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Abstract: In this paper, we revisit the parameter learning problem, namely the estimation of
model parameters for Dynamic Bayesian Networks (DBNs). DBNs are directed graphical mod-
els of stochastic processes that encompasses and generalize Hidden Markov models (HMMs)
and Linear Dynamical Systems (LDSs). Whenever we apply these models to economics and
finance, we are forced to make some modeling assumptions about the state dynamics and
the graph topology (the DBN structure). These assumptions may be incorrectly specified and
contain some additional noise compared to reality. Trying to use a best fit approach through
maximum likelihood estimation may miss this point and try to fit at any price these models
on data. We present here a new methodology that takes a radical point of view and instead
focus on the final efficiency of our model. Parameters are hence estimated in terms of their
efficiency rather than their distributional fit to the data. The resulting optimization problem
that consists in finding the optimal parameters is a hard problem. We rely on Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) method to tackle this issue. We apply this
method to the seminal problem of trend detection in financial markets. We see on numerical
results that the resulting parameters seem less error prone to over fitting than traditional
moving average cross over trend detection and perform better. The method developed here
for algorithmic trading is general. It can be applied to other real case applications whenever
there is no physical law underlying our DBNs.

Keywords and phrases: DBNs, CMA ES, trend detection, systematic trading.

1. Introduction

As stated in Jordan (2012) (first sentence of the preface), Graphical models are a marriage between
probability theory and graph theory. They are very powerful as they provide a condensed way to
represent variables dependencies. The graphical representation allows not only compacting infor-
mation. It also provides a powerful formalism for representing and reasoning under uncertainty.
It can also represent knowledge about the dynamics of the variables and hence leads to Dynamic
Bayesian Networks.

DBNs extend the notion of Bayesian networks as they represents the evolution of the random
variables as a function of a discrete sequence, usually a time steps sequence. Hence they are the
natural tool to model discrete time chronological observation. As we progress over the sequence, the
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dynamic terms represented by the model parameters may change while the network architecture
stays.The representation as a probabilistic graphical model structured in an acyclic oriented graph
enables calculating efficiently conditional probabilities related to model variables.

A typical example of a DBN would be, in medical diagnosis, to determine the probability for a
patient to have or host a disease according to his symptoms. This system is made ”dynamic” by
incorporating the fact that the probability of being sick at time t also depends on past probabilities.
Intuitively, this means that risk evolves over time.

1.1. DBN and DAG

More formally, a Bayesian network is a directed acyclic graph (DAG) denoted by G = (V,E),
where V is the set of nodes and E the set of edges connecting the nodes. A conditional probability
distribution is associated to each node x, and the factorized joint probability on the set of V is
given by

P(V ) =
∏
x∈V

P
(
x
∣∣ πx )

where the parents of a node x are denoted by πx. A dynamic Bayesian Network (DBN) is defined
as a pair (B0, B2d) where B0 is a traditional Bayesian network representing the initial or a priori
distribution of random variables, that can be related to time 0 and where B2d is a dynamic two-step
Bayesian network describing the transition from time t−1 to time t with the probability P(xt

∣∣xt−1)
for any node x belonging to V , in a directed acyclic graph G = (V,E). The joined probability for
two sets of nodes Vt and Vt−1 is given by

P(Vt
∣∣Vt−1) =

∏
x∈V,πx∈V

P(xt
∣∣ πxt))

The factorized joint probability law is computed by tracing the sequence in the graph over the time
sequence. If we denote by T the total length of the path and by P(V0) the joined probability of the
initial network B0, the probability to go from V0 to T is given by:

P(V0:T ) = P(V0)× P (V1:T ) =
∏
x∈V

P(x0
∣∣ π(x0))×

T∏
t=1

∏
x∈V

P(xt
∣∣ π(xt))

A dynamic Bayesian network thus respects the Markov property, which expresses that conditional
distributions at time t depend only on the state at time t−1. Dynamic Bayesian networks generalize
probabilistic models such as Hidden Markov Model (HMM), and Kalman filter (KF). Apart from
the mainstream Kalman filter and HMM models whose DAG is given by 1, more complex DBN
can include multi input network with connection between observable and previous latent variables
as provided by 2. Another example is the combination of Kalman Filtering (KF) model and echo
neural network (ESN) as provided by figure 3.

