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Abstract—This paper demonstrates the feasibility of an
hybrid/semi-supervised classification method for detecting the
environment of an active mobile phone, based on both labeled and
unlabeled cellular radio data. Precisely, we provide answers to
the following question: what is the environment of the mobile user
when it is/was experiencing a mobile service/application: indoor
or outdoor? Implementing this method within the mobile network
is interesting for mobile operators since it has low complexity,
is less human intrusive (minimal intervention of mobile users)
and more accurate. The semi-supervised classification algorithm
learns to identify the environment using large and real collected
3GPP signals measurements. As compared to existing work,
in addition to existing parameters used for classification, we
propose to also use a radio metric called Timing Advance. It is
computed within the mobile network. We empirically validate the
innovative semi-supervised algorithm using new real-time radio
measurements, with partial ground truth information, gathered
daily, weekly, monthly, from indoor and outdoor locations and
from multiple typical and diversified environments crossed by
mobile users. The study confirms the effectiveness of the pro-
posed scheme compared to the existing supervised classification
methods including SVM and Deep Learning.

Index Terms—Environment classification, Machine Learning,
Indoor Outdoor Detection, 3GPP radio measurement, crowd-
sourcing, real user activity.

I. INTRODUCTION

Recent technological breakthroughs have extended the mo-
bile phones’ features, functions and capabilities, which are
now used for more than just communicating or affording ap-
plications. Recently, mobile devices are being utilized to know
the consuming habits of individuals and communities [1], [2],
[3]. Thus, our purpose is to inject this learned cognition into
mobile 5G networks to help them grow smarter and be more
efficient when faced to the increasing complexity of network
management combined with numerous new applications and
their heterogeneous needs.

As a first step to bring such additional knowledge to the net-
work, we target Indoor/Outdoor Detection (IOD) in this paper.
IOD refers to the estimation of the mobile users’ environments,
that is to infer whether the user is Indoor or Outdoor. IOD is
a cornerstone of the user behavior contextualization, which
in turn can be used for learning the user behavior, adapting
mobile network resources, etc [4], [5]. The idea is to have
more information on the user like knowing his environment
type or his location.

IOD can be performed automatically and in real-time using
machine learning techniques, which in turn need data for
learning. Thus, data collection is the first phase of designing
IOD solution based on machine learning. Recently, a new
crowd-sourcing approach [6], [7] is becoming popular for
collecting and analyzing real and large network measurement
datasets coming from mobile phones or any other connected
devices. This method exploits smartphones (with built-in cellu-
lar network interface) with their various measurement sensors.
Additionally, data obtained from smartphones has the natural
mobility vector of people carrying them. This ensures cost-
effective, continual and fine-grained spatio-temporal moni-
toring and analyses of mobile networks. For our work, we
propose to investigate this concept of large and real crowd-
sourced measurements for IOD. We also propose to extend it
to mobile networks to deal with the challenge of detecting the
environmental context of mobile users from network side. The
idea is to collect data, which is measured or derived within
network, and then consider it as an input for the machine
learning based classifier used for training, learning and then
detection. The data measured by multiple UEs during their
connection is sent to eNB, using standardized procedures.

Such solutions are interesting for mobile network opera-
tors that wish to exploit cognition of user behavior to op-
timize/customize their service delivery with minimal inter-
vention of the users. Furthermore, such measurements, as an
alternative to coverage modeling or drive tests [6], capture
reality well, reveal real life of a mobile user while at the
same time being less expensive. This method can then be
implemented by the operators in their networks, as a generic
solution, independent of the implementations of particular
manufacturers. Consequently, it allows the mobile network to
exploit direct measurements at user side to deduce contextual
factors such as the user environment.

In 4G/5G cellular networks, such solutions are technically
feasible since enormous amount of mobile measurement data
is collected by the mobile terminal. This data is regularly
sent to the network using standardized protocols and interfaces
during each UE’s connection to the cell (on a per-procedure
basis and on a network defined event basis). This measurement
data is referred to as LTE UE Measurement Data (LUMD) [8].
LUMD contains rich information on mobile performance and
RF metrics such as signal strength (Reference Signal Receive



Power or RSRP), signal plus interference and noise strength
(Reference Signal Receive quality or RSRQ). It also includes
the Channel Quality Indicator (CQI) that is a function of SINR.

