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BUILDING ARBITRAGE-FREE IMPLIED VOLATILITY:
SINKHORN’S ALGORITHM AND VARIANTS

HADRIEN DE MARCH AND PIERRE HENRY-LABORDÈRE

Abstract. We consider the classical problem of building an arbitrage-free implied volatility
surface from bid-ask quotes. We design a fast numerical procedure, for which we prove the
convergence, based on the Sinkhorn algorithm that has been recently used to solve efficiently
(martingale) optimal transport problems.

1. Introduction

Building arbitrage-free implied volatility surfaces from bid-ask quotes is a long-standing issue. In
particular, this is needed for market-makers in equity Vanillas. This is also needed for pricing
exotic options when using risk-neutral models calibrated to Vanillas, as for the local volatility
model [9] or for local stochastic volatility models [19]. In this purpose, various approaches have
been considered. We review in the next section some of them and highlight their main drawbacks.
The definite answer should be able to:

(1) produce calendar/butterfly arbitrage-free surfaces.
(2) fit market quotes perfectly within bid/ask spreads.
(3) fit smiles before earnings (with Mexican hat-shape curves).
(4) fit quickly.

1.1. Review of literature. For completeness, we recall that the market price of a call option
C(T,K) ∈ [S0,∞) with maturity T and strike K is quoted in terms of an implied volatility
σBS(T,K) defined as the constant volatility σBS(T,K) := σ such that C(T,K) = BS(S0,K, σ

√
T )

where S0 is the spot price value at t = 0 and BS denotes the Black-Scholes formula:

BS(S0,K, ω) := S0N(d+)−KN(d−).

Here d± =
lnS0
K

ω ± ω
2 and N(x) is the standard normal cumulative distribution function. As

BS ∈ [S0,∞) is strictly increasing in ω, the implied volatility is unique. In the following, for ease
of notations, we assume zero rates/dividends (see however remark (2.3) for explanations how to
include exactly cash/yield dividends (and deterministic rates) in this framework).

1.1.1. SVM-based parameterization. We consider the implied volatility associated to a stochastic
volatility model (in short SVM), depending on some parameters: initial volatility, spot-volatility
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2 HADRIEN DE MARCH AND PIERRE HENRY-LABORDÈRE

correlation, volatility-of-volatility, etc.... For example, one can consider an SVM, defined by an
homogeneous Itô diffusion:

dSt = C(St)atdWt, dat = (· · · )dt+ σ(at)dZt, d〈Z,W 〉t = ρdt.

As coming from a risk-neural model (i.e., S· is a (local) martingale – see [14] for sufficient and
necessary conditions on the coefficients of the diffusion with C(s) := s for imposing that S is not
only a local martingale but a true martingale), the resulting implied volatility , σBS(·, ·), for which
E[(ST − K)+] = BS(S0,K, σBS(T,K)

√
T ), is arbitrage-free. In practice, the implied volatility

can not be derived in closed-form and therefore the calibration of the parameters of the SVM on
market prices can be quite time-consuming. In order to speed up this optimization, one can rely
on the approximation of the implied volatility in the short-maturity regime. At the first-order in
the maturity T , one can derive a generic formula [14], obtained by using short-time asymptotics
of the heat kernel on Cartan-Hadamard manifolds, for which the cut-locus is empty:

σBS(T,K) ∼
T→0

ln K
S0∫K

S0
dx

a∗(x)

(
1 + a1(K)T +O(T 2)

)
,

a∗(x) := argminadgeo(x, a|S0, a0),(1.1)

where the geodesic distance dgeo is

dgeo(y2, x2|y1, x1) :=
∫ y2

y1

F (y′)√
F (y′)− C2

dy′,

with C defined by the equation x2 − x1 =
∫ y2
y1

C√
F (y′)−C2

dy′, and F (y) := 2
a(y)2(1−ρ2) , with the

new coordinates x :=
∫ S
S0

dz
C(z) −ρ

∫ a
a0

u
σ(u)du and y :=

√
1− ρ2

∫ a
a0

u
σ(u)du. The lengthly expression

for a1(K) is not reported and can be found in [14]. As an example, one can cite the SABR
parameterization for which C(S) := Sβ with β ∈ [0, 1) and at is a log-normal process. The
resulting manifold is the 2d hyperbolic space H2. Let us remark that similar formulas can be also
derived using large deviations (see [10] for extensive references).

By construction, the implied volatility is arbitrage-free in strike as the parametrization comes from
a risk-neutral model. However, the maturity T should be “small” in order to preserve the validity
of our approximate formula (1.1). The arbitrability in maturity is not ensured as the calibration is
performed by considering separately each time slice. Moreover, as our formula depends on a finite
number of parameters, it is not possible to match exactly market prices. From a numerical point
of view, the calibration involves a non-convex optimization, which is not guaranteed to converge.
This solution only solves (4) and partially (1).

1.1.2. Parametric form. Another approach is to start directly with a parametrization of the implied
volatility. As an example, commonly used by practitioners, we have the SVI parametrization [12]

σBS(T,K) = a+ b
(
ρ(k −m) +

√
(k −m)2 + σ2

)
,

depending on five parameters a, b, ρ,m and σ. Note that this parametrization can be linked with
the large maturity limit of the implied volatility in the Heston model. Despite its simplicity, the
arbitrage-freeness in strike and maturity is not guaranteed, see however [11] for some conditions
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on the term-structures of the parameters (in maturity) which ensure an arbitrage-free surface [12].
These limitations restrict the space of admissible parameters and therefore this solution only solves
(4) and partially (1).

