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We investigate the major differences and similarities between the two theories of gravitation, General Relativity and Quantum Gravity Dynamics, we realize that they are fundamentally distinct but they produce the same line element solutions such as the Schwarzschild's solution.

Introduction:

Quantum Mechanics: In 1925 Werner Heisenberg formulated Matrix Mechanics in order to understand the strange behavior of atomic physics. It was the first eminent and remarkable leap into modern Quantum Theory, from the rather ad-hoc 'old quantum physics' of Bohr, Einstein and Planck. The major problem of the old quantum theory was that each problem had to be first solved by the implementation of classical physics and only then could the solution be translated -by means of diverse computation rules (for instance: The correspondence principle of Bohr) into a meaningful statement in quantum physics [START_REF] Casado | A brief history of the mathematical equivalence between the two quantum mechanics[END_REF]. A brilliant but yet radical solution of Heisenberg's Matrix Mechanics satisfied the so-called 'exact quantum condition' Where Q and P are matrices and were the quantum position and quantum momentum respectively. He then used the variational principle, derived from correspondence considerations to yield certain motion equations for a general Hamiltonian H. As such, this was reduced to the algebraic problem of diagonalizing the Hamiltonian matrix, whose eigenvalues where the quantum energy levels.

Although Matrix Mechanics (MM) was able to obtain the correct energy levels, it was criticized by its rather abstract nature. The formulation of Heisenberg's MM was comparable to that of Albert Einstein's General Relativity (GR) both mathematical formalisms are able to describe the desired results using rather abstract concepts such as the manifold in GR. The difficulty and setback of such formalisms is that abstract mathematics overly complicates the computations to solve physical problems. A year later after the MM of Heisenberg in 1926 it was Erwin Schrodinger who formulated Wave Mechanics. The fundamental idea of Wave Mechanics was that the quantum phenomena had to be described adequately by satisfying a definite wavefunction .

The basic wave-mechanical problem was now that of solving this partial differential equation. The eigenvalues were now according to the Schrodinger, the quantum energy levels and finally Von Neumann showed that the two formulations are mathematically equivalent -that MM is contained within WM, and WM is contained within MM. As such quantum physics was through de Broglie's wave particle duality, Schrodinger's wave mechanics with the elaborate development by Dirac, Feynman, et al. flourished.

Gravitation:

It is a causticness irony in the literature that the first fundamental force ever discovered is the least understood force within the neat and elegant quantum theory. This is witnessed with the numerous apparently gravitational conundrums such as Dark Matter, Dark Energy, Inflation Force, Astronomical Unit Problem, Singularity Problem etc. All these problems could in principle be solved from a modification of the laws of Gravitation, much like how Mercury's Perihelion Precession was solved by replacing Newton's Universal Gravitation with Einstein's General Relativity as the standard model of Gravitation. In this paper we analyze the differences between the two theories: General Relativity and Quantum Gravity Dynamics.

Formulations and Newtonian Approximation

General Relativity

In Einstein's view of gravity, energy has the ability to disturb space and space the ability to disturb energy; this can be seen in the following action.

Where variation with respect to the metric gives the EFEs

The metric is the generalization of in special relativity, the major difference is moving from a flat space to a curved space. The Ricci Tensor is a contraction of the full curvature tensor, The Ricci scalar is a contraction of the Ricci tensor, The full Reimann curvature tensor is most compactly described in terms of the Christoffel symbols

In this expression a short hand notation for partial derivatives is employed The Christoffel symbols are expressed in terms of the metric tensor, Solving the unique, static, spherically symmetric vacuum solution of the EFE's -which correspond to the external gravitational field of a point-like particle of mass M -is the In canonical polar coordinates this gives the line element -The Schwarzschild Metric.

