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Abstract 1 

Letters and words across the visual field can be difficult to identify due to limiting visual factors such 2 

as acuity, crowding and position uncertainty. Here, we show that when human readers identify 3 

words presented at foveal and para-foveal locations, they act like theoretical observers making 4 

optimal use of letter identity and letter position information independently extracted from each 5 

letter after an unavoidable and non-optimal letter recognition guess. The novelty of our approach is 6 

that we carefully considered foveal and parafoveal letter identity and position uncertainties by 7 

measuring crowded letter recognition performance in five subjects without any word context 8 

influence. Based on these behavioral measures, lexical access was simulated for each subject by an 9 

observer making optimal use of each subject's uncertainties. This free-parameter model was able to 10 

predict individual behavioral recognition rates of words presented at different positions across the 11 

visual field. Importantly, the model was also able to predict individual mislocation and identity letter 12 

errors made during behavioral word recognition. These results reinforce the view that human 13 

readers recognize foveal and parafoveal words by parts (the word letters) in a first stage, 14 

independently of word context. They also suggest a second step where letter identity and position 15 

uncertainties are generated based on letter first guesses and positions. During the third lexical access 16 

stage, identity and position uncertainties from each letter look remarkably combined together 17 

through an optimal word recognition decision process.  18 
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INTRODUCTION 1 

It only takes tens of milliseconds for humans to identify words, a combination of letters arranged in a 2 

given order to form the essential language unit. Several decades of research suggested that visual 3 

word recognition is preceded by a letter recognition step, which is itself preceded by the extraction 4 

of letter visual features (see Carreiras, Armstrong, Perea, & Frost, 2014 for a recent review). 5 

Identification of word sub-units such as syllables, graphemes or phonemes can also take place 6 

between letter and word recognition (Balota, Yap, & Cortese, 2006). Given this cascade of processes, 7 

an alteration of letter recognition performance can be critical for word recognition performance. This 8 

is especially true for words presented outside the fovea where letter and thus word recognition 9 

performance are strongly altered (Latham & Whitaker, 1996). Even in foveal word viewing 10 

recognition performance is usually impaired for many letters. This is because letter recognition 11 

performance is not homogeneous across the visual field and quickly drops with visual eccentricity 12 

(Legge, Mansfield, & Chung, 2001). However, visual limitations can be compensated by the 13 

knowledge of word lexicon or sentence context, allowing the recognition of most words within one 14 

single foveal fixation, although eccentric letters are not perfectly visible (Legge, Klitz & Tjan, 1997). 15 

Acuity, crowding and positional uncertainty have been suggested to be the main visual factors that 16 

limit letter recognition across the visual field (He, Legge, & Yu, 2013; Legge et al., 2007; Pelli & 17 

Tillman, 2008; Yu, Legge, Wagoner, & Chung, 2014). Low acuity impairs letter identification in the 18 

para-fovea and in the periphery when a letter is presented alone or surrounded by other letters 19 

(Wertheim, 1980; Westheimer, 1979). Crowding impairs letter identification when a target letter is 20 

surrounded by other letters (Bouma, 1970; Levi, 2008; Whitney & Levi, 2011). Crowding supposedly 21 

constrains the visual system to integrate together visual features coming from a target letter and 22 

from its neighbor letters (Bernard & Chung, 2011; Pelli, Palomares, & Majaj, 2004; Pelli & Tillman, 23 

2008). The negative impact of crowding on letter recognition is directly proportional to visual 24 

eccentricity (i.e. the Bouma law (Bouma, 1970)). It is more deleterious on reading performance than 25 
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the impact of visual acuity when letters are presented at a usual print-size (Pelli et al., 2007; Yu et al., 1 

2014). Position uncertainty is another visual constraint that decreases the ability of subjects to 2 

correctly localize single or crowded objects such as letters (Chung & Legge, 2009; Levi & Tripathy, 3 

1996; Strasburger, 2005; Strasburger & Malania, 2013). Localization errors can be represented by a 4 

normal distribution centered on the letter target (Chung & Legge, 2009; Gomez, Ratcliff, & Perea, 5 

2008; Levi & Tripathy, 1996). Standard deviation of this distribution varies as a function of certain 6 

parameters such as time duration or eccentricity (Chung & Legge, 2009; Gomez et al., 2008; Michel & 7 

Geisler, 2011). Crowding and localization are tightly connected as it has been shown that crowding 8 

increases positional uncertainty for letters (Harrison & Bex, 2016; van den Berg, Johnson, Martinez 9 

Anton, Schepers, & Cornelissen, 2012). Visual acuity, crowding, and positional uncertainty are thus 10 

the main visual factors which theoretically limit the identification of letters within a word.  11 

Therefore, a complete word recognition model should represent (1) the detection and integration of 12 

visual features to build letters, and (2) the integration of letter-level information to reach word 13 

identification. This is the basic theory that is described by the original interactive activation model 14 

(McClelland & Rumelhart, 1981) and its descendants (Coltheart, Rastle, Perry, Langdon, & Ziegler, 15 

2001; Davis, 2010; J. Grainger & Jacobs, 1996).1 In this theory, the first feature-to-letter step is still 16 

unclear because letter features are not yet defined despite decades of research (Fiset et al., 2008; 17 

Jonathan Grainger, Rey, & Dufau, 2008). As a consequence the recognition of crowded letters within 18 

a letter string involving the combination of target and flanker features (Pelli et al., 2004) is even 19 

harder to define. Thus this step is usually skipped or grossly represented in implemented word 20 

recognition models. The letter-to-word process through a lexical access has been largely studied in 21 

behavioral (essentially through priming experiments) and in brain activation studies. Lexical access is 22 

usually represented by a competition across time between words of the lexicon that are perceptually 23 

similar: When a reader starts to identify a word, visual information about its letters increases with 24 

                                                           
1 Note that these models do not separate letter and word identification steps although (Pelli, Farell, & Moore, 
2003) and our results suggest otherwise. 
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time, consequently increasing the activation of the word at the expense of its orthographic 1 

neighbors. This competition is another common basis of word recognition models (Norris, 2013), 2 

with recent models even describing the accumulation of letter information across time and its use to 3 

identify words (Adelman, 2011; Norris, 2006; Norris & Kinoshita, 2012; Norris, Kinoshita, & van 4 

Casteren, 2010). It is clear that two categories of letter-level visual information influence the 5 

discrimination between a word and its orthographic neighbors: identity and position information 6 

(Davis, 2010; Gomez et al., 2008; Norris, 2006; Norris et al., 2010). Behavioral results on visual 7 

crowding described in the previous paragraph show that under crowded conditions, human 8 

observers can usually extract a limited amount of letter identity and position information, this 9 

information depending on many visual factors such as presentation duration, eccentricity or spatial 10 

configuration (Chung & Legge, 2009; Legge et al., 2001). Based on the strong influence of visual 11 

crowding on letter recognition it is rather surprising that the influence of crowding on letter 12 

recognition is almost never (or very superficially) taken into account in current implemented models 13 

(Norris, 2013). More generally we argue that the influence of visual crowding on letter recognition 14 

cannot be bypassed if we want to predict errors that occur during the recognition of long words 15 

(length > 5 letters). This is even more critical for words presented in the parafovea or in the periphery 16 

as the deleterious effect of visual crowding increases with visual eccentricity. 17 

Bayesian models have been able to predict human perception and oculomotor performance and 18 

behaviors in vision science (Geisler, 1989; Geisler, 2011; Kersten, Mamassian, & Yuille, 2004; Legge et 19 

al., 1997; Najemnik & Geisler, 2005; Renninger, Verghese, & Coughlan, 2007; Weiss, Simoncelli, & 20 

Adelson, 2002). Theoretically, Bayesian observers act like ideal observers who make decisions based 21 

on an optimal use of the incomplete available visual information (given the limitations of the visual 22 

system). Concerning word recognition, Bayesian theories have been implemented and tested to 23 

predict reading performance in foveal and parafoveal reading either with (Bicknell & Levy, 2010, 24 

2010; Legge et al., 2001; Legge, Hooven, Klitz, Stephen Mansfield, & Tjan, 2002) or without (Legge et 25 

al., 2001; Pelli et al., 2003) eye movements. These models defined identity uncertainty as the only 26 
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visual factor limiting foveal and parafoveal letter recognition. Legge et al (Legge et al., 2001) 1 

calculated the performance of a Bayesian lexical matching algorithm and found that the model was 2 

sufficient to account for reading performance in foveal vision. The "Bayesian reader" (Norris, 2006; 3 

Norris et al., 2010) used only letter identity uncertainty in its first version (Norris, 2006). Later both 4 

letter identity and letter position uncertainties were used to simulate foveal word recognition 5 

processes (Norris et al., 2010). The "Bayesian Reader" describes the accumulation and optimal 6 

integration of letter feature information, making letter identity and letter position (and thus word 7 

identity) less and less uncertain over time. The Bayesian Reader predicts the (logarithmic) effect of 8 

word frequency on foveal word reaction times as well as some typical priming effects that modulate 9 

lexical decision performance. In the implemented version of this model all letters in a word are 10 

assumed to be equally visible, an acceptable hypothesis for the foveal recognition of short words. 11 

In the present study, as in previous Bayesian word recognition models, we assumed that human 12 

readers make an optimal use of available letter information during the lexical access (Dennis Norris, 13 

2006). However, we also took into account that an automatic non optimal letter-processing stage 14 

(occurring independently for all letters) precedes lexical access (Pelli et al., 2003).  The model that we 15 

implemented and tested here is based on these assumptions. It can be broken down in three stages: 16 

The first stage is the automatic non-optimal letter-processing stage proposed by Pelli et al. (2003). 17 

The two following stages are optimal. Our second stage consists in  the extraction of letter position 18 

and identity uncertainties based on the first-step letter “recognition” process. Our third stage 19 

corresponds to the lexical access and is the integration position and identity uncertainties from each 20 

letter in order to identify the presented word. We tested our model with word recognition tasks in 21 

parafoveal conditions because they are ideal to create strong perceptual uncertainties with long or 22 

unlimited durations without inducing artificial visual noise as in foveal viewing. We can thus judge 23 

the validity of our model by directly using word recognition performance. This also allows us to 24 

generalize the validity of Pelli et al’s theory in peripheral viewing conditions and to understand the 25 

mechanisms of word recognition for subjects who cannot use their central vision. 26 
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The important novelty of our approach is the way we tested our model: We first behaviorally 1 

quantified letter identity and position uncertainties caused by acuity, crowding and position 2 

uncertainty. Currently implemented word recognition models usually assume that letter identity 3 

uncertainty is homogeneous within the presented word, which is a bold approximation given the 4 

large slope of the relationship between eccentricity and crowded letter recognition (Legge et al., 5 

2001). Here we bypassed this strong limitation by estimating position and identity letter 6 

uncertainties for different letter positions in five individual subjects (Experiment 1). These 7 

psychophysical measurements were made in the absence of any linguistic contextual constraints. 8 