1.1.3. Discrete local volatility. One approach to impose the arbitrage-freeness in strike and matu-
rity is to start (again) with a non-homogenous risk-neutral model. One can use a discrete local
volatility [1]. Given a time grid of expiries 0 := t0 < t1 < · · · < tn, call prices c(ti, ·) at time ti+1

are then taken to be solutions of the ODE:[
1− 1

2∆tiσi(k)2∂2
k

]
c(ti+1, k) = c(ti, k), c(0, k) = (S0 − k)+.

By using for σi(·) a piecewise constant function, we can try to match market prices of call options.
As pointed in [18], “this method uses a fully implicit finite-difference scheme to compute the
probability density of the underlying, stepping forward in time and calibrating model parameters
by a least-squares algorithm. Since the size of time step is determined by market quotes, it cannot
be reduced arbitrarily, so that, while very instructive, this method clearly has limited accuracy”.
For example, with this algorithm, we were not able to calibrate equity Vanillas exhibiting a Mexican
hat form (see Figure 1), just before earning dates. Some improvements have been considered in
[18].

1.2. Contents. In this paper, we will build a solution satisfying (1-2-3-4) by construction. The
conditions (1-2-3) are automatically (and exactly) satisfied as we construct a non-parametric den-
sity fitting the Vanillas. Our approach is close in spirit to the “Weighted Monte-Carlo approach”
based on an entropic penalisation as introduced in [2]. However, our approach takes in account the
calendar spread requirement and therefore is able to produce (arbitrage-free) Vanillas at different
maturities increasing in the convex order. Furthermore, by relying on the Sinkhorn’s algorithm
that has been popularized recently for solving quickly optimal transportation problems ([7], [20]),
we present a Sinkhorn’s algorithm compatible with the convex order property (see also [13], [8]).
The convergence of our algorithm is then proved (see Theorem 4.5) with a fast decay rate and
therefore our numerical scheme solves (4). We conclude with numerous examples of fitting to
Equity Vanillas for various stocks and indices.

2. Axiomatics: Formulation

Prices of call options for different maturities t1 ≤ · · · ≤ tn and different strikes are quoted on
the market. We denote by CKi the market prices of maturity ti and strike K ∈ Ki. The set
Ki corresponds to the strikes K1

i < · · · < Kni
i . Building an arbitrage-free implied volatility is

equivalent to find a martingale probability measure P∗ in Rn+ that matches (exactly) this market
prices: P∗ should belong to the convex set

Mn =
{
P : EP[(Sti −K)+] = CKi , ∀K ∈ Ki, EP[Sti |S0, · · · , Sti−1 ] = Sti−1 , i = 1, · · · , n

}
.
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For use below, we set Cji := CK
j
i

i and

VSji := Cj−1
i − Cji

Ki
j −K

j−1
i

1 ≤ j ≤ ni,

VS0
i := 1,

CVSj1,j2
i1,i2

:= Cj2
i2
− Cj1

i1
,

CBSj,j1,j2
i,i1,i2

:=
CV Sj1,j

i1,i

Kj1
i1
−Kj

i

−
CV Sj,j2

i,i2

Kj
i −K

j2
i2

.

For completeness, we cite the following result that gives necessary and sufficient conditions for
arbitrage-freeness:

Lemma 2.1 (see [5, 6] for proofs). Mn is non-empty if and only if for all i = 1, · · · , n

(1)

Cji ≥ 0, 0 ≤ j ≤ ni,

VSji ∈ [0, 1], 1 ≤ j ≤ ni,

VSji > 0 if ∀ 1 ≤ j ≤ ni, and Cj−1
i > 0.

(2) ∀i1, i2 ∈ [1, n] s.t. i1 < j2, ∀j1 ∈ [0, ni1 ], ∀j2 ∈ [0,mi2 ]

CVSj1,j2
i1,i2

≥ 0, if Kj1
i1
≥ Kj2

i2
,

CVSj1,j2
i1,i2

> 0, if Kj1
i1
> Kj2

i2
and Cj1

i1
> 0.

(3) ∀i, i1, i2 ∈ [1, n] s.t. i ≤ i1 and i ≤ i2, ∀j ∈ [0, ni], ∀j2 ∈ [0, ni2 ] s.t. Kj1
i1
< Kj

i < Kj2
i2
:

CBSj,j1,j2
i,i1,i2

≥ 0.

Markovian solutions. As a simplification, we could assume that P∗ should satisfy a Markov
property and therefore belongs instead to the subset of Mn:

MMarkov
n = {P : EP[(Sti −K)+] = CKi , ∀K ∈ Ki, EP[Sti |Sti−1 ] = Sti−1 , i = 1, · · · , n}.

Lemma 2.2. MMarkov
n is non-empty if and only Mn is non-empty. In particular if the market

data (Ci)1≤i≤n are arbitrage-free, there can be attained by a martingale measure in MMarkov
n .

Proof.

=⇒: obvious.

