
HAL Id: hal-02011252
https://hal.science/hal-02011252

Submitted on 7 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Easy computation of eccentricity approximating trees
Guillaume Ducoffe

To cite this version:
Guillaume Ducoffe. Easy computation of eccentricity approximating trees. Discrete Applied Mathe-
matics, 2019, 260, pp.267-271. �hal-02011252�

https://hal.science/hal-02011252
https://hal.archives-ouvertes.fr

Easy computation of eccentricity approximating trees

Guillaume Ducoffea,b,c

aNational Institute for Research and Development in Informatics, Romania
bUniversity of Bucharest, Faculty of Mathematics and Computer Science, Romania

cThe Research Institute of the University of Bucharest ICUB, Romania

Abstract

A spanning tree T of a graph G = (V,E) is called eccentricity k-approximating if we have eccT (v) ≤
eccG(v) + k for every v ∈ V . Let ets(G) be the minimum k such that G admits an eccentricity
k-approximating spanning tree. As our main contribution in this paper, we prove that ets(G)
can be computed in O(nm)-time along with a corresponding spanning tree. This answers an open
question of [Dragan et al., DAM’17]. Moreover we also prove that for some classes of graphs such as
chordal graphs and hyperbolic graphs, one can compute an eccentricity O(ets(G))-approximating
spanning tree in quasi linear time. Our proofs are based on simple relationships between eccentricity
approximating trees and shortest-path trees.

Keywords: eccentricity-approximating tree; shortest-path tree; complexity; graph algorithms.

1. Introduction

We refer to [1] for any unspecified graph terminology. All graphs considered in this note are
finite, simple, connected and unweighted. For every u, v ∈ V , let distG(u, v) be the minimum
length (number of edges) of a uv-path in G. A spanning tree T of G is a k-additive tree spanner if
we have distT (u, v) ≤ distG(u, v) + k for every u, v ∈ V . There has been a great deal of research
on additive tree spanners (e.g., see [2, 7, 9, 12, 13, 11, 17]). This is in part motivated by their
various applications, e.g. in distributed systems [8]. Unfortunately, even in restricted classes such
as chordal graphs, there are graphs with no k-additive tree spanner for every fixed value of k [17].
Furthermore, computing the minimum k such that a given graph G admits a k-additive tree spanner
is NP-hard [14].

The eccentricity of a vertex v is defined as eccG(v) = max{distG(u, v) | u ∈ V }. A span-
ning tree T of G is called eccentricity k-approximating if we have eccT (v) ≤ eccG(v) + k for every
v ∈ V . In what follows, we will denote by ets(G) the minimum k such that G admits an eccen-
tricity k-approximating spanning tree. Clearly, a k-additive tree spanner is also an eccentricity
k-approximating spanning tree, but the converse is not true. In particular, Prisner proved in [19]
that every chordal graph admits an eccentricity 2-approximating spanning tree. His result has been
recently generalized to larger classes of graphs [6, 10]. – For instance, it was proved in [6] that we
have ets(G) = O(δ(G)) for any graph G, with δ(G) being the graph hyperbolicity (see [15]). –
However, the complexity of the following problem has been left open in [10]:

Preprint submitted to Elsevier February 7, 2019

Problem 1 (Eccentricity Approximating Tree).

Input: A graph G = (V,E); an integer k ≥ 0.

Question: Does G admit an eccentricity k-approximating spanning tree ?

Our Results. We will prove in Section 3 that Eccentricity Approximating Tree can be solved
in polynomial time (Theorem 1). Specifically, we will prove the following intermediate results, that
are interesting in their own right. Given G = (V,E) and o ∈ V ∪E (either a vertex or an edge) we
call shortest-path tree rooted at o any spanning tree T such that we have distG(v, o) = distT (v, o)
for any v ∈ V , and if o ∈ E then o ∈ E(T).

1. Our first result is that for any k ≥ ets(G), there always exists an eccentricity k-approximating
spanning tree T which is a shortest-path tree rooted at some o ∈ V ∪E. Furthermore, o must
coincide with the set of central nodes in T .

2. Conversely, for any o ∈ V ∪ E, any shortest-path tree T that is rooted at o is eccentricity
ko-approximating, for some polynomial-time computable ko. This upper-bound ko on the
additive distortion is always reached if o coincides with the set of central nodes in T .