1.2. EM method and its drawback

A majority of DBNs exploit latent variables to make the model more powerful in terms of expla-
nation power. By defining a joint distribution over visible and latent variables, the corresponding
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Latent x1 x2 x3 xt

z1 z2 z3 ztObserved

. . .

Fig 1: State Space model as a Bayesian Probabilistic Graphical model. Each vertical slice represents
a time step. Nodes in white represent unobservable or latent variables called the states and denoted
by xt while nodes in gray observable ones and are called the spaces and denoted by zt. Each
arrow indicates that there is a relationship between the arrow originating node and the arrow
targeting node. Dots indicate that there is many time steps. The central dot line is to emphasize the
fundamental difference between latent and observed variables. This State Space model encompasses
HMM and KF models

Latent x1 x2 x3 . . . xt

y1 y2 y3 yt

z1 z2 z3 ztzt−1Observed

. . .

. . .

Fig 2: Example of a dynamic Bayesian network where we have some variables that are observed
and some that are latent (non observable). We can see the DAG structure of the network and the
Markovian property. This graphical model is more complexed than the traditional state space model
as it includes in each time step multi input variables as well as connection between past observable
variables and latent variables

distribution of the observed variables is obtained by marginalization. This has the nice property
to express relatively complex distributions in terms of more tractable joint distributions over the
expanded variable space. One well-known example of a hidden variable model is the mixture distri-
bution in which the hidden variable is the discrete component label that provides the corresponding
distribution for the observable variable. The static version leads to Gaussian mixture model and
more generally the factor analysis model while the dynamic version leads to HMM and in continu-
ous time space to Kalman filter model. However, this does not solve the issue of learning the model
parameters. The typical approach is to use the Expectation Maximization (EM) approach to find
the gradient coordinate ascent of the Kullback Leibler divergence. The EM algorithm was initially
developed for mixture models in particular Gaussian mixtures but also other natural laws from the
exponential family such as Poisson, binomial, multinomial and exponential distributions as early
as in Hartley (958). It was only once the link between latent variable and Kalman filter models
was made that it became obvious that this could also be applied to Kalman and extended Kalman
filter (see Cappe et al. (2010) or Einicke et al. (2010)). The EM method is sofar the state of the
art method for learning DBNs as it provides an efficient way to find model parameters in a fraction
of seconds (see for instance Neal and Hinton (1999), but also Pfeifer and Protzel (2018), Li and
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Latent x0 x1 x2 x3 xt

y0 y1 y2 y3 yt

z1 z2 z3 ztObserved

. . .

. . .

Fig 3: Example of another dynamic Bayesian network combining Kalman filter (KF) model (and
echo neural networks (ESN). This is another example of a multi-input several multi-outputs
(MISMO) forecasting model. It is used frequently in time series forecast (see for instance Xiao
et al. (2017))

McCormick (2017), Robin et al. (2017), Levine (2018)).
However, we argue that although this is a nice method, it misses the point that the DBN is

an imprecise model of the reality especially when tackling problem like time series forecasting.
In particular, whenever we apply DBNs to economics and finance, we are forced to make some
modeling assumptions about the state dynamics and the graph topology (the DBN structure).
These assumptions may be incorrectly specified and contain some additional noise compared to
reality. Trying to use a best fit approach through maximum likelihood estimation and Kullback
Leibler divergence optimization may miss this point and try to fit at any price these models on
data. We present here a new methodology that takes a radical point of view and instead focus on
the final efficiency of our model. Parameters are hence estimated in terms of their efficiency rather
than their distributional fit to the data. Our approach relies on Information Geometry optimization
and find a local optimum for our final cost function. Our key findings are the following:

• it is possible to directly optimize the cost function with an Evolution Strategies (ES) and in
particular the CMA-ES method.
• this approach is a good alternative to the EM approach as it does not fit at all cost the

distribution of our network to reality but rather look at model efficiency measured by model
cost.
• numerical results shows that the overfitting issue of this approach due to local minimum is

less than the EM approach as it incorporates somehow that the model dynamics is incorrectly
specified and too simple.