⇐= Take P ∈ Mn. Then by disintegration, define the marginals Pi−1 and Pi, which are in the
convex order. From Kellerer’s theorem, we can build a martingale measure Pi−1,i with marginals
Pi−1 and Pi (see e.g. [17] for an explicit construction). By gluing these measures, we get an element
in MMarkov

n .
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2.1. Sequential construction. From the Markov property, an element P ∈ MMarkov
n could be

written as

P(ds1, · · · , dsn) = P1(ds1)
n∏
i=2

Pi−1,i(dsi|dsi−1),

where the probability P1 and (Pi−1,i)i=1,··· ,n are constructed as follows:

(1) We choose an P1 ∈MMarkov
1 (a specific example is constructed in Section 3) with

MMarkov
1 = {P : EP[(St1 −K)+] = CK1 , ∀K ∈ K1, EP[St1 |S0] = S0}.

(2) We choose an P1,2 ∈MMarkov
1,2 (a specific example is constructed in Section 4) with

MMarkov
1,2 (P1) = {P : St1

P∼ P1, EP[(St2 −K)+] = CK2 , EP[St2 |St1 ] = St1}.

From P1,2 ∈MMarkov
1,2 , we define P2 as

P2(ds2) =
∫

P1,2(ds1, ds2).

(3) We iterate step (2) to obtain (Pi−1,i)i=3,··· ,n.

2.2. Adding bid-ask prices. In practice, market prices are quoted with bid-ask prices. Our
discussion can be generalized to this case by replacing MMarkov

1 and MMarkov
1,2 by

M̃Markov
1 = {P : CK,mid

1 ≤ EP[(St1 −K)+] ≤ CK,ask
1 , ∀K ∈ K1, EP[St1 |S0] = S0}.

M̃Markov
1,2 (P1) = {P : S1 P∼ P1, EP[St2 |St1 ] = St1 , C

K,bid
2 ≤ EP[(St2 −K)+] ≤ CK,ask

2 , ∀K ∈ K2}.

We consider this setup in the next sections. The arbitrage-free conditions, which ensure that
M̃Markov

1,2 (P1) is non-empty, are given in [6].

Remark 2.3 (Cash/yield dividends). We assume here that the spot process St jumps down by the
dividend amounts Di(St−

i
) = βi St−

i
+ αi, paid at the dates 0 < tn < . . . t2 < t1 < T , and that

between dividend dates it follows a diffusion. By setting St = A(t) +B(t)Xt (see [15] for formulas
for A and B as functions of (αi, βi)), one obtains that Xt is a martingale. Call options on S

can therefore be written as call options on X. One can then applies our construction to X and
deduce then call options on S. Using this mapping, we will assume no dividends/zero rates in the
following.

3. Building an element in M̃Markov
1

For the sake of simplicity for the rest of this paper, we denote S1 := St1 and S2 := St2 . An element
P∗ ∈ M̃Markov

1 can be obtained by minimizing a convex lower semi-continuous functional F1:

inf
P∈M̃Markov

1

F1(P) = F1(P∗), P∗ ∈ M̃Markov
1 .(3.2)

As M̃Markov
1 is weakly compact from Prokhorov’s theorem, we deduce that the infimum is attained

by an unique P∗.
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Remark 3.1 (Reconstructing M̃Markov
1 ). Note that as M̃Markov

1 is weakly compact, it can be char-
acterized by its extremal points from Krein-Milman’s theorem:

M̃Markov
1 = Ext(M̃Markov

1 ).

An extremal point can then be built by maximizing F1:

sup
P∈M̃Markov

1

F1(P) = F1(P∗), P∗ ∈ Ext(M̃Markov
1 ).

Therefore, by choosing the appropriate functional, one can enumerate in principle all extremal
points and therefore reconstruct the space M̃Markov

1 by some linear convex mixtures of the extremal
points.

3.1. Choice of F1. We choose (ωK)K∈K1 ∈ Rn1
+ and consider the regularized Kullback-Leibler

functional:

F1(P) := EP
[
ln dP
dm0

− 1
]

+
∑
K∈K1

1
2ωK

(
EP[(S1 −K)+]− CK,mid

1
)2
,

depending on a prior measure m0 on R+, left unspecified for the moment. Let us notice that by
introducing dual variables vK ∈ R, for each K ∈ K1, therefore F1 may also be written as

F1(P) := EP
[
ln dP
dm0

− 1
]
− inf
v∈RK1

∑
K∈K1

vK

(
CK,mid

1 − EP[(S1 −K)+]
)

+ 1
2v

2
KωK .

Proposition 3.2. The minimization (3.2) is attained by P∗ ∈ M̃Markov
1 with

P∗(ds) = m0(ds)e−
∑

K∈K1
V ∗K(s−K)+−u∗0−h

∗
0(s−S0)

,

where (V ∗K)K∈K1 , u0, and h∗0 solves the strictly convex unconstrained minimization:

inf
V ∈RK1 ,u0,h0∈R

G1(u0, h0, V ),

where G1(u0, h0, V ) := u0S0 +
∑
K∈K1

f
K,bid/ask
1 (VK , ωK) +

∑
K∈K1

VKCK,mid
1

+Em0 [e−
∑

K∈K1
VK(S1−K)+−u0−h0(S1−S0)],

and f
K,bid/ask
i (V, ω) := V 2ω

2 , if ∆CK,bid
i ≤ V ω ≤ ∆CK,ask

i

:= ∆CK,ask
i V − (∆CK,ask

i
)2

2ω , if ∆CK,ask
i < V ω

:= ∆CK,bid
i V − (∆CK,bid

i
)2

2ω , if ∆CK,bid
i > V ω.