We deduce from the above an O(nm)-time algorithm for computing ets(G). Unfortunately, this
time bound prohibits to use our method in order to approximate all eccentricities in real-life graphs.

In Section 4, we focus our efforts on the design of faster approximation algorithms for the Ec-
centricity Approximating Tree problem. Doing so we answer another open question from [10],
where the authors asked whether their proposed heuristics provide any provable good approxima-
tion. Our main result in this part is that any shortest-path tree that is rooted at some arbitrary
almost central vertex in G is eccentricity O(ets(G))-approximating (Theorem 2). In particular,
this is the case for all the spanning trees which are outputted by the quasi linear-time algorithms
given in [6, 10]. More generally, our approximation framework applies to any graph class where an
almost central vertex can be computed efficiently (e.g., see [4, 5]).

We left open whether the value of ets(G) can be approximated in o(nm)-time. Indeed, given
a spanning tree T of G, it is not even clear whether the minimum k such that T is eccentricity
k-approximating can be approximated in o(nm)-time.

Our proofs are based on very simple properties of the eccentricity function in trees. For conve-
nience of the reader, we gather all the properties that we will need in Section 2.

2. Preliminaries

We start introducing additional notations. Given a graph G = (V,E) let S ⊆ V be any vertex-
subset (possibly, S is an edge of G). For every v ∈ V , we define distG(v, S) = min{distG(v, s) |
s ∈ S}. Let eccG(S) = max{distG(v, S) | v ∈ V }. The diameter and the radius of G are defined,
respectively, as diam(G) = max{eccG(v) | v ∈ V } and rad(G) = min{eccG(v) | v ∈ V }. Finally, let
C(G) contain all the vertices of G with minimum eccentricity. We call C(G) the center of G, while
the vertices in C(G) are sometimes called central vertices.

The following result is the main ingredient in our proofs of Theorems 1 and 2.

Proposition 1. Let T be any tree, let S ⊆ V (T) induce a connected subtree T [S], and let x ∈ V (T).
Then, eccT (x) ≤ distT (x, S) + diam(T [S]) + eccT (S), and this becomes an equality if S = C(T).

2

This above property is sometimes called unimodality in the literature. Before we can give a
proof of Proposition 1, we need to introduce some other well-known properties of trees:

Lemma 1 ([16]). For any tree T , C(T) is either a single node or an edge.

Lemma 2 ([1]). Every edge in a tree T is a bridge.

The next lemma is folklore and it can be proved the same way as [3, Theorem 2]. However since
we did not find any reference, we also give its proof for self-containment.

Lemma 3. If T is a tree of order at least three then, for any diametral pair (u, v), we have
distT (u, C(T)) = distT (v, C(T)) = eccT (C(T)). Furthermore nodes u and v are in different con-
nected components of T \C(T), and if C(T) is an edge then the components of T \C(T) that contain
u and v, respectively, are not adjacent to the same central node in C(T).

Proof. By Lemma 1, we have that C(T) is either a single node or an edge. In particular we have
|C(T)| ≤ 2 and so, since we assume |V (T)| ≥ 3, we get u, v /∈ C(T). There are two cases:

• Case C(T) = {c} is a single node. By the triangle inequality, diam(T) = distT (u, v) ≤
distT (u, c)+distT (c, v) ≤ 2 ·rad(T). Let Tu be the connected component of T \{c} containing
u. Since T is a tree, there is a unique neighbor x of node c in Tu. In particular, x is at a distance
≤ rad(T)− 1 from every node in Tu. Since we have x /∈ C(T) and so, eccT (x) ≥ rad(T) + 1,
this implies the existence of a node w /∈ V (Tu) such that distT (c, w) ≥ rad(T). Therefore,
diam(T) ≥ 2 ·rad(T). Overall, distT (u, v) = diam(T) = 2 ·rad(T), and so the unique uv-path
in T goes by c. It implies that u and v are in different connected components of T \{c}. Note
that as a byproduct of our analysis, we also get in this case distT (u, C(T)) = distT (v, C(T)) =
rad(T) = eccT (C(T)).