In this work, we aim to achieve the following objectives:
• (1) infer the user environmental context, from certain

LUMD metrics collected in crowdsourcing mode and the
radio metric, Timing Advance, assessed by the network
when the user is connected to a session. In fact, the
environment considered is divided into two main types:

– Indoor: at home, in restaurant, in cafe/ at work or in
other building types, etc.

– Outdoor: pedestrian, running or in car moving with
high speed.

• (2) consider the constraint that the inference shall be
done at network side with minimal human interaction or
intervention.

To achieve (1) and (2), we design a method for training
IOD automatic classifier based on a weakly or partially labeled
crowdsourced dataset. Such dataset reduces human interven-
tion to the lowest possible. Indeed, the labeled data, used
for machine learning training, is either tagged manually or
automatically. Manual data tagging can be expensive, complex
and even unfeasible for mobile operators if they have to tag
all the collected crowdsourced data.

In this paper, we are interested in Machine Learning (ML),
one of the popular techniques, for automatic IOD. Among ML
families, we consider supervised learning and more particu-
larly semi-supervised learning which can be seen as a mix of
supervised and unsupervised approaches. Supervised learning
is more adapted for classification tasks. It uses labeled data to
learn the mapping between data and the labels. Unsupervised
learning looks for patterns and structures within the data for
tasks such as clustering. The semi-supervised learning, which
is an hybrid approach, is becoming popular with growing
abundance of data in this era. It proposes a learning scheme
based on partially or weakly labeled dataset in order to achieve
a classification task or a function approximation task. In our
case, semi-supervised learning allows the mobile operator
to use labeled data from a few users and combine it with
lot of unlabeled and easily available data collected from
several users. This combination allows to learn all possible
environment types related to the user behavior.

The rest of this paper is organized as follows. Section
II describes the main IOD works in literature. In Section
III, a comparative analysis of crowdsourcing and drive-test
data collection modes is provided. In section IV, results with
supervised classification and clustering algorithms are given.
Section V and VI present a new Deep Learning-based semi-
supervised learning approach proposed for IOD from the
network side. Section VI discuss the results.

II. RELATED WORK

In the literature, the IOD issue has not been largely studied:
only few works address it. Proposed solutions are usually
divided in to two categories [9]. IOD is either considered as

a statistical issue where a weighted score or a threshold is
defined to determine the mobile environment, or as a classifi-
cation problem sorting mobile users between multiple classes.
In most of these works, only two classes are considered
(Indoor/Outdoor) but, in some works, three classes are selected
(e.g. Indoor/Semi-Outdoor/Outdoor). The Figure 1 shows an
illustration of the whole dependency of existing classes.

Fig. 1. Example of IOD classification scheme: in 3 main classes

In addition to such categorization, IOD problem can also be
distinguished based on the location where IOD is performed,
either at the mobile terminal side or at the mobile network side.
In the following, we highlight some of the works dealing with
the IOD issue, presenting them according to this classification.

In first category, [10] looks at a threshold of signals col-
lected from some phone sensors related to: radio signals, cell
signal strength, light intensity as well as the magnetic sensor to
infer whether the mobile user is indoor or outdoor. However,
this threshold is specific to the experimental settings where it is
calculated. It is not generalizable to new environments. Thus,
using just a threshold decreases the IOD accuracy. Similar to
[10], the work in [5] also uses the same signals, but also con-
sidered sound intensity, battery temperature and the proximity
sensor. For IOD, they propose a semi-supervised approach:
a co-training solution. They use 2 classifiers in parallel with
a weighted score of classification probability to improve the
final performance of IOD. For every classifier, they select
a different set of sensors to learn different perspectives and
patterns. This work shows high performance (more than 90%
of accuracy) in the detection of new instances in unknown
environments. However, the impact of this work is limited
since their database is not highly representative. Indeed, the
used data set was only collected in three places (the campus
area, city center, residential area) which are not enough to
train a general IOD system.

