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Bimodal control of three-dimensional wakes
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Summary. This paper investigates control strategies for drag reduction of thineerdional wake generated by a circu-

lar cylinder at Reynolds numbéte = 300, such flows presenting mode B instabilities whose main feature is streamwise
finger-shaped eddies. The control is performed thanks to a field gétaial velocities on the cylinder. One first focuses
on two-dimensional velocity fiels (spanwise invariant), using both a ciagtgienetic algorithm (see [7]) and Newton
algorithm in Fourier space with five Fourier modes. Besically the same foeiees out, whatever the control technique
used. A square-root regression of the drag reduction versus adgbfithe control leads to the formulation of an effi-
ciency criterion. One then considers a class of spanwise harmonichgitun of this quasi-optimal profile, leading to

a two paramater optimization problem, involving amplitude and wavelengthegbehturbation. A cartography of the
efficiency with respect to these two parameters is finally obtained, shaegigns of interest.

1 Methodology

One considers the full three-dimensional Navier-Stokes#gqns in their velocity-vorticityu, w) formula-
tion and in the context of external flows :

0

afj+u~Vw—w~Vu—VAw:O Q)
with V.u = 0andV x u = w in the domain, andh = 0 on boundariesy being the kinematic viscosity
and the velocityu satisfying far field condition

lim u(x) = Uxes
|x|— o0
with e, being the streamwise basis vector.

The numerical scheme used is an hybrid vortex in cell metlutlghdescribed in [5, 3], performing direct
numerical simulation of equation (1). As a summary, a tinlgtsg algorithm is used in order to split apart
convective and diffusive effects. The diffusive part isveal using a large finite-difference stencil based on
particle strength exchange methods, and the Chorin afgoiih the context of cylindrical geometry is used
for kinematic boundary conditions.

The remaining convective part is exactly the Euler equatgatisfying incompressibility and with only
no-flow-through boundary condition - n = 0, wheren is the inward normal field to body. It is solved
using a Lagrangian method involving particles of vortiditgation-volumew;, x;, v;), changing the Euler
equation into a classical dynamical system :

dwi Xm‘ dUi
dt x=xi 't dt

the velocity field being built by differentiation of streaitihat is to say by solving Poisson equations on
a grid, with back and forth interpolations between particéad grid (cf. [5]). In order to avoid holes or
accumulation of particles, which is sometimes reporteddra@back of Lagrangian methods, frequent high
order remeshing onto a uniform lattice is performed.

= (w-Vu) =u(x;), =v;V-u(x;) =0 (2)
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The Lagrangian formulation makes transport tenmsVw in the Euler equations vanish from the dy-
namical system (2). The transport stability condition, ebhis extremely restrictive in practice, disappears
as well and allows to use time steps hundred times largermtharentional methods, without significant lack
of accuracy. This is especially interesting to reach lange tscales and perform control beyond transient
regimes.

This numerical scheme has been validated in many contettgxamples : up tdRe = 9500 for 2D
wakes in complex geometries [4], and upRe = 1400 in 3D with the dynamic of an oblique ring inter-
acting with a flat body, from [3] and represented on figure Xe€&hdimensional wakes have been especially
investigated in [8, 9] up tde = 1000.

The understanding of the physics of wakes behind circulindgrs has considerably evolved during
the last fifteen years, and is mainly governed by the ReynuldsberRe = U, D /v, D being the cylinder
diameter. The transition from steady to periodic flow oaegiraroundRe = 47 is a very well-known feature
of wakes. The transition from 2D to 3D, breaking the spanivigariance feature by means of two modes of
instabilities, has been intensively tracked during the-miiteties, numerically (see [12]), by Floquet analysis
(see [1]) and experimentally (see [13]).

Around Re = 190, the wake turns spontaneously three-dimensional in la@esigngth (close to four
diameters) called mode A instability. Abovee = 260 the large 3D structures do not appear anymore and
are replaced by finger-shaped instabilities of shorter leaggh (less than a diameter) called mode B. This
kind of instabilities is the dominant feature up/& = 2000, superposing with turbulence as inertial range
grows, and is responsible of a drop2&% of the drag coefficient.

In the present work, one considers cylinder wakes presgentiode B instabilities aRe = 300, whose
vorticity is plotted on figure 2. The drag coefficient is cortgmliover a large interval of time, plotted on
figure 3, showing the high stability of the numerical schemesented above.