They allowed us to implement an ideal-observer model that simulated the optimal use of both letter 9 

identity and position information for each observer following a non-optimal letter guess (Pelli et al., 10 

2003). These predictions were compared with word recognition data from the same five subjects 11 

(Experiment 2). To anticipate our results, we showed that word recognition errors and corresponding 12 

letter errors made by our ideal-observer model correspond to errors made by human readers. Our 13 

work suggests that word recognition can be described as the succession of three stages: A first stage 14 

where expert readers automatically try to identify all word letters (Pelli et al., 2003) thus leading to 15 

“letter guesses”, a second stage where letter-identity and letter-position information within a word 16 

are determined for each letter, and a third lexical access stage where both types of letter information 17 

are optimally combined together.  18 

Based on the successful comparison between our ideal-observer model and psychophysical data, our 19 

work confirm the plausibility of such an optimal word recognition mechanism (stages 2 and 3)  20 

following the automatic and non-optimal word letter recognition step (stage 1). 21 

  22 



8 
 

METHODS 1 

Subjects 2 

Five subjects (age: 22-37) participated in Experiment 1 (letter recognition experiment) and the same 3 

five subjects participated in Experiment 2 (word recognition experiment). Subjects were all native-4 

born French speakers. The research followed the tenets of the Declaration of Helsinki and was 5 

approved by the Ethical Committee for Protection of Human Subjects at the Aix-Marseille Université. 6 

Written informed consent was obtained from each observer after the nature and purpose of the 7 

experiment had been explained. 8 

Apparatus 9 

Stimuli were displayed on a 21-inch CRT color monitor (ViewSonic P227f, refresh rate = 120 Hz, 10 

resolution = 1152 x 854 pixels). A PC computer running custom software developed in Python with 11 

the Psychopy library (Peirce, 2007) was controlling the display. Observers sat in a comfortable chair 12 

at a viewing distance of 40 cm (screen visual angle: 50.8° x 37.7°) with a forehead rest to stabilize 13 

their position. An Eyelink 1000 Tower Mount eyetracker (SR Research Ltd., Mississauga, Ont., 14 

Canada) was also connected to our system to control observers’ gaze position in Experiments 1 15 

(letter recognition) and 2 (word recognition). In both experiments letters and words were displayed 16 

in black (luminance: 0.3 cd/m2) on a light gray background (luminance: 60 cd/m2). 17 

Letter strings and words used in experiments 18 

Letter strings used in Experiment 1a (3-letter strings) and 1b (5-letter strings) were made of letters 19 

randomly chosen among the 26 letters of the alphabet. Word lemmas used in Experiment 2 were 20 

randomly extracted from three sets of 500 lemmas (500 5-letter words, 500 7-letter words and 500 21 

9-letter words). Each word had a lexical frequency larger than 15 occurrences per million of words 22 

based on the Lexique3 corpus (New, Pallier, Brysbaert, & Ferrand, 2004) to avoid the presence of 23 
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words which could be unknown to the subjects. Importantly, all French trigrams and French 1 

words were chosen without any accent letters. 2 

Experimental protocol 3 

Each subject ran three successive experiments that measured foveal and parafoveal letter 4 

recognition (Experiments 1a and 1b) and word recognition (Experiment 2) performance. Letters and 5 

words were presented at different positions on an invisible horizontal lined centered on the middle 6 

of the screen. Experiments 1a and 1b were run to measure letter recognition performance for letters 7 

presented within trigrams (Experiment 1a) and within pentagrams (Experiment 1b). Experiment 2 8 

was run to measure word recognition performance. In each experiment and for every subject the x-9 

height letter print-size (Legge & Bigelow, 2011) was fixed at 1.38°. We assume that this print-size is 10 

large enough to avoid the effect of acuity on letter recognition in our experiment as Yu et al (Yu et 11 

al., 2014) found a very small acuity effect on letter recognition with a print-size of 0.55° and a 12 

protocol similar to ours. The non-proportional Courier font was used to display letters and words so 13 

that the letter slot positions in Experiments 1a and 1b corresponded to the same letter slot positions 14 

as in Experiment 2. Presentation duration was fixed at 250 ms, the approximate average duration for 15 

a reading fixation (Rayner, 1998)  16 

(1) Experiment 1: Letter recognition 17 

Experiment 1 was similar to experiments used to measure what previous vision researchers called 18 

visual span profiles (Legge et al., 2001; Legge et al., 2007): the recognition performance of letter 19 

trigrams (three adjacent letters) presented at different retinal locations. Full report of letter trigrams 20 

is useful because it allows the measurement of error rates for interior letters (i.e. letters with one 21 

flanker on the left and one flanker on the right) and for exterior letters (i.e. letters with only one 22 

flanker on the left or only one flanker on the right). Observers were required to report verbally the 23 

three letters from left to right: Therefore we called left, center, and right the three possible letter 24 
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positions2. Figure 1a and Figure 1b describe the temporal course of Experiments 1a and 1b: 1 

Observers were asked to fixate between two dots centered on the middle of the screen (distance 2 

between the two dots: 3°). Gaze location was measured to control for steady fixation between the 3 

two dots (tolerance: ±0.5°). In Experiment 1a, when the observer was ready for the trial, he/she 4 

pressed the button of a hand-held joypad. This started the trial: a letter trigram (a string of three 5 

random letters with standard letter-to-letter spacing) was centered at one of 13 possible positions 6 

across the horizontal meridian. Before the trigram display, three hashtag symbols were displayed at 7 

the future letter positions until the subject pressed the button. A backward mask with the same 8 

three hashtag symbols immediately followed the trigram presentation. Each observer was required 9 

to report the three presented letters verbally from left to right as the experimenter recorded the 10 

report. Each subject ran one session (approximately 1h) which consisted of 4 blocks of 65 trials (13 11 

locations x 5 repetitions). For each subject, a total number of 20 trigram trials was run for each 12 

location condition. 13 

The experimental protocol of Experiment 1b was similar to the protocol of Experiment 1a 14 

(recognition of letter trigrams) and is described in Figure 1b. The main difference was that a string of 15 

5 letters was displayed on each trial. Subjects had to report the three interior letters (i.e. the interior 16 

trigram) of the pentagram. These three interior letters could be displayed at one of the 13 positions 17 

that had been used in Experiment 1a. They were also called the left, central, and right letters (i.e.  18 

with respect to the central letter) of the interior trigram . Five hashtag symbols were first displayed 19 

to indicate the future letter positions and a backward mask was presented comprised of the same 20 

hashtag symbols. As in Experiment 1a each observer’s answer was recorded. Each subject ran one 21 

session (approximately 1h that consisted of 4 blocks of 65 trials (13 locations x 5 repetitions). For 22 

each subject a total number of 20 pentagram trials was run for each (location x duration) condition. 23 

                                                           
2 Note that this categorisation is not done for the classical visual span profile measurement. 
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In both experiments 1a and 1b, location of the letters to the left and to the right of the central letter 1 

(“x” and “z” in figure 3) is referred to hereafter as either the relative position within the interior 2 

trigram or as the interior position for short. 3 

(2) Experiment 2: Word recognition 4 

Figure 1c describes the temporal course of Experiment 2: Five, seven, or nine-letter words were 5 

briefly presented, centered on different positions (five possible center positions: the fixation locus, 6 

two letter slots on the left, two letter slots on the right, four letter slots on the left, and four letter 7 

slots on the right). Presentation duration was 250 ms (as in Experiment 1). The future position of a 8 

word was indicated in advance by several hashtag symbols (5, 7 or 9 symbols) until the observer 9 

pressed the button and the word was displayed. Right after the word display a backward mask made 10 

of the same number of hashtag symbols replaced the word. The observer’s verbal report was stored 11 

by the experimenter. Each subject ran two sessions (approximately 1h per session). Each session was 12 

made of 6 blocks. Each block corresponded to the display of words of a given word length (i.e. the 13 

word length was blocked) and was made of 25 words (5 positions x 5 repetitions). Subjects were 14 

not allowed to give non-word responses. Before the beginning of a block subjects were informed 15 

of the size of the words. If the subject was reporting a word with a different length the experimenter 16 

would collect this response anyway. For each subject 20 words were displayed for each (position x 17 

word length) condition. 18 

 19 

  20 
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Figure 1: Experimental protocol for Experiments 1a, 1b, and 2. 1 

Observers were asked to fixate between the two central dots before (a) a letter trigram 2 

(Experiment 1a), (b) a letter pentagram (Experiment 1b), or (c) a 5-letter, 7-letter, or 9-letter 3 

French word (Experiment 2) was briefly displayed for 250 ms as soon as they pressed a button. At 4 

the end of the trial, observers reported the letter string/word to the experimenter (the 3 interior 5 

letters when a pentagram was displayed, Experiment 1b). 6 

 7 

  8 
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RESULTS 1 

Letter recognition profiles 2 

Figure 2 shows an example of a letter recognition profile for one of our five subjects. The average 3 

recognition performance for each dot is based on twenty trials. Letter recognition performance is 4 

highest for letters presented at the fovea and decreases with eccentricity. Legge et al (Legge et al., 5 

2001) showed that two half-Gaussian functions can efficiently quantify the effects of eccentricity on 6 

letter recognition rates. This is particularly useful because it improves the quality of the collected 7 

data and it uses only 3 parameters to define a visual span profile. In consequence, each (visual 8 

hemifield ℎ, trigram interior position 𝑖) association can be characterized by a letter recognition profile 9 

function defined as a function 𝑓 of horizontal eccentricity:  10 

𝑙𝑒𝑡𝑡𝑒𝑟_𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 =   𝑓(ℎ,𝑖)(𝑒𝑐𝑐), f being a half-Gaussian function with 𝑓(ℎ=𝐿,𝑖)(0) =11 