The rest of the paper is organize as follows. Section 2 presents the overall framework and the
resulting optimization problem. Section 3 provides some theoretical arguments that favor Evolution
Strategies based on Information Geometry Optimization (IGO). Section 4 provides an example in
finance of such a method. The method outperforms traditional trend following method by far. We
finally conclude about possible extensions of this method and further experiments.
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Fig 4: Learnig process for our DBN. Once an architecture has been decided, we combine this with
a strategy to create an systematic algorithm. We select an objective function that provides an
Evaluation function. We use an optimization method to find the best parameters according to our
evaluation function. We monitor overall performance of the trading strategy on a separate test set
to validate scarce overfitting.

2. Settings

Suppose we have determined an architecture for our network. This may be any of the networks
provided by figures 1, 2, 3, or even something different. This model is used for some specific goal. In
our case, it will be used to be able to forecast some times series. But this is not our final objective!
We are interested in using this forecast to perform a specific action. In the case of a financial
markets algorithmic trading strategy, we will use the forecast to make an informed decision and
decide whether we should buy or sell a given financial asset. To make things simple, we will assume
that when we take our decision, we have in mind a pre-determined strategy. We could imagine a
dynamic approach where as time passes we change our objective once we have executed our entry
order. For the sake of simplicity, we will assume that whenever we issue an order to trade, we have
determined a profit target and a stop loss level for our trade. Although we may have simplified a
little bit our setting, this assumption is quite realistic and done by many practitioners as stated in
various papers (Labadie and Lehalle (2010), Giuseppe Di Graziano (2014), Fung (2017), or Vezeris
et al. (2018)). The profit target ensures that the strategy locks in real money the profit realized
and is materialized by a limit order. The stop loss that is physically generated by a stop order
safeguards the overall risk by limiting losses whenever the market backfires and contradicts the
presumed pattern.

Our final goal at the end of the day is to generate a profitable strategy that does not suffer
from overfitting. This is really what matters for us. Hence the EM approach that tackles the overall
fit of our model to reality may be inappropriate. This may look quite simple but there are here
some real complexity. The overall objective function is often a complex function. In our case, we
are interested in maximizing the overall Sharpe ratio of our trading strategy over time and check
that the observed performance on the training set does not vanish on the test set. The optimization
problem that we are facing is not a simple one as we want to maximize our objective function with
respect to our DBN model. The overall goal is summarized in figure 4
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2.0.1. CMA-ES estimation

One of the key point in the selected architecture is the optimization method. In our case, the decision
strategy works as follows. If the DBN predicts that the next value of the time series is higher than
the last know one plus an offset, we decide to buy the financial asset. Similarly if the DBN predicts
that the next value is lower with a sell action. Whenever we issue an order to trade, we also set a
profit target and a stop loss in percentage of the last know value. We stay in position until either
the trade reaches the profit target and we exit with a profit or it touches the stop loss level and we
exit with a loss. The objective function to measure the overall performance of the model is the so
called Sharpe ratio. This is a usual performance metric that was established in Sharpe (1966). It is
defined in our case as we target absolute performance as trades gains and losses average over the
standard deviation. This number is easy to derive and intuitive to understand as it computes the
ratio of the excess return over the strategy standard deviation.