The work in [4], proposes a video streaming optimization
based on adaptation as a function of the user location in
time. For that, IOD is computed via a Bayesian detector
that combines measurements from two smartphone sensors to
decide the user environment type.

In second category, in [11] authors optimize the use of
radio measurements in wireless networks. Literally, they use
radio signal measurements collected in different situations



of mobility with varying speed (low, medium, high) namely
(pedestrian, incar and unmoving). They dynamically estimate
the signal attenuation. This in turn helps them to efficiently
classify mobile user environment (pedestrian, incar, unmoving)
and finally improves the handover process. Authors assume
that once the signal power attenuation is estimated correctly,
we can easily come to classify whether the mobile user is
pedestrian, in car or unmoving. This is because the measured
power signal for an unmoving user does not show too much
variations unlike the incar or pedestrian cases. Nevertheless,
this proposition is still at an early stage and it has not
been thoroughly developed yet. In [8], the main issue is to
localize the mobile user by estimating its longitude and latitude
in a most possible accurate way. For this, they made the
assumption that mobile users are outdoor, thus giving rise
to the importance of IOD and the necessity to classify the
user environment. For the classification task, they used RSRP
and RSRQ signals and tested many algorithms: SVM, logistic
regression and random forest. SVM was the retained solution
since it performed best.

In this paper, we focus on the IOD automation within the
network side using machine learning algorithms. They are
trained using large real dataset while minimizing the mobile
user interaction (minimal labels). We look at the performance
in terms of F1 − scores of supervised and semi-supervised
IOD methods. Goal is to evaluate the minimal amount of
labeled data required for obtaining good IOD performance.

III. COLLECTED DATA FOR IOD

In this section, we analyze the statistical differences by
focusing on the empirical cumulative distribution function
(CDF) between indoor and outdoor environments, using a large
and real data-set collected at multiple places, many environ-
ments. We illustrate the impact of the two environments on
the empirical CDFs, according to where the data is collected.

A. Data Description

Our large data set consists in Time, 3 LUMD radio signals,
the metric Timing Advance (TA) and the label when it is
known. Thus, it has a vector of 6 features with the label:

• Time: time of signal record
• RSRP: the average received power of the Reference

Signal (RS) between -140 dBm to -44 dBm [12], sent
by eNB.

• RSRQ: the ratio between RSRP and RSSI (Received
Signal Strength Indicator) between -19.5dB and -3dB
[12], that represents the total power of the received
signal (including the transmitted signal, the noise and the
interference).

• CQI: indicator reported by UE to eNB that gives the most
appropriate modulation scheme and coding scheme to be
used for transmission [13].

• TA: used to control Uplink signal transmission timing.
It is indicated by eNB to UE via a Timing Advance
command [14].

The set of these signals has been collected during 9 months,
24h/7 (From October 2017 until June 2018), with an average
of 1 measurement per 15 seconds while the mobile phone
session is active and 1 measurement per 2 minutes otherwise.

The dataset is made of 40% of labeled data and 60% of
unlabelled data. The 9 months collection has been performed
in many different environments like mountain, beach, forest,
companies, cafes, streets, bars, parks, restaurants, lakes, etc...
It was also performed in many cities and places like country-
side, villages, small cities, metropolis, and different countries,
but for this paper we are only studying the data collected in
France (Figure 2). This long collection period allows us to
have data reflecting all weather types: Heavy Rain, Foggy,
Sunny, Snowy, Windy, Rainy,... i.e. almost the 4 seasons.
Therefore with this campaign of data measurement we try to
be as close as possible to the complexity and the variety of a
mobile user moving in real world.