 𝑓(ℎ=𝑅,𝑖)(0)  ≤ 1 and lim
𝑒𝑐𝑐→∞

𝑓(ℎ=𝐿,𝑖)(𝑒𝑐𝑐) =  lim
𝑒𝑐𝑐→∞

𝑓(ℎ=𝑅,𝑖)(𝑒𝑐𝑐) = 1
26⁄ . These equations mean that, 12 

for a given interior position, the foveal value for the left visual field corresponds to the foveal value 13 

for the right visual field. For the left and the right visual field, the chance level for infinite eccentricity 14 

is 1 26⁄ . These mathematical rules were used to fit the raw data into letter recognition profiles for 15 

each subject and each relative position within the letter trigram (Experiment 1a) or the three central 16 

letters of the pentagram (Experiment 1b). Profiles for each subject, each relative position within the 17 

trigram or the three central letters, and each experiment are shown in Figure 3. They show a much 18 

better identification performance for trigram letters compared to pentagram letters (37% vs. 65% on 19 

average) because of the increase of neighbour letters in the pentagram task. 20 

Based on our data average points we investigated the effects of different factors on letter 21 

recognition performance. Two generalized linear mixed-effect models for binary responses (function 22 

glmer of the lme4 package in the R language and environment (R Development Core Team, 2013)) 23 

were performed to analyse letter recognition performance in Experiments 1a and 1b. The random 24 
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effect was the subject factor and the fixed effects were the visual hemifield side, the eccentricity, and 1 

the relative position within the trigram made by the three central letters of the pentagram. There 2 

were two interaction terms: visual hemifield* relative position within the interior trigram and 3 

eccentricity*relative position within the interior trigram. The dependent variable was the letter 4 

recognition error variable (0 or 1). Results of the analysis are shown in Table 1a for Experiment 1a 5 

and Table 1b for Experiment 1b.  6 

 7 

Figure 2: Example of letter recognition profile 8 

Each dot represents the average recognition rate for each letter position (from 20 trials). The curve 9 

represents the two connected half-Gaussian functions that offer the best fit for the given dots in 10 

the left and in the right visual field. 11 
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Our analyses confirm what can be observed in Figure 3: There are differences in letter recognition 1 

performance based on eccentricity, relative position within the trigram made by the three central 2 

letters (3 coloured letters in figure 3), and visual hemifield as already described in different studies 3 

dealing with peripheral recognition of crowded letters (Legge et al., 2001). Confirming this 4 

observation our two mixed effect model analyses show significant effects of visual hemifield, internal 5 

position, and visual eccentricity on crowded letter recognition rates. In both experiments we found a 6 

significant advantage of the right visual hemifield over the left visual hemifield (Bouma, 1973; Bouma 7 

& Legein, 1977; Nazir, Heller, & Sussmann, 1992): + 7% on average for the right visual field. We also 8 

found a significant decrease of letter recognition performance with visual eccentricity (Bouma, 9 

1973): - 18% on average per letter slot. The significant difference between left, central, and right 10 

interior positions is different in both experiments: In Experiment 1a (trigram presentation) there is a 11 

disadvantage for the central letter compared to the left and right letters because of the lack of 12 

crowding for the two outer letters (Bouma, 1973; Legge et al., 2001). In Experiment 1b (pentagram 13 

presentation), we found a significant left-to-right gradient effect: Recognition performance is 14 

significantly better for the left letter compared to the center letter, and for the center letter 15 

compared to the right letter. This small effect could represent a leftward bias (sequential report) 16 

already reported in similar letter string experimental measurements (Whitney, 2008). We also found 17 

a significant interaction between the relative position within the trigram and the hemifield in 18 

Experiment 1a: The outer  letter (left letter in the left visual field and right letter in the right visual 19 

field) is easier to identify, an effect already shown in previous study (G. E. Legge et al., 2001). This 20 

effect is only significant for the right letter of the trigram in Experiment 1b. Finally, a significant 21 

interaction between the eccentricity and the relative position within the trigram was found in 22 

Experiment 1a: The effect of visual eccentricity is larger for the left than for the right letter.  23 

These results confirm that crowded letter recognition performance is dependent on three key 24 

parameters that have been previously described: visual hemifield, interior position, and eccentricity.  25 
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Figure 3: Letter recognition profiles 4 

 The left and right boxes represent the Letter recognition profiles for the two different letter 5 

recognition experiments: Experiment 1a and Experiment 1b. Each box is made of six smaller boxes 6 

(one for each subject and one for the average data). Each curve, made of the two connected half-7 

Gaussian functions, represents the subject (or average) letter recognition profiles for the three 8 

different relative letter positions (left position in red, central position in green, and right position 9 

in blue relative to the central letter position within each trigram/pentagram). 10 
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Figure 3 : Letter recognition profiles. The left and right boxes represent the Letter recognition 12 

profiles for the two different letter recognition experiments: Experiment 1a and Experiment 1b. 13 

Each box is made of six smaller boxes (one for each subject and one for the average data). Each 14 

curve, made of the two connected half-Gaussian functions, represents the subject (or average) 15 

letter recognition profiles for the three different relative interior positions (left position in blue 16 

("x"), central position in green ("y"), and right position in red ("z") ) within each trigram (exp 1a) or 17 

pentagram (exp 1b). 18 
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 1 

 2 

 3 

 4 

 5 

Table 1a. Exp 1a 
    

     

Fixed effects Estimate Std. Error z value Pr(>|z|) 

(Intercept) 0.6210283 0.2404979 2.582 0.009816 

visual hemifield (right) 0.3500869 0.0808396 4.331 1.49e-05 

Relative position within the trigram (left) 2.0014702 0.1092974 18.312 <2E-16 

Relative position within the trigram (right) 0.2867366 0.0855667 3.351 0.000805 

eccentricity -0.7357411 0.0269314 -27.319 <2E-16 

visual hemifield (right):Relative position within the trigram (left) -1.3902488 0.1277637 -10.881 <2E-16 

visual hemifield (right):Relative position within the trigram (right) 1.0746496 0.1222340 8.792 <2E-16 

Relative position within the trigram (left):eccentricity 0.1786149 0.0413008 4.325 1.53e-05 

Relative position within the trigram (right):eccentricity 0.1132925 0.0392498 2.886 0.003896 
 

    
 

    
 

    

Table 1b. Exp 1b 
    

 
    

Fixed effects Estimate Std. Error z value Pr(>|z|) 

(Intercept) -0.5293753 0.1230699 -4.301 1.70e-05 

visual hemifield (right) 0.2767427 0.0852324 3.247 0.00117 

Relative position within the trigram (left) 0.3937151 0.0843066 4.670 3.01e-06 

Relative position within the trigram (right) -1.2238469 0.0938575 -13.039 <2E-16 

eccentricity -0.9063045 0.0303009 -29.910 <2E-16 

visual hemifield (right):Relative position within the trigram (left) -0.1061905 0.1184965 -0.896 0.37017 

visual hemifield (right):Relative position within the trigram (right) 1.0813470 0.1263632 8.557 <2E-16 

Relative position within the trigram (left):eccentricity 0.0657647 0.0409290 1.607 0.10810 

Relative position within the trigram (right):eccentricity 0.0600806 0.0438134 1.371 0.17029 

 6 
Table 1: Fixed effects results of the generalized linear mixed-effects models to predict letter recognition rates in Experiment 1a (Table 1a) 7 
and Experiment 1b (Table 1b). In these models, the reference values were: Left visual hemifield, central “interior position” within the 8 
trigram made by the 3 central letters (coloured letters in figure 3), and a visual eccentricity of 3 letter slots.  No hemifield was assigned to 9 
the letters on the midline. 10 

 11 

 12 

  13 
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Separating letter identity and letter position errors 1 

Previous studies have shown that crowded letter recognition errors can be divided in two types of 2 

errors (Strasburger & Malania, 2013; Wang, He, & Legge, 2014; Yu et al., 2014) : location errors (a 3 

neighbor letter is reported instead of the target letter) and identity errors (an error that is not a 4 

location error). To separate both types of letter errors we first assumed that identity and mislocation 5 

errors are independent which is a plausible hypothesis (Hanus & Vul, 2013) despite some 6 

controversies (Bernard & Chung, 2011; Freeman, Chakravarthi, & Pelli, 2012). Second we assumed 7 

that letter position, for a given spatial horizontal position, can be represented by a Gaussian 8 

probability density distribution centered on the real position of the letter (Chung & Legge, 2009; Levi 9 

& Tripathy, 1996). Interestingly the standard deviation of this position noise has been shown to 10 

increase almost linearly with visual eccentricity (Chung & Legge, 2009; Levi & Tripathy, 1996; Michel 11 

& Geisler, 2011). Therefore a single mislocation coefficient α (a proportionality coefficient if we 12 

consider positional uncertainty as null at the fovea) is sufficient to characterize the position 13 

uncertainty of letters at any horizontal position across the visual field. Figure 4 shows how we 14 

determined this coefficient (∝) from each letter recognition profile: First we removed mislocation 15 

errors from identification errors among letter errors following what has been done in previous 16 

studies (He et al., 2013; Wang et al., 2014; Yu et al., 2014). Letter mislocation for a given letter occurs 17 

when the letter is correctly identified but not at the true letter slot position (For instance if the 18 

trigram abc was presented, the letter b was considered as mislocated if reported at the first or last 19 

slot by the subject but not at the center slot). Figure 4a shows the new letter recognition profiles (in 20 

red) without mislocation errors. This new profile is critical to determine letter identity uncertainty. 21 

We call it the letter identity recognition profile. It is logically higher than the letter recognition profile 22 

with mislocation errors (in blue) because it does not consider letter mislocations as letter recognition 23 

errors. Once these profiles were extracted for each subject we determined the optimal mislocation 24 

coefficient (α) (see Figure 4b and Figure 4c) that offers the best fit (dashed blue line in Figure 4a) to 25 

predict the letter recognition profile (in blue) from the letter identity recognition profile (in red). Note 26 
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that this prediction offers a very high correlation coefficient (r2>0.90) for each obtained mislocation 1 

coefficient (α). The mathematical method to calculate a letter recognition profile from an identity 2 

letter recognition profile and a mislocation coefficient (α) is detailed in Appendix 1. 3 

Letter mislocations were determined for the three relative positions in Experiment 1a and only for 4 

the central position in Experiment 1b. Indeed in Experiment 1b (pentagram presentation), subjects 5 

did not report all five letters, and it was impossible to know if the subject correctly identified a letter 6 

at a wrong position because he/she was naming only 3 letters. For instance, a subject could report a 7 

mislocalized letter displayed at the first or last position of the pentagram but we could not know if it 8 

was the case because the subject was only naming the three central letters. However, we assumed 9 

that for the letter reported at the central slot, most mislocations were directed only towards the 2nd 10 

and 4th letters and that we could ignore other non-reported letters. The values of the different 11 

mislocation coefficients (α) are given in Appendix 3. They characterize letter position uncertainties 12 

for the different subjects and the different conditions. The three coefficients that characterize 13 

identity letter recognition profiles (The standard deviation of the left half Gaussian distribution, the 14 

standard deviation of the right half Gaussian distribution, and the amplitude of both Gaussian 15 

distributions) for Experiments 1a and 1b are given in Appendix 4. They characterize letter identity 16 

uncertainties for the different subjects and the different conditions. 17 

In sum, letter identity recognition profiles and mislocation coefficients characterize the uncertainty 18 

about letter identity and position information extracted for every subject in one fixation of 250 19 

milliseconds. For each subject this information is available for different visual eccentricities and 20 

internal positions. Experiment 1a gives parameter values for exterior letters (only one letter flanker 21 

on one side) and Experiment 1b gives parameter values for interior letters flanked with at least two 22 

letters on each letter side. To simplify, letter identity recognition profiles will be called letter identity 23 

profiles in the following text. 24 

  25 
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 1 

Figure 4: Determination of the mislocation coefficient α 2 

Figure 4a shows an example of a letter recognition profile (blue curve) for a given subject and a 3 

given relative position. We first removed mislocation errors from identification errors to obtain the 4 

letter identity recognition profile (red curve). In consequence, the number of mislocation errors is 5 

represented by the difference between both curves. The mislocation coefficient α is the slope 6 