Clearly our objective function is non convex and quite complex to evaluate. It has some dis-
continuities whenever we reaches critical values. Hence, we rely on CMA-ES algorithm to optimize
this evaluation function. CMA ES name stands for covariance matrix adaptation evolution strategy.
As it points out, it is an evolution strategy optimization method, meaning that it is a derivative
free method that can accommodate non convex optimization problem. The terminology covariance
matrix alludes to the fact that the exploration of new points is based on a multinomial distribution
whose covariance matrix is progressively determined at each iteration. Hence the covariance matrix
adapts in a sense to the sampling space, contracts in dimension that are useless and expands in
dimension where natural gradient is steep. This algorithm has led to a large number of papers and
articles and we refer to Varelas et al. (2018), Ollivier et al. (2017), Akimoto et al. (2016), Akimoto
et al. (2015), Hansen and Auger (2014), Auger and Hansen (2012), Hansen and Auger (2011), Auger
and Hansen (2009), Igel et al. (2007), Auger et al. (2004) to cite a few of the numerous articles
around CMA-ES. We also refer the reader to the excellent wikipedia page Wikipedia (2018).

CMA-ES relies on two main principles in the exploration of admissible solution for our optimiza-
tion problem. First, it relies on a multi variate normal distribution as this is the maximum entropy
distribution given the first two moments. The mean of the multi variate distribution is updated at
each step in order to maximize the likelihood of finding a successful candidate. The second moment,
the covariance matrix of the distribution is also updated at each step to increase the likelihood of
successful search steps. These updates can be interpreted as a natural gradient descent Ollivier
et al. (2017).

Second, we retain two paths of the successive distribution mean, called search or evolution paths.
The underlying idea is keep significant information about the correlation between consecutive steps.
If consecutive steps are taken in a similar direction, the evolution paths become long. The evolution
paths are exploited in two ways. We use the first path is to compute the covariance matrix to
increase variance in favorable directions and hence increase convergence speed. The second path is
used to control step size and to make consecutive movements of the distribution mean orthogonal
in expectation. The goal of this step-size control is to prevent premature convergence yet obtaining
fast convergence to a local optimum.

From a practical point of view, we assume that we have a general cost function that depends on
our Bayesian graphical model denoted by Φ(θ) where θ are the parameters of our Kalman filter. Our
cost function is the Sharpe ratio corresponding to a generic trend detection strategy whose signal
is generated by our Bayesian graphical model that is underneath a Kalman filter. This approach
is more developed in a companion paper Benhamou (2018) but we will give here the general idea.
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Instead of computing the parameter of our Bayesian graphical model using the EM approach, we
would like to find the parameters θmax that maximize our cost function Φ(θ). Because our cost
function is to enter a long trade with a predetermined target level and a given stop loss whenever
our Bayesian graphical model anticipates a price risen and similarly to enter a short trade whenever
our prediction based on Bayesian graphical model is a downside movement, our trading strategy
is not convex neither smooth. It is a full binary function and generates spike whenever there is a
trade. Moreover, our final criterium is to use the Sharpe ratio of the resulting trading strategy to
compare the efficiency of our parameters. This is way too complicated for traditional optimization
method, and we need to rely on Black box optimization techniques like CMA-ES.

3. Properties

3.1. Maximum entropy

One of the theoretical justification of the CMA-ES algorithm is that the multivariate normal dis-
tribution for sampling new candidate solutions is the maximum entropy probability distribution
over Rn, which translates that it is the sample distribution with the minimal amount of prior in-
formation. In adddition, the CMA-ES implements a stochastic variable-metric method related to
the Fisher information. For the particular case of a convex-quadratic objective function given by

f(x) = 1
2 (x− x∗)TH(x− x∗) (3.1)

the covariance matrix Ck in the algorithm progressively becomes proportional to the inverse of
the Hessian matrix H.