Fig. 2. Data collection Points in France: multiple environments and places

B. Data collection: crowdsourcing vs. drive-test mode

In crowdsourcing mode, the collected data consists of sig-
nals measured by the mobile phone and sent to the eNB. Our
dataset described in the previous subsection has been collected
using this mode. Figures 3 shows the empirical cumulative
distribution functions (CDFs) of RSRP and CQI obtained
with the dataset. The significant offset between the indoor
and the outdoor curves, results from substantial difference
and attenuation variation in radio signal propagation. It is
mainly due to reflection, diffraction, dispersion and attenuation
experienced in indoor environment. However, we note that
there is some overlap between the ranges of RSRP and CQI
values. Also the extreme values seen in the two indoor and
outdoor CDFs (located in tails) get similar and the division
between the two gets blurred. The behaviour at the juncture
of extreme values can be explained by the ambiguous char-
acteristics of the environment when a user is at high speed
(Train, car...) or when he is in a semi indoor environments (like
balconies, semi-open building, near a window.., etc. We argue
that these points are ambiguous and will pose a good challenge
for supervised classification, since they can be indifferently
classed indoor or outdoor at the same time.
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Fig. 3. Empirical CDF for measured RSRP (left) and CQI (right) in
crowdsourcing mode: multiple environments and places - Indoor (red) and
Outddor (green).
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Fig. 4. Empirical CDF for measured RSRP (left) and CQI (right) in drive-
test type mode: specific environments and places - Indoor (red) and Outddor
(green).

An alternate data collection mode, widely used to collect
data, is the drive-test mode. However, this mode imposes limits
on capturing the reality through the data collected in this mode.
Such data collection campaigns are run for limited hours per
day during short period (couple of weeks) and at some specific
places. To model this way of collecting data, referred as drive-
test mode, we extract a portion data (EPD) from the whole
dataset. We aimed by this selected EPD data to be as close
as possible to the type of places where the drive-test was
performed by one of the top 3 American operators in New
York City in [8]. Therefore to build EPD we consider data
only in metropolis (Paris and southern suburbs see figure 5).
Indeed, Paris as metropolis, has a dense and specific architec-
ture which allows better comparison with NYC. Concerning
indoor data, we selected instances where the user was strictly
indoor and, thus, not in “semi-indoor” positions like semi-
open building or balconies,...etc. For outdoor data, we chose
the instances where the user was either pedestrian or in vehicle
in different city streets (limited speed). Thus, to mimic drive-
test we consequently ignored data coming from environments
like subway/ countryside/ forest/ beaches/ Mountains/ .../ etc.
We did this to enable a fair comparison between the two
modes. Figure 4 shows well separated RSRP empirical cdfs
between the classes indoor and outdoor. The superimposed
points of both the cdfs we judge conflicting have disappeared.
The overlap between both the cdfs, which previously led to
ambiguity, has disappeared. This is due to the significant
distance between the indoor and the outdoor curves. In the case
of CQI cdfs we notice a similar phenomenon. This analysis
allows us to argue that supervised classification will run better

on labeled dataset collected in drive-test mode as compared to
obtained through crowdsourcing mode.

Fig. 5. The Data collection Points of EPD in drive-test like mode: Paris and
southern suburbs

IV. CLASSIFICATION USING SUPERVISED LEARNING OR
CLUSTERING

After analyzing the statistical properties of I/O environ-
ments, we first evaluate the accuracy and the performance of
supervised classifiers for IOD. For this, we use the accuracy
metric which is the ratio of correctly classified instances
divided by the total instances and the metric F1− score that
is by definition the weighted average of Precision and Recall
according to the following relation:

F1− score = 2.
P recision.Recall

Precision+Recall

where precision is the number of correct positive results
divided by the number of all positive results returned by the
classifier, and recall is the number of correct positive results
divided by the number of all relevant samples. F1 − score
is one of the most used metrics in case of unbalanced data
classes. Indeed, the statistics of our data show that the data
proportion between indoor and outdoor classes is unbalanced
65% Indoor vs. 35% Outdoor. This reflects the reality since
people, in general, spend more time at home or in indoor envi-
ronments than in outdoor environments. For the experiments,
we divided the dataset as follows: 70% for training, 30% for
validation and test. We evaluate the impact of both input pairs
(RSRP, RSRQ), which is the reference input for IOD in the
literature, vs. (RSRP, CQI), in three cases:

• Training and evaluation on labeled EPD collected in
drive-test like mode (see Table I),

• Training on labeled EPD and evaluation on the rest of
the labeled data of crowdsourcing mode, thus operating
with unknown environments (see Table II) and,

• Training and evaluation on labeled data collected in
crowdsourcing mode (see Table III).