Here ∆Cbid/ask
i := Cbid/ask

i − Cmid
i .

This proposition without bid/ask prices originates from [2].
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Proof. By introducing dual variables ubid, uask ∈ (R+)K1 for the inequalities for the call prices
at bid and at ask, inf G1 may be written as

inf G1 = − inf
ubid,uask∈(R+)K1 ,vK∈R,u0,h0∈R

u0S0 +
∑
K∈K1

uask
K Cask

K − ubid
K Cbid

K + vKCmid
K

+1
2v

2
KωK + Em0 [e−

∑
K∈K

(uask
K −u

bid
K +vK)(S1−K)+−u0−h0(S1−S0)].

By setting v := V − uask + ubid, the function, to be minimized, is equivalent to

u0S0 +
∑
K∈K1

uask
K (CK,ask

1 − CK,mid
1 )− ubid

K (CK,bid
1 − CK,mid

1 ) + VKCK,mid
1

+ 1
2(V − uask + ubid)2 · ω + Em0

[
e
−
∑

K∈K
VK(S1−K)+−h0S1

]
.

We observe that the minimization over uask and ubid can be exactly performed and we obtain
finally an unconstrained optimization over V .

Dependence on the prior. We consider two prior densities P0 and P′0. By definition, the vanillas
constructed using the two priors satisfy the equations for all K ∈ K1:

CK,mid
1 + ∂V f(VK , ωK)− Cmodel(K,P0) = 0

CK,mid
1 + ∂V f(V ′K , ωK)− Cmodel(K,P′0) = 0

By taking the difference, we get

|Cmodel(K,P′0)− Cmodel(K,P0)| = |∂V f(V ′K , ωK)− ∂V f(VK , ωK)|

≤ ωK |V ′K − VK |.

3.2. Numerical examples. In practice, we take ωK = Λ|CK,ask
1 − CK,bid

1 | with Λ = 0.1 in our
numerical examples. The minimization over V and ω is performed using a modified Newton method
and a user-supplied Hessian. In order to have easier computations thanks to the closed formulas
displayed in Remark 4.2, we use as a reference measure m0(ds1) := P0(ds1)1s1≥0, where P0 is the
Gaussian measure N (S0, σ

2
0t1), properly normalized on R+, and where σ0 is chosen to minimize

the criterion:

inf
σ0

∑
K∈K1

(
EP0 [(S1 −K)+]− CK,mid

1

)2
= inf

σ0

∑
K∈K1

(
B(S0, t1,K, σ0)− CK,mid

1

)2
,

with

B(s, t,K, σ) := 1
2(s−K)erf

(
K − s√

2σ
√
t

)
+ σ
√
te−

(K−s)2

2σ2t
√

2π
.

In Figure 1, we show examples of calibration with two stocks (Google & Amazon) near earnings.
By construction, the fit is perfect (within the bid/ask spread) and arbitrage-free. In Figure 3.2,
we consider two indices (Dax & Euro Stoxx 50).
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Figure 1. Computational time = 0.1 s. Left: GOOGLE. Right: AMAZON. The
plots denoted “Model no reg” mean that we have chosen Λ =∞.
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Figure 2. Computational time = 0.1 s. Left: DAX. Right: EURO STOXX 50.

4. Building an element in M̃Markov
12 (P1)

Proceeding as in the previous section, we consider the minimization problem:

inf
P∈M̃Markov

12 (P1)
EP
[
ln dP
dm0

− 1
]

+
∑
K∈K2

1
2ωK

(
EP[(S2 −K)+]− CK,mid

2

)2
,(4.3)

depending on a prior measure m0 on (R+)2, left unspecified for the moment. Proceeding similarly
as in Proposition 3.2 (therefore the proof is not reported, see also [16] for details), we obtain

Proposition 4.1 (see [16] for a proof). The minimization (4.3) is attained by P∗ ∈ M̃Markov
12 (P1)

with

P∗(ds1, ds2) = m0(ds1, ds2)e−
∑

K∈K2
V ∗K(s2−K)+−u∗1(s1)−h∗1(s1)(s2−s1)

,

where u∗1, h∗1, and V ∗ solve the strictly convex unconstrained minimization:

inf
V ∈RK2 ,u1∈L1(P1),h1∈C0(R+)

G12(u1, h1, V ),
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where

G12(u1, h1, V ) := EP1
[u1(S1)] +

∑
K∈K2

f
K,bid/ask
2 (VK , ωK) +

∑
K∈K2

VKCK,mid
2

+Em0

[
e
−
∑

K∈K2
VK(S2−K)+−u1(S1)−h(S1)(S2−S1)

]
.

Vanishing the gradient with respect to u1, we obtain the equation:

e−u1(s1) = P1(s1)
Iu(h(s1), V (·), s1)(4.4)

where we have set

Iu(θ, V, s1) :=
∫
e
−
∑

K∈K2
VK(s2−K)+−θ(s2−s1)P0(s1, ds2) = eu1(s1)∂u1(s1)G12(u1, h1, V ),

Vanishing the gradient with respect to h(s1), we obtain the equation: h(s1) := θ is the unique zero
of

Ih(θ, V, s1) := 0,(4.5)

where

Ih(θ, V, s1) :=
∫
e
−
∑

K∈K2
VK(s2−K)+−θ(s2−s1)(s2 − s1)m0(s1, ds2) = eu1(s1)∂h1(s1)G12(u1, h1, V ).