Control of such wakes is performed by means of tangential fi¢lvelocity on body in the azimuth
direction, that is to say vectay in standard cylindrical coordinates. This field of velod&yusually called
profile.

Section 2 describes how an optimal profile for two-dimenaidlows has been built and how it affects
three-dimensional flows. Since drag decreases as ener@ntrbtincreases, the drag reduction cannot be
used as cost function for minimization, and an efficienctecion is defined also in section 2.

Spanwise modulation of this profile is then introduced irtisec3. Preliminary computations from [6]
of short duration, thus having possibly transient effeatsl involving only low mode numbers, have shown
that drag reduction tends to be larger as mode number irege8gction 4 investigates this phenomenon
with long runs and accurate statistics, showing that effipjeincreases up to mode 3 and the decreases,
independently of energy level.

2 Two-dimensional control of 3D wakes

One considers a control by means of a field of velocity tarigetd body, here a circular cylinder. The
piecewise constant formulation of such fields is usualljecklbelt actuators”. Applying velocity: to the
body surface involves a non-dimensional kinetic energyneéefby

1
Ei(u) = W /39 u(x)*ds 3)

whereo(9£2) is a measure of the bodyo:(0(2) = LxD is the body surface in 3D, being the cylinder
width, ando (042) = « D in 2D.

Concerning two-dimensional flows, an optimal profile of gietse constant tangential velocities has
been carried out in [7], using an energy-improved genetorithm operating over 16 panels, called clus-
tering genetic algorithm (CGA). Such profiles being not ewnus, whether considering the best or the
most probable element of the population, one has symmetazd smoothed this profile, using a composite
sinus-rational regression (see [10] for example), obtaitihe functionV.(0) plotted on figure 4.

As often for genetic algorithms, global optimality is questble. In order to validate the profile obtained
by smoothing the CGA profile, and show that it is not dependarthe numerical method or its parameters,
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Fig. 1. Obligue annular vortex impinging into a wall & = 1400 (Courtesy of G.H. Cottet).

one has provided an other optimal control : the profile, fiomcbf angle, is searched as a combination of
five Fourier modes and the minimization is performed by a evalgorithm, involving 31 parallel runs
for each step of minimization (1 central run, 5 for the gratlend 25 for the Hessian matrix). At the same
energy level as the CGA, one finds a very strong similarityveen profiles, for both maximal value and
shape, plotted on figure 5.

In order to investigate control of three-dimensional wakee first considers a 3D flow controlled by
this 2D profile with various amplitudes, that is to 98y .(6) corresponding to an non-dimensional energy
C?E’(V.). Figure 6 shows plots of drag coefficients with respect tetfor different values of amplitude
C from 0.1 up t02.0, and as qualitatively expected the drag reduction inceeaséhe energy involved in
the control increases. It has been shown in [6] that if enesgyfficiently high, the flow comes back to its
nominal two-dimensional state.

Figure 6 also shows the mean post-transient drag reducttbnregpect to the amplitud€, and exhibits
a square-root regression, discussed in [11]. This meahanhetficiency criterion can be introduced :

Eff=(C)—Cp)/\VE: @)

where C?%, = 1.374 is the uncontrolled two-dimensional drag coefficientrat = 300 for the present
computations. As a consequence, the efficiency dependsantyofile shape and not on the energy level
for this 2D profile, thus provides a suitable cost functiontfoee-dimensional control.

3 Bimodal control of 3D wakes

In order to introduce three-dimensionality in the contorle adds a spanwise harmonic perturbation to the
optimal 2D profile, with a rescaling in order to conserve gge¥ector orientation is kept azimuthal, that is
to say parallel to basis vectey in usual cylindrical coordinates. In order to reduce cdrgpace dimension,

as a first approach, one also considers a profile with stagnabints and without local reverse velocity.
This leads to the function
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Fig. 2. Vorticity (to the top) and streamwise velocity (to the bottom) isovalues of unaited flow at Reynolds number
Re = 300.



Bimodal control of three-dimensional wakes 5

I||||| 1
"“m WMW“W J\WMW WW{ i \\WWW\ MW\N“W WM MM‘WWWMW M‘Wﬂu NWW”MWWMJW’WWM’W\WWWMMMWM.WWWMW

'\ﬂ'ﬁ’}'i'»}ﬁ

0 200 400 600 800 1000 1200 1400

Fig. 3. Drag coefficient of a 3D wake dte = 300. Early stage is periodic, until instabilities become dominant, leading
to more chaotic values.

o 1 T T T T T T T

>

2

©

& 05F i

2

o

o

)

2 o -

©

c

ke

(2]

c

g 05 .