As shown in the table I, running either classification (SVM,
Random Forest, Neural Network) or clustering (k-means)
algorithms on EPD, obtained from drive-test like mode, shows
an excellent performance with an F1−score of 99%, which is



close to the reference result found in literature [8]. However,
when the algorithm trained on EPD is used to perform
IOD directly on crowdsourced data, a dramatic performance
deterioration is observed as seen in table II. The best algorithm
is SVM, which gives an F1 − score of 61.7%. But, this is
not an acceptable performance for IOD. In third case, the
performance of supervised classifier where training as well as
evaluation is performed on the crowdsourced labeled data, is
shown only for the case of SVM, which performed best. Table
III shows a noticeable enhancement of F1−score to 83.71%.
This is a moderately acceptable performance. We are still far
from the reference in the literature. For the target, we can
assume that an error of 5−8% is tolerable for the IOD system.
Indeed, while dimensioning of mobile networks, an error up
to 10% is qualified as an admissible error rate. Additionally,
Tables I, and III show that (RSRP, CQI) as input provides
similar results as (RSRP, RSRQ) when used for classifying
EPD or crowdsourcing data. The results are even slightly better
in case of table II with (RSRP, CQI). RSRQ and SINR (note
that CQI is based on SINR) are both radio measurements that
depend on signal and interference strength. The results shows
that the information contained in CQI is also useful for IOD
and thus, (RSRP, CQI) is also a good candidate for IOD.

Algorithm RSRP-RSRQ RSRP-CQI
Accuracy F1-Score Accuracy F1-score

k−means 99, 68% 99.48% 99.67% 99.47%
SVM 99.75% 99.59% 99.76% 99.60%
NeuronalNetwork 99.50% 99.18% 99.57% 99.28%
RandomForest 99.83% 99.72% 99.77% 99.62%

TABLE I
CLUSTERING AND CLASSIFICATION PERFORMANCE: TRAINING AND
EVALUATION ON LABELED DATA (EPD) OF DRIVE-TEST LIKE MODE

Algorithm RSRP-RSRQ RSRP-CQI
Accuracy F1-Score Accuracy F1-score

k−means 61.41% 60.07% 59.64% 57.77%
SVM 56.56% 36.13% 62.69% 61.71%
NeuronalNetwork 50.90% 44.58% 62.55% 61.54%
RandomForest 62.93% 61.99% 62.63% 61.59%

TABLE II
CLUSTERING AND CLASSIFICATION PERFORMANCE: TRAINING ON EPD

AND EVALUATION ON LABELED DATA OF CROWDSOURCING MODE

As we guessed, the performance of IOD classification when

Algo. RSRP-RSRQ RSRP-CQI RSRP-CQI-TA
Accur. F1-S. Accur. F1-S. Accur. F1-S.

SVM 85.48% 83.66% 85.54% 83.71% 90.17% 89.11%

TABLE III
SVM PERFORMANCE: TRAINING AND EVALUATION ON LABELED DATA OF

CROWDSOURCING MODE

trained only on EPD and then tested on the crowdsourced
data drops in terms of F1− score and accuracy. This is due
to the presence of ambiguous points combined with unknown
environments not included in the drive-test data. Consequently,

learning the user environment, only based on drive-test data,
is thus not enough to learn the complexities of users’ real life.

We continue the study with SVM as the reference super-
vised classifier. The inputs (RSRP, CQI) are more appropriate
for doing IOD from network infrastructure point of view
since these signals are sent more regularly to eNB than
RSRQ. Lastly, we propose to add a new signal, called Timing
Advance (TA), to enhance the IOD performance. The idea
is to exploit the information of distance between eNB and
the mobile users embedded in TA parameter. This would help
the supervised classifier to classify the ambiguous points (e.g.
measurement points with low RSRP, but close to eNB, etc.).
So, in case of (RSRP, CQI, TA), the SVM performance reaches
an F1−score of 89.11% and an Accuracy of 90.17% (Table
III). As a result, with the addition of TA, IOD using SVM
performs better leading to a gain of 6%. TA notably contributes
to solve the classification issue of some ambiguous points.