In practice, this may be done thanks to a 1D Newton algorithm on the function h1(s1) 7→
minh(s1) G12(u1, h1, V ), see Subsections 3.3.3 and 3.3.5 in [8].

For use below, we also introduce for all Q ∈ K2:

IQ(h(S1), V, S1) :=
∫

(s2 −Q)+e
−
∑

K∈K2
VK(s2−K)+−θ(s2−s1)

m0(s1, ds2) = eu1(s1)∂VQG12(u1, h1, V ).

4.1. Speed-up: Choice of a prior. We take m0(ds1, ds2) = 1s1≥0Pσ0(ds1)P(ds2|s1) where
Pσ0(ds1) is a normal density with volatility σ0 and under P:

S2 = S1 + σ(S1)
√
t2 − t1Z, Z ∈ N(0, 1), σ(S1) = σ0S

β
1 ,

where σ0 and β are two parameters. We choose σ0 and β by minimizing the least-square problem:

inf
σ0,β

∑
K∈K2

(
Em0 [(S2 −K)+]− CK,mid

2

)2

= inf
σ0,β

∑
K∈K2

(
EPσ0 [B(S1, t2 − t1,K, σ0S

β
1 )]− CK,mid

2

)2
,

with

B(s, t,K, σ) := 1
2(s−K)erf

(
K − s√

2σ
√
t

)
+ σ
√
te−

(K−s)2

2σ2t
√

2π
.

As conditional on S1, S2 is normally-distribution, the integration over s2 can be performed exactly
in the definition of the functions Iu, Ih and IQ, defined above, and they can be written in closed-
form.
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Remark 4.2 (Explicit formulas). For completeness, we give the formulas, obtained with Math-
ematica, that we use in our numerical implementation. Let A := K1−s1

σ , B := K2−s1
σ and

σ := σ(s1)
√
t2 − t1. We have∫ K2

K1

eαs2P(ds2|s1) = 1
2e

α2σ2
2 +αs1

(
erf
(
B − ασ√

2

)
− erf

(
A− ασ√

2

))
.

2
√

2π
∫ K2

K1

eαs2(s2 − s1)P(ds2|s1) = σeαs1

(
2eAασ−A

2
2 −

√
2πασeα

2σ2
2 erf

(
A− ασ√

2

)
+
√

2πασeα
2σ2
2 erf

(
B − ασ√

2

)
− 2eαBσ−B

2
2

)
.

2
√

2π
∫ K2

K1

eαs2(s2 −K)P(ds2|s1) = eαs1

(
2σeAασ−A

2
2 −

√
2πeα

2σ2
2 erf

(
A− ασ√

2

)(
ασ2 −K + s1

)
+
√

2πeα
2σ2
2 erf

(
B − ασ√

2

)(
ασ2 −K + s1

)
− 2σeαBσ−B

2
2

)
.

2
√

2π
∫ K2

K1

eα(s2−s1)(s2 −K)(s2 −Q)P(ds2|s1) = 2σ
(
eαAσ−

A2
2 (σ(ασ +A)−K −Q+ 2s1)

+e− 1
2B(B−2ασ)(−σ(ασ +B) +K +Q− 2s1)

)
+
√

2πeα
2σ2
2

(
erf
(
B − ασ√

2

)
− erf

(
A− ασ√

2

))(
σ2 −

(
−ασ2 +K − s1

) (
ασ2 −Q+ s1

))
.

The last formula is used for computing the hessian ∂2
V G12.

Remark 4.3 (Other formulas). Note that we have

Em0

[
e
−
∑

K∈K2
VK(S2−K)+−h(S1)(S2−S1)−u1(S1)

]
= EPσ0

[
Iu(h(S1), V (·), S1)e−u1(S1)

]
.

and

EPσ0

[
(S2 −Q)+e

−
∑

K∈K2
VK(S2−K)+−h(S1)(S2−S1)−u1(S1)

]
= EPσ0

[
IQ(h(S1), V (·), S1)e−u1(S1)

]
.

4.2. Sinkhorn’s algorithm in a nutshell. In order to be able to apply the next algorithm, we
need to be able to do computations for each s1. In order to do it in practice, we need to introduce an
approximation P1

X1
≈ P1 that is supported on a finite grid X1 ⊂ R+. As our goal is estimating call

prices, that are naturally 1−Lipschitz, this approximation should be made in terms of Wasserstein
distance W1. For the sake of simplicity, we approximate P1 by P1

X1
:= 1

Z

∑
s1∈X1

dP1

dx (s1)1s1 , where
Z :=

∑
s1∈X1

dP1

dx (s1) and X1 := {a+ k
n−1 (b− a) : 0 ≤ k ≤ n− 1}, where a < b and n ≥ 2 are well

chosen parameters in order to achieve convergence.