(shown in Figure 4b) of the regression determining the standard deviation of the Gaussian 7 

localization distribution as a function of the visual eccentricity (as shown by 2 eccentricity 8 

examples in Figure 4c). The optimal mislocation coefficient is the one  predicting the best estimate 9 

of the increase of mislocation errors, here the dashed area.  (In a perfect case, the predictive blue 10 

dashed curve would perfectly correspond to the blue solid curve). 11 

 12 

 13 

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

-12-10 -8 -6 -4 -2 0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1
R

ec
o
g
n

it
io

n
 r

at
e

Letter recognition profile : Data

Letter identity recognition profile: Data

Letter recognition profile : Predicted by α

Letter position Letter position

S
ta

n
d
ar

d
 D

ev
ia

ti
o
n

P
o

si
ti

o
n

 P
ro

b
ab

il
it

y

Letter position

(a)

(c)

0 2 4 6 8 10 12
0

1

2

3

(b)

Slope = 

mislocation coefficient α
Mislocation Errors

(determined by the slope)

Mislocation errors (Predicted by α)



22 
 

 Experiment 2: Word recognition 1 

Figure 5a shows the word recognition performance (words made of 5, 7, and 9 letters) calculated for 2 

each subject at different eccentricities (20 word presentations for each data point). Mean 3 

performance across subjects is also indicated in the figure. Similarly to letter recognition 4 

performance, word recognition performance clearly decreases with eccentricity. A generalized linear 5 

mixed-effect model for binary responses (function glmer of the lme4 package in the language and 6 

environment R (R Development Core Team, 2013)) was performed to investigate the effects of 7 

relevant factors (hemifield, eccentricity, and word length) on word recognition performance. The 8 

random effect was the subject factor. The dependent variable was the word recognition error 9 

variable (0 or 1). Results of the analysis are shown in Erreur ! Source du renvoi introuvable.. As 10 

previously shown in the literature word recognition performance significantly decreases when 11 

horizontal eccentricity increases and when word length increases  (Brysbaert, Vitu, & Schroyens, 12 

1996). Words were also easier to identify when they were presented in the right visual field, with an 13 

average optimal position located between 0 and 2 slots on the left of the center of the word. This 14 

position is usually called the Optimal Viewing Position (Brysbaert et al., 1996; O’Reagan & Jacobs, 15 

1992). 16 

Exp 2     

Fixed effects Estimate Std. Error z value Pr(>|z|) 

(Intercept) 4.360246 0.218799 19.928 2.00E-16 

Visual hemifield (right) 1.111439 0.0746 -14.899 2.00E-16 

Word length -0.132066 0.021718 -6.081 1.19E-09 

eccentricity -1.0693 0.038412 -27.838 2.00E-16 

Table 2: Fixed effects results of the generalized mixed-effects model to predict word recognition rates in Experiment 2. The 17 
reference values were: Left visual field and an eccentricity of 3 letter slots.   18 

 19 

 20 
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 1 

Letter errors 2 

During Experiment 2, subjects' responses were entered letter-by-letter by the experimenter in the 3 

experimental program. This allowed us to describe the patterns of letter errors made by the subjects 4 

during the word identification task and to calculate the proportion of mislocalized and incorrectly 5 

identified letters. Figure 5b shows the proportion of letters that were correctly reported at their 6 

actual slot position. The letter errors that are represented here are identity and position errors: In 7 

this case a mislocalized letter is considered as an error. Figure 5c shows the proportion of letters that 8 

were correctly reported but this time at any letter position within the word. These errors 9 

approximate the letter identity errors only: In this case a mislocalized letter is not considered as an 10 

error. The goal of the word recognition model presented below is to account for the proportion of 11 

word recognition errors at different visual eccentricities, as well as for the different ratios of identity 12 

and mislocation letter errors.3 13 

  14 

                                                           
3 In cases where the participant's response had a different number of letters than the presented word, the slot 
position was defined relatively to the first letter of the word. For instance, if the word “timer” was presented 
while the word “trimer” was reported, only one letter (“t”) was considered to be reported at a correct position. 
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Figure 5: Word recognition performance across the visual field 1 

For different word lengths (5,7, and 9 letters) and different positions across the visual field (words 2 

centered on -4, -2, 0, 2, and 4 slots with respect to the fixation position), we plotted: (a) Individual 3 

average word recognition rates, (b) individual average letter recognition rates considering identity 4 

and mislocation errors (a response is counted as correct if the letter is correctly identified 5 

whatever its reported location within the word), and (c) individual average identity recognition 6 

rates considering identity errors only (a response is counted as correct only if a correct 7 

identification occurs at the actual location). In other words, a correctly identified but mislocated 8 

letter is counted as an error in (b) and as a correct response in (c). Each data point represents 20 9 

trials. Raw data and predictions from our model are indicated. 10 

  11 
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 A model to predict word recognition performance based on identity and position letter 1 

uncertainties 2 

Comparison with other word recognition models 3 

Our model extends an important precursor model (Legge et al., 2001) which defined an ideal word 4 

recognition observer based on letter identity uncertainty only4. Here we took an additional step 5 

forward by including letter position uncertainty and by testing if this ideal-observer model could 6 

explain word recognition error rates and patterns of letter recognition errors that occur during foveal 7 

and parafoveal word recognition tasks. This was inspired by some recent work on letter position 8 

uncertainty (Chung & Legge, 2009) and the possibility to code letter position within a word as an 9 

absolute letter position distribution. The overlap model (Gomez et al., 2008), the spatial coding 10 

model (Davis, 2010), or the latest versions of the Bayesian Reader (Norris & Kinoshita, 2012; Norris et 11 

al., 2010) implemented letter position uncertainty in the same way and showed that it can explain 12 

some foveal word recognition priming results (for instance "leakage" of letter identity to nearby 13 

positions) that cannot be explained with relative coding of letter position. These models assume that 14 

each letter of the word is equally perceptible (only the interior letters in the spatial coding model). 15 

This is a plausible assumption for short words presented foveally, but as shown in Figure 2, letter 16 

recognition rate quickly decreases as a function of visual eccentricity. In order to model word 17 

recognition performance for foveal and parafoveal words, we argue that it is crucial not to ignore 18 

these large discrepancies concerning letter identity uncertainties. This would be equivalent to 19 

ignoring visual crowding despite its evident influence on word recognition and reading performance 20 

(Frömer et al., 2015; Pelli et al., 2007; Risse, 2014). In consequence, a complete word recognition 21 

model needs to take the visual limitations of crowding on letter identification into account. The 22 

accurate representation of identity and position uncertainty of crowded letters is the key difference 23 

between our model and other models of word recognition. 24 

                                                           
4 This model also suggests that letter recognition uncertainty is based on a prior letter recognition guess. 
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The current version of our model considers the use of letter visual information at a single point in 1 

time. This is similar to most word recognition models (Norris, 2013). A few models describe 2 

accumulation of information over time (Adelman, 2011; Norris, 2006; Norris & Kinoshita, 2012; 3 

Norris et al., 2010) and are thus more realistic. In our model we assume that at the end of the 250 ms 4 

word presentation the system will have access to the totality of the available position and identity 5 

letter information and that a lexical access will be triggered based on this information. We then 6 

exclude the possibility of successive lexical top-down feedbacks that might theoretically (despite 7 

controversies: D. Norris, McQueen, & Cutler, 2000; Twomey, Kawabata Duncan, Price, & Devlin, 8 

2011) improve letter and word recognition performance.5 9 

General Principles: A three-step identification process 10 

Experiment 1 allowed us to quantify visual information extracted in one 250 ms fixation by each 11 

observer at a letter level. This information concerns the identity and the position uncertainties of 12 

crowded letters located at different eccentricities along the horizontal median. As indicated in Figure 13 

6, we hypothesized that the identification and the localization of letters are two independent 14 

processes. Following the results of Pelli et al (2003), our model makes the strong assumption that the 15 

letters of a word are separately identified before the word recognition step. In consequence, the first 16 

step of word recognition is a letter identification first-guess for all letters of the word (what Pelli et al 17 

(2003) called a "tentative internal letter identification", a plausible mechanism to explain their 18 

experimental results).  19 

Subsequently, the lexical competition occurs at a letter level and is an optimal word discrimination 20 

based on this first-guess letter identification step. Many studies suggested that a lexical access based 21 

on identity and position letter uncertainties is a plausible process (Davis, 2010; Norris & Kinoshita, 22 

2012; Norris et al., 2010). Here the uncertainty concerning letter identity directly depends on the first 23 

                                                           
5 Note that we do not suggest here that no successive lexical feedback occurs during the word recognition 
process. We only suggest that such loops might have light effects on word recognition performance for a 250 
ms fixation task. 
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identification guess. Our second stage consists in quantifying these identity and positional 1 

uncertainties for each letter. To do so,  we consider that the model has an internal representation of 2 

its confusion errors for any letter first-guess identity, at any letter position and for any relative 3 

configuration (i.e. a confusion matrix for each position and configuration case). This knowledge is 4 

used to compute a 26-probability vector that represents the probability of any of the 26 letters of the 5 

alphabet to be displayed at the letter slot by using the prior letter recognition guess (G. E. Legge et 6 

al., 2001; Pelli et al., 2003). This vector is called the letter-identity probability vector (see Figure 6a 7 

and Figure 7). Position uncertainty represents the retinal and neuronal approximation for the spatial 8 

localization of letters (Chung & Legge, 2009; Gomez et al., 2008) and is represented by a Gaussian 9 

distribution that changes in function of visual eccentricity (see Figure 6b for spatial distribution 10 

examples). Following the concepts of the overlap model (Gomez et al., 2008; Norris et al., 2010) and 11 

the previous theories from whom it was inspired (Krueger, 1978; Ratcliff, 1981), we consider that this 12 

spatial distribution describes the perceived spatial locations of letter features before they are 13 

grouped in a single object (a letter). In consequence it is important to note the possibility for a single 14 

letter to influence the identity of different letter slots.  15 

As shown in Figure 6c, the third stage of our model assumes that human readers make optimal use of 16 

both identity and position letter-level uncertainties when they try to identify written words. In other 17 

words we assume that human readers calculate exact word probabilities from letter probabilities 18 

during lexical access. This optimal use of  letter probabilities following Bayes' theorem has been 19 

suggested by different studies in visual word recognition (Legge et al., 2001; Norris, 2006; Pelli et al., 20 

2003). 21 

Detailed mechanisms 22 

In Figure 6 we illustrated with an example the principles of our ideal-observer model, i.e. how letter 23 

identity and position uncertainty are taken independently into account in order to identify a single 24 

word, here the 5-letter word 'train'. As our goal is to predict word recognition performance for each 25 
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subject individually, we used the individual letter recognition profiles obtained from Experiment 1a 1 

and 1b to quantify identity and position uncertainties for each different subject. Note that letter 2 

recognition profiles are very different if the observed letter is an exterior letter (data from 3 

Experiment 1a) or an interior letter (data from Experiment 1b). 4 

 5 
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Figure 6: Model principles  1 