3.2. Maximum-likelihood updates

The update for the mean and covariance matrix are built such as to maximize the empirical likeli-
hood. This is in a sense quite similar to the Expectation maximization method as the updates are
done first by computing the expectation and then taking the maximum, which leads to

mk+1 = arg max
m

µ∑
i=1

wi log pN (xi:λ|m) (3.2)

where the log-likelihood of x assuming a multivariate normal distribution with mean m and any
positive definite covariance matrix C is given by

log pN (x) = −1

2
log det(2πC)− 1

2
(x−m)TC−1(x−m) (3.3)

The algorithm also assumes that the update of rthe mean is independent of the covariance matrix.
This is very true for any diagonal matrix C since the coordinate-wise maximizer is independent of
a scaling factor. A rotation argument explains why the CMA-ES generalizes this assumption to any
type of covariance matrix. As for the rank-µ update of the covariance matrix, we also maximimze
alog-likelihood in given by:

µ∑
i=1

wi
xi:λ −mk

σk

(
xi:λ −mk

σk

)T
= arg max

C

µ∑
i=1

wi log pN

(
xi:λ −mk

σk

∣∣∣∣C) (3.4)

for µ ≥ n.
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3.3. Natural gradient descent

Another interesting feature that provides theoretical justification for the CMA-ES algorithm and
that was found by various authors (Akimoto et al. (2010, 2012), Glasmachers et al. (2010) and also
the seminal work of Ollivier et al. (2017)) is that the parameters update realizes a natural gradient
descent in the space of the sample distributions that is given by

∇θE(f(x)|θ) = ∇θ
∫
Rn
f(x)p(x)dx (3.5)

=

∫
Rn
f(x)∇θp(x)dx (3.6)

=

∫
Rn
f(x)p(x)∇θ ln p(x)dx (3.7)

= E(f(x)∇θ ln p(x|θ)) (3.8)

where p(x) = p(x|θ) is the conditional probability of observing x, given the parameter vector

θ. The score function is given by ∇θ ln p(x|θ) = ∇θp(x)
p(x) . It measures the relative sensitivity of the

density p with respect to the parameter θ. The Fisher information is simply its variance. The
information geometry natural gradient implied by the Fisher information Riemannian manifold is
then the standard gradients previously multiplied by the inverse of the Fisher information matrix
as the Fisher information matrix is precisely the kernel of the implied metric. It is therefore given
by

∇̃E(f(x)|θ) = F−1θ ∇θE(f(x)|θ) (3.9)

It is worth noticing that the Fisher information matrix makes the expression somehow indepen-
dent of the chosen parameterization for θ making the algorithm invariant to reparametrization. We
therefore need to compute

∇̃E(f(x)|θ) = F−1θ E(f(x)∇θ ln p(x|θ)) (3.10)

= E(f(x)F−1θ ∇θ ln p(x|θ)) (3.11)

This is somehow computed by a natural Monte Carlo simulation given by

∇̃Êθ(f) := −
λ∑
i=1

preference weight︷︸︸︷
wi F−1θ ∇θ ln p(xi:λ|θ)︸ ︷︷ ︸

candidate direction from xi:λ

with wi = −f(xi:λ)/λ (3.12)

This leads in particular to see the update as natural gradient as follows:

mk+1 = mk − [∇̃Êθ(f)]1,...,n︸ ︷︷ ︸
natural gradient for mean

(3.13)

= mk +

λ∑
i=1

wi(xi:λ −mk) (3.14)
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and

Ck+1 = Ck + c1(pcp
T
c − Ck)− cµ mat(

natural gradient for covariance matrix︷ ︸︸ ︷
[∇̃Êθ(f)]n+1,...,n+n2) (3.15)

= Ck + c1(pcp
T
c − Ck) + cµ

λ∑
i=1

wi

(
xi:λ −mk

σk

(
xi:λ −mk

σk

)T
− Ck

)
(3.16)