I Start with h1 := 0, u1 := 0 and VK := 0 for all K ∈ K2.
II Projection on (u1, h1): Solve equations (4.4) and (4.5) for all s1 ∈ X1.
III Solve the strictly convex smooth finite-dimensional unconstrained minimization over V :

inf
VK∈R

G12(u1, h, V ),
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with

G12(u1, h, V ) := EP1
[u1] +

∑
K∈K2

f
K,bid/ask
2 (VK , ωK) +

∑
K∈K2

VKCK,mid
2

+Em0

[
e
−
∑

K∈K2
VK(S2−K)+−h(S1)(S2−S1)−u1(S1)

]
.

From Remark 4.3, this can be written exactly as

G12(u1, h1, V ) = EP1
[u1] +

∑
K∈K2

fK,bid/ask(VK , ωK) +
∑
K∈K2

VKCK,mid
2(4.6)

+EPσ0 [Iu(h(S1), V, S1)e−u1(S1)].

The gradients with respect to V can also be written as

∂VKf
K,bid/ask(VK , ωK) + CK,mid

2 − EPσ0 [IK(h(S1), V, S1)e−u1(S1)].(4.7)

Similar formula for the hessian with respect to V .
IV Iterate steps (II)-(III) until convergence.
V Compute then the smile at t2 for all K ∈ R+ (this defines the marginal P2):

EP∗ [(S2 −K)+] = EPσ0 [IK(h(S1), V, S1)e−u1(S1)]

≈ EP1
X1 [IK(h(S1), V, S1)e−u1(S1)].

4.3. Convergence. We define 0 < K1 < ... < Kk such that K2 := {Ki : 1 ≤ i ≤ k}. Furthermore,
we abuse notation and denote P1 for P1

X1
.

Definition 4.4. We say that
(
P1,
(
CK,bid/ask

2

)
K∈K2

)
is non-degenerate if up to denotingK0 := 0,

and setting C0,bid
2 = C0,ask

2 = EP1 [S1], we may find C ∈ Rk+1 such that for all 0 ≤ i ≤ k, we
have CKi,bid

2 ≤ Ci ≤ CKi,ask
2 , (M−1

callC)i > 0, and if i > 0 then Ci > EP1 [(S1 − Ki)+], where
Mcall :=

(
(Kj+1 −Ki)+)

0≤i,j≤k, with the convention (Kk+1 −Ki)+ := 1 for all i.

Theorem 4.5 (Convergence rate). The map G12 reaches a minimum G∗12 at some x∗ ∈ R2|X1|+|K2|

if and only if
(
P1,
(
CK,bid/ask

2

)
K∈K2

)
is non-degenerate.

In this case, let x0 = (u0, h0, V0) ∈ R2|X1|+|K2|, and for n ≥ 0, let the nth iteration of the well-
defined martingale Sinkhorn algorithm:

xn+1/2 :=
(
un, hn, Vn+1 := argmin

ψ
G12(un, hn, ·)

)
,

xn+1 :=
(
un+1 := argmin

u
G12(·, ·, Vn+1), hn+1 := argmin

h
G12(·, ·, Vn+1), Vn+1

)
.

Then we may find 0 < λ < 1, and M > 0 such that

G12(xn)− G∗12 ≤ λn
(
G12(x0)− G∗12

)
,

|xn − x∗| ≤M
√
λ
n

and
∣∣∇G12(xn)

∣∣ ≤M√λn,
for all n ≥ 0.
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Proof. For the sake of simplicity of notations, we denote G12 by G.

Step 1: We assume that
(
P1,
(
CK,bid/ask

2

)
K∈K2

)
is non-degenerate. Let C ∈ R|K2| be a valid

call prices vector. Let us prove that G reaches a minimum at some x∗ ∈ R2|X1|+|K2|. First we
prove that lim|x|→∞ G(x) = ∞. Let (xn)n≥0 ⊂ R2|X1|+|K2| such that |xn| −→ ∞. We assume
for contradiction that up to replacing xn by a subsequence, G(xn) is bounded from above by
A > 0. Then up to taking a subsequence of (xn), we may assume that xn

|xn| converges to some
x ∈ U :=

{
x′ ∈ R2|X1|+|K2|

}
. Now let ∆ :=

(
(δS1=s1)s1∈X1 , (δS1=x(S2−S1))x∈X1 , ((S2−K)+)K∈K2

)
so that for x ∈ R2|X1|+|K2|, we have

x ·∆ =
∑
s1∈X1

xS1 + x|X1|+S1(S2 − S1) +
∑
K∈K2

x2|X1|+K(S2 −K)+.

Notice that C is the subgradient of V 7−→
∑
K∈K2

f
K,bid/ask
2 (VK , ωK) +

∑
K∈K2

VKCK,mid
2 at some

point. Let V 0 ∈ R|K2| be a point at which this gradient is reached. Then if we denote b :=∑
K∈K2

f
K,bid/ask
2 (V 0

K , ωK) +
∑
K∈K2

V 0
KCK,mid

2 and a :=
(
(P1[{s1}])s1∈X1 , 0, C

)
, we have

G(x) ≥ a · x+ b+
∫
e−xn·∆dm0.(4.8)

Case 1: We may find (s1, s2) ∈ X1×R+ such that x ·∆(s1, s2) < 0. As x ·∆(s1, ·) is affine by parts,
we may find ε > 0 and an open interval s2 ∈ I ⊂ R such that x ·∆(s1, ·) ≤ −ε on I. Then for x′

close enough to x, we have x′ ·∆(s1, ·) ≤ − 1
2ε on I. Then by (4.8), for n large enough we have

G(xn) ≥ a · xn + b+
∫
e−xn·∆dm0

≥ a · xn + b+m0[{y1} × I]e|xn| 12 ε.

