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ABSTRACT
Musaicing (music mosaicing) aims at reconstructing a target music
track by superimposing audio samples selected from a collection.
This selection is based on their acoustic similarity to the target. The
baseline technique to perform this is concatenative synthesis in
which the superposition only occurs in time. Non-Negative Matrix
Factorization has also been proposed for this task. In this, a target
spectrogram is factorized into an activation matrix and a predefined
basis matrix which represents the sample collection. The superpo-
sition therefore occurs in time and frequency. However, in both
methods the samples used for the reconstruction represent isolated
sources (such as bees) and remain unchanged during the musaicing
(samples need to be pre-pitch-shifted). This reduces the applicabil-
ity of these methods. We propose here a variation of the musaicing
in which the samples used for the reconstruction are obtained by
applying a NMF2D separation algorithm to a music collection (such
as a collection of Reggae tracks). Using these separated samples,
a second NMF2D algorithm is then used to automatically find the
best transposition factors to represent the target. We performed an
online perceptual experiment of our method which shows that it
outperforms the NMF algorithm when the sources are polyphonic
and multi-source.
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1 INTRODUCTION
Musaicing (music mosaicing) aims at reproducing a target audio
music track by using “elements" derived from a collection of source
audio files.

Unlike other Music Information Retrieval (MIR) researches, the
goal here is not to develop algorithms that estimate the most precise
content description (to perform afterwards auto-tagging or playlist
generation) but to develop algorithms based on content description
that allow re-generation of music or the generation of new music.
We believe such research fields will attract more and more interest
in the MIR community.

Applications of suchmethods range frommusic creation tomusic
repurposing (such as the automatic ring-tone generation proposed
by [16]).

1.1 Related works
Over the years, different methods have been proposed to perform
musaicing under various names (including corpus-based synthesis)
[2, 3, 6, 7, 12–14, 16, 19]. We only review here the most important
ones.

1.1.1 Concatenative synthesis based musaicing. The first method
was proposed by Zils et al. [19] who actually invented the name
“musaicing". In their method, a target sequence (a target music track)
is reconstructed by selecting a sequence of audio samples from a
predefined collection. The audio samples are selected to satisfy two
constraints: 1) a segment constraint (which guarantees that the
selected samples have the same loudness, pitch and timbre than the
target segments), 2) a sequence constraint (which favours parame-
ters continuity and recognition of the target temporal shape).

Therefore, the “tiles” used for the reconstruction are directly
temporal audio slices taken from the collection of source music
tracks. They are then temporally concatenated (using concatenative
synthesis) without any superposition or modification to reproduce
a target music track.

Such a method presents two main limitations.
Limitation 1. only a single “tile" is used for the reconstruction

at each time,
Limitation 2. since the “tiles" are directly taken from the au-

dio, they potentially encapsulate a polyphonic multi-source audio
fragment (i.e. an instrument playing simultaneously several pitches
and /or several instruments playing together). Better results are
therefore obtained when the collection of samples used represent
monophonic, single-source instruments.

1.1.2 NMF-based musaicing. To solve (Limitation 1), Driedger et
al. proposed in [4] a method which relies on Non-Negative Matrix

https://doi.org/10.1145/3243274.3243299
https://doi.org/10.1145/3243274.3243299


AM’18, September 12–14, 2018, Wrexham, United Kingdom Hadrien Foroughmand Aarabi and Geoffroy Peeters

Tiles= frames of 
original spectrogram

= Imposed NMF 
Basis Matrix W 

NMF

Polyphonic  Multi-
Sources Target

Tiles= Basis Tensor 
W representing 

separated elements 
obtained by NMF2D

NMF2D

Which Activation and 
Transposition 

Tensor H ?

NMF2D

Collection of sources Target

Tiles= temporal 
audio slices Temporal slices

Monophonic Mono-
Source Target

Musaicing
(target 

reconstruction)

Musaicing 
(target 

reconstruction)

Musaicing
(target 

reconstruction)

Matching trough 
audio features

Which Activation 
Matrix H ?

Manual
 Pitch-Shifting

A

B

C

Figure 1: Flowchart of A a typical musaicing by concate-
native synthesis system, B Driedger musaicing method by
NMFwith imposed basismatrixW, C Our proposedmusaic-
ing method in which sources are first decomposed into ele-
ments using NMF2D and then used for the reconstruction
using NMF2D.