V. HYBRID/SEMI-SUPERVISED APPROACH

To avoid performance degradation when facing new un-
known environments, it is preferable to train the IOD classifier
using a more diversified dataset. From a data collection point
of view, it is more of an interest for the operator to collect
massive partially tagged data. Indeed, first, during online
labelling it alleviates the network charge by limiting the
amount of UL signalling (all labels) sent to eNB and, second,
reduces the complexity and the time for tagging data. Thus,
the idea is to use the available tagged data, which is costly
to obtain, and combine it with untagged data, which is easy
to obtain, for classifier training. However, one of the main
questions is: how much percentage of tagged data is needed
for satisfactory performance of the intelligent IOD system?

We suggest a semi-supervised learning system (HSSL) that
can learn additional new environments, without the need to in-
volve more users to gather the ground truth (the indoor/outdoor
tag). As in [5], [15], [16], our approach uses both tagged
and untagged data in order to improve the IOD classifier
training, while maintaining the same good performances for
a given ratio of tagged and untagged data. The proposed
system is composed of 2 main modules as shown in Figure
6. The role of first module is to label the untagged data. It
uses a unsupervised clustering algorithm, called “Bayesian
Gaussian Mixture” (BGM) which is fast and efficient. The
second module uses this tagged data output to learn the user
environment via a supervised learning classifier that can be
SVM or also Deep Learning algorithm.

Recently Deep Learning (DL) approaches have emerged
which show improvements as compared to classical ap-
proaches such as SVM [17], [18]. Moreover, from an operator
point of view, IOD is a complicated task since millions of users
are considered during a longer period which heavily increases
the dataset size. Therefore we propose to also investigate
Deep Learning (DL) over the huge crowdsourced dataset.
After configuring DL using a Grid Search to find the best
parameters that best optimize the IOD classifier, we conduct



a comparative study between SVM, HSSL (using SVM), DL
and HSSL (using DL).

Fig. 6. IOD Learning Scheme for Weakly Labelled data: an hybrid/Semi-
supervised Machine Learning approach

In this approach, the first module detects 2 clusters. Once
detected, they are employed to label the untagged data. An
optimizer module then processes the data before sending it
to the second module. It corrects and minimizes the labeling
errors resulting from clustering. For this, we assume that a
user can not change his environment twice in 30 seconds. The
idea can be explained from the following example. Imagine
that we have three consecutive points, very near in time, in the
dataset. If, for example, the first point is mapped as indoor, the
second is mapped as outdoor and the next point, very near in
time, is again mapped as indoor, then we assume that there is
an error in mapping. This is because a user cannot change its
environment two times so quickly. Thus, the optimizer module
detects and corrects such errors.

Let Et the environment type of the user at the moment t
and the different measurement times t− 1,t and t+ 1. If the
difference between (t− 1,t+1) is equal or less than 60s then
Et−1 = Et = Et+1. The optimizer parses the data tagged with
the cluster verifying this assumption and then correcting the
BGM prediction if necessary, see Algorithm 1. The clustering

Data: output of the cluster : tagged data
Result: Optimization and tags correction
for Et in clustering Tagged DataSet do

if Diff(t− 1,t+ 1)≤ 60s then
if Et−1 = Et+1 And Et−1 6= Et then

Et ← Et+1

end
end

end
Algorithm 1: Time Optimizer

and the optimizer together form the first module of the HSSL
system which deals with labeling of the unknown data tags.
The input of first module consists of untagged data. The output
is considered as the first input of the second module dealing
with the supervised classifier. This output is a vector of 4
measurements [RSRP, CQI, TA, Class*], where Class* is the
estimated labels by the first module. The second input of the
second module is composed of the labels (the ground truth)
forming a measurement vector of size 4 [RSRP, CQI, TA,
Class].

VI. RESULTS AND DISCUSSION

This section evaluates the performance of HSSL on the
crowdsourced data. It provides an answer to the question on
what is the ideal amount of tagged data required with the
untagged data so that the performance of the intelligent IOD
system achieves a F1− score higher than 90%.