• Case C(T) = {c, c′} is an edge. By Lemma 2, cc′ is a bridge. Let Tc, Tc′ be the two subtrees
in T \ cc′, with c ∈ V (Tc) and c′ ∈ V (Tc′). We must have that eccTc(c) ≤ rad(T)− 1 (resp.,
eccTc′ (c

′) ≤ rad(T) − 1) since otherwise we would get eccT (c′) > rad(T) (resp. eccT (c) >
rad(T)). Then, eccTc(c) = rad(T)−1 (resp., eccTc′ (c

′) = rad(T)−1) since otherwise we would
get eccT (c′) < rad(T) (resp. eccT (c) < rad(T)). In particular, diam(T) = 2 · rad(T) − 1.
If we had u, v ∈ V (Tc) (resp., u, v ∈ V (Tc′)) then we would get distT (u, v) ≤ 2(rad(T) −
1) < diam(T), a contradiction. Therefore, we must have either u ∈ V (Tc) and v ∈ V (Tc′)
or u ∈ V (Tc′) and v ∈ V (Tc). As a byproduct of our analysis, we obtain in this case
distT (u, C(T)) = distT (v, C(T)) = rad(T)− 1 = eccT (C(T)).

Finally, in both cases we get as desired distT (u, C(T)) = distT (v, C(T)) = eccT (C(T)).

We are now ready to prove Proposition 1:

Proof of Proposition 1. We will assume for the proof that T is of order at least three (otherwise,
T is either a single node or an edge, and so the result trivially holds in this case). First let S be
arbitrary. We claim that the desired inequality directly follows from the triangle inequality. Indeed,
for every x, y ∈ V (T), let x′ and y′ be the closest nodes to x and y, respectively, in S. Then,
distT (x, y) ≤ distT (x, x′) + distT (x′, y′) + distT (y′, y) ≤ distT (x, S) + diam(T [S]) + distT (y, S).
In particular, eccT (x) ≤ distT (x, S) + diam(T [S]) + eccT (S), and in the same way eccT (y) ≤
eccT (S) + diam(T [S]) + distT (y, S). Suppose now S = C(T) and let (u, v) be any diametral pair.

3

Recall that by Lemma 3, we have distT (u, C(T)) = distT (v, C(T)) = eccT (C(T)). Furthermore let
x ∈ V (T) \ C(T) be arbitrary (the proof if similar if x ∈ C(T)). We also have by Lemma 3 that
there exists y ∈ {u, v} such that: x, y are in different components of T \ C(T); and if C(T) is an
edge, the components of T \ C(T) that contain x and y, respectively, are not adjacent to the same
central node in C(T). In this situation, the unique xy-path in T goes by all the nodes in C(T).
Summarizing, we have eccT (x) ≥ distT (x, y) = distT (x, C(T)) + diam(T [C(T)]) + distT (y, C(T)) =
distT (x, C(T)) + diam(T [C(T)]) + eccT (C(T)).

3. The algorithm

The purpose of this section is to prove that for any graph G, we can compute ets(G) in poly-
nomial time (Theorem 1). For that, we remind that for any vertex v a shortest-path tree rooted
at v is any spanning tree T of G such that we have distT (u, v) = distG(u, v) for any vertex u. We
can compute such a tree T in linear time, using breadth-first search. In the same way, a shortest-
path tree rooted at an edge e is any spanning tree T of G such that we have: e ∈ E(T), and
distT (u, e) = distG(u, e) for any vertex u. We can also compute such a tree T in linear time, using
a modified breadth-first search.

From Proposition 1, we will prove next that there always exists an eccentricity approximating
tree that is a shortest-path tree (rooted either at a vertex or an edge of G). Our main result will
follow from this nice property. We note that all the constructions of eccentricity approximating
spanning trees that are given in [6, 10, 18] are also based on shortest-path trees.

Lemma 4. Let G = (V,E) have an eccentricity k-approximating spanning tree. There is one such
a tree T such that, for every v ∈ V we have distT (v, C(T)) = distG(v, C(T)).

Proof. We choose an eccentricity k-approximating spanning tree T of G such that
∑
x∈V