Factorization (NMF)1. In [4], the “tiles” are defined as the successive
frames of the Short Time Fourier Transform (STFT) of a source track.
The target music track is also represented by the successive frames
of its STFT. While in Zils method “tiles” are selected based on the
similarity of their audio descriptors (loudness, pitch and timbre) to
the target, in [4] the NMF algorithm is used to select those.

The NMF algorithm has been proposed by [8] to allow factorizing
a given non-negative matrix X ∈ RN×M≥0 into two non-negative
matrices: a basis (or atoms) matrixW ∈ RN×K≥0 and an activation
matrix H ∈ RK×M≥0 :

X
(n,m)

≈ X̂
(n,m)

= W
(n,k )
· H
(k,m)

(1)

In audio, X is usually chosen as the magnitude of the STFT and
therefore n denotes the number of frequencies,m the number of
time frames and k the number of basis.

In Driedger et al. method, X is the magnitude STFT of the target
to be reconstructed. They impose the basis matrixW to be the
successive frames of the magnitude of the STFT of the source:
W = Wt ile = |STFT [xsource ]|. The NMF algorithm is then only
used to estimate the activation matrix H , i.e. the “tiles" which are
necessary to reconstruct the magnitude STFT of the target Xtarдet :

Xtarдet ≈ X̂tarдet =Wt ile · H (2)

In [4], the method is used to reconstruct Xtarдet = “Let it be"
from The Beatles usingWt ile = pitched “bees buzzing" sounds.
X̂tarдet then represents “Let it be" songs by “bees".

Compared to Zils method, the method of [4] makes it possible to
use several “tiles" simultaneously for the reconstruction (Limitation
1 solved). Yet (Limitation 2) still applies since the “tiles" are directly
taken as the STFT frames without any separation. The method thus
works better when the source sounds represent a single instrument
playing a single pitch at each time (such as “bees"). Also, in order to
be able to reproduce the various pitches potentially existing in the
target (such as the ones in “Let it be" from The Beatles), the source
tracks should be manually pitch-shifted to all possible pitches.

Details of the NMF method used in [4]. H is estimated itera-
tively by minimizing a cost function between X and X̂ . In [4], the
Kullback-Leibler divergence is used for this since it is invariant to
multiplicative factor of X :

D(X | |WH ) =
∑
nm

Xnm log
(

Xnm
(WH )nm

)
− Xnm + (WH )nm (3)

Minimizing D(X | |WH ) leads to the following multiplicative up-
date of H to be used at each iteration. For X = Xtarдet and
W =Wt ile it is

H ← H ⊙
W
⊺
t ile ·

Xtarдet
Wt ile ·H

W
⊺
t ile · J

(4)

where ⊙ is the Hadamard product (element-wise multiplication),
⊺ denotes a matrix transposition and J is a all-ones matrix of size
(n,m).

1 It should be noted that the factorization using NMF for sound synthesis had been
already proposed by Burred in [1] for cross-synthesis.
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Constraints added in [4]. Tomaintain the temporal and timbre
properties of the “tile" sounds2, Driedger et al. add three constraints
which are applied sequentially at each iteration λit of the NMF
algorithm:

Constraint 1. To limit the successive activations over time of
the same basis, [4] only keeps the highest activation in a fixed
temporal neighborhood:

Rk,m =

{
Hk,m if Hk,m = µrk,m
Hk,m (1 − λit ) otherwise

(5)

where µrk,m is the maximum value of Hk,m∈[m−r/2,m+r/2] in a r -
horizontal neighborhood.

Constraint 2. To limit the simultaneous activations of different
basis at the same time, [4] only keeps the highest activation over
the basis dimension k :

Pk,m =

{
Rk,m if k ∈ Ωp

m

Rk,m (1 − λit ) otherwise
(6)

where Ωp
m is the p-maximum value of R:,m .

Constraint 3. To favor ta temporal organisation of tiles similar
to the one in the source [4] multiplies Pk,m with a diagonal kernel
of size (c,c):

Ck,m =
c∑

i=−c
P(k+i)(m+i) (7)

This lead to a sparse diagonal activation matrix.
The musaicing equation then becomes:

X̂tarдet =Wsource ·C (8)

Given X̂tarдet , the audio signal is reconstructed using the Griffin
& Lim phase reconstruction iterative algorithm [5].