The figure shows the different steps of our word recognition ideal observer trying to identify the 5-2 

letter word 'train' displayed parafoveally (centered at slot +4):  3 

(a) Identity uncertainties for the 5 displayed letters are defined as 26-element identity probability 4 

vectors (last row). These vectors are obtained based on identity first guesses for each of the five 5 

letters (first guess for the different observed letters : 'traln'). These first guesses have been made 6 

using letter identification profiles (row 1) and confusion matrices (row 2) that correspond to the 7 

recognition rate for each letter position. For instance, the first profile in row 1 corresponds to the 8 

"x" blue profile in Figure 3: Exp 1a. 9 

(b) Position uncertainties for the 5 different letters are displayed on position maps (last row). On 10 

the left, the position map represents the classical version of the overlap model when identity 11 

uncertainty is not coded. Standard deviations on this map are obtained from the linear relationship 12 

between eccentricity and standard deviation (row 1). On the right, identity and position 13 

uncertainties are coded for each letter and represent the position map for our model. Standard 14 

deviations on this map are obtained from the linear relationship between eccentricity and 15 

standard deviation, and from the identity uncertainties obtained in (a). 16 

(c) The lexical access is done by using the position map to compute the probability of each word of 17 

the lexicon to be presented. The position map can be segmented in different number of letters (4, 18 

5, or 6 letters), to calculate word probabilities for each word of the lexicon. Finally, the word with 19 

the highest probability is the choice of our ideal observer. 20 

 21 
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 1 

Figure 7 : Confusion matrices and Identity uncertainty 2 

The figure shows how to obtain the letter-Identity Probability Vector for a letter displayed at a 3 

given slot (cf. Figure 6a). First, a confusion matrix (CM) is calculated so that the average of the 4 

values for the diagonal confusion matrix is identical to the letter recognition rate determined by 5 

the letter recognition profile (see Figure 6a). Here, the corresponding recognition rate is p = 0.37 6 

and the corresponding adjusted confusion matrix is calculated (see Appendix 4). The first-guess 7 

letter (Pelli et al, 2003) is obtained by randomly drawing from the row distribution corresponding 8 

to the displayed letter (Here, the first-guess is a 'l', whereas the letter 'i' was displayed). Finally, the 9 

letter-Identity Probability Vector is the normalized column corresponding to the first-guess letter, 10 

here the letter 'l'. 11 

 12 
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a. Identity uncertainty coding 1 

Identity uncertainty is coded by a 26-element probability vector for each letter slot. Each element of 2 

the vector represents the probability for each letter of the alphabet (a-z) to be the letter at the given 3 

slot. Following Pelli et al (2013) evidence, this probability vector is directly based on a first guess of 4 

the letter identity. 5 

Letter identity First-Guess 6 

The way for our model to obtain first-guess letters for the different letters of a word is described in 7 

Figure 6a and with more details on the top of Figure 7. To determine the first-guess for each letter, 8 

our model uses letter recognition rates and confusion matrices that correspond to each letter slot. 9 

Letter recognition profiles that have been measured in Experiments 1a and 1b give the recognition 10 

rates for the different letters of the word based on their visual hemifield, their visual eccentricity and 11 

their letter relative configuration (left-side crowded only, right-side crowded only, or both-side 12 

crowded). The confusion matrix for each letter slot is directly obtained from its letter recognition 13 

rate. It is done by transforming a general confusion matrix (obtained with the totality of trials of the 14 

five subjects, average recognition rate: 0.44) so that the average recognition rate of the new 15 

confusion matrix (the average of its diagonal values) becomes identical to the recognition rate for the 16 

specific slot (see the transformation method in Appendix 4). For instance, if the letter identification 17 

recognition for a given letter slot position is 0.2 then a confusion matrix that corresponds to 0.2 18 

successful recognition rate and 0.8 confusion rate is firstly built. Secondly, this confusion matrix is 19 

used by the ideal observer who uses the letter identity distribution given by the row of the input 20 

letter to determine the letter first-guess6. 21 

 Letter Identity Probability Vector 22 

                                                           
6 Presented letters correspond to the rows in our confusion matrix examples, and reported letters 

correspond to the columns.  
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Once we determine the letter-identity first guess 𝐿𝑖𝑑
𝑠𝑛

 for each letter observed at the slot 𝑠𝑛(𝑛 ∈1 

[1: 𝑛𝑚𝑎𝑥] for a word with 𝑛𝑚𝑎𝑥 letters), we can use Bayes' theorem to define the letter identity 2 

uncertainty given this guess, i.e. the probability 𝑃𝑖𝑑(𝐿𝑖
𝑠𝑛

|𝐿𝑖𝑑
𝑠𝑛

) for a letter 𝐿𝑖
𝑠𝑛

 (𝑖 ∈ [1: 26]) to be the 3 

input letter given the first letter identification guess 𝐿𝑖𝑑
𝑠𝑛

:  4 

 5 

(1)     𝑃𝑖𝑑(𝐿𝑖
𝑠𝑛

|𝐿𝑖𝑑
𝑠𝑛

) =
𝑃𝑖𝑑(𝐿𝑖

𝑠𝑛
)∗𝑃𝑖𝑑(𝐿𝑖𝑑

𝑠𝑛
|𝐿𝑖

𝑠𝑛
)

∑ 𝑃𝑖𝑑(𝐿𝑖
𝑠𝑛

)∗𝑃𝑖𝑑(𝐿𝑖𝑑
𝑠𝑛

|𝐿𝑗
𝑠𝑛

)𝑗

 6 

The initial probability 𝑃𝑖𝑑(𝐿𝑖
𝑠𝑛

) is the probability of a letter 𝐿𝑖
𝑠𝑛

to be displayed at the slot 𝑠𝑛 without 7 

any visual information and is computed based on the frequency and the orthographic composition of 8 

each word of the lexicon with a given word length 𝑛𝑚𝑎𝑥. The likelihood 𝑃𝑖𝑑(𝐿𝑖𝑑
𝑠𝑛

|𝐿𝑖
𝑠𝑛

) is the 9 

probability to identify the letter 𝐿𝑖𝑑
𝑠𝑛

 given the letter 𝐿𝑖
𝑠𝑛

 was presented. This probability can be 10 

directly obtained by our model because we assume that our ideal observer is aware of the errors it 11 

makes for a given slot position after a first letter guess (i.e. the observer knows its own confusion 12 

matrices). In this case letter-identity probability vector for the 26 letters of the alphabet corresponds 13 

to the column of the confusion matrix for the given letter guess as described in the second part of 14 

Figure 7. 15 

 16 

b. Position uncertainty coding 17 

Figure 6b describes the way we code letter position uncertainty in our model for each letter of the 18 

word. It is directly inspired by the overlap model (Gomez et al., 2008) and other studies (Chung & 19 

Legge, 2009; Michel & Geisler, 2011) that represents the perceived positions of letters or objects as 20 

normal distributions centered on their real positions. In our model, these distributions depend on 21 

two parameters: the slot position, and the degree of letter crowding (based on the location and the 22 

number of flankers). We used the mislocation coefficients from Experiment 1b (Recognition of letter 23 
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pentagrams), because the pentagram stimuli were more similar in terms of number of letters to the 1 

words presented in Experiment 2. For each condition, Gaussian standard deviations are obtained by 2 

using the corresponding mislocation coefficients calculated in Experiments 1a and 1b. In the overlap 3 

model, and as shown in the right part of Figure 6b, letter identity uncertainty is not taken into 4 

account and only letter position is coded. Contrary to our study, where we already measured letter 5 

position uncertainty for our subjects in Experiment 1 in order to use it in Experiment 2, the overlap 6 

model (Gomez et al., 2008) put the standard deviation value as a free parameter for each letter slot. 7 

In the classical version of the overlap model, it produces what we call a position map (left panel in 8 

Figure 6b). It is the overlap between this position map and the position map of any word of the 9 

lexicon that defines a similarity measure between words. Mathematically, in the overlap model case, 10 

the position map describes the probability 𝑃𝑝𝑜𝑠 of each letter 𝐿𝑖
𝑠𝑛

 (from a letter slot 𝑠𝑛, 𝑖 ∈ [1: 26]) to 11 

be presented at a spatial position 𝑗 as: 12 

(2)    {
𝑃𝑝𝑜𝑠(𝐿𝑖

𝑠𝑛
, 𝑗) =  N𝑠𝑛,δ𝑠𝑛

(𝑗) if Liis the presented letter at slot n

𝑃𝑝𝑜𝑠(𝐿𝑖
𝑠𝑛

, 𝑗) = 0          if Liis not the presented letter at slot n
  13 

where N𝑠𝑛,δ𝑠𝑛

 is a normal distribution centered on the slot 𝑠𝑛 with a corresponding standard 14 

deviation δ𝑠𝑛
. Finally, the total probability for each letter 𝐿𝑖 (𝑖 ∈ [1: 26]) to be presented at an 15 

interval slot 𝐽 = [𝑗1 𝑗2] would be defined as: 16 

(3)     𝑃𝑝𝑜𝑠(𝐿𝑖 , 𝐽) =  
∫ ∑ 𝑃𝑝𝑜𝑠(𝐿𝑖

𝑠𝑛
,𝑗) dj n∈[1:nmax]

𝑗2 
𝑗1 

∑ ∫ ∑ 𝑃𝑝𝑜𝑠(𝐿𝑖
𝑠𝑛

,𝑗) dj n∈[1:nmax]
𝑗2 

𝑗1 i∈[1:26]

. 17 

 18 

The difference of our model with the overlap model is that we added identity uncertainty to position 19 

uncertainty before calculating similarity between words. Position uncertainty was applied to the 26-20 

element identity probability vectors corresponding to each letter slot. In consequence, each letter of 21 

the alphabet 𝐿𝑖 (𝑖 ∈ [1: 26]) has a probability of presence  𝑃𝑖𝑑(𝐿𝑖
𝑠𝑛

|𝐿𝑖𝑑
𝑠𝑛

) that we name for 22 
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simplification 𝑃𝑖𝑑(𝐿𝑖
𝑠𝑛

) for each letter slot 𝑠𝑛. In the right part of the Figure 6b, we modified the 1 

overlap model version by combining in an independent way identity and position uncertainty values 2 

to obtain the probability 𝑃𝑝𝑜𝑠(𝐿𝑖
𝑠𝑛

, 𝑗)  of each letter 𝐿𝑖
𝑠𝑛

 (from a letter slot 𝑠𝑛) to be presented at a 3 

spatial position 𝑗 : 𝑃𝑝𝑜𝑠(𝐿𝑖
𝑠𝑛

, 𝑗)  =  𝑃𝑖𝑑(𝐿𝑖
𝑠𝑛

) ∗ N𝑠𝑛,δ𝑠𝑛

(𝑗). Finally, the total probability for a letter 𝐿𝑖 to 4 

be presented at an interval slot 𝐽 = [𝑗1 𝑗2] is similarly defined as: 5 

(4)  𝑃𝑝𝑜𝑠(𝐿𝑖 , 𝐽) =  
∫ ∑ 𝑃𝑝𝑜𝑠(𝐿𝑖

𝑠𝑛
,𝑗) dj n∈[1:nmax]