4. Numerical Results

In order to test the efficiency of the CMA Es method for Learning parameters in DBNs, we look at
the following trend following algorithm based on the following DBN network where we enter a long
trade if the prediction of our dynamic Bayesian network forecast is above the close of the previous
day and a short trade if the prediction is below the close of the previous day. For each comparison,
we add an offset µ to avoid triggering false alarm signals. We set for each trade a pre-determined
profit and stop loss target in ticks. These parameters are optimized in order to provide the best
sharpe ratio over the train period together with the DBN parameters given by

We take the following HMM model for our DBN (for more details, see Benhamou (2018))

xt+1 = Φxt + ct + wt (4.1)

zt = Hxt + vt (4.2)

The noise process wt is assumed to follow a multi dimensional normal distribution with zero
mean and covariance matrix given by Qt: wt ∼ N (0,Qt).

We also assume that the observation noise vt follows a multi dimensional normal distribution
with zero mean and covariance matrix given by Rt: vt ∼ N (0,Rt). In addition, the initial state,
and noise vectors at each step x0,w1, . . . ,wt,v1, . . . ,vt are assumed to be all mutually independent.
We also denote by Pt = Cov(xt) the covariance matrix of xt. We assume the following parameters:

Φ(x) =

[
p1 p2
0 p3

]
H =

[
p4
p5

]
Qt=0 =

[
p26 p6p7
p7p6 p

2
8

]
Rt=0 =

[
p9
]

(4.3)

Pt=0 =

[
p10 0
0 p11

]
ct =

[
p12(p13 −Kt)
p14(p15 −Kt)

]
(4.4)

The pseudo code of our algorithm is listed below
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Algorithm 1 Kalman filter Trend following algorithm

Initialize common trade details
SetProfitTarget( target) . fixed profit target in ticks
SetStopLoss( stop loss ) . fixed stop loss in ticks

while Not In Position do . look for new trade
if DBN( p1, . . . , pn).Predict[0] ≥ Close[0] + µ then . up trend signal

EnterLong() . market order for the open
else if DBN( p1, . . . , pn).Predict[0] ≤ Close[0] + µ then . down trend signal

EnterShort() . market order for the open
end if

end while

Our resulting algorithm depends on the following parameters p1, . . . , pn the Kalman filter algo-
rithm, the profit target, the stop loss and the signal offset µ. We could estimate the Kalman filter
parameters with the EM procedure, then optimize the profit target, the stop loss and the signal
offset µ. However, if by any chance the dynamics of the Kalman filter is incorrectly specified, the
noise generated by this wrong specification will only be factored in the three parameters: the profit
target, the stop loss and the signal offset µ. We prefer to do a combined optimization of all the pa-
rameters. We use daily data of the S&P 500 index futures (whose CQG code is EP) from 01Jan2017
to 01Jan2018. We train our model on the first 6 months and test it on the next six months. De-
liberately, our algorithm is unsophisticated to keep thing simple and concentrate on the parameter
estimation method. The overall idea is for a given set of parameter to compute the resulting sharpe
ratio over the train period and find the optimal parameters combination. For a model given by
equations (4.1) and (4.2) and parameters specified in (4.3) and (4.3), the optimization encompasses
18 parameters: p1, . . . , p15, the profit target, the stop loss and the signal offset µ, making it non
trivial. We use the CMA-ES algorithm to find the optimal solution. In our optimization, we add
some penalty condition to force non meaningful Kalman filter parameters to be zero, namely, we
add a L1 penalty on this parameters.