Such a method presents three main limitations.
Limitation 3. In [4], since the “tiles" (which are here the ba-

sisWt ile ) are directly the magnitude of the STFT of the source,
they potentially represent a polyphonic multi-source signal. Better
results are therefore obtained when the sources are monophonic
single-source instruments like [4] did with their “bees buzzing"
sources. This is the same limitation as for the concatenative syn-
thesis method

Limitation 4. In [4], each basis ofWt ile only represents a single
STFT frame without any temporal evolution. This is the reason for
(Constraint 3).

Limitation 5. In [4], since the basisWt ile are directly (i.e. with-
out any modification) used to regenerate the target, they should
be able to represent the various potential pitches existing in the
target. To guarantee this, they previously manually pitch-shifted
the source spectrogram to any possible pitches.

1.2 Proposed musaicing method: music retiler
In this paper, we propose a new musaicing method named “music
retiler" which allows us to solve the limitations (L1, L2, L3, L4, L5)
mentioned above.

Extracting the tiles. In our method, we start from a collection
of music tracks which can be polyphonic and multi-source. We first

2Those are named “source sounds” in [4]

extract a set of time-frequency elements which become the tiles
used to reconstruct the target music track.

For the estimation of these time and frequency constitutive ele-
ments we will use the NMF-2D Deconvolution (NMF2D) algorithm
[10]. The NMF2D extends the NMF by adding a deconvolution over
time (such as the NMFD) but also over frequency. The deconvolu-
tion over time allows to represent the temporal evolution of the
timbre (like drums strokes with their resonance). The (Limitation
4) is therefore solved. The deconvolution over frequency allows
to represent the spectral envelopes of pitched instruments inde-
pendently of their pitch. The same basis tensor can therefore be
transposed to represent the various notes of a given instrument.

As opposed to previous methods, our “tiles" therefore represent
isolated notes and instruments (Limitation 3 solved). Our method
can therefore be applied to source trackswithmultiple simultaneous
polyphonic instruments.

Retiling the music To reconstruct the target music track from
these “tiles" we apply the same idea as Driedger et al. but extend it
to the NMF2D case (deconvolution over time and frequency). We
consider these “tiles" as the fixed basis tensorW and estimate the
activation H of these “tiles" to be able to reconstruct the target
track. Since several “tiles" can be used simultaneously (Limitation
1) is solved. In the case of the NMF2D, the activation tensor H also
represents the necessary pitch-shifting of the “tiles" to represent the
target. Therefore, there is no need to “previously manually pitch-
shift the source spectrogram" (as in Driedger et al. method) since
these pitch-shiftings are automatically performed by the NMF2D
algorithm. Therefore (Limitation 5) is also solved.

1.3 Paper organization
We present our method in section 2. We first review the NMFD
(section 2.1), NMF2D algorithm (section 2.2) and explain how we
use them to perform musaicing.

To obtain invariance over frequencies, we represent the audio
signal in the Constant-Q-Transform domain (CQT). We therefore
explain in section 2.3 how to reconstruct the audio signal in the
time domain from the CQT by adapting the Griffin & Lim phase
reconstruction iterative algorithm.

Finally, we evaluate the performances of our proposed NMF2D
musaicing method in comparison to the NMF method of [4]. For
this, we have set up an online perceptual experiment which results
we discuss in section 3.

2 PROPOSED NMFD AND NMF2D SOURCE
SEPARATION BASED MUSAICING

The method we propose first separates the source tracks into their
constitutive elements (characteristic spectral patterns) then use
those to reconstruct the target music track. In the following we
propose to use the NMFD or the NMF2D algorithm to achieve this.

In a first step, the NMFD or the NMF2D algorithm is applied to
a set of source music tracks in order to compute their constitutive
elements which defines the set of “tiles".

In a second step, using these estimated “tiles" as basis (a basis ten-
sor), we use the NMFD or NMF2D again to estimate the activations
necessary to reconstruct the target.
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The flowchart of NMF2D musaicing method is given in Figure 2
and detailed below.

Source TargetSource Source
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Figure 2: Musaicing by NMF2D.