Here, is the space-time interval, is the radial coordinate of a test mass in a spherical coordinate system centered on a mass , its differential, and are the angular coordinate differentials, is the Schwarzschild radius calculated for a mass M as , is the gravitational constant, and is the speed of light. In GR particles follow geodesic paths in warped space-time. If we consider a metric which is almost Minkowski, but with a specific kind of small perturbation:

where is a function of the spatial coordinates If we plug this into the geodesic equation and solve for the conventional three-velocity we obtain where here represents the ordinary spatial divergence (not a covariant derivative). This is just the equation for a particle moving in a Newtonian gravitational potential . Meanwhile, we calculate the 00 component of the left-hand side of Einstein's equation

The 00 component of the right-hand side (to first order in the small quantities Φ and ρ) is just the Newtonian Limit.

In theory the idea that quantum effects; naively speaking , can explain various gravitational anomalies such as inflation, dark energy etc. cannot be discredited and we realize that the major disadvantage of this formulation is that 'it is built in the sky' without any regard for the quantum world. The formulation of gravity which follows describes large scale gravity from Quantum Theory.

Quantum Gravity Dynamics

The theory of Quantum Gravity Dynamics (QGD) is derived from Quantum Theory (QT) and it generalizes the Schrodinger equation

Into

The wave side of the equation corresponds to the Riemannian curvature of in Einstein's field equations and the Hamiltonian encapsulates the stress energy tensor.

And

This can be constructed by demanding that the total energy of the stress energy tensor to be encapsulated within the Hamitonian in the form of the Clifford number The equation of Quantum Gravity Dynamics reduces to Dirac's equation when , as such it is Lorentz invariant and obeys the principle of general covariance [START_REF] Hestenes | Clifford algebra and the interpretation of quantum mechanics[END_REF], and by using the modern techniques of Hesteness we can write the equation in a coordinate free form [START_REF] Hestenes | Clifford algebra and the interpretation of quantum mechanics[END_REF].

We use the WKB approximation and the postulate of Quantum Gravity Dynamics to write

The LLN Postulate: The WKB approximation of quantum theory (few particles) will become exact for quantum gravity (many particles).

The postulate is rather subtle, since it only postulates that for large systems, the approximation will become exactly equal. This allows us to replace the rather abstract wavefunction with momentas P and forces , as such from

We find a solution therefore Now for Special Relativity , and thus . To acquire the Newtonian Limit, we can use an extension of Birkhoff's theorem that particle behaves as if all the mass is concentrated at every Schwarzschild black hole of every object, as such Hence With . A somewhat simpler derivation could have been obtained by using the initial condition and we obtain

The advantage of Quantum Gravity Dynamics over Newtonian Gravitation and General Relativity in this regard is the higher order quantum gravitational effects, which has been showed in [START_REF]derivation of the Schwarzchild solution from quantum gravity[END_REF] that the Unruh radiation and Bekenstein-Hawking entropy are simply consequences of these higher order terms as

Summary:

General Relativity (GR) Quantum Gravity Dynamics (QGD) 

Quantization of Space and Time

General Relativity: It is a well-known problem in the literature that general relativity cannot be quantized, or at least not in a straightforward manner, as such there can be no discussions of quantization of Space and Time within General Relativity

Quantum Gravity Dynamics:

Starting from our equation of quantum gravity

We can write

We considered the time-independent solution for the quantization of space with constraints that would apply to a body such as the earth i.e. non relativistic speeds and obtained;

We then used the first Taylor approximation of  Time in a gravitational field cannot be measured at random only discrete values can be measured.

In this section we will use the equations of Quantum Gravity Dynamics (QGD) to find an equation that relates the gravitational acceleration (g) with energy.

Taking the first Taylor polynomial of

Let and

Using we find A relation between wavelength and the gravitational acceleration. From the previous section we saw how the shortest measurable distance will be Similarly Finally  Any speed in a gravitational wave can be measured, however, the maximum speed will be that which the wave itself travels  The speed of the gravitational disturbance will always be equal to c  Time and distance cannot be measured at random but only in discrete values of and

Experimental Implications and tests:

1. By experimentally finding the shortest times and distances that can be measured in an earth based laboratory

Where the value of g has to be determined in that laboratory This gives the integer with accuracy, where the 15% error is mostly due to an assumed value of , while in practice the value of g is varies from region to region.