𝑗2 
𝑗1 

∑ ∫ ∑ 𝑃𝑝𝑜𝑠(𝐿𝑖
𝑠𝑛

,𝑗) dj n∈[1:nmax]
𝑗2 

𝑗1 i∈[1:26]

=  
∫ ∑ 𝑃𝑖𝑑(𝐿𝑖

𝑠𝑛
)∗N𝑠𝑛,δ𝑠𝑛

(𝑗) dj n∈[1:nmax]
𝑗2 

𝑗1 

∑ ∫ ∑ 𝑃𝑖𝑑(𝐿𝑖
𝑠𝑛

)∗N𝑠𝑛,δ𝑠𝑛
(𝑗) dj n∈[1:nmax]

𝑗2 
𝑗1 

i∈[1:26]

 6 

 7 

c. Lexical access coding 8 

The lexical access is described in Figure 7c. It follows the same multiplication principle as in (Legge et 9 

al., 2001) and in (Norris, 2006). Posterior probability is computed for each word 𝑤 of the lexicon 10 

following the equation:  11 

(5)    𝑃(𝑤|(𝐿𝑖𝑑
𝑠1

, … , 𝐿𝑖𝑑
𝑠𝑚𝑎𝑥

)) =
𝑃(𝑤)∗ 𝑃((𝐿𝑖𝑑

𝑠1
,…,𝐿𝑖𝑑

𝑠𝑚𝑎𝑥
)|𝑤)

∑ 𝑃((𝐿𝑖𝑑
𝑠1

,…,𝐿𝑖𝑑
𝑠𝑚𝑎𝑥

)|𝑤𝑤=1:𝑤𝑚𝑎𝑥

 12 

 13 

The difference with the lexical access described in (Legge et al., 2001) is that in order to identify 14 

words of different length compared to the presented word, our lexical access also follows the 15 

principles of the overlap model: The likelihood value 𝑃((𝐿𝑖𝑑
𝑠1

, … , 𝐿𝑖𝑑
𝑠𝑚𝑎𝑥

)|𝑤) for a word 𝑤 of the 16 

lexicon is calculated by segmenting the position map in spatial equal parts 𝐽1 … 𝐽𝑙𝑚𝑎𝑥
 based on the 17 

number of letters of 𝑤 = {𝑙1 … 𝑙𝑙𝑚𝑎𝑥
} : 18 

(6)   𝑃 ((𝐿𝑖𝑑
𝑠1

, … , 𝐿𝑖𝑑
𝑠𝑚𝑎𝑥

)|𝑤) =  ∏ 𝑃((𝐿𝑖𝑑
𝑠1

, … , 𝐿𝑖𝑑
𝑠𝑚𝑎𝑥

)ϲ𝐽𝑖|𝑙𝑖) 𝑖=1:𝑙𝑚𝑎𝑥  19 

We can write that: 20 
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(7) 𝑃((𝐿𝑖𝑑
𝑠1

, … , 𝐿𝑖𝑑
𝑠𝑚𝑎𝑥

)ϲ𝐽𝑖|𝑙𝑘) = 𝑃𝑝𝑜𝑠(𝑙𝑘 , 𝐽𝑖 = [𝑗𝑖 𝑗𝑖+1]) =  
∫ ∑ 𝑃𝑖𝑑(𝑙𝑘

𝑠𝑛
)∗N𝑠𝑛,δ𝑠𝑛

(𝑗) dj n∈[1:nmax]
𝑗𝑖+1 

𝑗𝑖 

∑ ∫ ∑ 𝑃𝑖𝑑(𝑙𝑘
𝑠𝑛

)∗N𝑠𝑛,δ𝑠𝑛
(𝑗) dj n∈[1:nmax]

𝑗𝑖+1 
𝑗𝑖 

i∈[1:26]

 1 

and finally: 2 

(8)   𝑃 ((𝐿𝑖𝑑
𝑠1

, … , 𝐿𝑖𝑑
𝑠𝑚𝑎𝑥

)|𝑤) = ∏
∫ ∑ 𝑃𝑖𝑑(𝑙𝑘

𝑠𝑛
)∗N𝑠𝑛,δ𝑠𝑛

(𝑗) dj n∈[1:nmax]
𝑗𝑖+1 

𝑗𝑖 

∑ ∫ ∑ 𝑃𝑖𝑑(𝑙𝑘
𝑠𝑛

)∗N𝑠𝑛,δ𝑠𝑛
(𝑗) dj n∈[1:nmax]

𝑗𝑖+1 
𝑗𝑖 

i∈[1:26]
𝑘=1:𝑙𝑚𝑎𝑥  3 

 4 

The prior probability 𝑃(𝑤) for a word 𝑤 from the lexicon is defined as the product of the logarithm 5 

of the word frequency and another probability based on both the length of the word of the lexicon 6 

and the presented word: 7 

(9)   𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑤) = log(𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑤)) ∗ 𝑃(𝑙𝑚𝑎𝑥 = 𝑛𝑚𝑎𝑥) 8 

The logarithm of the word frequency is typically used in word recognition models (Engbert, 9 

Nuthmann, Richter, & Kliegl, 2005; Reichle, Rayner, & Pollatsek, 2003) to take into account the effect 10 

of word frequency on word recognition performance for a given duration (Howes & Solomon, 1951; 11 

Whaley, 1978). The frequency probabilities used in our model come from the Lexique corpus for 12 

French lemma words (New et al., 2004). The length-difference probability represents the probability 13 

for a subject to report a word that does not have the same length as the displayed word (whereas 14 

before the trial the subject knew the number of letters of each displayed word given our 15 

experimental word-length blocked design). Probabilities for a word of the lexicon with a certain 16 

length to be reported based on the length of the displayed word are given in Appendix 5 for the 17 

different subjects and are directly used by the ideal observer. Because more than 95% of errors are 18 

1-letter length errors for our subjects, we considered that the only possible word length-errors in our 19 

model are one-letter length errors. These word length errors usually  represent between 5% and 20% 20 

of the errors, depending on the subjects and the experimental conditions. Finally our ideal observer 21 

decides that the word which is displayed is the word with the highest calculated probability. 22 



38 
 

COMPARISONS WITH WORD RECOGNITION DATA FOR EACH SUBJECT 1 

For our simulations we asked our model to identify exactly the same word stimuli that had been 2 

identified by each observer (same word identity and same location). Each word was identified 512 3 

times by our model, and we defined the corresponding average recognition rate as the model 4 

performance of the model for this word. For each simulated observer we created a particular ideal 5 

observer that was constrained by the same letter position and identity limitations as the real 6 

observer: For each subject letter identity uncertainty was defined based on the corresponding letter 7 

recognition profiles. In addition letter position uncertainty was defined based on the corresponding 8 

mislocation coefficients (Experiment 1a for single-side crowded letters and Experiment 1b for 9 

double-side crowded letters). The model was implemented in Matlab (Mathworks, Inc), and we 10 

saved the word recognition errors made by the five different ideal observers during the simulations. 11 

For each observer we compared human and model performance to assess if they matched for the 12 

effect of eccentricity on word recognition performance and for corresponding letter recognition 13 

errors. 14 

Word recognition errors 15 

Word recognition rates for behavioral and model data are shown in Figure 5a for each eccentricity, 16 

each word length, each subject, and on average across subjects. The corresponding scatterplots are 17 

shown in Figure 8a. Each point corresponds to a condition with a given eccentricity and a given word 18 

length for all subjects. They show a pretty good correlation between both values. A mixed-effects 19 

analysis was run to test the relationship between the experimental word recognition performance 20 

and the word recognition performance predicted by our model. The dependent variable was the 21 

model values; the fixed variables were the eccentricity, the word length and the experimental values; 22 

the random variable was the subject variable. Results of the mixed-effects analysis are shown in 23 

Table 3a: We indicate the estimated values of the intercept and of variable coefficients. We also 24 

indicate 95% confidence intervals for these values. Our goal was to estimate how far these values are 25 
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from a 0 value for the intercept and from a 1 value for the experimental data coefficient as would be 1 

the case if our model had perfect predictions. Statistical results show an intercept value of 0.04 (CI: [-2 

0.06; 0.14]  and a coefficient value of 0.81 for the experimental data (CI: [0.75; 0.88] ), thus 3 

suggesting an accurate prediction. 4 

 5 

Fixed effects:     

(a) Estimate Std. Error t value CI 2.5% CI 97.5% 

(Intercept) 0.04 0.05 0.72 -0.06 0.14 

Experimental rates 0.81 0.03 24.62 0.75 0.88 

Eccentricity  - 0.03 0.02 -2.10 - 0.07 0.00 

Word length 0.01 0.01 1.79 0.00 0.02 
 

     

(b) Estimate Std. Error t value CI 2.5% CI 97.5% 

(Intercept) 0.07 0.04 1.57 -0.03 0.16 

Experimental rates 0.88 0.03 25.79 0.81 0.94 

Eccentricity -0.03 0.01 -2.46 -0.05 0.00 

Word length 0.00 0.00 0.55 -0.01 0.01 

      

(c) Estimate Std. Error t value CI 2.5% CI 97.5% 

(Intercept) -0.12 0.05 -2.43 -0.21 -0.02 

Experimental rates 1.06 0.05 21.72 0.96 1.15 

Eccentricity -0.02 0.01 -2.23 -0.04 0.00 

Word length 0.00 0.00 2.07 0.00 0.01 
 6 

Tableau 3 : Fixed effects results of the linear mixed-effects models to predict model recognition rates in function of 7 
experimental letter recognition rates, eccentricity and word length as shown in Fig. 8. (a) Word recognition performance, 8 
(b) Letter within-word performance (considering mislocation and identity errors), (c) Letter within-word errors 9 
(considering identity errors only). The last two columns show the lower and upper values of 95% confidence intervals. 10 
Note the different Y-axis scales in (b) and (c) 11 
 12 

We also predicted average word recognition performance based on average visual span profiles and 13 

average mislocation coefficients (see Figure 5a). The corresponding correlation coefficient is very 14 

high (r2 = 0.92). 15 

Letter recognition errors 16 

To compare the letter errors made by the subjects with the letter errors made by the corresponding 17 

models during the word recognition task, we considered two kinds of errors: (case 1) an error was 18 
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defined either as an identity error or as a mislocation error and (case 2) an error was defined as an 1 

identify error only (i.e. a correctly identified letter was not considered as an error if its location was 2 

not correctly reported). For instance, if the word ‘balle’ was reported when the word “table” was 3 

displayed, 3 letters were correctly identified and reported at their correct position (“_a_le”) which 4 

was counted as two  errors in case 1 above. However, the reported letter “b” was not considered as 5 

an error in case 2 above as this letter was displayed in “table”, so that only one error occurred in this 6 

case.. These analyses characterize the letter errors that are made by observers during word 7 

recognition at a confusion level and at a mislocation level. For the two cases described above, Figure 8 