2.1 NMFD
In [15], Smaragdis proposes the NMF-Deconvolution algorithm
(NMFD). This method extends the NMF paradigm by makingW
a basis tensor (instead of a basis matrix). Each basis in theW τ

tensor is a matrix representing the time evolution of the frequency
spectrum. The basis of duration T are convolved in time τ with the
activations H .

X ≈ X̂ =
T−1∑
τ=0

W τ τ→H (9)

For our musaicing, we propose to apply twice the NMFD algo-
rithm.

Extracting the tiles. First, we use the NMFD algorithm to esti-
mate the set of “tiles” to be used for the reconstruction. For this we
apply the NMFD algorithm to the set of original music tracks. In
the NMFD,W τ are updated iteratively using the followings:

W τ ←W τ ⊙
X
X̂
· (
τ→
H )⊺

J ·
τ→
H

(10)

H ← H⊙
(W τ )⊺ · [

←τ
X
X̂
]

(W τ )⊺ · J (11)

The set of “tiles" to be used for the reconstructionW τ
t ile is then

chosen as the resultingW τ .
Retiling the music. For the reconstruction of the target we

use the NMFD algorithm again but we imposeW τ = W τ
t ile and

only update the activation H using the same equation (9) but with
X = Xtarдet , X̂ = X̂tarдet andW τ =W τ

t ile . At each iteration, the
reconstructed target is given by:

X̂tarдet =
T−1∑
τ=0

W τ
t ile

→τ
H (12)

In order to make the “tiles" more recognizable in the reconstructed
target (we are of course not interested in a perfect reconstruction
of the target since it would not allow us to recognize the “tiles"),
we apply the constraints C1 and C2 (which favour sparsity) at each
iteration of the update of H during the reconstruction.

Pros andCons.TheNMFD allows us to solve the above-mentioned
limitations (L1), (L2) and (L3). Yet, limitation (L4) still applied and
we still need to manually pitch-shift the sources. To solve this lim-
itation we propose the use of the NMF2D algorithm described in
the following.

2.2 NMF2D
In [9], Schmidt &Mørup propose theNMF2D-Deconvolution (NMF2D)
algorithm. As in the NMFD algorithm,W is a basis tensorWt ile
representing the time evolution of the frequency spectrum of each
basis. In the NMF2D, H is also a tensor. It represents the activation
of each basis at every time step and at every frequency translation.
For a given time, the same basis can therefore be activated at differ-
ent frequency translations (hence at different pitches). A chord can
therefore be represented by a single basis translated at difference
frequencies. In the NMF2D, the basis are convolved in time but also
in frequency ϕ ∈ [0, P − 1] with the activations. The basis are thus
both time and frequency-invariant.

X ≈ X̂ =
T−1∑
τ=0

P−1∑
ϕ=0

↓ϕ
W τ
→τ
Hϕ (13)

For our musaicing, the NMF2D algorithm is applied twice.
Extracting the tiles. We first use the NMF2D algorithm3 to

decompose a set of source music tracks into the set of “tiles":W τ
t ile

(a set of time and frequency patterns). Using a KL-divergence as
cost-function, the following update rules can be derived to update
the tensors:

W τ ←W τ ⊙
∑
ϕ

↑ϕ
X
X̂
(
τ→
Hϕ )⊺∑

ϕ J · (
τ→
Hϕ )⊺

(14)

Hϕ ← Hϕ ⊙
∑
τ (
↓ϕ

W τ )⊺
←τ
X
X̂∑

τ (
↓ϕ
W τ )⊺ · J

(15)

3We use the SNMF2D Matlab Toolbox of Schmidt & Mørup [10]
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The set of “tiles" to be used for the reconstructionW τ
t ile is then

chosen as the resultingW τ .
Retiling the music.We then reconstruct the target music track

Xtarдet imposingW τ asWt ile . We therefore only estimate the
activation tensorHϕ , i.e. the weight and transposition factor of each
W τ
t ile over time using eq. 14, 15. At each iteration, the reconstructed

target is given by:

X̂tarдet =
T−1∑
τ=0

P−1∑
ϕ=0

↓ϕ
W τ
t ile

→τ
Hϕ (16)

Pros and Cons. The NMF2D allows to solve all the above-
mentioned limitations (L1), (L2), (L3) and (L4). However, we still
use the two sparsity constrains (C1) and (C2). The reason for this
being that the constraints favours the proper recognition of the
sources in the reconstructed target (again, we are not interested in
a perfect reconstruction of the target).