Therefore, by the fact that m0[{s1} × I] > 0, we have that G(xn) diverges to ∞ as |xn| −→ ∞, a
contradiction.

Case 2: x · ∆ ≥ 0 on X1 × R+. Then G(xn) ≥ a · xn + b = |xn|a · xn|xn| + b. As we assumed that
G(xn) is bounded and xn

|xn| converges to x, we have

a · x ≤ 0.(4.9)

We denote (u, h, V ) := x and we have x · ∆ := u + h⊗ +
∑
K∈K2

VK(S2 − K)+. Let ψ :=∑
K∈K2

VK(S2 − K)+. We have ψ ≥ −u − h⊗. Then if we denote f , the convex hull of ψ on
R+, we have ψ ≥ f and for all s1 ∈ X1, we have f ≥ −u(s1) − h(s1) · (S2 − s1). Therefore,
f ≥ −u from last functional inequality computed in S2 = s1. By the fact that f is the convex
hull of ψ, which is piecewise affine, f is also piecewise affine on the same intervals. Therefore, we
may find λi ≥ 0 for all 1 ≤ i ≤ k such that f = f(0) + ∇f(0) +

∑
i=1 λi(S2 − Ki)+. Now let

pi(S1) := 1S1≥Ki , p :=
∑k
i=1 λipi, and θi(S1, S2) := (S2 −Ki)+ − (S1 −Ki)+ − pi(S1) · (S2 − S1),

we have x ·∆ = (u+ f)⊕ (ψ − f) + (h+ p)⊗ + θ. Thus we have

a · x = EP1
[u+ f ] +

k∑
i=0

µiCi +
k∑
i=1

λi
(
Ci − EP1

[(S2 −Ki)+]
)
,
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where (ψ − f)(S2) =
∑k
i=0 µi(S2 − Ki)+. Notice that (ψ − f) ≥ 0, therefore for all 0 ≤ i ≤ k,

γi = (ψ − f)(Ki+1) = (M t
callµ)i ≥ 0, then µ = (M t

call)−1γ, and µ · C = (M−1
callC) · γ. Finally,

a · x = EP1
[u+ f ] + (M−1

callC) · γ +
k∑
i=1

λi
(
Ci − EP1

[(S2 −Ki)+]
)
.

By (4.9), a·x is non-positive, and the term on the right is non-negative by non-degeneracy, therefore
a · x = 0, and therefore λ1 = ... = λk = 0, γ = 0, and u + f = 0. Therefore u = −f , ψ = f , and
f(s) = f(0) +∇f(0) · s. Therefore, x ·∆ = (h + p)⊗ +∇f(0)(S2 − S1). Therefore, as x ·∆ ≥ 0,
we have that h + p + ∇f(0) = 0. Finally x · ∆ = 0 on X1 × R+, and finally x = 0, which is a
contradiction as x ∈ U .

We proved that lim|x|→∞ G(x) =∞. As G is convex, it reaches a minimum at some x∗ ∈ R2|X1|+|K2|.

Step 2: Now we assume that G reaches a minimum. Let us denote x∗ this minimum and let

P∗(ds1, ds2) = m0(ds1, ds2)e−
∑

K∈K2
V ∗K(s2−K)+−u∗1(s1)−h∗1(s1)(s2−s1). By Proposition 4.1, we have

that P∗ ∈ M̃Markov
12 (P1). Notice also that the measure P∗ is equivalent to the measure m0. There-

fore, for all i the map θi is not equal to 0, P∗−a.e. and therefore EP∗ [θi] > 0. Finally we observe
that if we denote Ci := EP∗ [(S2 − K)+], then we have EP∗ [θi] = Ci − EP1 [(S1 − K)+] from the
martingale property of P∗, and CKi,bid

2 ≤ Ci ≤ CKi,ask
2 as P∗ ∈ M̃Markov

12 (P1). Now for 1 ≤ i ≤ k,
let fi the piecewise affine map such that f is zero on [0,Ki−1], with f(Ki) = 1, affine on [Ki−1,Ki],
[Ki,Ki+1], and [Ki+1,∞), if i 6= k, and fk is constant equal to 1 on [Kk,∞]. We observe that for
all i, fi is non-negative and non-zero P∗−a.e. Furthermore, 0 < EP∗ [fi] = (M−1

callC)i. We proved

that
(
P1,
(
CK,bid/ask

2

)
K∈K2

)
is non-degenerate.

Step 3: The convergence result stems from an indirect application of Theorem 5.2 in [3]. By a
direct application of this theorem we get that

G(xk)− G(x∗) ≤
(

1− σ
min(L1,L2)

)n−1 (
G(x0)− G(x∗)

)
,(4.10)

with L1 (resp. L2) is the Lipschitz constant of the V−gradient (resp. (u, h)−gradient) of G, and
σ is the strong convexity parameter of G. Furthermore, the strong convexity gives that

|xk − x∗| ≤
√

2
σ

(
G(xk)− G(x∗)

) 1
2 .(4.11)

Finally, by definition of L1 and L2, we have

|∇G(xk)| ≤ (L1 + L2)|xk − x∗|.(4.12)

However the gradient ∇G is locally but not globally Lipschitz, nor G strongly convex. Therefore
we need to refine the theorem by looking carefully at where these constants are used in its proof.