Results are given below
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Table 1
Optimal parameters

Parameters p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15 offset stop target

Value 24.8 0 11.8 46.2 77.5 67 100 0 0 0 0 100 0 0 0 5 80 150

Table 2
Train test statistics 1/4

Performance Net Profit Gross Profit Gross Loss # of Trades # of Contracts Avg. Trade Tot. Net Profit (%) Ann. Net Profit (%)

Train 5,086 e 11,845 e -6,759 e 15 15 339.05 e 5.09% 10.59%

Test 4,266 e 11,122 e -6,857 e 15 15 284.38 e 4.27% 8.69%

Table 3
Train test statistics 2/4

Performance Vol Sharpe Ratio Trades per Day Avg. Time in Market Max. Drawdown Recovery Factor Daily Ann. Vol Monthly Ann. Vol

Train 6.54% 1.62 0.10 8d14h -2,941 e 3.510 6.54% 5.72%

Test 6.20% 1.40 0.10 8d19h -1,721 e 4.948 6.20% 5.32%

Table 4
Train test statistics 3/4

Performance Daily Sharpe Ratio Daily Sortino Ratio Commission Percent Profitable Profit Factor # of Winning Trades Avg. Winning Trade Max. conseq. Winners

Train 1.62 2.35 49 e 46.67% 1.75 e 7 1,692.09 e 3

Test 1.40 2.05 46 e 46.67% 1.62 e 7 1,588.92 e 2

Table 5
Train test statistics 4/4

Performance Largest Winning Trade # of Losing Trades Avg. Losing Trade Max. conseq. Losers Largest Losing Trade Avg. Win/Avg. Loss Avg. Bars in Trade Time to Recover

Train 1,776.11 e 8 -844.85 e 3 -1,011.82 e 2.00 6.1 77.00 days

Test 1,609.32 e 8 -857.1 e 2 -860.26 e 1.85 6.2 70.00 days
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Fig 5: Kalman filter algorithm on train data set

Fig 6: Kalman filter algorithm on test data set

We compare our algorithm with a traditional moving average crossover algorithm to test the
efficiency of Kalman filter for trend detection. The moving average cross over algorithm generates a
buy signal when the fast moving average crosses over the long moving average and a sell signal when
the former crosses below the latter. A d period moving average is defined as the arithmetic average
of the daily close over a d period, denoted by SMA(d). Our algorithm is given by the following
pseudo code
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Algorithm 2 Moving Average Trend following algorithm

Initialize common trade details
SetProfitTarget( target) . fixed profit target in ticks
SetStopLoss( stop loss ) . fixed stop loss in ticks

while Not In Position do . look for new trade
if SMA(Short)[0] > SMA(Long)[0] + offset then . up trend signal

EnterLong() . market order for the open
else if SMA(Short)[0] < SMA(Long)[0] + offset then . down trend signal

EnterShort() . market order for the open
end if

end while

We can now compare moving average cross over versus Kalman filter algorith. The table 6
compares the two algorithms. We can see that on the train period, the two algorithms have similar
performances : 5, 260 vs 5, 086. However on the test period, moving average performs very badly
with a net profit of 935 versus 4, 266 for the bayesian graphical model (the kalman filter) algorithm.

Table 6
Moving average cross over versus Kalman filter

Algo Total Net Profit Recovery Factor Profit Factor Max. Drawdown Sharpe Ratio Total # of Trades Percent Profitable Train: Total Net Profit

MA Cross over 935 e 0.32 1.13 -e2,889 0.41 26 0.54 5,260.00

Kalman filter 4,266 e 2.48 1.62 -e1,721 1.40 30 0.47 5,085.79

Fig 7: Moving Average Crossover algorithm on train data set
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Fig 8: Moving Average Crossover algorithm on test data set

5. Conclusion

In this paper, we presented a new method for learning Dynamic Bayesian Networks (DBN) using
a new scoring metric that tackles the final usage of our DBN. The main purpose of this work is to
present a new method for learning model parameters in DBNs that tackles the final cost function
rather than EM that forces the model distribution to fit data at all cost and may result in poor final
cost objective function. Thanks to evolutionary optimization techniques, we are able to find local
optimum in polynomial time. Using information geometry, we show that the CMA ES method is
theoretically sound and robust as it relies on the natural gradient induced by the Fisher information
matrix. We conclude than possible extensions are to examiner other black box optimization method
to check their overall performance and to experiment this approach on other domains.
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