2.3 Griffin & Lim algorithm for the CQT
To achieve the invariance over frequency, the method is applied to a
log-frequency representation: the constant-Q transform (CQT). We
expect that the basis will represent the prototype spectral envelope
of the various instruments so that when transposed they represent
the spectrum of a note played by an instrument.

In order to reconstruct the audio temporal signal from its CQT
(X̂tarдet ), we need to reconstruct its phase. In the case of the STFT,
the Griffin & Lim algorithm phase reconstruction iterative algo-
rithm [5] is often used. In the case of the CQT, the representation
is however bounded to a minimum and maximum frequency. We
therefore apply a band-pass filter between those minimum and
maximum frequencies to the random temporal signal used for the
initialisation of the algorithm. We also replace the STFT and inverse
STFT of the original algorithm [5] by the CQT and the inverse CQT.
This is done using SchÃűrkhuber et al. implementation [11] which
results in a perfect reconstruction of the CQT using non-stationary
Gabor frames [17].

3 EXPERIMENT AND RESULTS
The objective of audio musaicing is to reproduce the harmonic
and temporal structure of a target music track using the acoustic
characteristics of a set of sources. It is therefore not possible to
measure its quality using the usual source separation measures (as
defined for example in the bsss_eval toolbox [18]). Instead, we have
set up an online perceptual experiment asking people to rate the
following criteria:

Question 1 the audio quality of the produced signal,
Question 2 whether or not the method allows the listener to

recognize of the harmonic and temporal structure of the
target,

Question 3 whether or not the method allows the listener to
recognize of the acoustic characteristics of the sources.

Question 4 the creative aspect of the audio example

The rates are in the following range 1=bad, 2=poor, 3=fair, 4=good,
5=excellent.

With this, we asked people to rate Driedger et al. musaicing
method (NMF) and our NMF2D proposal; each with or without the
above mentioned-constraints (C1), (C2) and (C3).

Parameters. The audio result relatively depends on the param-
eters of the NMF2D. From several tests in the computation of audio
examples, we have made the following observation. The number of
basis K chosen for extracting the “tiles” is linked to the number of
instruments of each audio source (as the classic NMF algorithm).
The frequency convolution factor P is chosen to cover all the notes.
The temporal convolution factor T is more variable, by increas-
ing T the learned tiles will be longer (T cannot be too long due to
computation time).

We tested each method using two targets and two audio sources4
(audio sources are used to extract “tiles"). The list of targets, source
recordings and methods used for our experiment are listed in Table
1.

Table 1: List of targets, source recordings and methods used
for our experiment.

Targets - Let It Be - The Beatles
- Funk jazz - Music Delta

Source - Recordings of reggae music (two excerpts of
Bob Marley songs)
- Recordings of five spoken vowels

Methods - Driedger Musaicing (NMF) without/with con-
straints (C1,C2,C3)
- NMF2D Musaicing without/with constraints
(C1,C2)

20 people participated to the test (18 are from the audio signal
processing field, 17 have already participated in a perceptual test, 5
women and 15 men, the average age being 30.1 years).

In Figures 3, 4, 5 and 6, we indicate the results in terms of mean
rating and confidence interval (µ ± 1.95σ ) for each question.

Looking at Figures 3, 4, 5 and 6, we first see that the results largely
depend on the choice of sources (Reggae/Vowels). For example for
Question 3 (Figure 5), the ratings are higher when the sources are
“Vowels", whatever the choice of method or target. It is therefore
difficult to compare the results from one pair of Target/Source to
another.

For Question 1 “Rate the audio quality of the produced
signal” (Fig. 3) we found better results – using Driedger w/o con-
straint for Beatles/Reggae, – using Driedger with constraint for Bea-
tles/Vowels, – using our NMF2D w/o constraint for Funk/Reggae
and – NMF2D w/o constraint for Funk/Vowels.