We have used both scikit-learn [20] and keras [21] in python
for the HSSL implementation. The DL module is a feed
forward neuronal network (fully connected) with 8 hidden
Layers using ReLU as the activation function. Actually, ReLU
is the most widely used activation function while designing
neural networks today. The main advantage of using ReLU
over other activation functions is that it does not activate all
the neurons at the same time. It leads to a sparse network that
is efficient and easy for computation. As for the last layer (the
output layer) we used a sigmoid activation function since we
look for a binary classification either 0 or 1 (for indoor/outdoor
environments).

The HSSL evaluation is first done in 2 validation steps:
• (i) The performance of first module (BGM + Optimizer)

provides an F1− score of 85.99%.
• (ii) The performance of second module (supervised learn-

ing using SVM or DL) shows an F1− score of 89.11%
with SVM and of 92.81% with DL.

Once confirmed that both modules have convincing per-
formance, we evaluate the whole HSSL system. The system
receives both labeled and unlabeled data as inputs. The eval-
uation goal is to find out for what percentage of labeled data
(and unlabeled data), the performance of HSSL goes above
the target F1 − score of 90%. For this, we aim to compare
HSSL (including SVM or DL) with SVM and DL, alone,
when trained over same amount of tagged data (with the only
difference that HSSL in addition also uses untagged data).
Figure 7 shows performance of HSSL (DL or SVM) and of
supervised SVM and DL for different percentages of labeled
data. We observe that IOD performs better using DL than
using SVM in both cases. We also observe that only DL and
HSSL(DL) achieve both the tolerable error of 5−8% for IOD
system in mobile network. However, we note that HSSL is
slightly better than DL for almost all percentages of labeled
data. HSSL(DL) reach the maximal F1 − score of 93% for
the distribution of 65% labeled data and 35% unlabeled data.

Also, it can be seen that for an operator a dataset composed
only of 10% of tagged data, approx. 1 month of collected data
out of total 9 months, is enough to learn the user environment.

To conclude, the proposed HSSL system trained with a
partially tagged data set, is able to make a good distinction
of the user environment. We also note that supervised DL is
better than SVM. This is because DL uses several layers of
neurons and is able to capture more mappings. HSSL(DL)
showed only slightly better performance as compared to DL.
This is because we studied simple IOD with detection of
only 2 classes. In future, we plan to study detection of more
environments such as in-car, pedestrian, etc., instead of just
outdoor or indoor. We will compare HSSL(DL) with DL with
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Fig. 7. Evaluation of the HSSL System: F1− score vs. percent of labeled
data.

more classes, environments and yet more users and data. The
hypothesis will be that adding unlabeled data might improve
the HSSL performance more.

Nevertheless, HSSL with SVM trains faster with a duration
of 32.95s on a machine having 12 CPUs and 32 Go of RAM.
Training with DL is slower: about 23.35 minutes using the
same machine. SVM and HSSL with SVM converge quicker
than DL. In future, we will try training using a GPU.

VII. CONCLUSION

In this paper, we investigated the problem of IOD performed
at network side using 3GPP signals and Timing Advance data
collected inside the infrastructure. We first showed that using
a drive test dataset is insufficient to mimic the real world
complexity and reveal the real user behavior. By diversifying
the environments more (using a highly representative crowd-
sourced dataset) during the training phase, we showed that
the more environments we have for the training phase, the
better the supervised classifier performs. We also showed that
adding a new parameter, Timing Advance, can improve IOD
performance.

To address the fundamental issue of the model adaptation to
new and diversified environments without making it hard and
expensive for the operators (specially due to the labelling task)
we proposed a new hybrid/semi supervised learning (HSSL)
system. The HSSL system presents satisfactory performance
even when facing unknown environments.

We plan to extend our work on IOD in future and address
the IOD issue by considering systems that take the time
variations into account. Thus, probably using other algorithms
with time correlation, like LSTM, would boost the HSSL
system and would probably decrease the required portion of
labeled data to obtain F1− score of 95%.
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