Step 4: The constant L1 is used for Lemma 5.1 in [3]. We need for all k ≥ 0 to have G(xk) −
G(xk+1/2) ≥ 1

2L1
|∇G(xk)|2. We want to find C,L > 0 such that G(xk) − G

(
xk − C∇G(xk)

)
≥

1
2L |∇G(xk)|, then L may be use to replace L1 in the final step of the proof of Lemma 5.1 in [3]. By
the fact that lim|x|→∞ G(x) = ∞, the set C(x0) := {x ∈ R2|X1|+|K2| : G(x) ≤ G(x0)} is compact.
Then ∇G is bounded on C(x0). Therefore we may findM1 > 0 such that for all k, we have |∇G(xk)·
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∆| ≤M1(1+ |S2|). Furthermore, let F (C) := sup(u,x)∈U×C(x0)
∫ 1

0
∫

(u ·∆)e−x·∆etCM1(1+|S2|)dm0dt.
We have

G(xk)− G
(
xk − C∇G(xk), hk

)
= ∇G(xk) ·

(
− C∇G(xk)

)
−C2

∫ 1

0
(1− t)D2G

(
xk − tC∇G(xk)

)(
∇G(xk)

)2
dt

= C|∇G(xk)|2

−C2
∫ 1

0
(1− t)

∫
(∇G(xk) ·∆)2e−xk·∆etC∇G(xk)·∆dm0dt

≥ C|∇G(xk)|2 − C2|∇G(xk)|2F (C)

=
(
C − C2F (C)

)
|∇G(xk)|2.

As F is non-decreasing finite, then when C −→ 0 we have C−C2F (C)
C −→ 1. Then for C small

enough, let L := 1
2
(
C−C2F (C)

) > 0. We get

G(xk)− G
(
xk − C∇G(xk)

)
≥ 1

2L |∇G(xk)|2.

Step 5: The constant σ is used to get the result from (3.21) in [3]. Then we just need the inequality

G(y) ≥ G(x) +∇G(x) · (y − x) + σ

2 |y − x|
2,(4.13)

to hold for some y = x∗ and x = xk for all k ≥ 0. Now we give a lower bound for σ. The map
(u, x) 7−→ D2G(x)u2 =

∫
(u ·∆)2e−x·∆dm0 > 0 is continuous on U × C(x0) compact, therefore it

has a lower bound σ > 0. This constant also works for (4.11). Similar, sup(u,x)∈U×C(x0)D
2G(x)u2

may replace L1 + L2 from (4.12).

Step 6: Finally, as we focus on the L1 optimization phase, we may replace n − 1 by n in the
convergence formula (4.10), see the proof of Theorem 5.2 in [3].

Now the existence of M > 0 stems from the facts that G(xk) − G(x∗) ≥ 1
2σ|xk − x

∗|2, and
|∇G(xk)| ≤ L|xk − x∗|.

The result is proved. �

Remark 4.6. Notice that

∇G =
∑
s1∈X1

(
P1
X1

[{s1}]− P ◦ (S1)−1[{s1}]
)
es1 +

∑
s1∈X1

(
EP[S2 − s1, S1 = s1]

)
e|X1|+s1

+
k∑
i=1

(
CK − EP[(S2 −Ki)+]

)
e2|X1|+i,

where CK ∈ [CK,bid
2 , CK,ask

2 ], and (ei)1≤i≤2|X1|+|K2| is the canonical basis. Therefore, this gradient
is a crucial estimate of the mismatch of P in terms of first marginal, martingale property, and
correctness of the call prices it gives.

Remark 4.7. Minimizing G using the Sinkhorn algorithm is classical but we may obtain bet-
ter stability and speed of convergence by using an implied Newton minimization algorithm, see
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Figure 4. DANONE.

3.3.5. in [8]. This algorithm consists in applying a truncated Newton algorithm on G̃(V ) :=
minu1,h1 G(u1, h1, V ) which is also strictly convex and smooth, see Proposition 3.2 in [8]. This
algorithm should converge faster as we need anyways to use a Newton algorithm of the same
dimension |K2| for the partial minimization in V during phase (III) of the Sinkhorn algorithm.

Remark 4.8. Even though the criterion from Definition 4.4 may not be easy to compute, trying
to solve the entropic minimization reveals if a solution exists as otherwise the map G diverges to
−∞. In this case there is an arbitrage between the call prices and P1.

Remark 4.9. As we solve the problem building Pi+1 after having built Pi, we may encounter a
situation in which the probability P1 may not be compatible with the call prices available in the
intervals [CK,bid

2 , CK,ask
2 ]. In this case it is necessary to solve the problem globally by including all

the times in the value function and applying a wider Sinkhorn algorithm, minimizing on each time
one after the other like it is done for example in [4]. We have not encountered this situation in our
numerical experiments using real market datas.

4.4. Numerical examples. Below, we list some numerical examples involving numerous equity
stocks/indices with various liquidity/maturities: Socíété Générale, Danone, Apple, SP500.
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Figure 6. SP500.
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