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A few Multiresolution Schemes for the Black-Scholes equation

In this note, we apply mutliresolution technics to a discretisation of the linear Black Schole equation, which is a convection diffusion equation. In particular, we describe a few numerical schemes in order to perform one step of decimation and reconstruction. This suggests a new discretisation method of this equation, which should easily extend to more than one dimension, and lead to very efficient numerical schemes.

Introduction

We are interested in the numerical simulation of the following equation : where A 8¥ § C is a market price, £ ¦A B5 ¥ § C is the option premium for a market price at time ¥ § , and F

is the price "at-the-money". which is a convection diffusion equation submitted to an initial condition with W " Ra cb .

Since Gd 4 , the singularity of the initial condition is immediately smoothed, and the solution belongs to e 1f A ( Ig ( %0 C

. Thus one can reasonably expect that very few information is needed to represent the solution. The P range must be reduced from ( to a window 2 5 ¡ 9 , hence the problem with boundary conditions : 
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Several numerical schemes are considered : explicit schemes, both in physical space (equation 3) and in coefficient space with complet multiresolution (equation 4), and implicit schemes (equation 6 in physical space and equation 7 in coefficient space with one step of multiresolution). Most of these different strategies for solving the linear Black-Sholes equation have been developped during the summer program of CEMRACS 2000 (cf. [START_REF] Abgrall | A first step toward Multiresolution Analysis for the Black-Scholes equation[END_REF]).

Multiresolution analysis

Decimation and reconstruction

The material of this section is taken from [START_REF] Harten | Discrete multiresolution analysis and generalized wavelets[END_REF][START_REF] Harten | Multiresolution representation of data : a general framework[END_REF]. In [START_REF] Abgrall | Multiresolution Representation in Unstructured Meshes[END_REF], this technique was extended to the representation of function to unstructured meshes, and applied to fluid mechanics problems in [START_REF] Abgrall | Multiresolution analysis in unstructured meshes : application to CFD[END_REF][START_REF] Abgrall | Some preliminary results in multiresolution analysis in unstructured meshes for compressible flows simulations[END_REF].

One considers a set of embedded meshes ¦ "! where is the finest mesh, i.e. the physical space, with # points, and the roughest mesh considered.

To simplify the text, we assume that # ¨ and $ &% % ¨

' "( 0) 1) 32 54 6 74 98 but we can handle more general cases (as explained in [START_REF] Harten | Multiresolution representation of data : a general framework[END_REF] or [START_REF] Abgrall | Multiresolution Representation in Unstructured Meshes[END_REF]), where any value of # is admissible.

The loss of information from a mesh to another is completed so that the initial ¨ datas can always be recovered : let @ % be these completions. They are defined as sets of

% elements 1 .
Hence a natural definition of global meshes A % that contain while reconstruction is given by 10Hence it is possible to define the A ¨ C @g A ¨ C decimation operators by :
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and the full reconstruction operators :
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is the operator that makes 6 steps of decimation, from mesh A to A ¦ % . Moreover, is the operator of full decimation, from the physical space A to coefficient space A .

An explicit scheme

This kind of scheme has very strong CFL conditions. Nevertheless it is interesting to study because of its simplicity. The explicit scheme related to equation (1) can be written
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(most of the time) the scheme (2) can be written § ©¨0 ! ¡ g § ©¨¨£ ¢

(3) with
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This is the explicit scheme in physical space.

It is possible to write this scheme in the coefficient space, using the decimation operator. Let A be a minimal mesh 2 . Then is the full decimation operator : § ËD GF 0 IH " " " 6" '
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The scheme written in the coefficient space is then

W ¨0 ! ¡c g W ¨£d (4) 
with c g g ¦ "! and d g ¢ . The main drawbacks of this explicit scheme are, on the one hand, a lot of time steps, and on the other hand a lot of matrix multiplications.

Compression

Let A be the minimal admissible mesh and e a tolerance. At any time, it is possible to truncate the solution in coefficient space : given a set of details f R % E 'g @ % at a level 6 , we define ¨ informations to represent § ¨and W ¨. After truncation, less information is needed within a tolerance e . This amount of information is quantified by the compression 2 The mesh w £x contains only two points, so it can be useful to consider a cap in decimation.

factor

¨ ¦ "! ¡ % F £¢ ¥¤ R % E t £ §¦ r t R % E d e % 5 ©¨ 4 QP P P % "
3 Implicit Scheme

A possible implicitation

One of the possible implicitations of the scheme ( 2) is
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This scheme can be written § ©¨0 ! ¡c § ©¨¨¢ 

One step of multiresolution

Unlike the explicit scheme, we do not need to express the equation in the coefficient space. If we express the equation as a vector with firstly even nodes and then odds, the right member (flux and sources) can be written 3 @ % ) 1 43 3 . . . . . .
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The implicit scheme can be written as follows A g I ¦ "! C W ¨0 ! ¡c § ©¨¨£ ¢ which means, in the base "even-then-odd" (i.e. after permutation) 
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Example

As an example, we compute the premium of the Call "C90 dec 98" on MATIF Notional Bonds, on october 17th 1990, 44 days before exercise. The updated market price was F £ P .

This corresponds to the datas : The exact Black formula gives a premium of 1.00, and the implicit multiresolution scheme gives 1.00 : The numerical interpolated value is £ ¦A Y ¦ ¨ § © F 5 X4 VC P 4 V4 with a tick of 0.01. Fig. 2 : Premium of C90 dec 98 on MATIF Notional Bonds, using one step of multiresolution with the implicit scheme.

Points are the evaluations of the exact Black formula.
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Fig. 1 :

 1 Fig. 1 : One step of decimation and reconstruction.

Indeed, S UT datas are lost when we reduce the mesh from V T XW 0Y to V T .

First and last nodes are even, respectivly and S ¢ . This vector @ % can be computed very fast.