For Question 2 “Rate whether or not the method allows
you to recognize of the harmonic and temporal structure
of the target” (Fig. 4), the results strongly depend on the source
used. When the source is polyphonic and multi-source (Reggae),
the NMF2D w/o constraint is rated higher than Driedger method,
this independently of the target (Beatles or Funk). When the source
is monophonic and mono-source (Vowels), Driedger methods are
rated better. Note that to apply the Driedger method to the Vowels,

4The generated audio examples are available here: https://www.dropbox.com/sh/9d8hw1bb9fnk7o7/
AACyWYWIxXgxI6B1GbDJgfu-a?dl=0

https://www.dropbox.com/sh/9d8hw1bb9fnk7o7/AACyWYWIxXgxI6B1GbDJgfu-a?dl=0
https://www.dropbox.com/sh/9d8hw1bb9fnk7o7/AACyWYWIxXgxI6B1GbDJgfu-a?dl=0
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Beatles Funk Beatles Funk
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Figure 3: Question 1: “Rate the audio quality of the pro-
duced signal”.

Beatles Funk Beatles Funk

Reggae Vowels

Figure 4: Question 2: “Rate whether or not the method al-
lows the recognition of the harmonic and temporal struc-
ture of the target”.

Beatles Funk Beatles Funk

Reggae Vowels

Figure 5: Question 3: “Rate whether or not the method al-
lows the recognition of the acoustic characteristics of the
sources”.

Beatles Funk Beatles Funk

Reggae Vowels

Figure 6: Question 4: “Rate the creative aspect of the audio
example”.

we had to manually pitch-shift the sources to all possible potential
pitches. This is not the case for our NMF2Dwhere the pitch-shifting
is automatically done. For every methods, the non-constrained ver-
sions are rated better. This is explained by the fact that without any
constraints, sources can be chosen more freely by the algorithm
hence reproducing the target with more fidelity.

For Question 3 “Rate whether or not the method allows
you to recognize the acoustic characteristics of the sources”,
it is the opposite. Here, the constrained methods are rated better
than the non-constrained ones. We also see that – when the source
is Reggae, Driedger method and our NMF2D are judged equal, –
when the source is Vowels, Driedger method with constraint is rated
slightly better than our NMF2D with constraint (but the difference
is not significant for Funk).

Finally, forQuestion 4 “Rate the creative aspect of the audio
example”, – when the source is Reggae, both Driedger method and
our NMF2D are again judged equal, – when the source is Vowels,
Driedger method with constraint is again rated slightly better than
the NMF2D with constraint (but the difference is not significant

for Funk). Results are then very close between Question 3 and
4 which tends to show that people consider more “Creative” the
“recognition of the acoustic characteristics of the sources” than the
“recognition of the harmonic and temporal structure of the target”.
This also explains why the results are on average higher when
using “Vowels" (which are more easely recognizable) than using
“tiles” extracted from a set of Reggae tracks.

4 CONCLUSION
In this paper, we extended the possibilities of musaicing methods by
proposing the use of the NMF2D. These algorithms are first used n-
times to obtain “tiles” (a set of time/frequency patches) from a set of
n source music tracks. These “tiles” are then used to “retile” a target
track using again the NMF2D algorithms but while imposing the
basis tensors as “tiles”. Using the NMF2D algorithm allows to solve
the limitations we highlighted in previous methods: – the necessity
to separate the sources so that the “tiles” represent monophonic
single-source sounds, – the necessity to represent time evolution
– the necessity to automatically transpose the “tiles” to the right
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pitches. The signal is then re-synthesized with an adaptation we
propose of the Griffin & Lim algorithm to the CQT case.

In order to assess the performances of our proposal, we have
set up an online perceptual experiment comparing our NMF2D
algorithm to the NMF algorithm proposed by [4]. We first showed
that the results strongly depend on the choice of couple targets and
“tiles" source sounds. We also showed that our NMF2D algorithm
is more effective than the NMF algorithm when the “tiles" source
sounds are polyphonic and multi-sources.

Future works. In our current system, “tiles” are extracted for
each source of the collection separately. They are then concatenated
to formWt ile . Therefore, some redundancy may exist in the learned
“tiles”. For future work, we would like to add a constraint in order
to avoid this redundancy of “tiles”. In our current system, all “tiles”
have the same temporal duration. Another future work would be
to automatically adapt this duration to the acoustic content of the
“tiles” (drum sounds, voices, or sustained harmonic instruments).
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