algorithm