eccT (x) is

minimized. Suppose by contradiction there exists v ∈ V such that distT (v, C(T)) > distG(v, C(T)).
Without loss of generality, we choose such a vertex v such that distG(v, C(T)) is minimized.
In particular, for every fixed u ∈ NG(v) that is on a shortest vC(T)-path in G we have that
distT (u, C(T)) = distG(u, C(T)) = distG(v, C(T)) − 1. Then, let w ∈ NT (v) be on the unique
vC(T)-path in T . We remove the edge vw from T and we replace it by vu. We first prove as a
claim that doing so, we obtain a new spanning tree T ′. Indeed, let Tv, Tw be the two subtrees
in T \ vw such that v ∈ V (Tv), w ∈ V (Tw). By the choice of w, we have C(T) ⊆ V (Tw). Fur-
thermore, since we assume distT (u, C(T)) < distT (v, C(T)) we also have u ∈ V (Tw). Then, by
adding the edge uv between Tv, Tw we get a connected graph. Recall that a connected n-node
graph is a tree if and only if it has exactly n − 1 edges [1]. As a result since T and T ′ have equal
number of nodes and edges, it follows as claimed that T ′ is a tree. We continue proving as our
second claim that we have distT ′(x, C(T)) ≤ distT (x, C(T)) for every x ∈ V . Indeed, this is true
for any node x ∈ V (Tw). By construction, this is also true for node v, and so this is also true for
every node x ∈ V (Tv). So, the claim is proved, and it directly implies eccT ′(C(T)) ≤ eccT (C(T)).
Then by Proposition 1, we have for any node x: eccT ′(x) ≤ distT ′(x, C(T)) + diam(T ′[C(T)]) +
eccT ′(C(T)) ≤ distT (x, C(T)) + diam(T [C(T)]) + eccT (C(T)) = eccT (x) ≤ eccG(x) + k. However,
since distT ′(v, C(T)) = distG(v, C(T)) < distT (v, C(T)), we obtain eccT ′(v) < eccT (v), and so,∑
x∈V

eccT ′(x) <
∑
x∈V

eccT (x), that is a contradiction.

4

Figure 1: A graph G (left) and its unique eccentricity 0-approximating spanning tree (right).

We are now ready to prove the main result in this paper.

Theorem 1. For every graph G = (V,E), we can compute ets(G) and a corresponding spanning
tree in O(nm)-time and O(n2)-space.

Proof. For every v ∈ V , we define k(v) = max{(distG(v, x) + eccG(v)) − eccG(x) | x ∈ V }. In the
same way for every e ∈ E, we define k(e) = max{(distG(v, e) + 1 + eccG(e)) − eccG(x) | x ∈ V }.
We first prove the following equality (of which we will deduce a straightforward algorithm in order
to prove the theorem):

ets(G) = min{k(o) | o ∈ V ∪ E}.

Indeed, let T be an eccentricity ets(G)-approximating tree of G that satisfies the additional condi-
tion of Lemma 4. By Lemma 1, the center of any tree is either a single node or an edge. So, there
are two cases.

• Case C(T) = {v} for some v ∈ V . Then, by Proposition 1 we have:

ets(G) = max{eccT (x)− eccG(x) | x ∈ V } = max{(distT (x, v) + eccT (v))− eccG(x) | x ∈ V }.

By Lemma 4, T is a shortest-path tree rooted at v, and so ets(G) = k(v).

• Case C(T) = {u, v} for some e = uv ∈ E. Then by Proposition 1, we have:

ets(G) = max{eccT (x)−eccG(x) | x ∈ V } = max{(distT (x, e)+1+eccT (e))−eccG(x) | x ∈ V }.

By Lemma 4, T is a shortest-path tree rooted at e, and so ets(G) = k(e). – We observe that
we cannot avoid this second case given that there are graphs G for which every eccentricity
ets(G)-approximating spanning tree has an edge as its center; see Fig. 1. –

Overall, we proved with this above case analysis that ets(G) ≥ min{k(o) | o ∈ V ∪E}. Conversely,
for any o ∈ V ∪ E, let T o be a shortest-path tree rooted at o. We have by Proposition 1 applied
to S = o that for any vertex x, eccT o(x) ≤ distT o(x, o) + diam(T o[o]) + eccT o(o) = distG(x, o) +
diam(G[o])+eccG(o). Recall that ko = max{(distG(v, o)+diam(G[o])+eccG(o))−eccG(x) | x ∈ V }.
In particular, every shortest-path tree rooted at o is eccentricity k(o)-approximating. As a result,
ets(G) ≤ min{k(o) | o ∈ V ∪ E}, and so we proved the desired equality.

The algorithm now proceeds as follows. We compute k(o) for every o ∈ V ∪ E. Then, we
choose omin ∈ V ∪E such that k(omin) is minimized. Note that we proved above k(omin) = ets(G).
Finally, we output k(omin) and any shortest-path tree Tmin which is rooted at omin. As already
observed above, the spanning tree Tmin is always eccentricity k(omin)-approximating (Proposition 1).
Therefore, the algorithm is correct.