5b and Figure 5c show the experiment and model data  for each eccentricity, each word length, each 9 

subject, and on average across subjects. The corresponding scatterplots are shown in Figure 8b and 10 

Figure 8c. Each point corresponds to a given eccentricity and word length condition. Two Mixed-11 

effects analyses were run to test the relationship between experimental and simulated letter within-12 

word recognition performance. The dependent variable was the model values for letter recognition; 13 

the fixed variables were the eccentricity, the word length and the experimental data; the random 14 

variable was the subject variable. Results of the mixed-effects analyses are shown in Table 3b and 3c. 15 

For letter within-word performance considering mislocation and identity errors (Fig. 8.b), results 16 

suggest an accurate fit between experiment and model data. For letter within-word performance 17 

considering identity errors only (Fig. 8.c), results suggest that the model slightly underestimates 18 

experimental results.  19 

We also predicted average letter recognition performance based on average visual span profiles and 20 

average mislocation coefficients (see Figure 5b and 5c). The corresponding correlation coefficient 21 

were also very high (r2 = 0.92 and 0.86 for both types of errors). 22 

Overall, these results suggest that ideal observers make similar errors to those made by real subjects 23 

at a word- and letter-level when they try to identify words presented at foveal and parafoveal 24 

locations. However, part (c) of Figure 8 and our statistical analysis show that the model tends to 25 
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over-estimate the number of identity errors as letter recognition is under-estimated. This 1 

observation is commented in the Discussion section. 2 

 3 

  4 
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Figure 8 : Scatterplots for word recognition rates comparing experimental data and model 1 
predictions 2 

The scatterplots show the comparison between experimental data and model predictions for each 3 

presentation condition ( 5 word eccentricities x 3 word lengths), for each of the 5 subjects  4 

  5 
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 DISCUSSION 1 

The novelty of our study is the use of an accurate and individual behavioral quantification of letter 2 

identity and letter position uncertainties to test and validate a three-stage model of foveal and 3 

parafoveal word recognition.  4 

Letter identity uncertainty is usually skipped or represented in a very simplistic way in word 5 

recognition models (Norris, 2013). Here we carefully took into account the joint effects of visual 6 

acuity and visual crowding on word letters by measuring letter identification profiles and confusion 7 

matrices for each subject in experiments excluding word context. We also used these data to 8 

represent letter position uncertainty by normal distributions centered on each actual letter position 9 

(Chung & Legge, 2009) for each subject. Our model is thus unique in its accurate specification of the 10 

two types of perceptual uncertainties that limit letter recognition performance across the visual field: 11 

identity and position uncertainties (Davis, 2010; Norris & Kinoshita, 2012; Yu et al., 2014), known to 12 

be exacerbated in crowded conditions (Harrison & Bex, 2016; van den Berg et al., 2012). 13 

Knowing these uncertainties with a great accuracy allowed us to implement and test a foveal and 14 

parafoveal parameter-free word recognition model based on the following 3 stages: (1) An 15 

independent and parallel letter processing stage that precedes word identification as shown in (Pelli 16 

et al., 2003) and provides “letter guess” stage, (2) a stage where identity and positional uncertainties 17 

are calculated based on letter first guesses and (3) a lexical access stage where both letter identity 18 

and position uncertainties are combined together in order to identify written words. Comparing 19 

word recognition performance between five human and five simulated observers with corresponding 20 

letter position and identity uncertainties tend to corroborate our assumption of this 3-stage word-21 

recognition model (Figure 8a, 8b, and 8c). 22 

These results confirm previous assumptions concerning the links between foveal/parafoveal letter 23 

recognition and word recognition performance (Legge et al., 2007; Nazir et al., 1992; Stevens & 24 

Grainger, 2003). One of the strongest assumptions about this link was made by Pelli et al (Pelli et al., 25 
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2003) who suggested that humans identify foveal words (in a low contrast and noisy environment) in 1 

a non-optimal way, automatically identifying letter components of words (i.e. observers would 2 

attempt to “guess” letters before “guessing” words) before to consider the word recognition stage. 3 

The performance of our simulated observers compared to expert human readers is a strong support 4 

to this theory when letter visibility is degraded by visual eccentricity (rather than by visual noise). In 5 

supplement, we also suggest that if expert readers are not optimal in the way they identify words 6 

because of this first automatic letter guess, they look optimal in the way they use this information to 7 

identify foveal or parafoveal words: First, expert readers would improve their first letter guesses by 8 

transforming them in letter identity uncertainties using their knowledge of the confusion errors that 9 

they make when they try to identify crowded letters in the periphery (i.e. a knowledge of different 10 

confusion matrices based on the letter locations). Second, expert readers would also perfectly 11 

integrate the obtained letter identity uncertainties and the corresponding positional uncertainties. 12 

The optimal correction of the first guess is a plausible hypothesis given the billions of crowded letters 13 

recognized during expert readers' life in order to identify foveal and parafoveal words. The natural 14 

reading process, where a parafoveal word is first previewed and then usually foveated, is a perfect 15 

task for the visual system to learn the perceptual errors made while automatically identifying 16 

parafoveal letters. Finally, it is remarkable that adding another optimal stage for the use of both 17 

uncertainties during the lexical access makes the performance and the errors of the model so similar 18 

to human reader performance. 19 

Our study also suggests two important facts: (1) The amount of letter information extracted by a 20 

human reader during a 250 ms fixation is the same regardless of the relative position of a letter 21 

within a word (note that the within-word relative position must not be confused with the relative 22 

position within the interior trigram as used in experiments 1a and 1b). This suggests that there is no 23 

special advantage for letters located at a certain relative position within a word, only absolute letter 24 

eccentricity, hemifield and number of flanking letters seem to influence letter identity and position 25 

uncertainties (2) the amount of information extracted for each letter within a word seems 26 
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independent of the word length: The amount of extracted information for each individual letter (for 1 

a given configuration and eccentricity) could be similar if the word is a 5-letter, 7-letter, or 9-letter 2 

word or if 5 random letters are simultaneous reported among a letter string. These findings are a 3 

strong support to theories advocating that letter processing is parallel and independent of letter-4 

cluster or word contexts during the foveal or parafoveal identification of words (Adelman, Marquis, 5 

& Sabatos-DeVito, 2010; Davis, 2010). In addition to being mutually independent and parallel during 6 

word recognition, multi-letter recognition processing does not seem to be constrained by a form of 7 

short term visual memory (Castet, Descamps, Denis-Noël, & Colé, 2017), a direct support to the 8 

theory that letter recognition could not be similar to object recognition for expert readers. 9 

While word recognition performance and letter errors seem overall correctly predicted by our model, 10 

some differences exist when we pay attention to the patterns of letter errors made by the subjects 11 

(Figure 8c). Indeed, our model under-estimates letter-within-word recognition performance by 12 

overestimating the number of identity errors. One possible cause explaining this result may be the 13 

way we simulated the confusion matrices (called CMnew in the appendix) in our model in order to 14 

quantify identity uncertainty for each eccentricity. The computation of these new confusion matrices 15 

is based on a single confusion matrix (called CMall in the appendix) obtained by combining the letter 16 

identification errors from all 5 participants in the letter recognition tasks. Thus, any new confusion 17 

matrix does not take into account individual differences. Moreover, in a subsequent step, any new 18 

confusion matrix results from an interpolation between the CMall matrix (average recognition rate = 19 

44%) and one of two extreme matrices (either a 100% accuracy matrix or a chance-level matrix – see 20 

details in appendix). The estimated letter errors made by our model could in consequence be less 21 

accurate than human ones, leading to more letter identity errors. This could explain why the letter 22 

identity errors of the model are larger for far eccentricities (see Figure 4, where most of the model 23 

errors occur beyond +/- 6 letter slots). To solve this problem, a better method would be to extract 24 

behavioral confusion matrices based on letter recognition tasks of different difficulties/eccentricities 25 
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as done in Legge et al, 2001. However, such measurements necessitate an extremely large set of data 1 

that we did not have in this study. Another non-exclusive explanation of this difference could be due 2 

to the word superiority effect (Reicher, 1969) and the fact that letters could be better recognized in 3 

words compared to random strings. On another hand, letter mislocations could have been under-4 

estimated by our measurements based on strings of three or five letters. 5 

What are the alternative models that could be compared to the one presented here? Most of the 6 

implemented word recognition models skip the first letter guess demonstrated by Pelli et al (2003), 7 

considering the use of available letter identity information as optimal during the lexical decision step. 8 

This is the case for the interactive activation model (McClelland & Rumelhart, 1981) and its 9 

numerous inspired models. Here, we have the possibility to simulate a model that would skip Pelli’s 10 

letter first guess and would consider that the available letter identity information is extracted then 11 

used in an optimal way by human readers. The results of this “optimal” model are shown in Figure 9 12 

and compared to our experimental and model data. It is very interesting to see that this model would 13 

predict a recognition rate of almost 100% for word lengths of 5, 7 and 9 letters in all conditions of our 14 

experiments, which is clearly overestimating our experimental data. This result tends to confirm the 15 

results of Pelli et al (2003) that word recognition cannot be considered as a process making an 16 

optimal use of the available visual information: It suggests that a letter identification step 17 

automatically  precedes word recognition and should theoretically be a part of any word recognition 18 

model.  19 

In Figure 9, we also show another version of our model that would consider only letter identity 20 

uncertainty and would skip letter position uncertainty. It is the equivalent of the Legge et al model 21 

(Legge et al., 2001) applied to single word recognition. Results for the three word lengths suggest the 22 

importance of letter position uncertainty in peripheral word recognition errors: Removing letter 23 

position uncertainty from our original model decreases the error rates by at least 50% for each 24 



48 
 

condition. This result suggests that letter position uncertainty is an important and overlooked factor 1 

limiting peripheral word recognition and reading without central vision in general. 2 

 3 

 4 

Figure 9 : Comparison of different models with our experimental data. Average word recognition rate is plotted as a 5 
function of word center position for behavioral (solid lines) and model data (dashed lines).  The three plots correspond to 6 
the three word lengths used in our experiments (a) 5-letter, (b) 7-letter and (c) 9-letters.  7 

Finally, there are multiple potential applications of our work. First, our results suggest that a part of 8 

visual limitations in word recognition (and probably in natural reading as well) can be characterized 9 

by simple measurements of letter identity and position uncertainties. This corroborates recent 10 

studies that link letter recognition and reading performance in normally-sighted readers (Frömer et 11 

al., 2015; Risse, 2014), and suggest that part of individual differences (including some forms of 12 

dyslexia) in reading can be due to differences in low-level visual factors. Here, we show that simple 13 

measurements with letter strings may be sufficient to characterize these low-level factors and 14 

predict differences in word recognition performance. How could this model be applied to normal 15 

natural reading (i.e. when eyes move in order to identify the words of a sentence) ? The prior word 16 

probability in our Bayes equation for lexical processing is based on frequency and word length. It can 17 

reflect the level of activation for each word of the lexicon. A simple way to modify our model would 18 
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be (1) to introduce word predictability in the prior value and (2) to add an equation to calculate the 1 

integration between parafoveal and foveal information, for instance following a Bayesian inference 2 

as in (Norris, 2006). Like word frequency, word predictability would directly modulate the probability 3 

for a word in the lexicon to be presented independently of the available visual information. 4 