£

o

2

= -1 1 1 1 1 1 1 1
-3 -2 -1 0 1 2 3

Angle

Fig. 4. FunctionV(6) used for 2D control, obtained by smoothing profile from Clustering Gerégorithm.

Fig. 5. Optimal modes (left picture) and 2D profile (right picture) for contrio8D flow using a Newton algorithm with
five Fourier modesQourtesy of Roland Hildebrand).

2) = C\/2/3 (1 +sin(kz)) Ve(6) )

which depends on integer modeand real amplitud€’. Such a profile involves constant mode and mode
of numberk (being consequently a bimodal control). This three-dinmra profile is at the same level of
energy as 2D profile, that is to s&? E (V). Typical flow obtained with such a control is represented on
figure 7, here fok = 4 andC = 1.0.

After having checked that the final drag does not depend otraactivation time, one has computed
efficiencies fork = 1..8 and fromC' = 0.1 up toC' = 1.1.In order to exhibit the couple mode/amplitude of
highest efficiency, a diagram of isoefficiency is plotted guife 8.
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Fig. 6. Drag versus time for several values of amplitudgto the left) and mean drag versuas (to the right) with
square-root regression.

Fig. 7. Isovorticity surface of flow for modé = 4 andC = 1. Levels atw, = £0.7, v = 0.7 and|w| = 0.3.

According to thisC' — k cartography, the maximum efficiency is found to be for modes@ 3, with
amplitude aroun®.65. The first noticeable fact is that nothing significant ocatmodek = 4 which is the
main growth mode of instability (mode B) at this Reynolds fnem Indeed, a stronger interaction between
natural instabilities and a control at the same wavelengtiidchave been expected.

Moreover, signification of local extrema at low energy is sfinable due to the lack of periodicity
of the drag coefficient signal for the uncontrolled flow, tias low amplitude controlled flow (at larger
energies signal is periodic). The only significant low-gyeminimum occurs at = 1 andC = 0.22 : this
reduces speed difference between body and far field, an@goestly reduces strain, which locally comes
to consider a flow aRRe = 220. At such a Reynolds number, instability of mode A is the maiwdm of
instability, creating large structures (see figure 9) afidémcing dramatically the drag coefficient [2]. Note
that this control does not interact with mode A, but allowts iexist by generating the right window of strain
value.

To the opposite, high mode control fields §bove6) lead to non-optimal stable states for which the
flows are strongly separated (see figure 10). Furthermoreniplitudes abové€’ = 0.76, zones of larger
velocities than far field appear on body, and consequentfgiph of wakes is replaced by physics of jets as
energy increases. Such a modification of the physics is ptphbesponsible for the lack of efficiency at high
energy.
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Fig. 9. Vorticity field at low mode and low energy with apparently stable mode A instalgftity- 1, C = 0.3, to the
left), and at high mode and high energy£ 8, C' = 1.1, to the right).

4 Conclusion

A highly stable numerical method has been used for threeional direct numerical simulation of the
wake behind a circular cylinder. The problem of control odglrcoefficient has then been investigated,
considering velocity profiles tangential to body.

An efficiency criterion been defined, and used for optim@asince the drag reduction has been shown
to be not suitable as a cost function. Optimal two-dimerdigmnofile has been put forward for 2D and 3D
flows.

An harmonic perturbation of this profile has then been usguetform control of 3D wakes, and the
impact of this perturbation wavelength is discussed. leapp that efficiency increases as wavelength de-
creases down to wave number 3, that is to say about one diawéte an optimal amplitude& = 0.65.
Smaller wavelengths make efficiency decrease.

The question of optimal profiles with different combinatioetween constant mode and harmonic per-
turbation, or multi-modal optimization is left open, workibg under progress.

The author would like to thank Georges-Henri Cottet, Petros KoumowtsBkdand Hildebrand and Michele Milano
for their invaluable help in the elaboration of this work. The computatiorsdueces have been provided by CalMiP
(CICT, Toulouse, France), LMC (Grenoble, France) and INSAi(@ose, France).
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Fig. 10. Vorticity field in the optimal regionk = 3, C = 0.6).
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