Complexity. We start by computing all the distances in G. It takes O(nm)-time and O(n2)-
space. Then, for any o ∈ V ∪E, we can compute eccG(o) in O(n)-time by scanning all the vertices.

5

After this pre-processing, we can compute k(o), for any o ∈ V ∪ E, in O(n)-time, by scanning a
second time all the vertices. Overall, all the values k(v), v ∈ V and k(e), e ∈ E can be computed
in total O(nm)-time. If we have done that, we can compute ets(G) and omin in O(n+m)-time by
scanning the values ko, o ∈ V ∪E. Finally, we can compute a shortest-path tree rooted at omin in
O(n+m)-time by using breadth-first search.

4. Approximation algorithms

We present in this section a general approximation framework for the Eccentricity Approx-
imating Tree problem (Theorem 2). Before we state our main result in this part, let us further
explain our approach. For every i ≥ 0 we denote Ci(G) the set of all the vertices of G with ec-
centricity rad(G) + i. In particular, we have C0(G) = C(G). If i = O(1) then, we abusively call
the vertices in Ci(G) almost central. Some heuristics were proposed in [10] for the Eccentricity
Approximating Tree problem. Their output is a shortest-path tree rooted at some central ver-
tex. We prove in what follows that such heuristics provide a quasi 2-approximation algorithm. Our
analysis also extends to the recent construction given in [6] where the output is a shortest-path
tree rooted at some almost central vertex.

Lemma 5. Let G = (V,E) be a graph and let T be an eccentricity k-approximating spanning tree
of G. For every v ∈ Ci(G), i ≥ 0, we have distG(v, C(T)) ≤ i+ k.

Proof. On one hand we have eccT (v) ≤ eccG(v)+k = rad(G)+ i+k ≤ rad(T)+ i+k. On the other
hand by Proposition 1, eccT (v) = distT (v, C(T)) + diam(T [C(T)]) + eccT (C(T)) ≥ distG(v, C(T)) +
diam(T [C(T)]) + eccT (C(T)). By another application of Proposition 1 to x ∈ C(T), we also obtain
that rad(T) = diam(T [C(T)]) + eccT (C(T)). In particular, eccT (v) ≥ distG(v, C(T)) + rad(T).
Altogether combined, we have distG(v, C(T)) ≤ i+ k.

Our main result in this section somewhat confirms the intuition that, in order to obtain an
eccentricity k-approximating spanning tree for some small value of k, one should take a shortest-
path tree that is rooted at a vertex with small eccentricity.

Theorem 2. Let G = (V,E) admit an eccentricity k-approximating spanning tree. For every
v ∈ Ci(G), i ≥ 0, every shortest-path tree rooted at v is an eccentricity 2(k + i) + 1-approximating
spanning tree.

Proof. We fix an eccentricity k-approximating spanning tree T of G, that exists by the hypothesis.
Furthermore, let T ′ be any shortest-path tree rooted at v. For every j ≥ 0 and u ∈ Cj(G), we will
prove that eccT ′(u) ≤ rad(G) + j + 2(k + i) + 1, thereby proving the theorem. By Lemma 5, we
obtain the following chain of inequalities:

distG(u, v) ≤ distG(v, C(T))+diam(G[C(T)])+distG(u, C(T)) ≤ (i+k)+1+(j+k) = i+j+1+2k.

Since we assume T ′ to be a shortest-path tree rooted at v, we so deduce from Proposition 1 (applied
to S = {v}) that we have eccT ′(u) ≤ distG(u, v) + eccG(v) ≤ (i + j + 1 + 2k) + (rad(G) + i) =
(rad(G) + j) + 2(k + i) + 1 = eccG(u) + 2(k + i) + 1.

We stress the following algorithmic implication of Theorem 2:

6

Corollary 1. Let i ≥ 0 be an integer. If there is an algorithm that computes for any graph G a
vertex of eccentricity ≤ rad(G) + i in T (n,m)-time, then we can also compute in O(T (n,m) +m)-
time an eccentricity (2 · ets(G) + 2i+ 1)-approximating spanning tree of G.