Predictions of eye movements (duration of fixations and the amplitude of saccades) and their 5 

possible interaction with lexical processing would be another step to take into consideration for a 6 

complete model (Bicknell & Levy, 2010). A model following similar principles to those of our model 7 

(Legge et al., 2002) showed the possibility to predict patterns of fixation locations during reading. In a 8 

future version, our model could similarly link fixation duration to the amount of letter information 9 

extracted in each fixation to identify words. For people with central field loss, other oculomotor 10 

factors (fixation instability, lack of saccade accuracy) or perceptual factors (presence of scotomas) 11 

would need to be added. 12 

An interesting application for our model also concerns the possibility to predict parafoveal and 13 

peripheral word recognition performance at any position across the visual field based on a possible 14 

measurement of parafoveal and peripheral letter recognition performance (not just on the horizontal 15 

median as in our experiment). This is of critical importance for patients with central field loss who 16 

cannot use their central vision and need to learn to use a new extra-foveal area (Cheung & Legge, 17 

2005). Using such a model could help the definition of extra-foveal areas that would be optimal for 18 

the parafoveal and peripheral recognition of words, a question that could be crucial in order to 19 

optimize reading performance in patients with central field loss by training them to use these new 20 

retinal areas. 21 

  22 
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Appendix 1: Adding letter mislocation errors to letter identity errors 1 

To calculate the decrease in letter recognition rate for the letter recognition profile due to letter 2 

mislocations, we used the following method: For a given mislocation coefficient, the distribution 3 

probabilities of the three successive letter positions can be easily calculated. It corresponds to three 4 

normal probability distributions that we will call 𝐷1, 𝐷2, and 𝐷3 for the three positions of the letters 5 

𝑙1, 𝑙2, and 𝑙3 (𝑙1 ≠ 𝑙2 ≠ 𝑙3) originally presented at letter slots 𝑠1, 𝑠2, and 𝑠3 (eccentricities 𝑒1, 𝑒2, 6 

and 𝑒3). In this case, if the mislocation coefficient is α, 𝐷1 is a normal distribution centered on 𝑠1 7 

with a standard deviation α ∗ 𝑒1, 𝐷2 is a normal distribution centered on 𝑠2 with a standard 8 

deviation α ∗ 𝑒2, and 𝐷3 is a normal distribution centered on 𝑠3 with a standard deviation α ∗ 𝑒3. 9 

We can then calculate the probability to perceive the letter 𝑙2 at any position within the three 10 

possible letter slots that would be: 11 

 𝑃(𝑙2 𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 𝑎𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑠𝑙𝑜𝑡𝑠) = 12 

1 − (1 − ∫
𝐷2(𝑥)

𝐷1(𝑥) + 𝐷2(𝑥) + 𝐷3(𝑥)
𝑑𝑥

𝑠1

) ∗ (1 − ∫
𝐷2(𝑥)

𝐷1(𝑥) + 𝐷2(𝑥) + 𝐷3(𝑥)
𝑑𝑥

𝑠2

)13 

∗ (1 − ∫
𝐷2(𝑥)

𝐷1(𝑥) + 𝐷2(𝑥) + 𝐷3(𝑥)
𝑑𝑥

𝑠3

) 14 

1 − 𝑃(𝑙2 𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 𝑎𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑠𝑙𝑜𝑡𝑠) is the probability that the letter 𝑙2 is not 15 

an (mislocalization) answer despite a correct identification. 16 

The probability to have 𝑙2 at the correct position (slot 𝑠2) would be: 17 

𝑃(𝑙2 𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 𝑎𝑡 𝑖𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑠𝑙𝑜𝑡) = ∫
𝐷2(𝑥)

𝐷1(𝑥) + 𝐷2(𝑥) + 𝐷3(𝑥)
𝑑𝑥

𝑠2

 18 

Therefore, for each letter recognition rate 𝑃(𝑖) from the identity letter recognition profile, we can 19 

define the corresponding letter recognition rate 𝑃2(𝑖) from the letter recognition profile that takes 20 

into account possible mislocations: 21 
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𝑃2(𝑖)1 

=  𝑃(𝑖) ∗
∫

𝐷2(𝑥)
𝐷1(𝑥) + 𝐷2(𝑥) + 𝐷3(𝑥)

𝑑𝑥
𝑠2

1 − (1 − ∫
𝐷2(𝑥)

𝐷1(𝑥) + 𝐷2(𝑥) + 𝐷3(𝑥)
𝑑𝑥

𝑠1
) ∗ (1 − ∫

𝐷2(𝑥)
𝐷1(𝑥) + 𝐷2(𝑥) + 𝐷3(𝑥)

𝑑𝑥
𝑠2

) ∗ (1 − ∫
𝐷2(𝑥)

𝐷1(𝑥) + 𝐷2(𝑥) + 𝐷3(𝑥)
𝑑𝑥

𝑠3
)

 2 

  3 
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Appendix 2: Mislocation coefficient values for Experiment 1a (Trigram presentation) and 1 

Experiment 1b (Pentagram presentation) 2 

 3 

 4 

  5 

EXP 1a   LEFT CENTER RIGHT   

S1  0.10 0.16 0.08   

S2  0 0.11 0.04   

S3  0.08 0.22 0.16   

S4  0.10 0.17 0.08   

S5  0.08 0.20 0.13   

Average  0.07 0.17 0.10   

        

Exp 1b       

S1   0.37    

S2   0.37    

S3   0.58    

S4   0.45    

S5   0.38    

Average   0.43    
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Appendix  3: Gaussian distribution characteristics for Experiment 1a and 1b: Data represents for 1 

each subject and each internal position the values for (a) the left standard deviation, (b) the right 2 

standard deviation, and (c) the amplitude. 3 

  (a) sd ( left)  (b) sd (right)              (c) amplitude 
              

EXP 1a  LEFT CENTER RIGHT  LEFT CENTER RIGHT  LEFT CENTER RIGHT  

S1  9.26 4.95 6.13  9.26 4.95 6.13  1 1 1  

S2  11.25 4.03 5.19  6.3 4.81 13.55  1 1 0.97  

S3  30 4.77 4.55  8.31 5.11 9.89  1 0.99 1  

S4  7.7 3.41 4.05  6.3 3.78 5.76  0.99 0.96 1  

S5  9.44 3.46 3.96  4.86 3.87 8.4  1 1 0.99  

Average  13.53 4.12 4.78  6.7 4.6 9.74  1 0.99 0.99  

             

Exp 1b   CENTER    CENTER    CENTER   

S1   3.04    4.22    1   

S2   4.06    3.57    0.94   

S3   2.6    3.01    0.97   

S4   3.45    3.29    0.95   

S5   3.5    3.41    0.93   

Average   4.39    3.5    0.96   

  4 
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Appendix 4: Transformation of the general confusion matrix 1 

The general confusion matrix 𝐶𝑀𝑎𝑙𝑙  is an average confusion matrix that has been defined based on 2 

the totality of the letter recognition trials for our five subjects. Its average letter recognition rate is 3 

𝑚𝑒𝑎𝑛𝑎𝑙𝑙 = 0.44 . To create the new confusion matrix 𝐶𝑀𝑛𝑒𝑤  with a different average letter 4 

recognition rate 𝑚𝑒𝑎𝑛𝑛𝑒𝑤 , we used two weighting methods using 𝐶𝑀𝑚𝑎𝑥 =  (
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

)  and 5 

𝐶𝑀𝑚𝑖𝑛 =  (

1
26⁄ ⋯ 1

26⁄

⋮ ⋱ ⋮
1

26⁄ ⋯ 1
26⁄

): 6 

 7 

- if 𝑚𝑒𝑎𝑛𝑛𝑒𝑤 >  𝑚𝑒𝑎𝑛𝑎𝑙𝑙 , we calculated 𝑝 (0 < 𝑝 < 1) so that 𝑝 ∗ 𝑚𝑒𝑎𝑛𝑎𝑙𝑙 + (1 − 𝑝) ∗ 𝑚𝑒𝑎𝑛𝑚𝑎𝑥 =8 

 𝑚𝑒𝑎𝑛𝑛𝑒𝑤 , so   𝑝 ∗ 0.44 + (1 − 𝑝) ∗ 1 =  𝑚𝑒𝑎𝑛𝑛𝑒𝑤 , and: 𝑝 =  
(1−𝑚𝑒𝑎𝑛𝑛𝑒𝑤)

0.56
 9 

Then, we calculated 𝐶𝑀𝑛𝑒𝑤 =  𝑝 ∗ 𝐶𝑀𝑎𝑙𝑙  + (1 − 𝑝) ∗ 𝐶𝑀𝑚𝑎𝑥  10 

 11 

- if 𝑚𝑒𝑎𝑛𝑛𝑒𝑤 <  𝑚𝑒𝑎𝑛𝑎𝑙𝑙 , we calculated 𝑝 (0 < 𝑝 < 1) so that 𝑝 ∗ 𝑚𝑒𝑎𝑛𝑎𝑙𝑙 + (1 − 𝑝) ∗ 𝑚𝑒𝑎𝑛𝑚𝑖𝑛 =12 

 𝑚𝑒𝑎𝑛𝑛𝑒𝑤 , so   𝑝 ∗ 0.44 + (1 − 𝑝) ∗
1

26
=  𝑚𝑒𝑎𝑛𝑛𝑒𝑤 , and: 𝑝 =  

(𝑚𝑒𝑎𝑛𝑛𝑒𝑤−
1

26
)

0.40
 13 

Then we calculated 𝐶𝑀𝑛𝑒𝑤 =  𝑝 ∗ 𝐶𝑀𝑎𝑙𝑙  + (1 − 𝑝) ∗ 𝐶𝑀𝑚𝑖𝑛  14 

 15 

 16 

 17 

 18 

 19 
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Appendix 5: Proportion of word length under-estimated, well-estimated, and over-estimated in 1 

Experiment 2 2 

 3 

 4 

Word 

presentation 
  

  

5-letter words 

  

  

  

7-letter words 

  

  

  

9-letter words 

  

  

Word length  under exact over  under exact over  under exact over   

S1  0.00 0.96 0.04  0.10 0.79 0.11  0.21 0.74 0.05   

S2  0.01 0.96 0.03  0.06 0.86 0.08  0.11 0.86 0.03   

S3  0.01 0.91 0.08  0.12 0.79 0.09  0.10 0.79 0.11   

S4  0.01 0.92 0.07  0.12 0.72 0.16  0.28 0.61 0.11   

S5  0.02 0.93 0.05  0.07 0.76 0.16  0.09 0.81 0.09   

Average  0.01 0.94 0.05  0.09 0.78 0.12  0.16 0.76 0.08   

              