It was shown in [START_REF] Matshaba | Derivation of Newton's Laws from the De Broglie Wave[END_REF] that time is another form of energy, given by Using We find that A glance at this equation shows how, time and gravity are different aspects of the same phenomena and that in flat space, time is caused by gravity.

The measured time depends on gravity, thus different observers will measure different quantities. The time is different from the time measured by clocks in a gravitational field, let's consider two different forms of time 1. The measure of the strength of the gravitational field, this is the "quanta" of time, it is a measure of the strength of the gravitational field and depends only on the energy/gravitational field at that point in space Near a black hole (extremely large energies) times slows down. 2. The time it takes for the planet to revolve around the sun. A measure of duration of an event.

s "duration of time" depend on not only the strength of the gravitational field (E), but on the duration, by n.

Time is another form of Energy

It will be extremely effective if we introduce a quantity which is a dimensionless quantity (22) Unlike that depend on other parameters, is invariant and has no units.

measures the true 'how long' an event took place, unlike measured time, which is frame dependent. So we have

Thought Experiment: To make this more lucid, lets propose a thought experiment. Say you are conversing with a certain well informed extra-terrestrial life form about current affairs, somewhere along this intriguing conversation, you ask the Alien, call him Bob, how long is your day, mine is 24hr, so I know what time to call you tomorrow. Bob quickly replies that his day is . A great misunderstanding would ensue. Any use of fundamental constants, is relative, without invoking manmade standards, as well as the probable scenario that they have not yet discovered that constant. The invariant scalar solves this extra-terrestrial enigma by requiring Alien Bob to provide his quantum time as well (or simply his value of g, since they are interchangeable), Bob readily gives his value of g: τ =

. With this we could use equation of time to determine the dimensionless scalar invariant, thereafter convert to hours. Observe this measure of time has no units and it is the same for all observers in the universe. If one is given to curio to further ask Alien Bob, how tall he is, from our studies in QGD, we realize that length is not an intrinsic quantity but depends mainly on gravity, just like time with their symmetry summarized as

Time Dilation and the Schwarzschild Solution from the EFE and QGD

Quantum Gravity Dynamics:

We saw how two observers will always measure the same value for the invariant . So if we have two observers A and B in different frames measuring the same length x, then; By definition of the invariant , therefore;

If we recall that the  Gravity becomes precisely defined when the uncertainty of the Schwarzschild radius has a definite value, such that Then Will be the gravitational field at the Event Horizon, this is where gravity is initially generated, then it's easy to show that (24) This is the length contraction due to gravity, similarly for time;

If we now consider the quantity

From we can write

We consider a space and time interval , between two points. But length contracts and time dilates, in spherical coordinates we will have;

Since , then

It is shown here that the time dilation -perhaps the most significant consequence of General Relativity -is not an effect solely explained by curved space but follows inevitably from Quantum Gravity Dynamics and how the solution is only approximate

. It should also be apparent to the reader that an alternate derivation to Schwarzschild solution can be obtained in [START_REF]derivation of the Schwarzchild solution from quantum gravity[END_REF] where the scalar invariant derivation is employed here due to its generality and physical significance.

General Relativity:

It should be evident to the reader that the Schwarzschild's solution takes several pages in the context of General Relativity. This makes GR to be less efficient for computations in everyday calculations and more so in computational physics where the more cumbersome General Relativity would require more computational power to match the speed of QGD for the same problem. This is a thoroughly detailed derivation of the Schwarzschild solution owed to Gary Oas.

We examine the metric of spacetime in spherical coordinates and in a general form. We will work with a west coast signature (+ ---) and set c = 1 for clarity.