It is known that if G is chordal (resp., δ-hyperbolic) then a central vertex (resp., a vertex of
eccentricity ≤ rad(G) + 5δ) can be computed in linear time [5, 4]. – We refer to the corresponding
papers for the formal definitions of these classes of graphs. – Therefore, we can conclude as follows:

Corollary 2. For every chordal graph G = (V,E) we can compute an eccentricity (2 · ets(G) + 1)-
approximating spanning tree in linear time. For every δ-hyperbolic graph G = (V,E) we can compute
an eccentricity (2 · ets(G) + 10δ + 1)-approximating spanning tree in linear time.

Acknowledgements

We wish to thank the referees for their careful reading of the first version of this manuscript, and
their useful comments. This work was supported by the Institutional research programme PN 1819
”Advanced IT resources to support digital transformation processes in the economy and society
- RESINFO-TD” (2018), project PN 1819-01-01”Modeling, simulation, optimization of complex
systems and decision support in new areas of IT&C research”, funded by the Ministry of Research
and Innovation, Romania. This work was also supported by a grant of Romanian Ministry of
Research and Innovation CCCDI-UEFISCDI. project no. 17PCCDI/2018.

References

[1] J. A. Bondy and U. S. R. Murty. Graph theory. Grad. Texts in Math., 2008.

[2] A. Brandstädt, V. Chepoi, and F. Dragan. Distance approximating trees for chordal and dually
chordal graphs. Journal of Algorithms, 30(1):166–184, 1999.

[3] F. Buckley and M. Lewinter. Graphs with all diametral paths through distant central nodes.
Mathematical and computer modelling, 17(11):35–41, 1993.

[4] V. Chepoi and F. Dragan. Finding a central vertex in an HHD-free graph. Discrete applied
mathematics, 131(1):93–111, 2003.

[5] V. Chepoi, F. Dragan, B. Estellon, M. Habib, and Y. Vaxès. Diameters, centers, and approx-
imating trees of δ-hyperbolic geodesic spaces and graphs. In Proceedings of the twenty-fourth
annual symposium on Computational geometry (SoCG), pages 59–68. ACM, 2008.

[6] V. Chepoi, F. Dragan, M. Habib, Y. Vaxès, and H. Al-Rasheed. Fast approximation of cen-
trality and distances in hyperbolic graphs. In COCOA, 2018.

[7] D. Corneil, F. Dragan, E. Köhler, and C. Yan. Collective tree 1-spanners for interval graphs.
In International Workshop on Graph-Theoretic Concepts in Computer Science, pages 151–162.
Springer, 2005.

[8] M. Demmer and M. Herlihy. The arrow distributed directory protocol. In International
Symposium on Distributed Computing, pages 119–133. Springer, 1998.

7

[9] F. Dragan and M. Abu-Ata. Collective additive tree spanners of bounded tree-breadth graphs
with generalizations and consequences. Theoretical Computer Science, 547:1–17, 2014.

[10] F. Dragan, E. Köhler, and H. Al-Rasheed. Eccentricity approximating trees. Discrete Applied
Mathematics, 232:142–156, 2017.

[11] F. Dragan and C. Yan. Collective tree spanners in graphs with bounded genus, chordality,
tree-width, or clique-width. In International Symposium on Algorithms and Computation,
pages 583–592. Springer, 2005.

[12] F. Dragan, C. Yan, and D. Corneil. Collective tree spanners and routing in AT-free related
graphs. Journal of Graph Algorithms and Applications, 10(2):97–122, 2006.

[13] F. Dragan, C. Yan, and I. Lomonosov. Collective tree spanners of graphs. SIAM Journal on
Discrete Mathematics, 20(1):240–260, 2006.

[14] B. Eckhardt. Complexity Analysis of Tries and Spanning Tree Problems. PhD thesis, Technis-
che Universität München, 2010.

[15] M. Gromov. Hyperbolic groups. In Essays in group theory, pages 75–263. Springer, 1987.

[16] C. Jordan. Sur les assemblages de lignes. J. Reine Angew. Math, 70(185):81, 1869.

[17] D. Kratsch, H. Le, H. Müller, E. Prisner, and D. Wagner. Additive tree spanners. SIAM
Journal on Discrete Mathematics, 17(2):332–340, 2003.

[18] R. Nandakumar and K. Parthasarathy. Eccentricity-preserving spanning trees. J. Math. Phys.
Sci, 24(1):33–36, 1990.

[19] E. Prisner. Eccentricity-approximating trees in chordal graphs. Discrete Mathematics, 220(1-
3):263–269, 2000.

8

	Introduction
	Preliminaries
	The algorithm
	Approximation algorithms