Where we can express the non-zero components of the metric tensor as As we proceed we will use Greek indices to freely range over 0 through 3 ) we will later use Latin indices to refer to only spatial indices . We now generalize this to a more general form,

The functions are to be determined but can be limited by the properties of our solution:

1. Spherical symmetry. The functions should not depend on θ of φ. Also, the angular part of the metric should have . In fact, we can limit this to without loss of generality. 2. Static. The functions are not functions of time. Also, any derivatives with respect to time of any metric component vanishes. Thus U = U(r), V = V (r). 3. Vacuum solution. Outside of the object that is the source of curvature there is no matter or energy. Thus the form of Einstein's solution will simplify a lot in the next section. Thus are limited general metric is ,

The metric components are explicitly,

The metric tensor is symmetric and has the following property,

Where in the last expression we introduced the Einstein summation convention. In general,

Thus we see we can find the metric tensor with raised indices

To simplify the numerous calculations to come we establish some short cuts utilizing the properties of our solution.

1. Any derivatives with respect to time vanish. That is, any term like . Thus we can quickly dismiss many terms. 2. All off diagonal terms vanish. That is, any if . 3. The Christoffel symbols are symmetric in the lower two indices. 4. The first term in the general expression of must be on the diagonal. Notice that the second upper index is to be summed over. However we can set it at the outset because the two upper indices must match, otherwise the whole expression vanishes. 5. Also note that only derivatives of U, V with respect to r (or 1) are non-vanishing.

We will proceed term by term, in order of the upper index and recall Greek indices run over all four values while Latin only run over 1,2,3. and our non-vanishing metric components are Summarizing the non-vanishing terms (where prime denotes a derivative with respect to r),

The Ricci Tensor:

Now that we have the Christoffel symbols we can start to assemble the Ricci tensor and scalar. We can write the Ricci tensor in terms of the Christoffel symbols, First we establish the off diagonal terms of the metric tensor.

All terms vanish, thus

After some considerations we realize that

The significance of all this is that thus The Ricci scalar is obtained from the Ricci tensor Since the Schwarzschild solution concerns with the exterior spacetime of a spherically symmetric body, Einstein's equation takes a simpler form Since the last equation is not independent of the previous, then, from And after a few more iterations, we arrive at We get the Schwarzschild metric, One more requirement will help us pin down the remaining undetermined parameter C. We expect that in the limit that M -→ 0 we should again obtain the flat metric. We see that this would result when C = 0 so we hypothesize that it is proportional to mass (as there are no other free parameters this must be the case). To get the exact form we need to compare the results for geodesics for this metric for a very small test mass when the source mass, M, is weak. Or comparing Einstein's equation in the low mass limit and noting we must regain Newton's law will also work. The result is that and yields the full Schwarzschild metric.

Conclusion and Discussions:

The prominence of this work has been to show the distinctions between the two theories of Gravitation; General relativity and Quantum Gravity Dynamics. We realized that at the present state General Relativity is superior to Quantum Gravity Dynamics in that the Kerr Solution which took about 50 years in General Relativity to be discovered has not yet been formulated in Quantum Gravity Dynamics. It was also demonstrated that Quantum Gravity Dynamics has numerous advantages over General Relativity:

 QGD is a theory of quantum gravity, in that it explains gravity within the framework of Quantum Theory  The Unruh Radiation and Bekenstein-Hawking Entropy are effortlessly derived within QGD and are demonstrated to be due to higher order terms in Newtonian Gravitation  The theory offers a solution to dark matter problem, and finally  The theory shows how space and time cannot be measured as continuous entities but rather as discrete values.

It is for these reasons that the predictions of QGD (Dark Matter and Quantization of distance and time) must be tested in order to determine the superior theory.

  Any length that is not in D space does not correspond to a physical length and can never be measured in an earth based laboratory. This illustrates that our concept of length in a gravitational field is not arbitrary, length can only be measured in discrete quantas.
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